
 

 
 
 
 
 
 
This is a postprint version of the following published document: 
 
 
 
Zheng, X., et al. Dynamics of necking and fracture in ductile porous 
materials, In: Journal of applied Mechanics, 87(4), 041005, Apr 2020, 10 
pp. 

DOI: https://doi.org/10.1115/1.4045841 

 
 
 
 
© 2020 by ASME. 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288502081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1115/1.4045841


Dynamics of necking and fracture in ductile
porous materials

Xinzhu Zheng
Department of Materials Science and Engineering
Texas A&M University, College Station, Texas, USA

Email: xinzhu_zheng@tamu.edu

Komi E. N’souglo
Department of Continuum Mechanics and Structural Analysis

University Carlos III of Madrid, Madrid, Spain
Email: knsouglo@ing.uc3m.es

Jose A. Rodriguez-Martinez
Department of Continuum Mechanics and Structural Analysis

University Carlos III of Madrid, Madrid, Spain
Email: jarmarti@ing.uc3m.es

Ankit Srivastava ∗
Department of Materials Science and Engineering
Texas A&M University, College Station, Texas, USA

Email: ankit.sri@tamu.edu

The onset of necking in dynamically expanding duc-
tile rings is delayed due to the stabilizing effect of in-
ertia, and with increasing expansion velocity, both the
number of necks incepted and the number of fragments,
increase. In general, neck retardation is expected to de-
lay fragmentation as necking is often the precursor to
fracture. However, in porous ductile materials it is pos-
sible that fracture can occur without significant necking.
Thus, the objective of this work is to unravel the com-
plex interaction of initial porosity and inertia on the
onset of necking and fracture. To this end, we have car-
ried out a series of finite element calculations of unit
cells with sinusoidal geometric perturbations and vary-
ing levels of initial porosity under a wide range of dy-
namic loading conditions. In the calculations, the ma-
terial is modeled using a constitutive framework that
includes many of the hardening and softening mecha-
nisms that are characteristics of ductile metallic mate-
rials, such as strain hardening, strain rate hardening,
thermal softening and damage-induced softening. The
contribution of the inertia effect to the loading process is
evaluated through a dimensionless parameter that com-
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bines the effects of loading rate, material properties and
unit cell size. Our results show that low initial poros-
ity levels favor necking before fracture, and high initial
porosity levels favor fracture before necking, especially
at high loading rates where inertia effects delay the on-
set of necking. The finite element results are also com-
pared with the predictions of linear stability analysis of
necking instabilities in porous ductile materials.

1 Introduction
The analysis of a radially expanding circular ring is

a convenient and effective technique to study multiple
necking and fragmentation response of metallic materi-
als subjected to dynamic loading conditions [1–18]. The
primary advantage of this analysis is that the geomet-
ric and loading symmetries nearly eliminate the effects
of wave propagation along the circumferential direction
of the specimen before plastic flow localizes in the form
of multiple necks [19]. In a radially expanding circu-
lar ring, both the number of necks incepted and the
proportion of necks leading to fragments, increase with
increasing expansion velocity [2–4, 10, 11, 17, 18, 20, 21].
Furthermore, the stabilizing effects of inertia (and ma-
terial viscosity to a lesser extent) at high expansion ve-
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locities delay the onset of plastic flow localization (and
necking) and gives rise to a post-critical deformation
regime [4, 17], so that the necks are not incepted at
the maximum load (or Considère strain) and are sig-
nificantly delayed [21]. Intuitively, neck retardation due
to the stabilizing effects of inertia will also delay frag-
mentation as necking is often the precursor to fracture in
ductile metallic materials. However, for porous ductile
materials it is possible that fracture can occur without
significant necking. The objective of this work is to un-
ravel the complex interaction of initial porosity and iner-
tia on the onset of multiple necking and fracture under
dynamic loading conditions consistent with expanding
rings.

Several authors have carried out finite element cal-
culations of multiple necking in dynamically expanding
circular rings, or in long cylindrical bars with initial con-
ditions consistent with the expanding ring [13,17,20–22].
For the initial and boundary conditions applied in these
finite element calculations, in the absence of any per-
turbation, the ring expands or the bar stretches uni-
formly during loading, according to the fundamental so-
lution of the problem, and localization never occurs [21].
In order to break the symmetry of the problem and
trigger localization a perturbation such as geometric
or material heterogeneity is readily introduced [20–22].
Note, that some commercial finite element codes such
as ABAQUS/Explicit [23], introduce numerical pertur-
bations (likely due to round-off errors) that are suffi-
cient to break the symmetry and trigger localization
[13, 17, 20]. The amplitude and distribution of the ge-
ometrical or material heterogeneities have been shown
to affect the multiple necking pattern (i.e. number, lo-
cation and growth of the necks) at low loading rates
[21, 22]. However, at high loading rates where inertia
effects dominate, the effect of geometrical or material
heterogeneities on multiple necking pattern becomes less
significant [21,22]. Furthermore, it has also been shown
that the variations in material properties that greatly
affect the multiple necking pattern and fragmentation
at relatively low loading rates [13] becomes less signif-
icant at high loading rates [17]. The variation in the
average neck spacing i.e. the perimeter of the ring or
the length of the bar divided by the number of necks
incepted, as a function of the imposed loading rate ob-
tained from the finite element calculations [20, 21] have
shown to be in good agreement with the experimental
results [2].

