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ABSTRACT 

The development of the electron microscopy (EM) has led to new algorithms devoted to the 

analysis of the images obtained by the EM know as micrographs. These images are characterized 

for being noisy, making the extraction of information a difficult task. To that end, several 

reconstruction packages are being developed that provide with powerful tools to denoise, 

extract and analyze the micrographs to obtain the 3D model (volume) of the sample. 

Since there is no a gold standard that can be followed to process all micrographs in a single way, 

researches rely on the combination of algorithms of several packages to get the optimal result. 

However, the lack of consensus between the packages makes difficult to combine different 

programs. Also, the algorithms should be made as simple and automatic as possible to facilitate 

the task of the researchers without degrading the quality of the results. 

The purpose of this bachelor thesis is to introduce required algorithms that can be used to 

reconstruct the 3D model of a sample out of the micrographs acquired by the electron 

microscope. The analysis will be focused on two individual and complementary tasks: the 

development of a mathematical basis aimed at the automatization and simplification of the 

deformation calculations carried out to optimize the 3D templates used to reconstruct new 3D 

models, and the protocolization of a package that uses ab initio methods to avoid the 

requirements of a 3D template to reconstruct a model. The algorithms will be tested in order to 

validate and analyze their performance, so they can be used in real problems and applications. 

 

Key words: Normal Mode Analysis (NMA); Electron Microscope (EM); Spherical Harmonics (SH); 

Zernike polynomials; Fourier Transform (FT); Multidimensional Scaling (MDS); SCIPION; 

Transmission Electron Microscope (TEM); Scanning Electron Microscope (SEM). 
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1. INTRODUCTION 

The analysis of the different hierarchical structures present in an organism is carried out by 

sophisticated technologies. Progressively, scientists started to study the smallest structures 

living organism are composed of: cells. By the middle of the 19th century, light microscopes 

started to introduce limitations to the maximum resolution to which the internal structures of 

the cells could be resolved [1]. Overcoming these limitations was crucial for the understanding 

of the different mechanism and machineries used by the cells to perform their functions. The 

invention of the EM by Max Knoll and Ernst Ruska in 1931 proved that it was possible to go 

beyond the resolutions achievable with the light microscope, leading to a revolution in this field. 

Since their invention, the improvement of the EM has allowed to resolve structures with a 

resolution range between near atomic resolution and 3 nm [2]. The main advantage of EM 

against light microscopes is the use of a beam of accelerated electrons instead of photons to 

illuminate the sample. According to de Broglie equation, the wavelength of an electron depends 

on its mass and speed. In general, the wavelength of an electron is several orders of magnitude 

below the wavelength of a photon, allowing scientists to obtain the structure of smaller objects. 

Since the discovery of the electron microscopy, two main types of EM have been developed 

depending on their mode of operation [3]: 

• Transmission Electron Microscope (TEM): The TEM is based in a cathode able to emit 

accelerated electron towards the sample and focused by magnetic lenses. As the 

electron traversed the sample, they will carry the structural information of the 

specimen. The image is then recorded thanks to the electrons hitting a fluorescent 

screen, photographic plate or a light sensitive sensor. This was the first mode of 

operation of an EM in history. 

• Scanning Electron Microscope (SEM): Nowadays, EM has experienced a quantum leap 

by the introduction of direct electron detectors, that allow imaging at much better 

resolution. The SEM detects the secondary electron emitted by the sample due to the 

interactions of the primary accelerated electrons with the atoms of the specimen. The 

primary electron beam is scanned along the surface of the sample and secondary 

electrons are collected by detectors able to relate the detected signal to the position of 

the beams. 

 

1.1. Motivation 

Three-dimensional electron microscopy (3D-EM) is a technique used to reconstruct large 

biomolecules in their native state. The main requirement to obtain a 3D model (volume) of any 

molecule is to take several micrographs that contain thousands of projections of the molecule 

of interest [3].  

There are several difficulties to overcome during the reconstruction of the 3D model of any 

molecule: 
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Firstly, the projections are noisy as the samples are illuminated with low doses to avoid 

damaging the specimen and due to the presence of amorphous ice with a contrast very similar 

to that of the macromolecules. Secondly, a large amount of projections are needed (in the order 

of 103 to 105 projections) to reconstruct the maps with an admissible resolution. This makes the 

reconstruction process demanding in terms of computational complexity and resources. 

There are several packages available to reconstruct a 3D model from a set of particles including 

EMAN [4], SPIDER [5] or XMIPP [6]. Since there is not an optimal methodology to obtain the 

maps, several techniques have been developed to overcome the different difficulties a 

researcher may encounter. 

The motivation of this work is to include in SCIPION new techniques to simplify different 

processes involved in the reconstruction and analysis of a 3D model. SCIPION is a program 

developed by the Biocomputing Unit of the National Center for Biotechnology (CNB) in Spain. 

The purposed of SCIPION is the integration of several tools in a unified interface to reconstruct 

3D models of macromolecular complexes [7]. SCIPION is mainly distributed for Linux OS. 

The techniques exposed during this work aim in the automatization of processes, and the 

simplification of the requirements needed to execute a program in order to reduce the 

background knowledge a user should have to obtain a proper result. 

 

1.2. Objetives 

The purpose of this report is to introduce and discuss two techniques implemented in SCIPION. 

The first technique is an algorithm based on a mathematical basis defined over the sphere to 

find the strain and rotation gradients that minimize the distances between two similar models 

(e.g. two maps representing different conformations of a macromolecular complex). The 

objective sought with this application was to facilitate and automatize the process of finding 

such strain and rotation gradients, so any user can apply this analysis in an easy manner. 

The methodology followed for the implementation of the mathematical basis was the following: 

1. Definition of the mathematical tools required to define the basis on the sphere (this 

work was done together with the Dr. Roy Lederman from Yale University). 

2. Implementation of each part of the basis in C++. 

3. Testing of the mathematical basis with basic 3D volumes to confirm that the 

behavior of the basis is appropriate. 

4. Testing of the mathematical basis with real 3D models to compare the results with 

validated resources. 

5. Adapt the mathematical tool to compute the deformation and rotational gradients 

if the input data is a 3D model and a micrograph. 

6. Analysis of the deformation and rotational gradients and visualization of the results. 
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The second technique is the implementation of SIMPLE package [8] in SCIPION. The main 

objective is to provide with alternative algorithms that may be useful for some specific 

reconstruction applications, as there is no a standard to reconstruct 3D models from the 

micrographs. 

The methodology followed during the implementation of SIMPLE into SCIPION was the 

following: 

1. Understating the basic concepts required to protocolize a reconstruction package 

into an integration framework like SCIPION. 

2. Understanding of the algorithms and workflows used by SIMPLE to approach the 

reconstruction procedure. 

3. Protocolization of the programs provided in the newer version of SIMPLE (v2.5) that 

introduce newer approaches/algorithms to SCIPION. 

4. Testing of the SIMPLE programs implemented in SCIPION to ensure their correct 

functioning and correction of errors. 

The implementation of the first technique was done in C++ programing language and it was 

included inside a package of SCIPION known as XMIPP which is also developed by the 

Biocomputing Unit. The second technique was written in Python programing language and it 

was directly implemented within SCIPION. 

The regulatory framework of this work is described in chapter 7 of this document. 
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2. BACKGROUND 

The main purpose of this chapter is to provide to the reader a brief summary of the state of the 

art and the basic concepts required to understand the methodology develop along the work. 

 

2.1. Normal mode analysis 

The assembling of several atoms in a repetitive manner leads to the formation of large molecules 

(macromolecules) known as polymers. These polymers have many degrees of freedom (as much 

as 3𝑁 − 6 being 𝑁 the number of monomers forming the polymer) [11]. Thanks to this large 

amount of degrees of freedom, a polymer can exist in several shapes known as conformations. 

One of the most important polymers in biology are proteins. Like other polymers, proteins may 

be reshaped to many different conformations, but in nature these conformations are 

constrained to a series of microstates that will determine (together with other properties of the 

proteins) the function of a specific protein inside cell. In principle, a protein can be found in 

nature in any of its possible microstates although they are not equally probable. 

The microstates of a protein follow a probabilistic model being the most probable microstate 

known as the “conformation” of that protein. 

The introduction of computation for biological applications made possible the analysis of the 

different conformations of a given protein once its structure (usually the conformation of the 

protein) is known. 

Among the different techniques developed for this purposed, this section will be focused on 

normal mode analysis (NMA). NMA is “a molecular modelling technique used to model the 

vibrations, fluctuations and conformational changes of proteins” [12]. 

To that end, NMA considers that the atoms composing any protein have a given amount of 

energy (i.e. they are not static, but they present a dynamic behavior usually manifested through 

vibration). Apart from this intrinsic vibration coming from the energy content of the atoms, 

atoms also suffer different forces (hydrophobic interactions, Van der Waals forces, electrostatic 

forces…) which keep them in a specific position within the macromolecule. 

NMA tries to model the behavior of the atoms inside a protein through an elastic network model 

(ENM). An ENM of a protein is created by assuming that the atoms inside the protein are 

connected to the atoms surrounding them through springs with a given elastic energy (which is 

the addition of the intrinsic energy and the extrinsic forces acting on the atom). An example of 

an ENM is provided in Figure 1. 
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Figure 1: ENM of a macromolecule. Extracted from [13]. 

 

Once the ENM of a protein is known, it can be used to compute the total elastic energy of the 

system. Then, the Hessian matrix of this elastic energy is obtained in order to analyze the 

eigenvalues and eigenvectors associated to the energy of the system. 

This process is known as NMA [12]. It is important to mention that the eigenvalues and the 

eigenvectors should be analyzed in pairs: the eigenvectors represent a movement of the 

macromolecule and the eigen value is the associated energy cost per unit of that movement. 

Since NMA is an appropriate and affordable way to compute the conformations and 

deformations a given protein may suffer, it is possible to use them to solve the problem of 

finding the rotation and deformation fields that bring two conformation of similar proteins as 

close as possible [14]. An example of this application is shown in Figure 2. 

 

 

Figure 2: Example of the deformation and rotation fields computed using NMA. Extracted from [14]. 
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The main disadvantage of using NMA for this application is the lack of full automatization. The 

method will provide to the user a set of NM representing the possible movements a 

macromolecule may suffer. If the user does not pick the adequate combination of NM, the 

finding of the deformation and rotation fields may be compromised leading to unexpected 

results. The improvement introduced with the mathematical basis is the complete 

automatization of the process to reduce the dependency of the user in the result. 

 

2.2. Principle of operation of an EM 

The next subsection provides a summary of the physical principles of EM. The whole description 

of the principles is available at [15]. 

Imaging a given sample requires to measure the interaction between a source of light and the 

sample. In the 20th century, it was discovered that the electron exhibits a wave-particle duality 

whose characteristics wavelength is expressed as: 

 𝜆 =
ℎ

𝑝
 (2.1) 

Where ℎ is the Plank constant and 𝑝 is the linear momentum of the electron. This equation was 

first proposed by Louis de Broglie. 

The linear momentum of the electron depends on the potential used to accelerate the particles 

in the EM. If the potential is small, the electron will move slowly leading to a strong diffraction. 

If the potential is progressively increased, the energy and velocity of the electron will be 

increased accordingly. At some point, the electron will be able to penetrate a solid several 

microns. Depending on the internal structure of the sample (and the energy of the electrons), 

the electron penetrating it will be absorbed, scattered or transmitted. Electron that are capable 

of interacting with the sample followed by their transmission carry information about the 

structure of the sample. Figure 3 shows the possible fates of an electron interacting with a given 

sample. 

 

Figure 3: Possible outcomes of the interaction of an electron with matter. Extracted from [16]. 
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Since the electron is a particle negatively charged, it can be influenced by the presence of electric 

or magnetic fields that may be surrounding the molecule at a given moment. Thanks to this 

property of the electrons, it is possible to redirect the electrons transmitted through the 

microscopic structure of a material to create an image. This is the principle of operation of the 

Transmission Electron Microscope (TEM). Figure 4 shows a summary of the operation of the 

TEM compared to the light microscope. 

 

 

Figure 4: Operation of the TEM compared to the light microscope. Extracted from [17]. 

 

As it can be seen from equation (2.1), if the potential used to accelerate the electrons is made 

large, very low wavelengths can be achieved that would lead to an increase in the resolution of 

the images obtained by the TEM. The main drawback is that if highly energetic electrons are 

used to image the sample, some damage may be induced leading to a wrong result. To that end, 

it is necessary to use the appropriate potential, so good enough resolutions are achieved 

without damaging our samples. Currently, it is common to use low energy beams of electrons 

to get a movie from the sample rather than a single image (that will be postprocessed to improve 

the quality of the image). This reduces the risk of damaging the sample. 

TEM are usually used when the samples are thin, so electron can be transmitted through the 

sample. If the thickness of the sample increases, electrons are scattered or absorbed by the 

sample rather than being transmitted. This make impossible to image bulky samples by using 

the TEM. 

