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Abstract

In recent years, on-line processing of data streams has been established as @ major computing paradigm. This is due mainly to w0 reasons:
first, more and more data are generated in near real-time that need to be processed; the second reason is given by the need of efficent parallel
applications. However, the above-mentioned areas expose a tough challmge over traditional data-analysis techniques, which have been forced
to evolwe to a stream perspective. In this work we presmt an comparative study of a stream-avare multi-staged application, which has been
implemented using GrPPIL, a generic and reusable parallel pattern interface for C++ applications. We demonstrate the benefits of using this

interface in terms of programability, performance, and scalability.
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I. InTRODUCTION

Typically, both analysis and data processing have been carried out in
a batch fashion (ie. the different computing iterations weme applied
over a set of stored data). However, in recent years, domains that
meed a set of constantly refreshed information have gained greater
importance. For instance, this is the case of application fields such as
scientific computing research [17], environmental research by means
of sensor networks, social network analytics, and many others. In
these mesearch ameas, batch e chniques cannot be applied since those
techniques do not meet their computing needs. The lack of effective
tools for approaching this kind of problems has been solved by
evolving traditional paradigm to the stream processing paradigm. In
this paradigm, a constant flow of information retrieved from a set
of sources needs to be analyzed/ processed and the results must be
reported in near real-time. Another outstanding need of this kind of
problems is the urgency for retrieving the computed results because
they either are used in decision-making processes, or are meaningful
only during a limited time frame. The trend of continuous data
flow processing under time constraints has been named near real-
time stream processing. Moreover, the industry and the academic
community have developed High Throughput Computing (HTC)
techniques to provide solutions for these scenarios. HTC is the
data-intensive variant of HPC. Fast data processing is a fundamental
requirement in stream processing. To achieve a high processing
throughput, there is a need to replace the batch-like typical approach
to novel strategies. One of these new strategies is pipeline processing,
consisting in reading the incoming data and processing it across the
successive user-defined stages.

The main contribution of this work is a comparative study of the
generic interface for parallel patterns, namely GrPPL under a real
use case. By using performance and hardwarne metrics, we compare
a stream-based medical imaging application under different aspects

such as CPU time, cache efficiency, and memory consumption. The
rest of the paper is structured as follows. Section I revisits related
works that intersect with the contributions presented in this pa-
per. Section T introduces the GRPPL, a generic interface to parallel
patterns. Section IV presents the application use case analyzed in
this paper. In Section V, we discuss about experiments carried out.
Section VI closes the paper with a few concluding remarks.

II. EELATED WOEK

In reqent years, several engines for shared-memory and distributed
Autonomic Solutions for Parallel and Distributed Data Stream have
been developed, such as Storm [3], Spark [19], Flink [14] and
Streamlt [18]. Basically, applications implemented using these en-
gines are represented as directed fow graphs, whemne nodes represent
operators and the edges the stream flow. According to how the op-
erators, or nodes in the graph, and the edges are defined, different
and complex operations for filtering, splitting and joining streams
can be performed.

Chn the other hand, a number of parallel-pattern interfaces have
emerged orented tor ) multi-core processors, ez, Intel Thread
Building Blocks (TBB) [15], FastFlow [2], RaftLib [4] or Kanga [13]; i)
heterogeneous architectures, such as, SkePU [8], which allows hybrid
CPU-GPU configurations; and i) distributed platforms, e.g., the
Miinster Skeleton Library (Muesli) [9] and CnC [6]. Simultaneously,
standardized interfaces ane being progressively developed. This is
the case of 150 C++ Standard Parallel STL published as technical
specification [11] and now part of C++17 [1]. Similar implementa-
tions to the parallel STL can also be found as third-party libraries,
as HPX [12].
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In this section, we introduce the pipeline and farm streaming parallel
patterns as well as the GRPPI inferface to those patterns.