Another approach to analyzing multiple necking
and fragmentation in dynamically expanding circular
rings is through unit cell finite element calculations in-
troduced in Xue et al. [24]. The unit cell model is based
on the idea that a radially expanding circular ring with
periodic perturbations is simply a collection of unit cells
with sinusoidal perturbations. By utilizing these unit
cells of different sizes (defined in terms of length to di-
ameter ratios) and initial conditions consistent with the
expanding ring, Rodríguez-Martínez et al. [17] modeled

the dependence of the average neck spacing on material
properties and imposed loading rates. In these calcu-
lations, material was assumed to be plastically incom-
pressible and follow power law strain rate hardening.
Material failure or fracture was not considered in this
work and the necking strain, i.e. the strain at the ends
of the unit cells at which the plastic flow localizes in
the center of the cell was measured. These calcula-
tions show that the necking strain first decreases with
increasing cell size and then starts to increase for cell
sizes greater than a critical value. So that the minimum
necking strain corresponds to an intermediate unit cell
size. In ref. [17], the unit cell size with the minimum
necking strain, the critical cell size, was obtained for a
range of imposed loading rates, and for materials with
different densities and strain rate sensitivities. These
results were compared with the average neck spacing
obtained from the finite element calculations of radially
expanding circular rings and a very good quantitative
agreement between the two approaches was noted. This
suggests that, for a fixed loading rate and material prop-
erties, the critical cell size for which the deformation
energy required to trigger a neck is minimum, repre-
sents the average neck spacing in the multiple necking
pattern.

The unit cell finite element calculations introduced
in ref. [24] and utilized in ref. [17] provide a simple com-
putational tool to model the effect of initial porosity on
multiple necking and fracture under dynamic loading
conditions. To this end, we carry out three-dimensional
unit cell finite element calculations for a wide range of
the aspect ratio of the cells, and amplitudes of the initial
sinusoidal geometric perturbation. The material is mod-
eled using an elastic-viscoplastic constitutive relation for
a progressively cavitating ductile solid. The constitu-
tive relation also includes strain hardening, strain rate
hardening and thermal softening. Fracture is assumed
to occur when a critical level of porosity is reached as
in ref. [20]. We note that previous works on multiple
necking and fragmentation assumed the material to be
plastically incompressible with few notable exceptions
such as refs. [7, 20, 21] which considered porous plastic-
ity, but in these works the interplay between porosity
and inertia was not explored. Here, the calculations are
carried out for different levels of the initial porosity in
the material. The contribution of the inertia effects to
the loading process is evaluated through a dimension-
less parameter that combines the effects of loading rate,
material properties and unit cell size. The unit cell fi-
nite element calculations are carried out for a range of
imposed uniaxial velocities giving a wide variation in
the value of the dimensionless inertia parameter. The
finite element results are also compared with the pre-
dictions of linear stability analysis of necking instabil-
ities in porous ductile materials developed in ref. [21].
The linear stability analysis, despite several simplify-
ing assumptions, provides a quick understanding of the
fundamental problem and enables us to: (i) obtain the
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fundamental dimensionless parameters that govern the
necking instabilities; (ii) rationalize the stabilizing ef-
fects of stress multiaxiality and inertia; and (ii) provide
additional verification of the effect of porosity on neck-
ing instabilities in ductile porous materials subjected to
dynamic loading conditions.

2 Constitutive framework
The constitutive framework used is the modified

Gurson elastic-viscoplastic constitutive relation for a
progressively cavitating solid [25, 26] with the flow po-
tential having the form

Φ = σ2
e

σ̄2 + 2q1f∗ cosh
(

3q2σh
2σ̄

)
−1− (q1f∗)2 ≤ 0 (1)

where q1 = 1.25, q2 = 1 are the material parameters
introduced in refs. [27,28], σ̄ is the matrix flow strength,
and

σe =
√

3
2σ′ : σ′, σh = 1

3σ : 1, σ′ = σ−σh1 (2)

with σ being the Cauchy stress tensor and 1 being
the unit second-order tensor.

Following, ref. [26] the function f∗ in Eq. (1) is given
by

f∗ =


f if f < fc

fc+ (1/q1−fc)(f −fc)(
ff −fc

) if f ≥ fc (3)

where f is the void volume fraction, fc is the critical
void volume fraction to void coalescence and ff is the
void volume fraction at failure. The values of fc = 0.12
and ff = 0.25 are used in the calculations.

The rate of deformation tensor is written as the sum
of an elastic part, de = L−1 : σ̂, a plastic part, dp, and
a part due to thermal straining, dΘ = αΘ̇1, so that

d = L−1 : σ̂ +αΘ̇1+dp (4)

Here, σ̂ is the Jaumann rate of Cauchy stress, Θ
is the temperature, α = 1× 10−5 K−1 is the thermal
expansion coefficient and L = λ1⊗1+2µI is the tensor
of isotropic elastic moduli, where λ = 40.38 GPa and
µ = 26.92 GPa are the Lamé constants, and I is the
fourth-order unit tensor. The plastic part of the rate
of deformation tensor, dp, as formulated in ref. [29], is

written as

dp =
[

(1−f)σ̄ ˙̄εp

σ : ∂Φ
∂σ

]
∂Φ
∂σ

(5)

The effective plastic strain rate in the matrix mate-
rial, ˙̄εp, is given by

˙̄εp = ε̇0

[
σ̄

g(ε̄p,Θ)

]1/m
(6)

with

g(ε̄p,Θ) = σ0G(Θ)[1 + ε̄p/ε0]N (7)

and

G(Θ) = 1 + bG exp(−c[Θ0−273]) [exp(−c[Θ−Θ0])−1]
(8)

where ε̄p =
∫ ˙̄εpdt is the effective plastic strain in the

matrix material. In the calculations, the values of ini-
tial flow strength of the matrix material σ0 = 300 MPa,
strain hardening exponent N = 0.1, strain rate sensi-
tivity exponent m = 0.01, reference strain ε0 = 0.0043,
reference strain rate ε̇0 = 103 s−1, bG = 0.1406 and
c= 0.00793 K−1 are used, and Θ0 = 293 K is the initial
temperature of the material.

The evolution of the void volume fraction is gov-
erned by

ḟ = (1−f)dp : 1 (9)

where the value of f in the undeformed material,
i.e. the value of f at time t = 0, represents the initial
void volume fraction (or porosity), f0. For, f0 = 0, the
material is fully dense and follows von Mises plasticity.

Adiabatic conditions are assumed so that

ρcp
∂Θ
∂t

= χσ : dp (10)

with ρ being the current density of the material (the
initial density is ρ0 = 7600 kg/m3), cp = 465 J/kg K
is the specific heat, and χ = 0.9 is the Taylor-Quinney
coefficient.
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The values of all the constitutive and material pa-
rameters are taken from ref. [21].