As it can be seen from Figure 3, electron can suffer two other fates apart from the absorption, 

transmission and scatter. Electrons may be backscattered by the microscopic structure of the 

material or, if the energy is large enough, they can induce the release of an electron bounded to 

an atom forming the sample. These electrons are known as secondary electrons and they can 

be also used to produce an image of the sample. 
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The main approach is to focus two primary beams of electrons (perpendicular to each other) in 

each region of the samples to scan a square area of the specimen known as raster. Since the 

specimens are bulky, the electrons coming from the primary beams won’t be transmitted, but 

they will induce a secondary emission of electrons from the material. These secondary electrons 

can be used to produce an image of the area that is being scanned by the primary beams. This 

procedure is known as Scanning Electron Microscopy (SEM). One drawback of this technique is 

that the resolution of the images obtained is below the TEM, but it is better than the light 

microscope. Figure 5 provides a summary of the operation of the SEM compared to the light 

microscope. 

 

 

Figure 5: Operation of SEM compared to the light microscope. Extracted from [18]. 

 

It is also possible to combine the principles of the TEM and the SEM to image a thin sample. This 

gave rise to the Scanning Transmission Electron Microscope (STEM). This EM uses the electrons 

coming out from the opposite side to the one irradiated by the beam of electrons (although the 

electrons may not emerge from the sample in the direction of the beam but with a given 

direction). Figure 6 shows the main differences between the operation of TEM and STEM. 

 

 

Figure 6: Comparison between the operation of TEM and STEM. Extracted from [19]. 
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Apart from the TEM, SEM and STEM, there are other EMs. The description of these devices is 

provided at [15]. 

In order to produce a good image, the electrons must be focused properly in the detectors. In 

fact, the physical principles applied to the optics of the light microscope can be also applied to 

the EM, as the electrons can be considered as waves that follow a given path like light rays. The 

main difference are the lenses needed to focus the electrons compared to those used on the 

light microscope. 

In EM, it is possible to divide the lenses in two different groups: electrostatic and magnetic 

lenses. Although the mechanisms of the lenses will not be explained here, they can be 

considered as normal glass lenses that take advantage of the electrical charge of the electron to 

focus them properly in the detectors. The whole description of the optics of both the light 

microscope and the electron microscope is available at [15]. 
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3. METHODS 

The following chapter is intended to be an analysis of the mathematical tools required to define 

the basis in the sphere that will be explained posteriorly in this work. After the definition of the 

tools, a brief description of the operation and functioning of SIMPLE package, SCIPION and 

XMIPP is also provided. 

 

3.1. Infinite dimensional function space 

Before explaining the set of functions that will be used to develop the mathematical basis, it is 

worth to introduce the concept of Hilbert space that will be useful to understand the final 

behavior of the basis. 

In mathematics, infinite dimensional function spaces are defined as a Hilbert space [20]. The 

Hilbert space is a vector space that includes the inner product. This provides the space with new 

information about the vectors, as it is possible to measure their length, angle, orthogonality… 

Another important restriction of the Hilbert space is that the introduction of the inner product 

and the norm makes it a complete metric space [21]. If this property is not verified, then the 

space is known as inner product space. 

The mathematical tool developed during this work represents a function space (with an infinite 

number of dimensions) defined over the sphere. In comparison with a vector space, a function 

space can be considered as a vector space whose points are functions [22], so they verify the 

properties of any vector space. Moreover, as an infinite dimensional space, the functions must 

lie in an infinite dimensional vector space like the Hilbert space [23]. 

One useful characteristic of the infinite dimensional vector spaces is that they are a 

generalization of finite spaces like the Euclidean space. This should also be true for our 

mathematical basis. As it will be explained lately in this work, our mathematical tool tries to find 

the rotational and strain fields that minimizes the distances between the voxels of two related 

EM volumes. Apart from the more localize deformations and rotations that will be applied to 

the volumes, it is also possible to include a rigid transformation that is defined over the Hilbert 

space. Our mathematical basis should also be able to identify and apply this transformation, as 

it is defined over a finite vector space contained in the generalization of the infinite dimensional 

vector spaces. 

Since the basis is defined over the space contained in the sphere, it is convenient to work with 

angles and radii to simplify the formulation of the mathematical basis. In addition, it will allow 

to apply a “divide and conquer” strategy, as it is convenient to decompose the mathematical 

basis into its radial and angular components. The next two subsections are intended to be a 

simplified explanation of these two components. The result of combining the radial and angular 

components to define the final tool is described in the following chapter. 
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3.2. Angular part of the basis 

Keeping in mind that the final objective of the analysis is to define a tool able to decompose any 

function defined over the sphere, it is needed to impose two constrains to the behavior of the 

angular part of the basis: 

• In general, an angular basis working in a 3D space must belong to the 3D Rotation Group 

(𝑆𝑂3). In mechanics and geometry, 𝑆𝑂3 represents any rotation about the origin of the 

Euclidian 3D Space (or ℝ3) [12]. This is an important constrain as any sphere 𝑆 ∈ ℝ3 and 

[0,2𝜋] ∈ 𝑆. 

• The angular part should be a complete set of (orthogonal) functions over the surface of 

the sphere (i.e. they can represent any function defined over the surface of the sphere). 

Considering the 2D case of the problem, in general sine and cosine functions can be considered 

as the angular part for a basis define over ℝ2 (if polar coordinates are used). These two functions 

verify the previous two properties and, in fact, are already use in the Fourier Transform [24]. 

The 3D functions analogue to the sine and cosine function for the case treated along project are 

a set of functions known as spherical harmonics (SHs). SHs are derived from the Laplace equation 

in spherical coordinates. 

 ∇2𝑓 =
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝑓

𝜕𝑟
) +

1

𝑟2𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑓

𝜕𝜃
) +

1

𝑟2 sin2 𝜙

𝜕2𝑓

𝜕𝜙2
= 0 (3.1)  

The previous equation is usually solved through separation of variables of the form: 

 𝑓(𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑌(𝜃, 𝜙) (2.2) 

Using (3.2) in (3.1) and after some algebra, it is possible to find an equation for the angular part 

for both angles 𝜃 and 𝜙 that reads: 

 
1

𝑠𝑖𝑛𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛𝜃

𝜕𝑌(𝜃, 𝜙)

𝜕𝜃
) +

1

sin2 𝜃

𝜕2𝑌(𝜃, 𝜙)

𝜕𝜙2
+ 𝑙(𝑙 + 1)𝑌(𝜃, 𝜙) = 0 (3.3) 

It is possible to apply separation of variables to (3.3) following the methodology shown in (3.2) 

to get a separated equation for the two angular coordinates. According to the full derivation 

available in [25], the resulting equations after the second separation of variables depend on two 

functions that fulfill some periodicity and regularity conditions. This simplifies the solution of 

(3.3) to a Sturm-Liouville problem which is useful to find the value of the first constant appearing 

after the first separation of variables. Moreover, an appropriate change of variables transforms 

(3.3) into a Legendre equation. 

Combining all the previous properties, the solution to equation (3.3) reads: 

 𝑌𝑙
𝑚(𝜃, 𝜙) = 𝑁𝑒𝑖𝑚𝜙𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃) (3.4) 

Where 𝑌𝑙
𝑚 represent the SHs of degree 𝑙 and order 𝑚, 𝑃𝑙

𝑚 is the associated degree polynomial 

of same degree and order that 𝑌𝑙
𝑚, 𝑁 is a normalization constant and 𝜃 and 𝜙 reprenst the 

angular variables (colatitude and azimuthal angles respectively). 
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The constants 𝑙 and 𝑚 are the parameters derived from the Sturm-Liouville problem and the 

separation of variables. Figure 7 shows an example of some spherical harmonics represented 

along the surface of the unit sphere. 

 

 

Figure 7: Representation of some SHs over the sphere. Extracted from [24]. 

 

The normalization constant can be written in terms of 𝑙 and 𝑚 in a convenient way to implement 

it in a programing language, although the calculation won’t be needed for this application as the 

formulas of the SHs are already tabulated (the discussion of the application of the tabulated 

formulas instead of its computation is provided in the following chapter). 

It is important to note that SHs are complex functions for all values of 𝑚 different from zero. In 

general, working with complex numbers with a computer suppose a high computational 

complexity and it should be avoided. Fortunately, SHs admit a real form thanks to the complex 

conjugation conjugate. The complex conjugate of any SH can be written as: 

 𝑌𝑙
𝑚∗(𝜃, 𝜙) = (−1)𝑚𝑌𝑙

−𝑚(𝜃, 𝜙) (3.5) 

After performing a linear combination of the form: 

 (−1)𝑚√2 (𝑌𝑙
−𝑚 ± 𝑌𝑙

𝑚) (3.6) 

An expression for the real SH is obtained (also known as tesseral SH): 

 𝑌𝑙
𝑚 = {

(−1)𝑚√2 𝑁𝑃𝑙
|𝑚|(𝑐𝑜𝑠𝜃) sin|𝑚|𝜙     𝑖𝑓 𝑚 < 0

𝑁0𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃)                                         𝑖𝑓 𝑚 = 0

(−1)𝑚√2 𝑁𝑃𝑙
𝑚(𝑐𝑜𝑠𝜃) cos 𝑚𝜙        𝑖𝑓 𝑚 > 0

 (3.7) 
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To finish with the discussion of the angular part of the basis, it is important to mention that by 

convention the degree and order of the SHs are named 𝑙 and 𝑚 respectively because in quantum 

mechanics they represent the azimuthal and magnetic quantum numbers. In fact, for each value 

of 𝑙, 𝑚 = −𝑙, … 0, … 𝑙. 

 

3.3. Radial part of the basis 

Before introducing the set of functions that will constitute the radial part of the basis, the 

desired properties of this component will be described: 

• The radial part of the basis should be formed by a set of (orthogonal) functions that can 

be contained in the unit sphere (i.e. the functions begin at the origin and finish at 𝑟 = 1) 

and that are continuous on this interval. 

• The value of the functions should oscillate in the interval defined previously as the 

degree of the functions is increased. These variations will allow the basis to affect 

differently the voxels forming the volume. In general, the expected behavior is to modify 

progressively higher levels of details (high frequencies) of the 3D model as the degree 

of the basis is increased. 

• The values the radial part is taken in the unit sphere should belong to the close interval 

[0,1]. Thanks to this property, the basis won’t affect the original proportions of the 3D 

model. This is desirable as the purpose of the basis is to find a different microstate of 

the molecule, but without altering the original macromolecule. 

According to these properties, Zernike polynomials were chosen as the radial part of the basis. 

Zernike polynomials are a set of orthogonal and continuous functions that form a basis in the 

unit circle [26]. These functions are usually used in optics as they are useful to describe the 

spherical aberrations that may be present in a lens (for example, those affecting the human eye 

lenses like astigmatism or hypermetropy). 

Since Zernike polynomials are usually defined over the unit disk, they are usually written 

together with the sine and cosine functions (that form an angular basis in the 2D space). Zernike 

polynomials over the unit disk are defined as: 

 {
𝑍𝑙

𝑚(𝑟, 𝜃) = 𝑅𝑛
𝑚(𝑟) cos 𝑚𝜃    𝑓𝑜𝑟 𝑚 ≥ 0

𝑍𝑙
−𝑚(𝑟, 𝜃) = 𝑅𝑙

𝑚(𝑟) sin 𝑚𝜃  𝑓𝑜𝑟 𝑚 < 0
 (3.8) 

For the purpose of the project, only the radial part of the Zernike polynomials is of interest. The 

radial Zernike polynomials can be defined as: 

 𝑅𝑛
𝑚(𝜌) =  ∑

(−1)𝑘(𝑛 − 𝑘)!

𝑘! (
𝑛 + 𝑚

2 − 𝑘) ! (
𝑛 − 𝑚

2 − 𝑘) !
𝜌𝑛−2𝑘

𝑛−𝑚
2

𝑘=0

 (3.9) 
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According to the previous definition, the radial Zernike polynomials different from zero only for 

𝑛 − 𝑚 even. It is also possible to redefine the radial Zernike polynomials, so they take values 

when 𝑛 − 𝑚 is odd. This new set of polynomials are known as the pseudo-Zernike polynomials 

[27]. 

 

 

Figure 8: Representation of the first Zernike polynomials. Extracted from [28]. 

 

For this application, the standard Zernike polynomials will be used. Figure 8 shows the Zernike 

polynomials (using the sine and cosine functions as the angular part of the basis)  

Although it will be discussed in the following sections of this work, it is worth to mention now 

the relation that is present between the degree and the order of the spherical harmonics and 

the radial Zernike polynomials. Just for simplicity, the properties of the degree and order of both 

sets of functions are listed below: 

• The degree and the order of the radial Zernike polynomials are restricted to 

combinations of numbers such that 𝑛 − 𝑚 is an even number (otherwise their value will 

be zero as discussed before) being 𝑛 ≥ 𝑚 (where 𝑛 is the degree of the polynomials and 

𝑚 the order). 

• The degree 𝑙 and the order 𝑚 of the spherical harmonics must verify that 𝑙 ≥ 0 and 

|𝑚| ≤ 𝑙. 

According to the previous restrictions, the set of polynomials defining the mathematical basis 

depend on a set of three numbers {𝑙, 𝑛, 𝑚} that must verify: 

• 𝑙 takes values from 0 to infinity (in theory). 

• 𝑛 takes values from 0 to 𝑙 (included). In addition, it must be verified that if 𝑙 is even/odd 

so is 𝑛. Following this definition, the degree of the radial Zernike polynomials 

corresponds to the value of 𝑙. 

• 𝑚 takes value from −𝑙 to 𝑙. 