L1 Streaming parallel patterns

In general, DaSP applications can be seen as data-flows in the form
of directed acyclic graphs (DAG), whene the source node (producer)
gets items from some input stream, intermediate nodes perform
some transformation on them, and a sink node (consumer) dumps
transformed items to an output stream. To accelerate these appli-
cations, the nodes can be executed in paralkel as long as data item
dependencies ame preserved. A common and simple DAG construc-
tion in DaSP is the pipeling, whene the nodes in a topological ordering
have data item dependencies only with the previous node. Another
common construction is the farm pattern, whene the transformation
in a node is replicated 1 times to increase its throughput. This allews
for multiple stream items to be computed in parallel. The formal
definitions of the pipeline and farm patterns are the following

* Pipeline. Items from the input stream are processed in several
parallel stages. Each stage processes data produced by the
previous stage and delivers esults to the next one. Provided
that the i-th stage in a n-staged pipeline computes the function
fi 1@ — B, the pipeline delivers the item X; to the output stream
applying the function fulfy—1(... f1(x)...)) (ie. funcion com-
position). The main requirement of this pattern is that the
transformations in the stages should be independent from each
other, ie, they can be compuied in parallel without side effects.
The parallel implementation of this pattern is performed by
using a set of concurment entities, each of them taking care of a
single stage. Figure 1(a) shows the pipeline diagram.

* Farm. Transformation f : ® — B is computed in parallel over all
itemns from the input stream. Two items % and ¥; can be trans-
formed in parallel producing f(x;) and f(x;). Consequently,
transformation of items need to be completely independent
from each other. Figure 1{b) shows the farm diagram.

Both pipeline and farm patterns can be composed to produce more
efficient applications. Basically, the compositions supported between
the pipeline and farm patterns are those in which the pipeline
stages can be parallelized individually using the farm pattern. Thus,
if a pipeline stage corresponds with a pure function, this can be
computed in parallel following a farm construction. Throughout this
paper, wi denote the sequential stages of a pipeline with “p”, the
farm stages with “£” and the communication between two stages
with the symbol “ [, For instanoz, a pipeline comprised of 4 stages,
whene the second and the third are farm stages, is represented by
“(pl£l£lp)".

L2 GtPPl, a generic parallel pattern interface

In order to provide a generic interface to parallel patterns we have
defined GRPPL, a generic and reusable paralle] pattern interface for
C++ applications [16]. This interface takes full advantage of modern
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Figure 1: pipeline and farm pattern diagrams.

C++ features, metaprogramming concepts, and generic program-
ming to act as switch between the OpenME, C++ threads, Inte]l THEB,
and FastFlow paralke] programming models. Its design allows users
to make use of the aforementioned execution frameworks from a
unified and compact interface, hiding away the complexity behind
the use of different implementation mechanisms. Furthermone, the
modularity of GEPPI permits to easily integrate new patterns, while
combining them to arrange more complex constructs.

GRPPI accommodates a layer between the application programmer
and the different programming models. In this way, GRFPI can be
used to implement a wide range of existing stream-processing and
data-intensive applications with relatively small effort, having as a
result portable codes that can be executed on multiple platforms.

Listing 1 shows the pipeline and farm GEPFI C++ pattern generic
functions. W make use of generic programming with mariadic tem-
plates and forwarding references to take multiple callable entities (e.g.,
a functor or lambda expression) as transformations. MNote as well
that the first parameter specifies the execution policy that shall be
used to execute the operators. This allows to separate the program-
ming model used as a backend from the specific configuration of the
computations.

Listing 1: Pipeline and farm interface

tamplats <typszszs E, typsnazs [, typsoszs ... Te>

woid pipelize(const E k sczecotion, 0 Bk geserstor, Te Bk ... trecsforsere);
tamplats <typezszs T»

void fmrm(int replicas, T bk traseformar);

Listing 2 depicts a pipeline where the first stage invokes
read_item to get the next item in the stream. The second stage
applies to each item the transformation £ () with four parallel repli-
cas. The third stage applies to each item the transformation g ().
Finally, the fourth stage invokes write_item which writes each item
to an cutput stream.

Listing 2: Pipeline and farm interface.

parallal_szezutics_omp mz;

pipaliza sz,
rand_itss,
furm(4,[](sutz bk z} { retorn £(z}; H),
[isuts &k z) { saturs gizl; k.
writn_itam

1;
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IV. pPHARDI: pIFFUSION MAGNETIC RESONANCE
IMAGING TOOLKIT

Diffusion magnetic resonance imaging is a non-invasive technigue
capable of quantifying the diffusion process of water molecules in
living biological tissues. Its main application is the study of the local
geometry and wiring pattern of the human brain white matber. A
large number of neuroscience esearch studies and clinical appli-
cations have been conducted in the last decade [7]. Many of these
studies are based on different intra-voeel (volumetric pivel) models
of molecular diffusion, which in turn, require different sampling
schemes to collect the data and fitting algorithms.