3 Unit cell finite element model

Fig. 1. Finite element mesh of two 1/4 unit cells with normalized
cell lengths L̄ = 0.5 and 1, with a small sinusoidal imperfection of
wavelength L0, and amplitude A= 0.02.

We carry out three-dimensional unit cell finite el-
ement calculations as in refs. [17, 24] using the consti-
tutive framework described in Section 2 to model neck-
ing and fracture in porous metallic bars subjected to
dynamic loading conditions consistent with expanding
ring. The finite element calculations are based on the
dynamic principle of virtual work using a finite deforma-
tion Lagrangian convected coordinate formulation. Ma-
terial points are referred to using a Cartesian coordinate
system with positions in the reference configuration de-
noted as (X,Y,Z). The origin of the coordinate system
is located at the center of mass of the unit cell. The
unit cell modeled is a cylindrical bar with initial length,
L0, and diameter, D, with initial sinusoidal geometric
imperfection:

D(Y ) =D0

[
1−A

(
1 + cos

(
2πY
L0

))]
(11)

where, D0 is the initial unperturbed diameter of
the unit cell, and A is the amplitude of the imperfec-
tion. The coordinate along the axis of the unit cell,
Y , in the reference configuration varies from −L0/2 to
L0/2. Owing to the symmetry of the cross-section of
the cylindrical unit cell, only 1/4 of the specimen is ana-
lyzed numerically, Fig. 1. Although, three-dimensional
unit cell finite element calculations are carried out in
this work, the unit cell in Fig. 1, is axisymmetric about
the Y axis and can also be analyzed numerically using
a simpler axisymmetric finite element model.

Two representative configurations of the unit cell
with normalized cell lengths L̄=L0/D0 = 0.5 and 1, and
with amplitude A= 0.02, of the sinusoidal imperfection

are shown in Fig. 1. The finite element mesh of the unit
cell with L̄ = 0.5 consists of 55,200 twenty node brick
elements while that of the unit cell with L̄= 1 consists
of 53,800 twenty node brick elements. The initial and
boundary conditions in velocity imposed on the unit cell
are,

VY (X,Y,Z,0) = V0×
Y

L0/2
VY (X,±L0/2,Z,t) =±V0

(12)

where, VY is the velocity along the axis of the unit
cell, t is the analysis time and V0 is the magnitude of
the imposed velocity. The unit cell finite element model
considered in this work is based on the idea that a radi-
ally expanding circular ring with periodic perturbations
can be represented as a collection of unit cells (shown in
Fig. 1). Note that in a radially expanding ring the ge-
ometric and loading symmetries nearly eliminate wave
propagation along the circumferential direction. Fol-
lowing this, the initial condition in Eq. (12) is utilized
to minimize wave propagation along the axial direction
of the unit cell (which correspond to the circumferen-
tial direction of the ring). In a radially expanding ring,
wave propagation can occur in other directions, assum-
ing this, no initial conditions are utilized along any other
direction of the unit cell in this work. Also, in ref. [17],
the critical neck size as a function of the imposed strain
rate in a plastically incompressible material obtained
from full three-dimensional finite element calculations
of radially expanding rings were found to be in quanti-
tative agreement with the predictions of the unit cell fi-
nite element calculations with initial and boundary con-
ditions same as in Eq. (12). Nonetheless, we carried out
limited calculations to check the effect of initializing ve-
locity along the radial direction on the predictions of the
unit cell finite element calculations similar to ref. [20].
Our results, that are not presented in this paper for the
sake of brevity, show that the effect of the initial velocity
along the radial direction has negligible influence on the
evolution of plastic strain and porosity. However, the
initial velocity along the radial direction does slightly
reduce the oscillations in the axial force for unit cells
with small wavelengths.

As in refs. [21,30–33], eight point Gaussian integra-
tion is used in each twenty-node element for integrating
the internal force contributions and twenty-seven point
Gaussian integration is used for the element mass ma-
trix. Lumped masses are used so that the mass matrix
is diagonal. The discretized equations are integrated us-
ing the explicit Newmark β-method (β = 0) [34]. The
constitutive updating is based on the rate tangent mod-
ulus method proposed in ref. [35], while material fail-
ure is implemented via the element vanishing technique
proposed in ref. [36]. When the value of the void vol-
ume fraction f at an integration point reaches 0.9ff , the



4 THEORETICAL MODEL 5

value of f is kept fixed so that the material deforms with
a very low flow strength. The entire element is taken to
vanish when three of the eight integration points in the
element have reached this stage.

The unit cell finite element calculations are carried
out for nine unit cells with normalized cell length, L̄
(Fig. 1), varying from 0.25 to 3. For all unit cells, the
initial length L0 = 1 mm is kept fixed and the initial di-
ameter is varied as, D0 = L0/L̄. For each unit cell, the
calculations are carried out for three amplitudes of the
sinusoidal geometric imperfection, A= 0.002, 0.005 and
0.02, four initial porosity levels, f0 = 0, 0.01, 0.05 and
0.08, and a range of imposed velocities, V0. The initial
porosity levels assumed in our calculations are rather
high compared to conventionally processed engineering
metals and alloys. However, with the emergence of man-
ufacturing technologies such as additive manufacturing,
it is becoming possible to control the initial porosity lev-
els in a material. Our objective here is to unravel the
interaction of initial porosity and inertia on the onset
of multiple necking and fracture under dynamic loading
conditions. This will provide an understanding of the
extent to which the initial porosity level in a material
can be controlled to engineer multiple necking and frac-
ture pattern under dynamic loading conditions. From
the unit cell finite element calculations, strain to failure
dictated by necking and/or fracture are measured. Our
finite element results presented in Section 5 show that
the failure strain dictated by necking first decreases with
increasing value of L̄ and then starts to increase for val-
ues of L̄ greater than a critical value. The value of L̄ for
which the necking strain is minimum is referred to as
the critical cell size, L̄c. The value of L̄c, for which the
deformation energy required to trigger failure is mini-
mum, likely represents the average neck spacing in the
multiple necking pattern as noted in the Section 1.