 

 



15 

 

3.4. SIMPLE 

SIMPLE (Single-particle Image Processing Linux Engine) is a package developed by Dominika and 

Hans Elmlund whose purpose is to provide the tools necessary to reconstruct the 3D model of a 

macromolecule using 2D projections coming from a set of micrographs acquired with the EM. 

SIMPLE is designed to work with images showing a single type of particle at a time. 

The main advantage of SIMPLE over other reconstruction procedures is the implementation of 

an ab initio 3D reconstruction algorithm [8]. Most of the procedures used to reconstruct the 3D 

model coming from the projections of a particle require an input reference volume already 

defined, that will be used to find an approximation of the projection angles of the particles along 

the 3D model. Ab initio 3D reconstruction is a procedure that generates an initial 3D model 

without the requirement of a reference volume (i.e. all the data required to find the approximate 

orientations of the projections is obtained from the projections themselves). The initial model 

is then refined to get a better result. 

SIMPLE makes use of other packages (EMAN, SPIDER…) to preprocess the images before 

performing the ab initio 3D reconstruction process. This section is not intended to be a deep 

explanation of the functioning of SIMPLE and the packages it uses, but a brief 

introduction/summary to its novel ab initio reconstruction algorithm1. 

After correcting the motion artifacts and other errors that may be present in the original 

micrographs, it is necessary to extract the particles of interest present on the images. SIMPLE 

uses an automatic algorithm to extract the particles present in a micrograph based on reference 

particles that may be extracted manually from the image (using, for example, EMAN or other 

package that includes manual tools to select a specific region of interest in the micrographs). 

Although the micrographs have been corrected, the particles extracted are in most of the cases 

noisy. This is mainly due to the low electron doses used to acquire images from a sample to 

avoid radiation damage to the particles. Since the 3D model reconstruction highly depends on 

the number of projections available and their quality, it is useful to reduce the noise of the 

images before feeding them to the reconstruction algorithm. 

SIMPLE includes a package known as PRIME (Probabilistic Initial 3D Model Generation) that 

includes a protocol to cluster those particles that represent a similar projection of the real 3D 

macromolecule. The clustering of several images into different classes (one per projection 

present in the micrograph) increases the SNR of the particles, leading to more accurate results 

when fed to the reconstruction algorithm. This clustering method is based on a “stochastic hill 

climbing algorithm”. The main difference between a stochastic hill climbing based algorithm and 

other optimization algorithms (such as steepest-ascent hill climbing) is that the direction chosen 

to move towards the maximum is randomly chosen among all those directions that maximize 

the function (unlike steepest that chooses the direction of maximum movement towards the 

maximum of the function). This method is less sensitive to get trapped in a local maximum. 

                                                           
1 The interested reader is referred to [8], [26], [27] to find a complete description of the algorithms used 

by SIMPLE 
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Once the clusters have been found, they are used as an input to the ab initio reconstruction 

algorithm provided by SIMPLE. The main idea of the method is to generate an initial random 

model that will be projected in 2D images. These projections will be compared to the clusters 

through a correlation function to find the range of orientations that maximize the correlation 

between the clusters and the 2D projections of the initial model (in the case of deterministic 

methods, the orientation assigned to each projection is fixed as unique) giving to each 

orientation in the range a given weight. In this way, the reconstruction of the model is based on 

a weight average of the clustering images at the different possible orientations. The newly 

generated models are submitted to the same analysis until the final ab initio 3D model is found. 

An example of the reconstruction process results of a ribosome for different iterations using this 

ab initio algorithm is provided in Figure 9. 

 

 

Figure 9: Ab initio 3D reconstruction and convergence of clusters and 3D projections. Extracted from [31]. 

 

3.5. SCIPION 

SCIPION is an image processing framework developed by the Biocomputing Unit at the National 

Center for Biotechnology (CNB) in Spain [7]. The main objective of SCIPION is to integrate and 

manage the interaction among several packages oriented toward the reconstruction of 3D 

models of molecules using the images coming from the EM. 

Nowadays, there are several packages devoted to the reconstruction of 3D models like SIMPLE 

[8], EMAN [4], SPIDER [5] or RELION [9] among others. All the packages available have 

advantages and disadvantages, so it is usually needed to combine the algorithms of different 

packages to get the desired result. 

One of the main problems when using different packages for a given application is the lack of 

standardization in the format of the output and input files required to call a given program. This 

usually complicates the task of the user, as he needs to be aware of the differences between the 

working flows and the results provided by each package in order to combine them properly to 

get an appropriate result. 
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In order to simplify the interaction of different programs, integration software packages like 

SCIPION were developed to handle and manage the different output formats of the files 

generated by the reconstruction packages. 

In the case of SCIPION, the management is performed trough special object types. Some 

examples of these types include: micrographs, movies, volume, set of averages… These object 

types are used to match the requirements of each program inputs and outputs, so the 

interaction among them is no longer problem of the user. 

Apart from the integrative function of SCIPION, this software also allows to perform a 

traceability of the workflows executed to reconstruct a given 3D model. SCIPION saves the inputs 

and outputs of each step executed in the workflow in a different folder and creates a “log” file. 

This allows the user to examine the results and the possible errors or warnings that may appear 

during the execution of the workflow to isolate the steps that are leading to a given problem. 

Figure 10 shows the typical workflow of execution of SCIPION and provides with some examples 

of the programs integrated to perform different tasks. 

 

 

Figure 10: Example of the typical workflow of SCIPION executed for a 3D model reconstruction. Extracted from 
[7]. 

SCIPION works by means of projects that can be created by the user to reconstruct a 3D model. 

The project name and path can be determined during its creation. It is also possible to import 

an already existing project saved in the computer to modify or include new steps on it. 

Figure 11 shows the GUI (Graphical User Interface) of a project in SCIPION. As it can be seen 

from the image, the GUI of SCIPION is mainly formed by three different windows that are 

described below: 
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• The window placed at the left of the GUI contains all the programs integrated in SCIPION 

for the reconstruction of a 3D model. They can be organized in different ways to make 

easier finding a specific algorithm. When a program is selected, a prompt window will 

appear showing the inputs required to execute the program. Figure 12 shows an 

example of this window. 

The central window shows the workflow of a given reconstruction procedure. The 

different steps of the workflow are specified by blocks that are inserted by clicking in 

any program present in the left window and filling up the inputs. The edges are used to 

stablish the block that is sending its outputs as the inputs of the actual block, and to 

show which block is going to receive the output of the actual block. 

Blocks can be shown in three different colors. A green color means that the block has 

been executed without errors; a red color means that the execution was stopped due 

to an error appearing during the execution; an orange color indicates that the program 

is being executed. 

By double clicking in each block, the prompt window shown in Figure 12 will appear 

again. This allows the user to execute again a given program or to change the input 

parameters to get a better result. 

• The window below the central window is mainly used to show the outputs of the block 

that is being analyzed. It has three different tabs: The first tab shows the input and the 

output files of the block that can be visualized by clicking on the “Analyze Results” 

button; the tab “Methods” is used to show the log file generated by SCIPION for each 

block; the last tab show the “.stdout” file that contains all the information about the 

execution of the block, including the messages indicating the error that stopped the 

execution. This tab is updated in real time during the execution of the block. 

 

Figure 11: Example of the GUI for a project in SCIPION. 
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It is also important to mention that SCIPION is mainly composed of two different type of 

programs listed below: 

• Protocols: These programs are written in Python and they are mainly devoted to 

managing the execution of the algorithms included in the different packages. They are 

also responsible of the format handling of the inputs and the outputs 

• Libraries: These programs are written in C++ and they contain the algorithms that will 

be afterwards called by the protocols to perform a specific task in the reconstruction 

procedure. 

 

 

Figure 12: Example of the window used to provide the inputs for a given program. 

 

3.6. XMIPP 

X-windows based microscopy image processing package (XMIPP) [6] is a package that provides 

a set of programs and algorithms aimed to the reconstruction of a 3D model of a molecule from 

a set of particle images obtained from the electron microscope. This package is currently being 

developed at the National Center for Biotechnology in Spain by the Biocomputing Unit. 

The programs provided by XMIPP are grouped into three different libraries listed below: 

• Data structure library: This library includes the programs necessary to create and handle 

structures like matrices, volumes… 

• Classification library: This library includes the programs devoted to the analysis of the 

data structures to find relationship among them that allows to create clusters (or to 

classify the data contained in the structures). 
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• Reconstruction library: This library includes all the programs and algorithms devoted to 

the reconstruction of a 3D model through the data analysis coming from the images of 

the EM. 

Figure 13 shows the common steps followed to reconstruct a 3D model using XMIPP package. 

XMIPP package is totally compatible with SPIDER as it shares most of the formats of the files 

both packages handle. Compatibility with other packages is also possible if the formats are 

converted appropriately to those accepted by the package. This task is (as explained in the 

previous subsection) perform by SCIPION itself. 

 

 

Figure 13: Typical workflow of XMIPP used to reconstruct a 3D model. Extracted from [6]. 
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4. RESULTS AND DISCUSSION 

The following chapter explains the results of the projects developed during this work: the 

implementation and application of a mathematical basis defined in the sphere and the inclusion 

of SIMPLE package into SCIPION. 

 

4.1. Mathematical basis 

The following subsections are devoted to the definition, analysis and application of the 

mathematical basis and the discussion of the results obtained for this part of the work. 

 

4.1.1. Definition of the basis 

Combining the results obtained in the sections 3.1.1 and 3.1.2, it is obtained the definition of 

the mathematical basis that reads: 

 𝑍𝑙
𝑛,𝑚(𝑥𝑟, 𝑦𝑟, 𝑧𝑟 , 𝑟) = 𝑅𝑙

𝑛(𝑟)𝑌𝑙
𝑚(𝑥𝑟, 𝑦𝑟 , 𝑧𝑟) (4.1) 

Being 𝑟 the radial distance to any point of the sphere where the basis is applied. The values of 

{𝑥𝑟, 𝑦𝑟, 𝑧𝑟} are normalized with respect to the radius according to the following formulas: 

 𝑥𝑟 =
𝑥

𝑟
, 𝑦𝑟 =

𝑦

𝑟
, 𝑧𝑟 =

𝑧

𝑟
 (4.2) 

As explained before, the goal of the mathematical basis is to compute the deformation that 

minimizes the distances between the voxels of two volumes (𝑉1, 𝑉2) such that: 

 ‖𝑉1(𝒓) − 𝑉2(𝑔(𝒓))‖2 = 𝑚𝑖𝑛 (4.3) 

Being 𝑔(𝒓) the deformation mentioned before which is described as: 

 𝑔(𝒓) = 𝒓 + ∑ 𝑐𝑙,𝑛,𝑚𝑍𝑙
𝑛,𝑚 (4.4) 

Where 𝑐𝑙,𝑛,𝑚 represents the coefficients needed to decompose the deformation in the 

mathematical basis previously defined. 

It is important to mention that the deformation of a volume involves a 3D deformation gradient. 

In order to be consistent, a coefficient for each of the three Cartesian directions needs to be 

defined (𝑥, 𝑦, 𝑧) in order to minimize the distances for each different component. 

The behavior of the mathematical basis depends on the degree of the functions used. As the 

degree of the functions is made progressively higher, the deformation will affect smaller details 

in the volume. In fact, when the degree of the functions is set to zero, the result is the application 

of a rigid transformation (rotation+translation) to the volume and the deformation will be more 

localized as the degree increases. 
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This is useful as the degree of the functions can be set for each application depending on how 

locally the basis will deform the original volume. It is important to remind that the problem to 

be solved is a minimization and, in general, it is not possible to achieve a 0 distance (total 

equality) between the volumes involved. All in all, it may not be interesting to increase the 

degree to high levels as it will increase the computational complexity without affecting too much 

the result of the minimization. 

 

4.1.2. MatLab implementation of the basis 

The first step taken after the mathematical definition of the basis was its implementation in 

MatLab. Although this high-level programming language is not the final language decided to be 

used for the application of the basis, it provides with several tools that were useful to analysis 

the behavior of the basis and it made clearer its implementation and functioning. 

The implementation in MatLab was carried out using the recursion formulas for the radial 

Zernike polynomials and spherical harmonics. As it has been seen before, it is easier to handle 

the basis if it is decomposed into the angular and radial components. For the implementation, 

this “divide and conquer” strategy was applied again as the result only requires multiplying both 

components (but keeping in mind the relation between the orders and degrees of both set of 

functions). 

The recursive formulas for both set of functions can be found at [27] and [28]. The main 

advantage of using the recursive formulas is the decreased in the computational complexity they 

suppose compared to common implementation using the ordinary definitions. 

The MatLab code used to compute the mathematical basis is provided at the end of this 

document (Annex A). The main purpose of the code is to serve as a validation of the 

mathematical basis to see if it behaves as theoretically expected. To that end, the mathematical 

basis was represented in 3D and it was compared with the 3D representation of the spherical 

harmonics to see what the effect of the addition of the radial Zernike polynomials is. 

The decomposition of the volume only considers those voxels contained in a sphere of radius: 

 𝑅 =  √(
𝑠𝑖𝑧𝑒(𝑥)

2
)

2

+ (
𝑠𝑖𝑧𝑒(𝑦)

2
)

2

+ (
𝑠𝑖𝑧𝑒(𝑧)

2
)

2
3

 (4.5) 

For the final implementation, the radius of the sphere is set by default to that containing the 

whole 3D volume of the molecule, although the user can modify this parameter according to his 

application. Here only half of the sizes are used for testing purposes. As explained in the previous 

section, the value of  will be also used to normalize the values of (𝑥, 𝑦, 𝑧) as the mathematical 

basis is defined in the unit sphere. 