In order to facilitae the widespread use of the mobecular diffusion
technique, in a previous work, we have developed a novel toolkit
called pHARDI®. The purposge of pHARDI is twofold: (1) to provide
in a single toolkit with an extensive and diverse set of reconstruction
methods for different sampling protocols and (2) to accelerate the re-
construction process by means of high quality linear algebra libraries.
The toolkit has a layer-based design enabling the paralelization of
the computation stages via multiple accelerators in a wide range of
devioes, including co-processors, multi-con CPU, and GPU devices.
Experimental evaluation shows that pHARDI attains, on average, a
speed-up of 8x over equivalent Matlab implementations [10]. Figure
2 shows the five stages in which the pHARDI implementation is
structured:

* Stage 1: an initial transformation from 40 volume epresented
in NIfTT to a matricial format.

* Stage 2: this stage reduces the computation by applying a
mask over the white matber egion of the brain After that,
mesulting vowels are transformed into a matrix, which considers
the directions of each track. The size of this matric determines
the computational cost for future tasks.

* Stage 3: it is the most time consuming part. This stage recon-
structs each slice of the volume in all the directions provided in
the input files.

* Stage 4: this stage aggregates the partial results (e, slices) into
a final moonstructed volume. Each slice can be included in the
final volume without interference (embarrassing parallelism).

* Stage 5: this final step is in charge of transforming the mesulting
matrix into a final NIfTT representation.

Stages 2, 3 and 4 can be mpresented as a pipeling, in which each
stage of the pipeline pattern can be executed independently. Ad-
ditionally, Stage 3 can be accelerated using a farm pattern as it is
computationally more expensive than the others. In this work, we
demonstrate the advantage of stream processing in this multi-staged

algorithm by using GrPPL

V. EXPERIMENTAL EVALUATION

The evaluation has been carried out on a machine consisting of two
multi-core Inte]l Xeon E5-2630 v3 processor with a total of 8 physical
comes running at 240GHz, hyperthreading activated, equipped

2 pyrailable at https:// githeb. cos/arcosec3s/phardi.

with 128GB of RAM, and executing Limoe Ubuntu 16.04 x64 OS5,
The compilers used is GOC 7.00 After that, the source code has been
compiled using both -03 and -DNDEBUG flags. In all the cases, we
show the metrics for an execution with up to 20 threads.

We run the toolkit using a real diffusion MRI dataset® acquined
from healthy subjects. Specifically, whole-brain HARDI data were ac-
quired in a 3T Philips Achieva scanner (Sant Pau Hospital, Barcelona)
with a 8-channel head coil along 100 different gradient directions
on the sphere in g-space with constant b = 2000s/mm?. Addi-
tionally, 1b = 0 volume was acquired with in-plane resolution of
2.0 % 2.0mm? and slie thickness of 2mm. The acquisition was car-
ried out without undersampling in the k-space (Le., B = 1). The final
dimension of this dataset is 128 » 128 x 60 » 101 voeels, resulting in
a file of 117 MB.

V.1 Performance metrics analysis
This section summarizes the performance metrics analysis carried
out for the pHARDI application. In this section multiple comparative
metrcis ane shown We compare the sequential baseline implemen-
tation with a manual accelerated version implemented by us with
OpenMP (OpenMP in tables) and GrPPI under different back-ends,
such as sequential (SEQY), OpenMP (OMP), Intel TBB (TBB), C++
native threads (THE), and FastFlow (FastFlow).

We have employved perf [5] for collecting both execution time and
performance counters. Table 1 summarizes the metrics collected for
this work and its description.

V.11 Execution time

We observe from the PFETI metric that GrPPI versions an2 as compet-
itive as the OpenMP-based version. Besides, there are also project-
based speed metrics such as PPRTL, PPSTI and PPUTI, which wene
measured with time utility from the Linux platform. The results
obtained from 20 measurements were averaged (the method was the
same for every other run-time metrics as well). The final values of
the metrics are shown in Table 2. The table

PFETI and PPETI clearly indicate a mduction in execution time
for the parallel part of the code as well as for the whole application.
PPSTI and PPUTI refer to the total time consumed by the prooess.
Wi also highlight the value 1786 obtained for TBB-based backend,
which is motivated by the fact that Intel TBEB is task based and its
scheduler maps those task to available hardware threads with a work

stealing policy.