4 Theoretical model
In this section, we briefly summarize the main fea-

tures of the state-of-the-art one-dimensional linear sta-
bility analysis developed in ref. [21], to model necking in-
stabilities in porous metallic bars subjected to dynamic
loading conditions consistent with expanding ring. The
theoretical model developed in ref. [21] for the constitu-
tive framework detailed in Section 2 includes both the
effects of inertia and multiaxial stress state that devel-
ops inside the necked region.

The linear stability analysis technique to study the
formation of dynamic necking instabilities [37, 38] in-
volves testing the stability of the fundamental solution
of the problem S1 at any time t1 by introducing into the
governing equations a small perturbation of the form

δS(Y,t)t1 = δS1e
iξY+η(t−t1) (13)

where δS1 is the perturbation amplitude, ξ is the
wavenumber and η is the growth rate of the perturbation
at time t1. The wavenumber is related to the normalized
perturbation wavelength as L̄= 1

D0
2π
ξ . The normalized

perturbation wavelength is analogous to the normalized
unit cell length in the finite element calculations.

The perturbed solution of the problem is given by

S = S1 + δS (14)

with |δS| � |S1|. By inserting Eq. (14) into the gov-
erning equations of the problem, and keeping only the
first-order terms in the increments δS1, linearized equa-
tions are obtained. A non-trivial solution for δS1 can
only be obtained if the determinant of the system of
linearized equations is equal to zero. Application of this
condition leads to a fourth-degree polynomial in η

B4(S1, ξ)η4 +B3(S1, ξ)η3+
+B2(S1, ξ)η2 +B1(S1, ξ)η+B0(S1, ξ) = 0

(15)

with coefficients Bi(S1, ξ) that depend on the fun-
damental solution and the wavenumber. Equation (15)
has four roots in η, two real and two complex conju-
gates. The requisite for unstable growth of δS is given by
Re(η)> 0 and hence the root that has the greater pos-
itive real part, η+, is considered for the analysis. The
stabilizing effect of inertia and multiaxial stress state
on small and large wavenumbers, respectively, promotes
the growth of intermediate modes [8, 38–41]. To track
the history of the growth rate of all the growing modes
during the post-homogeneous deformation process (i.e.
for strains greater than the Considère strain), we use the
cumulative instability index I =

∫ t
0 η

+dt [21, 38, 42, 43].
The index I accumulates the growth rate of all the grow-
ing modes during the loading process, i.e. we introduce
the perturbation at different times and sum the growth
rate obtained for each loading time. At a given loading
time t, i.e. at a given strain ε, the mode that grows
the fastest, i.e. the mode with greatest value of I, is re-
ferred to as critical wavenumber or critical perturbation
mode ξc. Likewise, the greatest value of I is referred
to as critical cumulative instability index, Ic. The criti-
cal wavenumber enables us to calculate the critical nor-
malized perturbation wavelength, L̄c = 1

D0
2π
ξc
, which is

analogous to the critical unit cell size, L̄c, obtained from
the finite element calculations.

5 Results and discussions
This section is divided into two sub-sections. Sec-

tion 5.1 presents the key results and discussion of the
unit cell finite element calculations and Section 5.2 com-
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pares the unit cell finite element results with the predic-
tions of the linear stability analysis. Both, the unit cell
finite element calculations and the linear stability anal-
yses are carried out for a range of imposed velocities,
V0, giving a variation in the value of the dimensionless
inertia parameter, Π, defined as

Π =

√(
V0
D0
L0

)2
ρ0
σ0

(16)

in the range of 0.05 to 0.3. The parameter Π is the
inertial resistance to motion, and allows for the quan-
tification of the dynamic effects [11,17,21,44].

5.1 Key finite element results
The evolution of the effective plastic strain, ε̄pmid,

and the porosity, f , in the mid-section of two unit cells,
L̄ = 1.0 and 0.5, with the effective plastic strain at the
end of the unit cells, ε̄pend, subjected to Π = 0.1 are
shown in Fig. 2. For both the unit cells, the values of
A= 0.002 and f0 = 0.01. As shown in the figure, at the
early stages of deformation the values of ε̄pmid evolve lin-
early with ε̄pend, Fig. 2(a), with limited increase in the
value of f , Fig. 2(b). However, with continued defor-
mation, the plastic flow localizes in the mid-section of
the unit cells and the value of ε̄pmid increases asymptot-
ically while the value of ε̄pend remains nearly constant.
The value of ε̄pend at which dε̄pmid/dε̄

p
end→∞ is defined

here as the effective plastic strain at the onset of neck-
ing. Following the onset of necking, the value of f also
increases asymptotically. The onset of necking and the
asymptotic increase in the value of f occur at a smaller
value of ε̄pend in the unit cell with L̄ = 1.0 than in the
unit cell with L̄ = 0.5. Furthermore, in the unit cell
with L̄= 1.0, the value of ε̄pend at the onset of necking is
smaller in the center of the mid-section of the unit cell
compared to the surface of the mid-section of the unit
cell. This is because in the unit cell with L̄= 1.0 plastic
flow first localizes in the center and subsequently propa-
gates towards the surface of the mid-section of the unit
cell. On the contrary, in the unit cell with L̄= 0.5 plastic
flow first localizes at the surface and subsequently prop-
agates towards the center of the mid-section of the unit
cell. Similarly, the onset of the asymptotic growth in the
value of f first occurs in the center of the mid-section of
the unit cell with L̄= 1.0, while the onset of the asymp-
totic growth in the value of f first occurs at the surface
of the mid-section of the unit cell with L̄= 0.5. Here, we
identify onset of fracture as the smallest value of ε̄pend
at which f > fc.

In Figs. 2(a) and (b), the value of ε̄pend at which
necking initiates in the center of the mid-section of the
unit cell is marked with open symbols while the closed
symbols correspond to the value of ε̄pend at which neck-
ing initiates at the surface of the mid-section of the unit

cell. Also, in Figs. 2(a) and (b), the value of ε̄pend at
which fracture initiates in the center of the mid-section
of the unit cell is marked with encircled open symbols
while the encircled closed symbols correspond to the
value of ε̄pend at which fracture initiates at the surface
of the mid-section of the unit cell. The variation in the
location of the initiation of plastic flow localization for
the two unit cells in Fig. 2, is further illustrated via con-
tour plots of effective plastic strain, ε̄p, in Fig. 3. As seen
in the figure, in the unit cell with L̄= 1.0, Fig. 3(a), the
value of ε̄p is maximum in the center of the mid-section
of the unit cell whereas in the unit cell with L̄ = 0.5,
Fig. 3(b), the value of ε̄p is maximum at the surface of
the mid-section of the unit cell.