The results obtained for several combinations of (𝑙, 𝑛, 𝑚) are shown in Figure 14. Thanks to the 

functions provided by MatLab, the result of the mathematical basis can be rendered in 3D to 

compare it with the spherical harmonics and the radial Zernike polynomials. 
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Figure 14: Examples of some SH and the corresponding mathematical basis. 

 

As we it can be seen from the images, the mathematical basis retains the basic features of the 

spherical harmonics, but with a slight deformation in the radial direction that is more important 

in the central region of the representation. Moreover, the deformation of the radial Zernike 

polynomials is more intense as the order is increased due to the oscillations progressively 

appearing in this set of functions. 

 

4.1.3. C++ implementation of the basis 

Once the basis was successfully implemented and tested in MatLab, it was required to 

implement it in C++, so it can be used inside SCIPION. 

For simplicity and efficiency purposes, the implementation did not follow the recursive formulas 

used in MatLab. It was decided to write directly the tabulated formulas that can be found in [28] 

and [32] up to 4th order. The main reason behind this decision is that the application of this 

basis won’t usually reach such a high order in most of the cases. In case a higher order is 

required, it is possible to use the MatLab code described before to find the coefficients of the 

new formulas (as it was not possible to find any table/document including the formulas of the 

radial Zernike polynomials and spherical harmonics for degrees higher than four). 

The final program requires several inputs to execute. The inputs and outputs of the program are 

listed (and explained) below: 

• Input volume: path to the working volume (i.e. the volume that will be deform towards 

a reference volume). 

• Reference volume: path to the volume used as a template towards which the input 

volume will be deformed. 

• Output volume: (path+) filename indicating where the deformed version of the input 

volume will be saved. If it is not specified, it will rewrite the input volume data by default. 

L=1 

M=0 

L=1 

N=1 

M=0 

L=2 

M=1 

L=4 

M=4 

L=2 

N=2 

M=1 

L=4 

N=4 

M=4 
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• Harmonical depth: parameter used to determine the maximum degree of the basis that 

will be used. As the degree of the basis increases, the number of coefficients 𝑐𝑙,𝑛,𝑚 will 

increase accordingly making the program more demanding in terms of computational 

complexity. This number should not be larger than 4 or smaller than 0. By default, it is 

set to 1. 

• Maximum radius of the transformation: it determines the radius of the sphere used to 

compute the decomposition of the volumes in the components defined by the basis. By 

default, is set to the radius of the sphere that circumscribes the volume. 

The parameters can be specified through the GUI provided by SCIPION or, in case the program 

is called through the command line, by using the specific flag for each parameter. 

Apart from the outputs, the program also provides with some feedback through the command 

line. The minimization algorithm used to compute the coefficients of the basis that minimizes 

the distances between the deformed and reference volumes shows its progression and the 

values obtained for each coefficient once they are calculated. This algorithm (based on a 

gradient method to find the maxima/minima of a function numerically) was already 

implemented in SCIPION. 

The execution flow of the program is simple. For each iteration, the value of the coefficients is 

computed. After the execution of the minimization algorithm, the value of the mathematical 

basis is obtained for a given voxel and it is used (together with the coefficients) to compute the 

deformation of the input volume. The value of the deformation suffered by the input volume (in 

pixels) is computed through the following formula: 

 𝐷𝑒𝑓 =  √
∑ ‖𝑔𝑖𝑗𝑘(𝑥, 𝑦, 𝑧)‖𝑛

𝑗,𝑖,𝑘=0

𝑉𝑡𝑜𝑡𝑎𝑙
 (4.6) 

Where 𝑔𝑖𝑗𝑘(𝑥, 𝑦, 𝑧) represents the result of multiplying the coefficients 𝑐𝑙,𝑛,𝑚 by the value of 

the spherical harmonics for each voxel and 𝑉𝑡𝑜𝑡𝑎𝑙 represents the total number of voxels 

composing the volume. The minimization algorithm tries to make this deformation maximum 

since minimizing the distance between the deformed and the reference volume is analogous to 

maximizing the deformation of the input volume towards the reference volume. 

The previous steps are repeated until the minimization algorithm finishes and it is also repeated 

for each harmonical depth sequentially. (i.e. the program is executed for 𝑙 = 0,1,2, …). After a 

complete execution for a given harmonical depth, the final deformation in pixels is also printed 

in the command line. 

The next sections will be devoted to the explanation and analysis of the results obtained for 3 

different examples of the application of the mathematical basis to a real problem: volume to 

volume deformation, image to volume deformation and strain-deformation gradient analysis. 
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4.1.4. Volume to volume deformation 

One possible application of the mathematical basis is to use it to find the deformation 

(strain+rotation) needed to reduce as much as possible the distance between a reference 

volume and a working volume with some similarity as explained in section 4.1.1. 

As mentioned in previous chapters of this work, this task was previously developed by means of 

the NMA. The main drawback of this method is the lack of full automation and that the user 

should have some knowledge about the analysis to pick the normal modes that best solve the 

problem. The main advantage of the mathematical basis is that it overcomes these two 

difficulties, so it yields an output with a lower degree of variability and with no extra user 

implication apart from the introduction of the reference and working volumes and other 

parameters explained in the previous section. 

Before showing and analyzing the results obtained, it is important to mention that [33] already 

solve this problem using NMA. In order to test the validity of this new methodology, the same 

volumes as [33] will be used and the results obtained will be also compared to the ones in the 

reference. If the mathematical basis works properly, it is expected to obtain similar results to 

those obtained by [33]. 

The testing volumes used correspond to a set of eight human mitochondrial ribosomes. This 

structure can be accessed from the “Protein Data Bank in Europe” web page with the following 

codes: EMD-1717, EMD-1718, EMD-1719, EMD-1720, EMD-1721, EMD-1722, EMD-1723 and 

EMD-1724 (Figure 15 shows the set of volumes in order). The molecules represent slightly 

different structures (conformations) of the mitochondrial ribosome obtained through electron 

microscopy imaging techniques. 

 

 

Figure 15: Test volumes used during the analysis. Extracted from [34]. 

 

The first step is to align both working volumes through a rigid transformation 

(rotation+translation). Although this task can be also performed by the basis as explained in 

previous sections, its main purpose is not to find the rigid transformation that minimizes the 

distances between the working volumes but to find more localized deformation and rotation 

gradients. To simplify the application of the basis, the volumes were aligned and normalized 

with another protocol of SCIPION (although the basis may introduce some deviations from the 

result of this program in case it is needed to continue with the execution). 
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After the images are aligned and normalized, the maps were input to the C++ code containing 

the implemented basis. The input parameters were adapted to save several output volumes 

obtained by different harmonical depths (the default maximum radius was left untouched). 

The test was performed in such a way that each volume was deformed towards the other 

members of the set and the resulting coefficients and deformations were stored for further 

analysis. As an example of the test, Figure 16 shows the result of deforming EMD-1718 towards 

EMD-1717 (with a harmonical depth equal to 4) together with the comparison of the initial and 

the reference maps. 

 

 

Figure 16: First image: deformed volume; Second image: EMD-1717 (Ref) and deformed volume; Third image: 
EMD-1718 (Input) and deformed volume. 

 

As it can be seen from Figure 16, most of the deformation has occurred in the small subunit of 

the ribosome while the large subunit remains almost undeformed. This behavior shows that the 

main difference between the two conformations is the position of the small subunit, so its 

correction will increase the most the correlation between the deformed and the reference 

volumes. 

The deformation of the input volume and the error committed between the deformed and the 

reference volume after the execution of the program (both in pixels) were stored in a table to 

analyze more easily their relation. These results were obtained for the first and second 

harmonical depths (without considering the zeroth harmonical depth). The tables obtained are 

included as a supplementary material (Annex B) to this work. As it can be seen from the tables, 

the initial error decreases after the execution of the program and the deformation increases 

accordingly. Moreover, if the depth is increased to 2 the error and the deformation decreases 

and increases respectively. 

Another important result is that the matrices obtained for the deformation and the errors are 

not symmetric as the deformation required to reduce the differences between two volumes is 

dependent on the selection of the input and the reference volume (i.e. the strains and rotations 

required to deform A towards B are different to the strains and rotations required to deform B 

towards A). 

The final validation for this test is to perform a multidimensional scaling analysis of the results 

to compare it with the one presented in [33]. Figure 17 shows the comparison between the 

analysis obtained at [33] and our analysis. 
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Figure 17: Left image shows our MDS analysis; right image shows the MDS analysis extracted from [33]. 

 

As it can be seen from Figure 17 the MDS analysis obtained with the mathematical basis 

resembles the results obtained with the analysis extracted from [33]. A group can be clearly seen 

formed between ribosomes 1723, 1722 and 1721 indicating that they are more closely related 

among them and a second group formed by the rest of the ribosomes (1717, 1718. 1719, 1720). 

Together with the tables mentioned previously it is also included the final distance (in pixels) 

between each pair of ribosomes. A comparison between this table and the one provided in the 

supplementary material of [33] was also performed. 

 Some difficulties were found during this analysis as the tables provided by [33] do not specify 

the units of the values present in the table. This complicates the comparison as it is not possible 

to convert our values to their units to find if there is any resemblance of the results obtained. 

The conclusions derived from the analysis is that the numbers obtained deviate from those 

proposed by [33] (probably due to the units), although, generally higher distances are obtained 

for those pairs that are more dissimilar according to the reference table. 

According to the two previous results, it is concluded that the mathematical basis has performed 

well in this application although it should be further tested with real sets of data to asses any 

possibility of improvement or any source of error that may be present.  

 

4.1.5. Volume to image deformation 

The next step is to apply the mathematical basis to the case of having a reference 2D image and 

a volume that will be deformed towards the reference image. The main objective is to apply the 

basis in a similar manner to the volume to volume deformation in order to obtain a good result 

automatically and in a simpler way. 

Although the mathematics used are the same to the previous program, it was necessary to 

modify the scripts in order to adapt them to this new case. Firstly, the new input and output 

parameters of the program will be listed below: 
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• Input angular assignment: the input of the program will be a file containing the 

metadata of the reference image. 

• Output: the output of the program will be a metadata file containing the angular 

alignment and the deformation parameters. 

• Maximum shift allowed in pixels. 

• Sampling rate of the image. 

• Boolean parameters to determine if it is needed to optimize the alignment, the 

deformation or both. 

• A value “lambda” use for regularization (explained lately in this section). 

The data set used for this new application was the same as the data set of the previous 

subsection. This allowed to compare the results obtained before (that were already validate as 

pointed out in the previous application) with the new ones. In this way, it is expected to get 

results that resemble those obtained previously. Since now the reference is not a volume but a 

2D image, it was performed a random angular assignment for the volumes to get a projection 

that can be used as a reference. 

The execution flow of the program is the following. First, it is needed to compute the projection 

of the working volume whose correlation is maximum with respect to the reference image. This 

is only executed if the Boolean parameter “optimizeAlignment” is set to true. This is in general 

advisable as the deformation that will be introduced in the original volume may deviate from 

the initial assignation of the angles of the projection whose correlation was maximum with the 

original reference image. 

After the previous step, the error between the projection and the reference image is computed. 

The successive steps are similar to the volume to volume deformation case. The minimization 

algorithm computes the value of the coefficients in such a way that the correlation/error 

between the projection and the reference image is maximized/minimized. These steps are 

repeated sequentially for all the harmonical depths contained between the value introduce by 

the user and 1 (zeroth harmonical depth is no longer needed as it is not needed to align the 

volume to anything. The “alignment” step is already performed by the angular assignation 

method). 

As in the case before, the program provides with some feedback in the command line including 

the output of the minimization algorithm, the deformation of the volume in pixels and the error 

committed between the projection of the deformed volume and the reference image. 

Before showing the results obtained for this part of the project, it is worth to mention what is 

the purpose of the regularization parameter “lambda” required by this new application. In some 

cases, the deformations in pixels obtained using the program without the regularization 

parameter where much larger than those of the volume to volume deformation case (in some 

case they were and order of magnitude larger). This introduced a problem as it was expected to 

get similar values for both cases. 
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Otherwise, the results for both experiments do not have any relation (this is undesirable as the 

same data set as before was used) thus impacting the reliability of the results. 

The main reason of this effect is the lack of constrains in the third dimension. As the algorithm 

is working with a reference 2D image, it does not know how to deform the volume in the 

direction perpendicular to the projection. As a result, the correlation is unaffected when the 

deformation is maximized in that specific direction (as explained in subsection 4.1.3, maximizing 

the deformation is analogous to minimizing the error between the input and the reference). This 

led to a volume that was deformed in an expected manner in the directions of the projection 

but largely deformed in the perpendicular direction (due to the lack of constrains) explaining the 

values obtained. Figure 18 shows the behavior explained before. 

 

 

Figure 18: Representation of the unconstrained deformation suffered by a volume 

 

To avoid excessive deformations, extra constrains are included manually in order to reduce the 

value of the deformation coefficients. Although the final deformation may be smaller than the 

one obtained by deforming a volume with respect to another volume, the error is not as large 

as the one obtained previously, and the results were closer to the volume to volume 

deformation case. The parameter “lambda” serves as a penalization adder to the deformation. 