V.2 Performance analysis

In this subsection, we evaluate the overall execution time and speed-
up reached by a refactorized version of the ported implementation
of pHARDL It is important to mention that in case of Intel TBB and
FastFlow, we have turned off the unneeded cores at system level
4 However, it is difficult to predict the interferences between both
pipeline and farms thneads.

Figure 3 plots the total execution time of pHARDI, comparing dif-
ferent back-ends of GRFPFI and OpenMF. We evaluate an increasing
numbser of farm threads of Stage 3 of the pipeline. We can observe

*hitpe{ zenodo arg/ reoord 1194263 WsS6V SvghicY
fehn 0 = foysdemices/system /o (Vmlne
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Figure 2: Parallel patterns identified in pHARDL

Table 1: Performance and hardiare counters employed is this study.

Metric Description

PFRTI Manually instrumented execution time.

PPETI Ellapsed real (wall clock) time used by the prooss,

PPSTI Total number of CPUFseconds used by the system.

PPUTI  Total number of CPUFseconds that the process used directly in user mode.
PPMRS Maximum resident set size of the process,

PPVCS  MNumber voluntary context switches.

PPICS Mumber involuntary context-switches.

PPCRF  MNumber of cache references.

PPCMS  Number of cache misses.

Tabie 2: Metrics related to the execution time. M represents manual paralldization while A represents that parralization has been carried out in an automatic

way by using GrPPL

Implementation 128 x 128 » 60 x 101 voxels [sec]

type PFRTI | PPRTI | PPSTI | PPUTI
baseline 112051 | 1,115.20 4887 | 159671
OpenMP (M) w2 7818 1600 | 134416
GrPPI + SEQ (A) 047 52 944,50 459 946,62
GrPPI + OMP (A) 79.43 BL12 1018 | 1,399.51
GrPPI + TBB (A) 8811 9018 17.86 | 1,233.89
GrPPI + THR (A) 79.50 79.25 898 | 1,39180
GrPPI + THE No Order (A) T 77.39 7.94 | 138330
GrPPI + FastFlow (A) 143.33 143.38 B.26 | 176588

that GEPPI scales with an increasing number of threads, reaching its
minimum execution time with 16 threads. This number corresponds
with the number of physical cores of the employed machine.

Equations 1, 2, and 3 depict the theoretical sequential and parallel
execution times. N cormesponds with the number of slices. K repre-
sents the number of active cores involved in the paralle]l execution.
1 to t5 correspond with the stage in the defined pipeline.

Given the limitations of transforming NIfTI-based data, Stages 1
and 5 run sequentially in both sequential and parallel implemen-
tations. Due to the use of the pipeline paralle]l pattern, we hawe
experimentally characterized the execution times of Stages 2 and 4
and we conclude that those stages can be ignonad.

Tspp=h+Nx(ta+ta+ 1) +ig (1)

Tgpg =t +ts+ Nxmax(tz+ta+ ta) =i+ ts+ Nxts  (2)

t
Tpan :J'1+J'5+N><max|:1'1+f

g— h+its+Nxis

-

h+tg+ g xis

Figure 4 plots the achieved speed-up of pHARDI under different
back-ends compared with the baseline implementation based on
sequential C++. The figure shows the theoretical speed-up calculated
by using Equation 4. We highlight that most of the back-ends
outperform the theonstical maximum speed-up. This is mainly
due to the cache behavior under the parallelized scenario. GRFFI's

back-ends are not affected by the increment of concurrent threads,
maintaining the values of metrics like number of L1 data cache

N
+14) zr,+15+f wiy (3)

4
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Figure 3: Performance evaluation over five GRPPT's back-ends and a manu-
ally implemented version of pHARDI using OpenMP

misses. Furthermore, the increase of hit ratio in L2 and L3 motivates
the performance over the theoretical speed-up (black line).

We can observe also that the reached speed-up of the OpenMP
version is close to the theoretical metric. However, GRPPI-based
versions outperform this theoretical bound due to a higher hit rake
in both L2 and L3 cache lewels.
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Figure 4: Performance evaluation over five GRPPL's back-ends of PHARDI
and its speed-up compared with the baseline solution.

VI Cowncrusion

Stream processing frameworks are current trends in the data process-
ing field. An evidenoe of this fact is the growing number of solutions
in both industry and academia. In this work we have shown the
benefits of using the GRPPI generic API in a real medical image
processing application. The evaluation mesults demonstrate the ac-
celeration obtained after applying refactoring techniques, clearly
outperforming the baseline version. This has allowed us to acoeler-
ate the processing time by a factor of 18
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