For the two cases shown in Fig. 2, the onset of neck-
ing precedes the onset of fracture. We now present two
examples where the onset of fracture precedes necking
for the same imposed inertia parameter Π = 0.1. Fig. 4
shows the evolution of ε̄pmid and f with ε̄pend in two unit
cells. For one unit cell, L̄ = 3.0 and f0 = 0.08, and for
the second unit cell, L̄ = 0.25 and f0 = 0.05, while the
value of A = 0.002 is same for both the unit cells. As
shown in Fig. 4(a), the value of ε̄pmid evolves gradually
with the value of ε̄pend in both the unit cells and the
fracture criteria is met i.e. f > fc, see Fig. 4(b), before
the necking criteria i.e. dε̄pmid/dε̄

p
end→∞. In the unit

cell with L̄= 3.0 and f0 = 0.08, the value of ε̄pend at the
onset of fracture is slightly smaller in the center of the
mid-section of the unit cell compared to the surface. So
that, in this unit cell fracture initiates in the center and
subsequently propagates towards the surface. On the
contrary, in the unit cell with L̄ = 0.25 and f0 = 0.05,
fracture initiates at the surface and subsequently prop-
agates towards the center. The variation in the location
of fracture initiation for the two unit cells in Fig. 4,
is further illustrated via contour plots of f , in Fig. 5.
As seen in the figure, in the unit cell with L̄ = 3.0 and
f0 = 0.08, Fig. 5(a), the value of f is maximum in the
center of the mid-section, whereas in the unit cell with
L̄= 0.25 and f0 = 0.05, Fig. 5(b), the value of f is max-
imum at the surface of the mid-section.

We now analyze the variation of the effective plas-
tic strain at the end of the unit cell at failure, (ε̄pend)f ,
dictated either by the onset of localization or fracture
in the center or at the surface of the mid-section of the
unit cell (whichever occurs first), as a function of the
normalized unit cell length, L̄. The variation of (ε̄pend)f
with L̄ for four initial porosity levels, f0, and for each
f0, for three values of imposed Π are shown in Fig. 6.
In Fig. 6, the values of (ε̄pend)f set by the onset of lo-
calization in the center of the mid-section of the unit
cell are marked by the open symbols while the closed
symbols mark the onset of localization at the surface of
the mid-section of the unit cell. Similarly, the values of
(ε̄pend)f set by the onset of fracture in the center of the
mid-section of the unit cell are marked by the encircled
open symbols while the encircled closed symbols mark
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(a) (b)

Fig. 2. Evolution of the (a) effective plastic strain, ε̄pmid, and (b) porosity, f in the mid-section of the unit cell as a function of the effective

plastic strain at the end of the unit cell, ε̄pend for two unit cells with normalized cell lengths L̄= 1.0 and 0.5, and initial porosity f0 = 0.01.
For both the unit cells the amplitude of the imperfection A= 0.002, and the imposed inertia parameter Π = 0.1. The dash-dot lines show
the evolution of ε̄pmid and f as a function of ε̄pend in the center while the solid lines show the same at the free surface of the mid-section of
the unit cell.

(a) (b)

Fig. 3. The distribution of effective plastic strain, ε̄p, in two unit cells: (a) normalized cell length L̄ = 1.0, initial porosity f0 = 0.01, and
deformed to a nominal strain of≈ 0.61 with an imposed inertia parameter Π = 0.1, and (b) L̄= 0.5, f0 = 0.01 and deformed to a nominal
strain of≈ 1.23 with Π = 0.1. The amplitude of the imperfection A= 0.002 for both the unit cells.

the onset of fracture at the surface of the mid-section of
the unit cell.

The variation of (ε̄pend)f with L̄ for fully dense unit
cells i.e. f0 = 0 for three values of imposed Π are shown
in Fig. 6(a). Since void nucleation is ignored in our cal-
culations, there is no porosity induced fracture in the
absence of initial porosity and the values of (ε̄pend)f are
solely dictated by the onset of localization. As shown in
Fig. 6(a), for a fixed value of Π, the value of (ε̄pend)f first
decreases with increasing L̄, and then starts to increase
for values of L̄ greater than a critical value. The value
of L̄ for which (ε̄pend)f is minimum (i.e. the value of L̄
for which d(ε̄pend)f/dL̄ = 0) is the critical cell size, L̄c.
The greater values of (ε̄pend)f , for small and large nor-
malized cell lengths, are due to the stabilizing effects of
stress multiaxiality and inertia, respectively [8, 39]. For
large normalized cell lengths, an increase in the value of
imposed Π results in a significant increase in the value
of (ε̄pend)f . This is because the stabilizing effect of in-
ertia increases with increasing value of L̄. In contrast,

for small normalized cell lengths, there is a very little or
no effect of the value of Π on (ε̄pend)f , because necking
and fracture for small normalized cell lengths are con-
trolled by stress multiaxiality. For smaller values of L̄,
for example L̄ = 0.25 and 0.5, localization initiates at
the surface while for greater values of L̄ localization ini-
tiates in the center of the mid-section of the unit cells.
Due to the stabilizing effects of inertia, the value of L̄c
decreases with increasing value of Π, while the value of
(ε̄pend)f corresponding to L̄c increases. For example, the
values of L̄c for Π = 0.05 and 0.3 are ≈ 2.5 and 1.25, re-
spectively, while the values of (ε̄pend)f corresponding to
L̄c for Π = 0.05 and 0.3 are ≈ 0.14 and 0.5, respectively.
The values of L̄c for Π = 0.05 and 0.3 in Fig. 6(a) are
comparable to the values reported in ref. [17] for unit
cell calculations where the material was assumed to fol-
low von Mises plasticity with strain rate hardening.