The value of lambda is, by default, set to zero to avoid the penalization. In case it is needed, the 

value should be around 10−2. Values larger than 10−2 can be used but it is important to choose 

a value that does not halt the maximization of the correlation performed by the program (this 

means that the importance of the penalization factor is too large compared to the correlation). 

Figure 19 shows the results obtained for a projection of the input volume EMD-1718. The 

reference image corresponds to EMD-1717. As it can be seen from the image, the apparent 

deformation of the volume is not so obvious. In fact, the total deformation suffered by the 

volume was equal to 1.914350 pixels. In order to make clearer the changes, the difference 

between the initial projection of the input volume and the projection of the final deformed 

volume is also provided. As it can be seen from the image, most of the changes occur in the 

middle of the molecule and the surface features remain almost unchanged (it is difficult to find 

any mark indicating a difference in the border of the image that corresponds to the outer most 

region of the volume). This result resembles the one obtained in the previous application as the 

deformation was affecting less the surface/details of the volume. 
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Figure 19: First image: input; second image: reference; third image: projection of the deformed volume; fourth 
image: difference between the input image and the deformed projection 

 

4.1.6 Deformation gradient analysis 

The last application of the mathematical basis is to analyze the deformation gradient of the 

volumes deformed in the previous applications. In general, the deformation gradient can be 

decomposed in two different components: one representing the strain suffered by the volume 

and another for the rotation. 

As previously done in subsection 4.1.4, the results obtained will be compared to those provided 

in [14]. This will allow to validate the output of the program and to get precise conclusions about 

the results. 

According to [14], the strain and rotation gradients can be obtained if the continuous 

deformation field is known. In the case of this work, the continuous deformation filed is 

represented by 𝐺(𝑟), which is the matrix containing the coefficients (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧). These 

coefficients can be defined as: 

 𝑔𝑘 = 𝑐𝑙,𝑛,𝑚𝑍𝑙
𝑛,𝑚 (4.7) 

Where 𝑘 represents one of the possible directions (𝑥, 𝑦, 𝑧) in the Cartesian 3D space. Using the 

definition of the coefficients and 𝐺(𝑟), the continuous deformation field can be obtained 

following the definition described in [5]. The definition is provided below for convenience: 

 𝐺(𝑟) = (𝑔𝑥(𝑟), 𝑔𝑦(𝑟), 𝑔𝑧(𝑟))
𝑇

∈ ℝ3 (4.83) 

In order to compute the continuous deformation field, a new input parameter was added to the 

volume to volume deformation script. The parameter is described below: 

• Analyze strain: Boolean parameter used to indicate the program if the values of the 

coefficients (𝑔𝑥 , 𝑔𝑦, 𝑔𝑧) should be saved to perform a local analysis of the strain and 

rotations present in the deformed version of the input volume. 

Once 𝐺(𝑟) is available, the displacement vector field is determined as: 

 𝑢(𝑟) = 𝐺(𝑟) − 𝑟 (4.9) 
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The gradient of the displacement vector field will be a matrix that can be decomposed into the 

symmetric and antisymmetric part obtaining the following matrices: 

 
𝐷(𝑟) =

1

2
(∇u(r) + ∇uT(𝑟))

𝐻(𝑟) =
1

2
(∇u(r) − ∇uT(𝑟))

 (4.10) 

The eigenvalues of the matrix 𝐷(𝑟)  contain the information of the local strains present in the 

deformed volume. The value determines the strength of the deformation and the sign the 

direction. Similarly, the eigenvalues of 𝐻(𝑟) represent the rotations. 

The analysis was tested with the deformed version of EMD-1720 (using EMD-1724 as a 

reference) and the results are shown in Figure 21. 

 

 

Figure 20: First column of images represents the local strain and rotation analysis (respectively) of our program; 
second column of images shows the results extracted from [14]. 

 

As it can be seen from Figure 21, the results obtained after applying the basis led to larger 

deformations and rotations compared to those obtained by [14]. In addition, the analysis of the 

local strain and rotations suffered by the molecules shows a more scattered distribution over 

the molecule (mainly in the strain analysis). It is possible to attribute this result to a more 

localized behavior of the basis compared to the NMA: while in NMA usually large motions of the 

molecules are considered to represent a conformational change, the mathematical basis can 

also analyze the deformation leading to motions of smaller areas in the molecule. 

Taking a general view from the results, it is possible to see that the area which is more affected 

after the deformation is the small subunit of the ribosome and the region surrounding the 

subunit. This result resembles the one reported by [14], so it can be considered that the behavior 

of the basis is consistent with the analysis of the local strain and rotations obtained by NMA 

performed by [14]. 
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4.2. SIMPLE in SCIPION 

The following subsections are intended to be an explanation of the steps followed and the 

results obtained during the introduction of SIMPLE program (developed by Hans and Dominika 

Elmlund) into SCIPION. 

 

4.2.1. Protocols 

Apart from the libraries written in C++ language, SCIPION uses another type of codes written in 

Python devoted to call a program located in the internal libraries or in an external package. 

These programs are known as protocols and they are useful to maintain the workflow of 

execution of a given project in SCIPION. 

The purposes of a protocol can be divided into different functions listed below: 

• Protocols are responsible of generating the GUI of a specific program. In general, the 

GUI provides with an intuitive way of introducing the input parameters of a program 

and, in some cases, it is possible to reduce their number or structure them into different 

levels (beginner, intermediate, advance…) allowing the users to adapt the execution to 

their necessities. 

• Protocols call a given program through the command line specifying the flags 

corresponding to the different input parameters appropriately. 

• Protocols convert the output and input formats of the files between those used by 

SCIPION and any other external package. In general, different packages developed for 

EM reconstruction applications used their own format to store the data. SCIPION tries 

to mediate between different packages so the input/output format files are converted 

to those that are understood by each different package. 

• The protocol is also responsible of managing other options like the parallelization of the 

CPUs to improve the efficiency of a program among others. 

The documentation of SCIPION [35] provides with an explanation of the structure of a protocol 

and the purpose of each of the different parts that composed this type of programs. 

 

4.2.2. SIMPLE protocolization 

The main objective of this part of the work is to include the software SIMPLE into SCIPION using 

protocols. SIMPLE is a package composed of several scripts that perform different activities 

directed toward the reconstruction of a final volume starting with the micrographs coming from 

the EM. 

The first step in the protocolization of an external package is to understand the execution and 

functioning of the different programs that it includes. 
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Although there is available a detailed explanation of the workflow of SIMPLE in the 

documentation web page [31], it is included here a summary. 

Most of the micrographs obtained by the electron microscope are taken with low energy 

electron beams. This generates noisy images with no appreciable particles in the image. 

Although increasing the energy of the electrons used to interact with the samples would 

increase also the SNR, it may also damage the sample. In order to overcome this problem, the 

EMs are able to take movies of the sample instead of individual images. As the noise has a 

stochastic behavior (i.e. it appears in different places when comparing two images of the same 

object taken at different moments) and the sample is not moving, the frames of the movies can 

be used to increase the SNR without affecting the integrity of the samples. Figure 21 shows an 

example of a raw frame of a movie and the final results after processing the whole movie. 

 

 

Figure 21: Example of an unprocessed and processed micrographs. 

SIMPLE offers a program called “unblur” that uses and algorithm to process the frames of a 

movie to increase the SNR. Moreover, it can also remove the motion artifacts that may appear 

in the during the acquisition of the images. 

Once the micrographs have been processed, the particles present in the image are extracted. 

This involves two different steps. 

Firstly, it is needed to identify the coordinates of the particles in the set of micrographs obtained. 

SIMPLE does not include a program to perform this task, but it relies on EMAN package to pick 

up the coordinates corresponding to the particles. 

Picking the particles can be done manually or automatically. The automatic version of the 

extraction requires the user to pick several particles (the higher the number the better the 

result) that the program will use to sweep the whole micrograph trying to find regions of high 

similarity to the reference images provided by the user. EMAN store the coordinates of the 

particles in a “.box” file. 
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The coordinates are then used to extract the particles in individual images. SIMPLE uses the 

program “extract” to perform this task. 

After the extraction of the particles, it was obtained a set of images that are still noisy. In fact, it 

is not possible to determine the structure of the particles in the image as the shape it is not 

completely clear. Figure 22 shows an example of the particles obtained after the extraction 

process of a process micrograph. 

 

 

Figure 22: Example of two particles extracted from a micrograph. 

 

The images extracted correspond to several projections of the same particle seen from different 

perspectives. Although the projections may not be the same, it may be possible to find several 

particles representing the approximate same relative projection of the particle. By grouping 

these particles, a set of 2D class averages is created. In the same way as it was done with the 

movies, by grouping several images of the “same” particle projection together the SNR is 

maximized, making the shape of the molecule more obvious. SIMPLE includes a program called 

“PRIME2D” capable of perform an angular alignment of the projections that are similar to create 

the set of 2D class averages. Figure 23 shows an example of the output of the program when a 

set of particles is provided as an input. 

 

 

Figure 23: 2D class averages from PRIME2D (TRPV1). 
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The information provided by the 2D class averages can be used to reconstruct the final 3D 

volume of the molecule. 

Although there are several methods to reconstruct a 3D volume out of a set of projections, the 

most commonly used relies on the FT and the Fourier slice theorem [36]. This theorem 

postulates that there is a relation between the particle images obtained before and the 3D 

volume. In fact, if there exists a projection of the 3D volume as seen along a given direction 

perpendicular to the projection that corresponds to a given particle, then the values of the FT of 

the particle image will be equal to the values of the FT of the volume along a given slice. 

In order to reconstruct a volume, a large set of different 2D class averages are needed. In this 

way, there will be enough projections corresponding to different directions to reconstruct the 

volume. 

The main difficulty in the reconstruction is the assignation of the orientation corresponding to 

each projection (this is analogous to assign the vector perpendicular to the projection to each 

2D class average). In general, this orientation is unknown. The most common way to proceed is 

to use a template 3D model (that may be obtain from a similar and already reconstructed 

molecule or by deforming this template map towards the 2D class averages using the method 

developed during subsection 4.1.5) to get an initial approximation of the orientations. These 

orientations are used to reconstruct an initial 3D model that will be used as a new template for 

the following iteration. This procedure continuous until the 3D model deviation from the 

template is small. 

SIMPLE includes a novel algorithm to get an initial 3D model using only the class averages 

obtained through PRIME2D. This “ab initio 3D reconstruction” method (distributed under the 

name “ini3D_from_cavgs”) [29] relies on a probabilistic approach to determine the orientation 

of the images. If a 3D template is used for the reconstruction, the assignment of the orientation 

for a given image is deterministic as the algorithm finds the direction that provides the maximum 

correlation between the class average and a given projection of the template. In a probabilistic 

approach, the algorithm assigns to each image a weight for a range of possible directions that 

provides a high score (the assignment of the score and directions is performed by a hill climbing 

optimization method). Then, the final reconstruction is just a weight average of the class 

averages assigned to the different directions. 

Figure 24 provides an example of the map of a ribosome obtained using “ini3D_from_cavgs”. 

The following subsections explain the process of protocolization of the programs "unblur”, 

“Prime2D” and “ini3D_from_cavgs” so they can be used as an external package in SCIPION. 

The main reason why all the programs included in SIMPLE were not ported to SCIPION is that 

most of the functions of the programs are already implemented by other algorithms inside 

SCIPION. Only those performing new functions and/or similar functions but using novel 

approaches compared those already present in SCIPION were protocolized. 
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Figure 24: Ab initio reconstruction of a ribosome through Prime3D. 

 

4.2.3. Unblur 

The first step in any protocolization is to define the dependencies and the input parameters that 

will be included in the GUI. The input parameters of unblur are available at [31]. 

As it can be seen from the documentation, there are many input parameters to be defined to 

call the program unblur. One good practice when writing protocols is to keep the call of a 

program as SIMPLE as possible in such a way that a normal user can execute the program 

without difficulties. 

Among all the possible inputs present in the list, the user is only allowed to introduce the 

following parameter in the GUI: 

• InputMovies: absolute path to the movies that will process by unblur. 

This simplifies the GUI, making the program easier to use. The rest of mandatory inputs will be 

obtained during the execution of the program. The sampling rate can be obtained directly from 

one of the frames present in the movies and the partitions will be set by default to one. Among 

the optional parameters, only use “fbody” will be used to determine the final name of the files. 

This name is the combination of the name that gives by default SIMPLE to the output files and 

the name of the original movies. 

In the input section of the protocols it is also asked if the user wants to apply parallelization to 

improve the efficiency of the program. This means that it is possible to operate different sections 

of the program or different micrographs using one out of all the available threads that the 

computer has. SCIPION handles by itself the parallelization of the programs when this option is 

present in the protocol (if parallelization is not desired, it will be omitted from the protocol). The 

only requirement is that the user determines in the GUI if he wants to use the option “threads” 

or “MPI” to parallelize the process. 
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Once the input parameters are defined in the protocol, the different steps that will be executed 

are defined. The function “insertAllSteps” will be responsible to execute the different steps 

defined in the order they have been written written them inside this function. It can be seen as 

the function “main” in C++: it should not contain the definition of any function/method but to 

call them. It is also possible to defined parameters that are required by the steps inside the 

function “insertAllSteps”. 

In the case of unblur, there is only one step that will be called: “unblurStep”. The main function 

of this step is to get the input parameter defined by the user and create the “.txt” file required 

by unblur known as “filetab”. This file contains the path to the micrographs that will be 

processed by the program. The step also defined the string that will be passed to the command 

line to call and execute “unblur” with the following parameters:  

• Filetab: defined before. 

• Smpd: sampling frequency of the movies. It is determined automatically by analyzing 

one frame of the input movies. 

• Nparts: number of partitions in distributed execution. It is set to 1 by default. 

• Fbody: determines the name of the output file. The name is automatically generated by 

the protocol and it is a combination of the name of the input movies and the name 

SIMPLE gives by default to the output files. 

Once the string is defined, the program unblur is called and executed. 

Most of the programs in SIMPLE provide with some feedback to the user through the command 

line (where they are usually called). SCIPION can get this feedback and append it to a file with 

the extension “.stdout”. This file can be seen from the GUI and it allows to keep organize all the 

data provided by SIMPLE (and any other program). 

One problem found during the execution of unblur was that the parallelism could not be apply 

directly to improve the efficiency of the execution. This difficulty was coming from the way 

SIMPLE was design. The execution of SIMPLE does not contemplate the possibility of CPU 

parallelism as all the outputs the program generates are append to a file called “nohup.out”. As 

the name of the file is always the same, if CPU parallelism is used, all the outputs will be 

appended to the same file leading to wrong results. SIMPLE admits the introduction of different 

inputs as long as they are executed in a sequential manner making the process time consuming 

if the user needs to process a large set of data. 

The solution found to this problem was to define for each input a different working directory. In 

this way, each CPU will work with a “nohup.out” with a different path so the files will be 

independent of each other. The working directories were created inside a temporal directory 

that is emptied as soon as the execution of unblur finishes. Before the removal of the files, the 

outputs that are more interesting are moved to an extra directory, so they can be handled after 

the execution. The files are also renamed during their movement to give them the appropriate 

format described before. 
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Using this methodology, it is possible to take advantage of the parallelization handling of 

SCIPION inside the package SIMPLE without complications or errors in the output. 

As explained in the previous sections, SCIPION is mainly devoted to handle the data coming from 

different programs and to adapt their format, so they can be used by any other package. This 

essential function of SCIPION is determined in the protocols in a step called “createOutputStep”. 

This also allows SCIPION to “see” the outputs generated by a program. The step is only executed 

when all the jobs running are finished so no outputs are lost during the process. 

In order to create this step, it was first needed to define an object (among all the ones defined 

in SCIPION such as volumes, movies, class averages…) that matches the type of output data 

generated by a program. In this case, the input of the program is a set of movies and the output 

is a set of micrographs, so we it was required to create a “mic” type object. 

Any object in SCIPION has a series of fields that need to be filled up in order to define properly 

the object (so it can be seen and used by SCIPION). In the case of a micrograph, the name of the 

file and the sampling rate need to be defined among others. 

The last part of the step is to stablish a relation/dependency between the input and the output 

data. 

Apart from the part defined previously, a protocol may have other sections that can be found at 

[30]. For the protocols defined in this work, it was included also a “citation” section, so the user 

can go directly to the publications related to SIMPLE. 

Figure 25 shows an example of the output of the protocol after its execution. The input movies 

are not provided as they are noisy, and it is not possible to extract any information nor 

differentiating them. An example of a frame of a raw movie was shown in Figure 21. 

 

 

Figure 25: Example of the output of unblur after the execution of the protocol. 

 

Apart from the protocol itself, the protocolization of any program requires also a test. A test is 

just a program that calls a protocol and provides the parameters necessary to execute it. 
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The output of a protocol may not be a good result. The only purpose of a test is to serve as an 

easy way to call the protocol trough the command line, so the developer can analyze the errors 

present during the execution to isolate them and correct them more easily. The test is just a tool 

for the developer, and it should not be used by the user to call the program. The test also creates 

a new project in SCIPION where all the outputs are saved in order to manage them more easily. 

Once the output of the test is correct and it does not show any error, it is also a good practice 

to execute again the protocol but now through the GUI of SCIPION. The main purpose of this 

execution is to simulate a real scenario with a real set of data to analyze the quality of the results. 

It is also useful to identify errors associated with the GUI or the management of the outputs by 

SCIPION. 

The output of unblur is composed by four files described below: 

• The file ending with “_intg1.mrc” is the binary of the processed movie with the 

correction for the motion artifacts and the increased SNR coming from the weighted 

average of the frames. This file has been renamed to end with “_psd.mrc” to match the 

nomenclature used by SCIPION. 

• The file ending with “_forctf1.mrc” is the binary file of the processed movie by applying 

a simple average of the aligned frames of the movie. 

• The file ending with “_pspec1.mrc” is the power spectrum of the first (left) and second 

(right) images that the program yield as an output. This file has been renamed to end 

with “_psd.mrc” to match the nomenclature used by SCIPION. 

• The file ending with “_thumb1.mrc” is a down-scaled version of “_intg1.mrc”. 

It was decided to keep only the last two files to simplify the output of the program. 

4.2.4. Prime2D 

Firstly, it is needed to define the input parameters of the protocol as done in the previous 

section. As a reminder, the input parameters of Prime2D are available at [31]. The parameters 

are listed below: 

• Input particles: Path indicating the location of the stack of particles extracted from the 

micrographs. As explained before, this can be done with external packages like EMAN. 

SCIPION already includes protocols to extract the particles in a manual and an automatic 

way that can be used to obtain the stack of particles. 

• Mask: This parameter is used to define the radius of the mask (in pixels) that will be 

apply to the particles. The mask is used to process the particle images to remove the 

noise, so the program can handle them more easily. By default, it is set to 36. 

• Clusters: Indicates the number of class averages that will be obtained at the end of the 

program (i.e. how many conformations will be taken into account to group the images 

in a single class average). By default, it is set to 5. 
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• MaxIter: Indicates the number of iterations the program can execute to get the class 

averages. This parameter is set to advance level as choosing a number higher/lower than 

the optimal one may lead to an increase of the computational complexity or to a wrong 

result. By default, the number is set to 0 to indicate the protocol that Prime2D will 

choose this number by its own internal algorithms. 

As done in the previous subsection, the remaining parameters will be set automatically either 

by internal functions of SCIPION or by the default values determined by SIMPLE itself. This helps 

to reduce the complexity of the program. 

The function “_inserAllSteps” executes three different steps in this protocol apart from the 

initialization of the variables that may be required to execute the before mentioned steps. 

Firstly, the step “_convertInput” is called. This step is commonly used inside the protocols. In the 

previous sections it was explained that SCIPION is mainly devoted to handle files and binaries 

written in several formats and to adequate these files to the execution of other packages. All 

these jobs are declared inside this step, when the input of the protocol is not expected to be 

written in an appropriate way to call a given program. 

The purpose of this step inside this protocol is to write a single stack of particles out of all the 

files the user may specify as an input parameter. Since it is expected that all the particles 

provided by the user belong to the same molecule, they can be grouped to work more easily. 

The next step is “prime2DStep” that is analogous to “unblurStep”. The main function of this step 

is to retrieve all the data necessary to call Prime2D through the command line. Apart from the 

input parameters specified by the user, there are another two mandatory inputs that will be 

defined in this step. They are listed below: 

• Smpd: As before, this parameter is obtained directly by analyzing one image from the 

stack of particles created before. The sampling rate needs to be the same for all the 

particles specified in the input, otherwise the output of the program will include errors. 

• CTF: This parameter indicates if the particles need to be corrected by means of the CTF 

(Contrast Transfer Function) of the micrograph. This parameter is always set to “no” as 

this step is already done by other algorithms inside SCIPION. In case the any correction 

is needed, the protocols containing these algorithms should be called before the 

execution of Prime2D and their output would be fed as an input to this protocol. 

Once all the required parameters are available, the step writes the string that will be used in the 

command line to call and execute Prime2D. 

In order to improve the efficiency of the program, it was also applied CPU parallelism. In this 

case, it is not necessary to include the trick used with unblur as the program works with a single 

stack of particles (coming from the unification of all the inputs specified by the user). Anyway, it 

was decided to move the working directory to the temporal file to automatically remove those 

outputs that are not interesting. The application of CPU parallelism is still a good practice as 

SCIPION can use it to execute more efficiently loops or other structures that admit 

parallelization. 
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Once the output is available, the step “_createOutputStep” is executed. As before, it is needed 

first to define the type of object that best represents the output data. In this case, the program 

retrieves a set of 2D class averages. This object does not only contain the output 2D averages 

created by Prime2D, but it also stablishes a relation between the class representative and the 

particles used to create that representative. In order to define the object, it was needed to 

extract the rigid transformation (translation in (𝑥, 𝑦) directions and the rotation) used to align 

each particle to create the representative, and the representative the micrograph belongs to. 

Prime2D includes a “.txt” file with all this information, so it is possible to use the file to extract 

the data needed to define the object. SCIPION includes already several functions to analyze files 

containing this type of information but, as explained in other sections, the lack of consensus 

makes impossible to have a way to analyze each different file with its own format. For this case, 

it was needed to create a new function to analyze the files generated by Prime2D. This function 

is simple, as each line of the file correspond to the information of a given particle image. The 

function opens the file and reads each line to extract the data defined with the flags “class”, “x”, 

“y” and “e3” that contains the information of the class representative, x translation, y translation 

and the angle of rotation respectively. The information is saved in a dictionary structure to 

access it more easily. 

The information extracted is used to fill up the class. The last step is to stablish the relation 

between the input and the output. Figure 26 shows an example of the output of the protocol 

for a set of particles. 

 

Figure 26: Output of the protocol written for Prime2D. First image: class representatives; second image: particles 
used to create the first representative. 

 

As it can be seen from Figure 26, the GUI includes two red buttons with the labels “Averages” 

and “Classes”. This allows to create new set that can be used as an input for other programs. 

The main different between a set of averages and a set of classes is that the set of averages only 

contains the class representatives. 

A test was also created to manage more easily the errors that appeared during the development 

of the protocol. 
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4.2.5. Prime3D (ini3D_from_cavgs) 

The next protocolization corresponds to the program “ini3D_from_cavgs” that will be referred 

as Prime3D during the subsection for simplicity. The inputs required by the protocol includes: 

• Input classes: Path indicating the location of the 2D class averages obtained by Prime2D. 

As mentioned in the previous subsections, it is possible to save the class averages as a 

set of classes or as a set of averages. The input was defined to allow the user to introduce 

both types of objects as an input. 

• Mask: Mask radius (in pixels). The mask is used to process the class averages to remove 

the noisy they may have. 

• Symmetry: In order to reconstruct the volume of any molecule, Prime3D requires the 

specification of the point group symmetry of the molecule. A point group symmetry is 

“a group of geometric symmetries (isometries) that keep at least one point fixed” [34]. 

For example, a cube has octahedral symmetry because if the center of the cube is chose 

as a fixed point, there are a total of 24 axis of symmetry crossing that specific fixed point 

as shown in Figure 27. In the same way, it is possible to classify the molecules according 

to their symmetries that cross a specific point. Symmetry parameter determines a range 

used by Prime3D to search automatically the symmetry of the molecule (e.g. if 

symmetry c5 is selected, Prime3D will evaluate symmetry groups ranging from c1 to c5, 

selecting the most appropriate one). It is also possible to specify Prime3D to assume the 

point-group symmetry provided as an input as the correct one through a Boolean 

parameter. 

 

 

Figure 27: Symmetry axis of the cube crossing the center. Extracted from [37]. 

 

As in the previous cases, it was decided to exclude those inputs that may complicate the 

execution of the program. The list with all the inputs for Prime3D is also available at [31]. 

The function “_insertAllSteps” executes again three different steps as in the previous protocol. 

The first step is a “convertInputStep” that has the same objective as in the case of Prime2D. 
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The user may introduce the path to several files containing the class averages corresponding to 

the same molecule. In order to handle this data more easily, it was decided to create a new stack 

of 2D class averages that joins all the images present in the input files into a single object that 

facilitates handling the data inside the protocol. 

The following step is called “init3DStep” that is also used to retrieve and define all the data 

required to call Prime3D through the command line. Parallelization was also used with a similar 

objective as in the Prime2D protocol. 

The step whose definition is more interesting from the protocol is the last step: 

“_createOutputStep”. In this case, it was needed to define a new object which is either a volume 

or a set of volumes. The output of Prime3D is a series of binaries containing the information 

needed to represent the volume using the appropriate viewers. These binaries correspond to 

the different iterations the program has performed to reach the final ab initio 3D model. 

Although it was decided to save only the volume corresponding to the final iteration, it is also 

possible to create a set of volumes with all the models generated after each iteration. 

A volume object in SCIPION only requires two fields to be filled up to be considered a properly 

defined object. This fields are the path to the volume to be saved, and the sampling rate 

obtained from the class averages. As always, it was needed to stablish the relationship between 

the input and the output to finish the step. 

Figure 28 shows the result obtained after the execution of the protocol created for Prime3D. 

 

Figure 28: Output of the protocol written for Prime3D. 