In Fig. 6(b), we show the variation of (ε̄pend)f with
L̄ for unit cells with initial porosity level f0 = 0.01 for
three values of imposed Π. The value of f0 = 0.01 is
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(a) (b)

Fig. 4. Evolution of the (a) effective plastic strain, ε̄pmid, and (b) porosity, f in the mid-section of the unit cell as a function of the effective

plastic strain at the end of the unit cell, ε̄pend for two unit cells with normalized cell length L̄= 3 and initial porosity f0 = 0.08, and L̄= 0.25
and f0 = 0.05. For both the unit cells the amplitude of the imperfection A = 0.002, and the imposed inertia parameter Π = 0.1. The
dash-dot lines show the evolution of ε̄pmid and f as a function of ε̄pend in the center while the solid lines show the same at the free surface
of the mid-section of the unit cell.

(a) (b)

Fig. 5. The distribution of porosity, f , in two unit cells: (a) normalized cell length L̄ = 3.0, initial porosity f0 = 0.08, and deformed to a
nominal strain of ≈ 0.5 with an imposed inertia parameter Π = 0.1, and (b) L̄ = 0.25, f0 = 0.05 and deformed to a nominal strain of
≈ 1.32 with Π = 0.1. The amplitude of the imperfection A= 0.002 for both the unit cells.

not sufficient to induce fracture without the onset of
localization so that similar to f0 = 0, for f0 = 0.01 as
well, the values of (ε̄pend)f are dictated by the onset of
localization. The dependence of the value of (ε̄pend)f on
the value of L̄ for all three values of Π for unit cells
with f0 = 0.01 is roughly the same as for the unit cells
with f0 = 0. The values of the L̄c identified from the
Figs. 6(a) and (b) as a function of the imposed Π are
also consistent with the average neck spacing obtained
from the analyses of multiple necking in long cylindri-
cal bars modeled with Gurson-type plasticity and the
same initial porosity f0 = 0.01, and subjected to initial
and loading conditions consistent with the expanding
ring [20, 21]. In ref. [21], where the same constitutive
model and material parameters reported in Section 2
were used, for Π = 0.05, 0.1 and 0.3, the average neck
spacing was predicted to be 1.7, 1.3 and 0.9, respec-
tively. While in ref. [20], where specific material param-
eters for aluminum and copper were used, for Π = 0.05

the average neck spacing was predicted to be 2.85 for
copper and 2.31 for aluminum, and for Π = 0.1 the av-
erage neck spacing was predicted to be 2.21 for copper.

The variation of (ε̄pend)f with L̄ for unit cells with
initial porosity levels f0 = 0.05 and 0.08 for three values
of imposed Π are shown in Figs. 6(c) and (d), respec-
tively. For high initial porosity levels, depending on the
values of L̄ and imposed Π, the onset of fracture can
precede the onset of necking. The value of the (ε̄pend)f
for a fixed L̄ and imposed Π, when dictated by the on-
set of fracture (for high initial porosity levels) is always
less than the value of (ε̄pend)f when dictated by the on-
set of necking (for low initial porosity levels). As shown
in Figs. 6(c) and (d), for unit cells with f0 = 0.05 and
0.08, fracture precedes necking for smaller values of L̄
for all three imposed values of Π, while for greater val-
ues of L̄, the propensity for fracture preceding necking
increases with increasing value of f0 and Π. For smaller
value of L̄, when fracture precedes necking, the value of
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(a) (b)

(c) (d)

Fig. 6. Variation of the effective plastic strain at the end of the unit cell at failure, (ε̄pend)f , dictated either by the onset of localization or
fracture in the center or at the surface of the mid-section of the unit cell (whichever occurs first), as a function of the normalized unit cell
length, L̄, for unit cells with initial porosity (a) f0 = 0, (b) f0 = 0.01, (c) f0 = 0.05 and (d) f0 = 0.08. The amplitude of the imperfection
A= 0.002 for all the unit cells. In the figure, open symbols correspond to the onset of localization in the center, closed symbols correspond
to the onset of localization at the surface, encircled open symbols correspond to the onset of fracture in the center and encircled closed
symbols correspond to the onset of fracture at the surface of the mid-section of the unit cell.

(ε̄pend)f is either insensitive to the value of L̄ or it de-
creases with decreasing value of L̄. This is in contrast
to the circumstances where necking precedes fracture as
shown in Figs. 6(a) and (b). Also, in contrast to the cir-
cumstances where necking precedes fracture, for greater
value of L̄ when fracture precedes necking, the value
of (ε̄pend)f becomes less sensitive to both the values of
L̄ and imposed Π. So that for sufficiently high initial
porosity levels and greater values of imposed Π a critical
value of L̄ i.e. L̄c does not exist.

The onset of fracture as modeled here, only depends
on the evolution of porosity, which in turn predomi-

nantly depends on the accumulated plastic strain for
a fixed state of stress. This explains the decrease in
the dependence of (ε̄pend)f on the values of L̄ and Π,
for greater values of L̄ and Π, when fracture precedes
necking, Fig. 6(d). On the other hand, the decrease
in the value of (ε̄pend)f for smaller value of L̄ can be
explained with the results presented in Fig. 7. In this
plot, we show the evolution of effective plastic strain,
ε̄pmid, and hydrostatic stress, σh in the mid-section of
the unit cells with ε̄pend, in two unit cells, L̄= 0.25 and
0.5, with f0 = 0.08 and subjected to Π = 0.1. As shown
in the figure, both the values of ε̄pmid, Fig. 7(a), and σh,
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(a) (b)

Fig. 7. Evolution of the (a) effective plastic strain, ε̄pmid, and (b) hydrostatic stress, σh in the mid-section of the unit cell as a function of the

effective plastic strain at the end of the unit cell, ε̄pend in two unit cells with normalized cell lengths L̄= 0.25 and 0.5. For both the unit cells
the imposed inertia parameter Π = 0.1, initial porosity f0 = 0.08 and the amplitude of the imperfection A = 0.002. The dash-dot lines
show the evolution of ε̄pmid and σh as a function of ε̄pend in the center while the solid lines show the same at the free surface of the unit cell.

(a) (b)

Fig. 8. Variation of the effective plastic strain at the end of the unit cell at failure, (ε̄pend)f , dictated by the onset of localization or fracture in

the center or at the surface of the mid-section of the unit cell (whichever occurs first), as a function of the normalized cell length, L̄, for unit
cells subjected to inertia parameter (a) Π = 0.1 and (b) Π = 0.3. The initial porosity f0 = 0.05 in all the unit cells. In the figure, open
symbols correspond to the onset of localization in the center, closed symbols correspond to the onset of localization at the surface, encircled
open symbols correspond to the onset of fracture in the center and encircled closed symbols correspond to the onset of fracture at the surface
of the mid-section of the unit cell.

Fig. 7(b), in the mid-section of the unit cell increase as
the value of L̄ decreases, favoring the growth of porosity
and promoting early fracture.

Next, we analyze the influence of the imperfection
amplitude, A, on the predictions of the unit cell finite
element calculations. The variation of (ε̄pend)f with L̄

for unit cells with initial porosity level f0 = 0.05 for
three values of A and an imposed Π = 0.1 are shown
in Fig. 8(a). As shown in the figure, an increase in the
value of A results in a decrease in the value of (ε̄pend)f
for all the values of L̄. The decrease in the value of
(ε̄pend)f with increasing value of A is particularly signif-
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icant for smaller values of L̄. For smaller values of L̄,
the range of the values of L̄ for which fracture precedes
necking increases with increasing value of A. For exam-
ple, for A= 0.002 fracture precedes necking for L̄≤ 0.5
while for A= 0.02 fracture precedes necking for L̄≤ 0.75.
Fig. 8(b) shows the variation of (ε̄pend)f with L̄ for unit
cells with f0 = 0.05 for three values of A and an imposed
Π = 0.3. An increase in the value of imposed Π delays
the onset of localization, especially, for greater values of
L̄, thus, favoring the onset fracture before the onset of
necking. For greater values of L̄, the range of the values
of L̄ for which fracture precedes necking decreases with
increasing value of A. This is contrary to the effect of A
on the range of L̄ undergoing fracture for smaller values
of L̄. We note that an increase in the value of A results
in a slight increase in the value of the critical cell size,
L̄c, for both the values of imposed Π. However, the ef-
fect of A on the values of L̄c and (ε̄pend)f corresponding
to L̄c decreases with decreasing value of A.

5.2 Comparison between finite element calcu-
lations and linear stability analysis

In this section, we compare the predictions of the
unit cell finite element calculations and the linear stabil-
ity analysis. For this we first need to define a criterion
for the perturbation mode to turn into a necking mode
(e.g. see refs. [20, 40]). To this end, we follow the con-
cept of effective instability introduced in ref. [45], which
assumes that necking is triggered when the cumulative
instability index I reaches a value Ineck. The value of
Ineck can be determined from the results of the finite
element calculations as shown in ref. [46]. In ref. [46],
it was proposed that Ineck corresponds to the critical
cumulative instability index, Ic, see Section 4, obtained
from the linear stability analysis performed for the neck-
ing strain corresponding to L̄c obtained from the finite
element calculations. Here we rely on the finite element
results for fully dense (f0 = 0) unit cells subjected to
Π = 0.1, Fig. 6(a), to determine the value of Ineck. For
fully dense material subjected to Π = 0.1, the unit cell
finite element calculations show that the value of criti-
cal normalized cell length L̄c = 2, and the corresponding
value of necking strain (ε̄pend)f = 0.214. Next, using this
necking strain as the strain for which the critical cumu-
lative index is calculated in the linear stability analysis,
the value of Ineck is estimated to be 1. We assume that
the value of Ineck is same for all perturbation wave-
lengths (L̄), imposed inertia parameters (Π), and initial
porosity levels (f0). This is a rather strong assumption,
as discussed later, but it enables us to calibrate the lin-
ear stability analysis in a simple manner, and check its
predictive capabilities.

The variation of (ε̄pend)f with L̄ predicted using the
unit cell finite element calculations, and the variation
of the strain for which the condition Ineck = 1 is met
with the perturbation wavelength, L̄, predicted using
the linear stability analysis are compared in Fig 9. The

comparison in Fig 9 is carried out for initial porosity
levels f0 = 0, 0.05 and 0.08, and imposed inertia pa-
rameters Π = 0.05 and 0.3. As shown in Fig 9(a), for
Π = 0.05 and f0 = 0, there is a good qualitative and
quantitative agreement between the predictions of the
linear stability analysis and the unit cell finite element
calculations for all the values of L̄. However, for greater
values of f0 and smaller values of L̄, the linear stabil-
ity analysis over predicts the value of (ε̄pend)f . This
is because for high initial porosity levels the unit cells
with smaller values of L̄ undergo fracture before neck-
ing which is more sensitive to the complex state of stress
that develops in the three-dimensional unit cells (recall
from Section 4 that the linear stability analysis models
small perturbations of the fundamental one-dimensional
solution). There is also a good qualitative agreement
between the predictions of the linear stability analysis
and unit cell finite element calculations for Π = 0.3 and
f0 = 0, Fig 9(b). The linear stability analysis, however,
under predicts the values of (ε̄pend)f for greater values of
L̄. This suggests that the value of Ineck is not constant
and it depends on both the wavelength L̄ and the value
of imposed Π (a detailed analysis of the dependence of
Ineck on the wavelength and inertia is left for a future
work). Also, similar to Π = 0.05 (Fig 9(a)), for Π = 0.3
(Fig 9(b)) as well, the linear stability analysis over pre-
dicts the value of (ε̄pend)f for greater values of f0 where
the unit cells undergo fracture before necking.