 

A test was also defined to simplify the execution and error handling during the development of 

the protocol. 
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5. SOCIO-ECONOMIC IMPACT 

Structure analysis is useful in several fields highlighting pharmacology and cell biology. The 

introduction of the mathematical basis explained along the work supposes a new methodology 

to understand the behavior and interactions of biomolecules. The analysis of the output of the 

algorithm can be applied to the development of new pharmaceutical to treat diseases (as it is 

possible to simulate the changes that may be present during the interaction of the 

pharmaceuticals with their receptors (drug–receptor interactions), leading to an increment in 

the knowledge and understanding of the operation of the molecules). Moreover, the increment 

in the knowledge of different molecular entities will translate in a higher understanding of the 

complex mechanisms taking place in the cells and their functions. 

In the case of SIMPLE, its implementation as part of SCIPION will simplify the reconstruction of 

the volumes obtained by processing the micrographs coming from the EM. The ab initio 

algorithms included in SIMPLE are of great use when the data set obtained from the microscope 

cannot be related to any other already reconstructed volume (3D model), that will provide with 

an initial assignment of the angles needed for the reconstruction. In combination with the 

algorithms present in SCIPION, SIMPLE will provide with extra powerful tools for those cases 

where standard algorithms do not retrieve the output expected. 
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6. CONCLUSION AND FUTURE WORK 

6.1. Conclusion 

Nowadays EM techniques are extremely useful to analyses molecular entities. The images 

coming from the microscope suffer an extensive postprocessing, directed towards the 

reconstruction of 3D models of the samples. The algorithms used to achieve this goal are 

complex and, in some cases, there is the need to have a priori information coming from already 

known molecules to obtain the results. 

Among the different steps applied during the reconstruction of the volumes, angular assignment 

is essential for the reconstruction of the samples from the 2D class averages of the different 

particles retrieved from the micrograph. In general, angular assignment depends on the 

information obtained from related molecules already reconstructed. These molecules will be 

used to get an initial guess of the projection angles of each class average in the final volume. 

The mathematical basis introduce along the work can be applied to deform 3D models of 

molecules towards another related volume or a set of related 2D class average. This will improve 

the initial angular assignment of the projections, (as the reference model will be more similar to 

the final output of the reconstruction) leading to an increase in the accuracy of the results and 

a decrease in the computational complexity of the reconstruction process. 

Although the information coming from a reference volume is highly used in the reconstruction 

process, it may not be possible to find a good initial reference to assign the projection angles. 

Ab initio methods can be used when this is the case. The algorithms implemented in SIMPLE are 

directed towards an efficient ab initio reconstruction of the volumes, solving the problem found 

when reconstructing a volume from a set of class averages with no obvious relation with other 

molecular entities. 

The implementation of both, SIMPLE and the mathematical basis, are of great use in the analysis 

of molecules in cell biology and pharmacology, as they provide with powerful tools to obtained 

and analyze the interactions and conformations of the biomolecules. These analyses will 

increase our knowledge and will improve the understanding on the handling of cellular 

processes. 

 

6.2. Future work 

Future steps in both projects (SIMPLE inclusion in SCIPION and development of the 

mathematical basis) should be directed towards the optimization and testing of the algorithms. 

All the programs generated during this project were intended to run using the CPU (Central 

Processing Unit) of the computer. Nowadays, many computers incorporate GPU (Graphics 

Processing Unit) processing unit apart from the CPU. The main advantage of GPUs over CPUs 

alone is the possibility of using the GPU of the computer to perform graphical or float operations, 

while the CPU is involved in other processes of the system. 
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The combination of both units greatly increases the performance of the programs, reducing their 

computational complexity. The scripts created should be optimized so they can be used with 

GPUs. 

Apart from the optimization, it is also needed to test the algorithms applied by SIMPLE and the 

mathematical basis in a wide range of situations and data sets. This will suppose a good stating 

probe about the performance and efficacy of the programs to ensure a proper functioning. 

Focusing on the mathematical basis, it would be helpful to perform a multivariate analysis of the 

deformation coefficients retrieved after the execution of the programs. The main objective is to 

use the aforementioned analysis to estimate the energy landscapes of the input 

volumes/molecules to get some insights about all the possible conformations of the involved 

biomolecules. 

In the case of SIMPLE, it will be needed to keep updated the different scripts included in SCIPION, 

as well as adding new functionalities that may be released in future version of the package. 
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7. REGULATORY FRAMEWORK 

The techniques introduced along this work are not regulated by any legislation or subjected to 

any intellectual property and they do not break any code of professional ethics. However, 

several packages and programing languages were used for the development of the 

aforementioned techniques with their own regulations. 

Scipion is under the GNU General Public License, which is a free, copyleft license for software. 

In the case of Simple, the protocolization was done under the confirmation/knowledge of the 

developers (Hans Elmlund - Monash University). 

In the case of the programming languages used for the development of the scripts, both, C++ 

and Python are open source, although the IDEs (Integrated Development Environment) used 

may be subjected to regulatory frameworks. The IDE used for C++ codes was Eclipse, whose 

foundation has its own open source license (EPL) similar to the CPL (Common Public License) but 

with some modifications. In the case of Python, PyCharm was preferred which also has its own 

agreement (which approves its usage for academic research). 

The regulations of MatLab are under the academic license, which supports academic research 

but not commercial purposes (the codes developed for this work were not intended to be 

included in the final product). 

Scipion releases are distributed for Linux OS (Operative System) which is also an open source 

software under the GNU license. 
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8. WORKFLOW OF THE PROJECT 

The following chapter is intended to be a brief description of the different task develop during 

the project to achieve the final goals. For simplicity, two tables are provided for the description 

of the workflow followed during the development of the mathematical basis (Table 1) and the 

implementation of SIMPLE into SCIPION (Table 2). All the tasks are shown in the order of 

execution. It is worth to remind that, before starting the project, it was needed to acquire the 

skills necessary to program fluently in Python and C++ programing languages. 

Workflow: Mathematical basis 

Mathematical 
Definition 

Understanding of the functions involved and elaboration of the tool. 
This work was done together with the Dr. Roy Lederman from Yale 

University 

MatLab 
implementation 

Assessment of the mathematical basis through a MatLab script. 

C++ implementation Introduction of the mathematical basis inside SCIPION as a library. 

Volume to volume 
deformation 

(implementation + 
testing) 

Implementation of the algorithm in C++ required to deform an input 
volume towards a reference volume. The script was introduced as a 

library of XMIPP package (developed at the National Center for 
Biotechnology). 

Image to volume 
deformation 

(implementation + 
testing) 

Implementation of the algorithm in C++ required to deform an input 
volume towards a reference image (particle/projection/class average). 
The script was introduced as a library of XMIPP package (developed at 

the National Center for Biotechnology). 

Deformation gradient 
analysis 

(implementation + 
testing) 

Implementation of the algorithm in C++ required to analyze the local 
strain and rotational fields applied to the molecules stored in the 
deformation coefficients. The script was introduced as a library of 

XMIPP package (developed at the National Center for Biotechnology). 
The implementation of the rotational filed and final testing was done by 

Carlos Óscar Sánchez Sorzano. 

Table 1: Workflow followed during the development of the mathematical basis 
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Workflow: SIMPLE protocolization 

Protocols in SCIPION 
Understanding and training on the development of protocols to call 

packages or libraries in SCIPION. 

SIMPLE algorithms and 
workflow 

Understanding of the tools provided by SIMPLE for the reconstruction 
of volumes and the normal execution workflow to achieve this task. 

Testing of SIMPLE 
programs 

Analysis of the execution of the programs executed by SIMPLE through 
the command line (useful to develop a strategy to create the final 

protocol). 

Unblur protocolization 
and testing 

Implementation of the protocol needed to call and handle the data 
used/retrieved by Unblur (including input/output format conversion 

among packages and input simplification). The protocol was tested to 
check if the outputs are properly shown in SCIPION and if they were the 

desired ones. 

Prime2D 
protocolization and 

testing 

Implementation of the protocol needed to call and handle the data 
used/retrieved by Prime2D (including input/output format conversion 
among packages and input simplification). The protocol was tested to 

check if the outputs are properly shown in SCIPION and if they were the 
desired ones. 

Prime3D 
protocolization and 

testing 

Implementation of the protocol needed to call and handle the data 
used/retrieved by ini3D_from_cavgs (including input/output format 

conversion among packages and input simplification). The protocol was 
tested to check if the outputs are properly shown in SCIPION and if they 

were the desired ones. 

Table 2: Workflow followed during the protocolization of SIMPLE 
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9. PROJECT COST 

The costs involving the project are divided in two different sections: the technical equipment 

(Table 3) and the human resources (Table 4). The technical equipment. refers to the software 

and hardware required to develop the project and the human resources includes the salaries of 

the members involved in the work. 

Technical equipment Cost/Unit (€) Cost/Month (€) Months used Total Cost (€) 

Computer 809 20 7 140 

MatLab 0 0 1 0 

Pycharm 0 0 3 0 

Eclipse 0 0 3 0 

    140 

Table 3: Cost associated to the technical equipment. 

 

Human resources Hours Cost/Hour (€) Total Cost (€) 

Student 380 20 7600 

Tutor 20 55 1100 

   8700 

Table 4: Cost associated to the human resources. 

 

The final cost of the project is shown in the following table (Table 5): 

Concept Total Cost (€) 

Technical equipment 140 

Human resources 8700 

 8840 

Table 5: Total cost of the project.  



51 

 

10. BIBLIOGRAPHY 

[1] T. Palucka. “Electron microscopy”. History of recent science & technology. 

https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElecMicr.htm 

(access December 20th, 2018). 

[2] J. A. Velazquez-Muriel, M. Valle, A. Santamaría-Pang, I. A. Kakadiaris, and J. M. Carazo, 

“Flexible Fitting in 3D-EM Guided by the Structural Variability of Protein Superfamilies”, 

Structure, vol. 14, no. 7, pp. 1115-1126, July 2006. [On line]. Available at: https://doi.org/10.101 

6/j.str.2006.05.013. Access: December 20th, 2018. 

[3] “Electron microscope”. Wikipedia. https://en.wikipedia.org/wiki/Electron_microscope. 

(access December 20th, 2018). 

[4] S. J. Ludtke, P. R. Baldwin, and W. Chiu, “EMAN: Semiautomated Software for High-

Resolution Single-Particle Reconstructions”, Journal of Structural Biology, vol. 128, no. 1, pp. 82-

97, December 1999. [On line]. Available at: https://doi.org/10.1006/jsbi.1999.4174. Access: 

December 20th, 2018. 

[5] J. Frank et al., “SPIDER and WEB: Processing and Visualization of Images in 3D Electron 

Microscopy and Related Fields”, Journal of Structural Biology, vol. 116, no. 1, pp. 190-199, 

January 1996. [On line]. Available at: https://doi.org/10.1006/jsbi.1996.0030. Access: December 

20th, 2018. 

[6] C. O. S. Sorzano et al., “XMIPP: a new generation of an open-source image processing package 

for electron microscopy”, Journal of Structural Biology, vol. 148, no. 2, pp. 194-202, November 

2004. [On line]. Available at: https://doi.org/10.1016/j.jsb.2004.06.006. Access: December 20th, 

2018. 

[7] J. M. de la Rosa-Trevín et al., “SCIPION: A software framework toward integration, 

reproducibility and validation in 3D electron microscopy”, Journal of Structural Biology, vol. 195, 

no. 1, pp. 93-99, July 2006. [On line]. Available at: https://doi.org/10.1016/j.jsb.2016.04.010. 

Access: December 20th, 2018. 

[8] D. Elmlund, and H. Elmlund, “SIMPLE: Software for ab initio reconstruction of heterogeneous 

single-particles”, Journal of Structural Biology, vol. 180, no. 3, pp. 420-427, December 2012. [On 

line]. Available at: https://doi.org/10.1016/j.jsb.2012.07.010. Access: December 20th, 2018. 

[9] S. H. Scheres, “RELION: Implementation of a Bayesian approach to cryo-EM structure 

determination”, Journal of Structural Biology, vol 180, no. 3, pp. 519-530, December 2012. [On 

line]. Available at: https://doi.org/10.1016/j.jsb.2012.09.006. Access: December 20th, 2018. 

[10] N. Grigorieff, “FREALIGN: High-resolution refinement of single particle structures”, Journal 

of Structural Biology, vol. 157, no. 1, pp. 117-12, January 2007. [On line]. Available at: 

https://doi.org/10.1016/j.jsb.2006.05.004. Access: December 20th, 2018. 

https://authors.library.caltech.edu/5456/1/hrst.mit.edu/hrs/materials/public/ElecMicr.htm
https://doi.org/10.101%206/j.str.2006.05.013
https://doi.org/10.101%206/j.str.2006.05.013
https://en.wikipedia.org/wiki/Electron_microscope
https://doi.org/10.1006/jsbi.1999.4174
https://doi.org/10.1006/jsbi.1996.0030
https://doi.org/10.1016/j.jsb.2004.06.006
https://doi.org/10.1016/j.jsb.2016.04.010
https://doi.org/10.1016/j.jsb.2012.07.010
https://doi.org/10.1016/j.jsb.2012.09.006
https://doi.org/10.1016/j.jsb.2006.05.004


52 

 

[11] I. Bahar, T. R. Lezon, A. Bakan, and I. H. Shrivastava, “Normal Mode Analysis of Biomolecular 

Structures: Functional Mechanisms of Membrane Proteins”, Chemical Reviews, vol. 110, no. 3, 

pp. 1463-1497, September 2009. [On line]. Available at: https://dx.doi.org/10.1021%2Fc 

r900095e. Access: December 20st, 2018. 