In Fig. 10, we compare the variation in the values
of L̄c and ε̄c with imposed Π predicted using the unit
cell finite element calculations and the linear stability
analysis. For the finite element results, the value of L̄c
is the critical cell size and the value of ε̄c is the value
of (ε̄pend)f corresponding to L̄c. While, for the linear
stability analysis, the value of L̄c is the critical wave-
length and the value of ε̄c is the critical strain (i.e. the
minimum strain in the ε− L̄ curves). The comparisons
in Fig 10 are shown for initial porosity levels f0 = 0
and 0.08. For all the cases, predictions of the linear
stability analysis are obtained using two values of the
cumulative instability index at necking, Ineck = 1 and
6.72. The value of Ineck = 6.72 was obtained in ref. [21]
by calibrating Ineck to the finite element results of mul-
tiple necking in a long cylindrical bar, free of geomet-
ric imperfections, and subjected to initial and boundary
conditions consistent with dynamically expanding rings.
The geometric imperfection included in the unit cell cal-
culations carried out in this work results in a decrease
in the value of Ineck from 6.72 to 1 (this suggests that
Ineck also depends on the amplitude of the geometric
imperfection, see ref. [46]).

As shown in Fig. 10, both, the unit cell finite ele-
ment calculations and the linear stability analysis pre-
dict that the value of L̄c decreases and the value of ε̄c
increases with increasing value of imposed Π. However,
the dependence of the value of L̄c on the value of im-
posed Π decreases for greater values of Π, in agreement
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(a) (b)

Fig. 9. Comparison between finite element and linear stability analysis (LSA) results. The finite element results show the variation of the
effective plastic strain at the end of the unit cell at failure, (ε̄pend)f , dictated by the onset of localization or fracture in the center or at the

surface of the mid-section of the unit cell (whichever occurs first), as a function of the normalized cell length, L̄. The linear stability analysis
results show the variation of the strain for which the condition Ineck = 1 is met as a function of the perturbation wavelength L̄. Results are
shown for two different values of the inertia parameter: (a) Π = 0.05 and (b) Π = 0.3. The amplitude of the imperfectionA= 0.002 for all
the unit cells and the value of the cumulative instability index at necking Ineck = 1 for all perturbation wavelengths. The symbols have the
same meaning as in Figs. 2, 4, 6 and 8.

(a) (b)

Fig. 10. Comparison between the variation of (a) critical cell size/wavelength, L̄c, and (b) critical necking/perturbation strain, ε̄c, with the
imposed inertia parameter, Π, as predicted by the unit cell finite element calculations and the linear stability analysis (LSA). In the finite
element calculations the amplitude of the imperfection A = 0.002. The predictions of the linear stability analysis are obtained using the
cumulative instability index at necking Ineck = 1 and 6.72.

with the finite element results pertaining to multiple
necking in a ring or a long cylindrical bar in refs. [17,21].
Both, the unit cell finite element calculations and the
linear stability analysis also predict slightly smaller val-
ues of L̄c and ε̄c for f0 = 0.08 than for f0 = 0. This
suggests that increasing the initial porosity level in the

material decreases (or increases) the average neck spac-
ing (the number of necks) and the localization strain in
multiple necking patterns. The linear stability analysis
predictions of L̄c and ε̄c using Ineck = 1 are in general
good quantitative agreement with the finite element re-
sults whereas linear stability analysis using Ineck = 6.72
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under predicts the value of L̄c and over predicts the
value of ε̄c. This is consistent with the finite element
results in Fig. 7 which show that an increase in the im-
perfection amplitude results in an increase in the value
of L̄c and a decrease in the value of (ε̄pend)f .

6 Conclusions
In this work, we have unraveled the complex in-

teraction of initial porosity and inertia on the onset
of necking and fracture in ductile materials subjected
to dynamic loading conditions consistent with expand-
ing rings. To this end, we have carried out a series
of three-dimensional finite element calculations of unit
cells with sinusoidal geometric perturbations. In the
calculations, the material is modeled using a constitu-
tive framework that includes many of the hardening and
softening mechanisms that are characteristics of ductile
metallic materials, such as strain hardening, strain rate
hardening, thermal softening and damage-induced soft-
ening. The contribution of the inertia effect to the load-
ing process is evaluated through a dimensionless inertia
parameter that combines the effects of loading rate, ma-
terial properties and cell size. The calculations are car-
ried out for varying levels of initial porosity and a wide
range of the value of imposed inertia parameter. From
all the unit cell finite element calculations, strain to fail-
ure dictated by necking and/or fracture are measured.
The finite element results are also compared with the
predictions of linear stability analysis of necking insta-
bilities in porous ductile materials. The key conclusions
of this work are as follows:

– Low initial porosity levels favor the onset of neck-
ing before fracture, and high initial porosity levels
favor the onset of fracture before necking, especially,
at high loading rates where inertia effects delay the
onset of necking.
– For the levels of initial porosity and imposed iner-
tia parameter where the onset of necking precedes
fracture, a critical unit cell size (cell size with mini-
mum necking strain) as a function of initial porosity
and imposed inertia parameter can be identified.
– For the levels of initial porosity and imposed iner-
tia parameter where the onset of necking precedes
fracture, the critical unit cell size obtained from fi-
nite element calculations and the critical wavelength
for necking obtained from linear stability analysis
decreases with increasing initial porosity levels and
the value of the inertia parameter.
– For sufficiently high initial porosity levels and im-
posed inertia parameter where the onset of fracture
precedes necking, the value of strain at failure ob-
tained from finite element calculations is found to
be less sensitive to the size of the unit cell. So that
it is not possible to identify the critical cell size.
– The linear stability analysis, despite several sim-
plifying assumptions, shows a very good correlation

with the predictions of unit cell finite element cal-
culations under the circumstances where the onset
of necking precedes fracture.

The most important message of this paper is that
when necking precedes fracture, for fully dense materi-
als or materials with low initial porosity, there exists a
critical cell size or a critical wavelength for which the de-
formation energy required to trigger a neck is minimum.
This critical cell size or critical wavelength likely repre-
sents the average neck spacing in the multiple necking
pattern of dynamically expanding rings. However, for
materials with high initial porosity, an increase in in-
ertial loading may favor early fracture, precluding the
development of a necking pattern. Under these circum-
stances, when fracture precedes necking, no critical cell
size or critical wavelength dictates the fragmentation of
dynamically expanding ring.
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