[12] C. O. S. Sorzano et al., “Survey of the analysis of continuous conformational variability of 

biological macromolecules by electron microscopy”, Structural Biology Communications, vol. 75, 

no. 1, pp. 19-32, January 2019. [On line]. Available at: https://doi.org/10.1107 

/S2053230X18015108 (access: December 29th, 2018). 

[13] J. Bray. “Normal Mode Analysis: Calculation of the Natural Motions of Proteins”. Biomedical 

Computation Review. http://biomedicalcomputationreview.org/content/normal-mode-analysi 

s-calculation-natural-motions-proteins (access: December 21st, 2018). 

[14] C. O. S. Sorzano et al., “Local analysis of strains and rotations for macromolecular electron 

microscopy maps”, Journal of Structural Biology, vol. 195, no. 1, pp. 123-128, July 2016. [On line]. 

Available at: https://doi.org/10.1016/j.jsb.2016.04.001. Access: December 21st, 2018. 

[15] R. F. Egerton, Physical Principles of Electron Microscopy, 1st ed. New York: Springer, 2005. 

[On line]. Avalailbe at: https://doi.org/10.1007/B136495.  

[16] A. D. Rollet, and P. N. Kalu. “Microscopy: Overview of Different Methods”. Slide Player. 

https://slideplayer.com/slide/2320013/ (access: December 21st, 2018). 

[17] Healthtard. “Guide to Electron Microscopy”. Healthtard. 

http://www.healthtard.com/guide-to-electron-microscopy/ (access: December 21st, 2018). 

[18] M. A. Hill. “Scanning Electron Microscopy”. Embriology. https://embryology.med. 

unsw.edu.au/embryology/index.php/Scanning_Electron_Microscopy (access: December 21st, 

2018). 

[19] H. Lijima, M. Minoda, T. Tamai, Y. Kondo, and F. Hosokawa, “Development of Phase Contrast 

Scanning Transmission Electron Microscopy”, exposed in 18th International Microscopy 

Congress, Prague, 7-12 September, 2014. [On line]. Available at: 

http://www.microscopy.cz/proceedings/all.html.  

[20] “Hilbert space”. Wikipedia. https://en.wikipedia.org/wiki/Hilbert_space (access: January 

21st, 2019). 

[21] E. Weisstein. “Hilbert Space”. MathWorld. http://mathworld.wolfram.com/Hilbert 

Space.html (access: January 21st, 2019). 

[22] E. Weisstein. “Function Space”. MathWorld. http://mathworld.wolfram.com/Function 

Space.html (access: January 21st, 2019). 

[23] “Infinite-dimensional vector function”. Wikipedia. https://en.wikipedia.org/wiki/Infinite-

dimensional_vector_function (access: January 21st, 2019). 

[24] “Spherical Harmonics”. Wikipedia. https://en.wikipedia.org/wiki/Spherical_harmonics 

(access: December 21st, 2018). 

https://dx.doi.org/10.1021%2Fc%20r900095e
https://dx.doi.org/10.1021%2Fc%20r900095e
https://doi.org/10.1107%20/S2053230X18015108
https://doi.org/10.1107%20/S2053230X18015108
http://biomedicalcomputationreview.org/content/normal-mode-analysi%20s-calculation-natural-motions-proteins
http://biomedicalcomputationreview.org/content/normal-mode-analysi%20s-calculation-natural-motions-proteins
https://doi.org/10.1016/j.jsb.2016.04.001
https://doi.org/10.1007/B136495
https://slideplayer.com/slide/2320013/
http://www.healthtard.com/guide-to-electron-microscopy/
http://www.microscopy.cz/proceedings/all.html
https://en.wikipedia.org/wiki/Hilbert_space
http://mathworld.wolfram.com/Hilbert%20Space.html
http://mathworld.wolfram.com/Hilbert%20Space.html
http://mathworld.wolfram.com/Function%20Space.html
http://mathworld.wolfram.com/Function%20Space.html
https://en.wikipedia.org/wiki/Infinite-dimensional_vector_function
https://en.wikipedia.org/wiki/Infinite-dimensional_vector_function
https://en.wikipedia.org/wiki/Spherical_harmonics


53 

 

[25] “3D rotation group”. Wikipedia. https://en.wikipedia.org/wiki/3D_rotation_group (access: 

December 21st, 2018). 

[26] V. Lakshminarayanan, and A. Fleck, “Zernike polynomials: a guide”, Journal of Modern 

Optics, vol. 58, no. 7, pp. 545-561, April 2011. [On line]. Available at: 

https://doi.org/10.1080/09500340.2011.633763. Access: December 21st, 2018. 

[27] C. Clemente, L. Pallotta, A. de Maio, J. J Soraghan, and A. Farina, “A novel algorithm for 

radar classification based on doppler characteristics exploiting orthogonal Pseudo-Zernike 

polynomials”, IEEE Transactions on Aerospace and Electronic Systems, vol. 51, no. 1, pp. 417-

430, April 2015. [On line]. Available at: https://doi.org/10.1109/TAES.2014.130762. Access: 

December 21st, 2018. 

[28] “Zernike polynomials”. Wikipedia. https://en.wikipedia.org/wiki/Zernike_polynomials 

(access: December 21st, 2018). 

[29] H. Elmlund, D. Elmlund, and S. Bengio, “PRIME: Probabilistic Initial 3D Model Generation for 

Single-Particle Cryo-Electron Microscopy”, Structure, vol. 21, no.8, pp. 1299-1306, August 2013. 

[On line]. Available at: https://doi.org/10.1016/j.str.2013.07.002. Access: December 21st, 2018. 

[30] C. F. Reboul, F. Bonnet, D. Elmlund, and H. Elmlund, “A Stochastic Hill Climbing Approach 

for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images”, 

Structure, vol. 24, no. 6, pp. 988-996, June 2016. [On line]. Available at: 

https://doi.org/10.1016/j.str.2016.04.006. Access: December 21st, 2018. 

[31] D. Elmlund. “SIMPLE Documentation”. SIMPLE cryoem. https://SIMPLEcryoem. 

com/index.html (access: December 21st, 2018). 

[32] “Table of spherical harmonics”. Wikipedia. https://en.wikipedia.org/wiki/Table_of_ 

spherical_harmonics (access: December 21st, 2018). 

[33] C. O. S. Sorzano, A. L. Alvarez-Cabrera, and S. J. Jonic, “StructMap: Elastic Distance Analysis 

of Electron Microscopy Maps for Studying Conformational Changes”, Biophysics Journal, vol. 

110, no. 8, pp. 1753-1765, April 2016. [On line]. Available at: 

https://doi.org/10.1016/j.bpj.2016.03.019. Access: December 21st, 2018. 

[34] Protein Databank in Europe. http://www.ebi.ac.uk/pdbe/node/1 (access: December 21st, 

2018). 

[35] “SCIPION Documentation”. Git Hub. https://github.com/I2PC/SCIPION/wiki (access: 

December 21st, 2018). 

[36] F. J. Sigworth, “Principles of cryo-EM single-particle image processing”, Microscopy, vol. 65, 

no. 1, pp. 57-67, February 2016. [On line]. Available at: https://doi.org/10.1093/jmicro/dfv370. 

Access: December 21st, 2018. 

[37] M. Zabrocki. “The Rotational Symmetries of the Cube”. Introduction to combinatorics. 

http://garsia.math.yorku.ca/~zabrocki/math4160w03/cubesyms/ (access: December 21st, 

2018). 

https://en.wikipedia.org/wiki/3D_rotation_group
https://doi.org/10.1080/09500340.2011.633763
https://doi.org/10.1109/TAES.2014.130762
https://en.wikipedia.org/wiki/Zernike_polynomials
https://doi.org/10.1016/j.str.2013.07.002
https://doi.org/10.1016/j.str.2016.04.006
https://en.wikipedia.org/wiki/Table_of_%20spherical_harmonics
https://en.wikipedia.org/wiki/Table_of_%20spherical_harmonics
https://doi.org/10.1016/j.bpj.2016.03.019
http://www.ebi.ac.uk/pdbe/node/1
https://github.com/I2PC/scipion/wiki
https://doi.org/10.1093/jmicro/dfv370
http://garsia.math.yorku.ca/~zabrocki/math4160w03/cubesyms/




1 

 

11. SUPPLEMENTARY MATERIAL (ANNEXES) 

11.1. Annex A (MatLab scripts) 

MathBasis.m 

clc, clear 
close all; 

  
%Sphere discretization (To plot the Basis) 
Res = [100 100]; %Resolution 
phi = linspace(0,2*pi,Res(1)); 
theta = linspace(0,pi,Res(2)); 
[Theta,Phi] = meshgrid(theta,phi); 

  

%Computation of the Basis 
L=2; N=2; M=1; 
R = CompRZernike(N,L,Res(1)); 
Ylm = RealSPH(L,M,Theta,Phi); 
Zlnm = R.*Ylm; 

  
%Plot Basis 
[Xr,Yr,Zr]=sph2cart(Phi,Theta+pi/2,Zlnm); %Plotting Real Spherical 

Harmonics 
figure; hold on; 
h = surf(Xr,Yr,Zr); 
axis equal off; %rot3d; 
grid on 

 

ComRZernike.m 

function Vals = CompRZernike(N,L, Res) %Where L is the degree and N 

the order 

  
%Discretizacion del disco unitario 
r = linspace(0,1,Res); 
phi = linspace(0,2*pi,Res); 
[r,phi] = meshgrid(r,phi); 

  
%Radial Zernike Polynomials 
R = RZernike(N,L); 
Vals = R(r); 

  
end 

 

RealSPH.m 

function Ylm = RealSPH(L,M, Theta, Phi) %Where L is the degree and M 

the order 

  
%Legendre assciated polynomials 
Plm = LPoly(M,L); 
Plm = Plm(cos(Theta)); 
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%Spherical harmonics computation 
a1 = (2*L+1)/(4*pi); 
a2 = factorial(L-abs(M))/factorial(L+abs(M)); 
Alm = sqrt(a1*a2); %Normalization Lengendre Polynomials 

  
%Real Spherical Harmonics 
if M<0 
    Ylm = ((-1)^M)*sqrt(2).*Alm.*Plm.*sin(abs(M).*Phi); 
elseif M==0 
    Ylm = sqrt(a1).*Plm; 
else 
    Ylm = ((-1).^M).*sqrt(2).*Alm.*Plm.*cos(M.*Phi); 
end 

  
%Representation 
Ylm = abs(Ylm); 
[Xr,Yr,Zr]=sph2cart(Phi,Theta+pi/2,Ylm); %Plotting Real Spherical 

Harmonics 
figure; hold on; 
h = surf(Xr,Yr,Zr); 
axis equal off; %rot3d; 
grid on 

  
end 

 

RZernike.m 

function R = RZernike(m,n) %Where n is the degree and m the order 

  
%Computaton of the coefficients of the radial Zernike polynomials 

  
R{1} = zeros(1,m+1); R{1}(m+1) = 1; 
R{2} = zeros(1,m+1+2); R{2}(m+1) = -(m+m+2)/2; R{2}(m+1+2) = m+2; 

  
if (ceil(n/2)>2) 
    for i = 2:ceil(n/2) 
        R{i+1} = -((2*(i-1)+m)*(2*(i-1)+m+1)*(2*(i-1)+m+2))/(2*((i-

1)+1)*((i-1)+m+1)*(2*(i-1)+m))*(-2*[0 0 R{i}])-(2*((i-1)+m)*(i-

1)*(2*(i-1)+m+2))/(2*((i-1)+1)*((i-1)+m+1)*(2*(i-1)+m))*[R{i-1} 0 0 0 

0]; 
        R{i+1}= R{i+1}-((2*(i-1)+m+1)*m^2+(2*(i-1)+m)*(2*(i-

1)+m+1)*(2*(i-1)+m+2))/(2*((i-1)+1)*((i-1)+m+1)*(2*(i-1)+m))*[R{i} 0 0 

]; 
    end 
end 

  
if (m==n) 
    RC = fliplr(R{1}); 
else 
    RC = fliplr(R{end}); 
end 
R = poly2sym(sym(RC)); 
R = matlabFunction(R); 

  
end 
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LPoly.m 

function P = LPoly(m,l) %Where l is the degree and m the order 

  
%Coefficients Legendre Polynomials 
P{1} = 1; 
P{2} = [0 1]; 
for i = 2:l 
        P{i+1} = ((2*i-1)/i)*[0 P{i}]-((i-1)/i)*[P{i-1} 0 0];  
end 

  
%Associated Legendre Polynomials coefficients 
%Since we have a derivative of order "m", we can compute the new 
%coefficiens directly and realocate the values of the vector so the 
%position of each coefficient corresponds to its power. 
for i = (m+1):(l+1) 
    for j = (m+1):length(P{i}) 
        Plm{i-m}(j-m) = ((-1)^m)*P{i}(j)*factorial(m)*factorial(j-

1)/(factorial(m)*factorial(j-1-m)); 
    end 
end 

  
syms x 
PC = fliplr(Plm{end}); 
P = poly2sym(sym(PC))*(1-x^2)^(m/2); 
P = matlabFunction(P); 
end 
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11.2. Annex B (Tables) 

 

Deformation of the models 
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Error before-after deformation of the models 
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Final distance of the models 

 

 


