View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Universidad Carlos Il de Madrid e-Archivo

Universidad

ucdm | Carloslll -Archivo
de Madrid

This is a postprint version of the following published document :

Malandrino, F., Casetti, C., Chiasserini, C.-F., Landi,
G. (2018). Optimization-in-the-Loop for Energy-
Efficient 5G. In 2018 IEEE 19th International
Symposium on "A World of Wireless, Mobile and
Multimedia Networks" (WoWMoM).

©2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

https://core.ac.uk/display/288502066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Optimization-in-the-Loop for Energy-Efficient 5G

F. Malandrino*, C. Casetti*, C.-F. Chiasserini*, G. Landi'
*: Politecnico di Torino, Torino, Italy — {: Nextworks s.r.l., Pisa, Italy

Abstract—We consider the problem of energy-efficient network
management in 5G systems, where backhaul and fronthaul nodes
have both networking and computational capabilities. We devise
an optimization model accounting for the main features of 5G
backhaul and fronthaul, and jointly solve the problems of (i)
node switch on/off, (ii) VNF placement, and (iii) traffic routing.
We implement an optimization module within an application on
top of an SDN controller and NFV orchestrator, thus enabling
swift, high-quality decisions based on current network conditions.
Finally, we validate and test our scheme with real-world power
consumption, network topology and traffic demand, assessing
its performance as well as the relative importance of the main
contributions to the total power consumption of the system.

I. INTRODUCTION

The traditional distinction between computational facilities
(e.g., servers) and networking equipment (e.g., switches) be-
comes blurred in 5G systems, where nodes can have both
switching and computational capabilities. 5G backhaul and
fronthaul nodes (hereinafter referred to as B/F nodes) can
be seen as a pool of computational, storage and networking
resources capable of running a set of virtual network functions
(VNFs). The concatenation of VNFs, represented as a graph,
defines services that are made available to higher layers or
third parties.

In this context, applications are needed for monitoring the
network traffic and energy consumption, as well as making and
implementing complex decisions about: (i) which B/F nodes
and links to activate, in order to reduce energy consumption;
(i) how many instances of each VNF are needed, and on
which of the active B/F nodes they should run; (iii) how traffic
should be routed between them. In traditional architectures,
these problems could be studied separately: one could decide
where to place servers (and which to activate in order to
handle the incoming traffic load), under the assumption that
the network infrastructure is given and immutable. Similarly,
traditional network optimization typically takes as an input
a traffic matrix, summarizing how much data has to be
transferred between any two network nodes. These approaches
are no longer effective, and sometimes not even viable, in 5G
networks, where such decisions as activating or deactivating
a B/F node impact both the traffic processing and routing
capabilities of the network.

The situation is further complicated by the nature of traffic
5G networks are expected to serve. As exemplified in Fig. 1,
traffic flows have to traverse a logical graph made up of
multiple processing steps, each corresponding to a VNFE. Such
graph can be fairly complex and connected in a mesh-like
fashion, and our task is to match it with the physical graph
made of B/F nodes and links. In doing so, we need to account

HSS Lg» MME

’ v T
03 ,", ’ 0,2 !
. A
1 1
RRH eNB = P/S-GW

Fig. 1. Logical graph for vEPC. Solid lines correspond to user traffic, dashed
lines to control traffic.

for the fact that traffic flows can trigger additional flows as they
traverse VNFs. A typical example of a logical graph is the one
implementing the virtual Evolved Packet Core (VEPC). Fig. 1
depicts user traffic captured by the Remote Radio Head (RRH),
traversing the eNodeB (eNB) and going to the Packet/Service
Gateway (P/S-GW). On its way, it generates additional traffic
from the eNB to the Home Subscriber Server (HSS), through
the Mobility Management Entity (MME). The result is that
traditional flow conservation laws do not hold in 5G networks,
as flows of different types get transformed into one another
and then served individually.

On the positive side, the software-defined nature of 5G
networks affords us a significant opportunity to make their
management more effective; indeed, to literally optimize them.
Optimization is traditionally regarded as a useful technique to
design networks, but of little use for their real-time manage-
ment. In this paper, we depart from this vision and leverage
the software-defined nature of 5G networks to make opti-
mizers interact with SDN controllers and NFV orchestrators
(NFVOs). These entities are indeed in a perfect position to
swiftly implement real-time, high-quality decisions based on
the outcome of optimization problems.

To achieve this goal, our paper provides the following main
contributions:

e a model accounting for the complexity of both 5G net-

works and the traffic they have to serve;

o a problem formulation allowing us to make joint decisions
on (i) B/F node activation, (ii) number and placement of
the VNF instances we need, and (iii) traffic routing;

e a solution strategy, called OptiLoop, that uses optimiza-
tion in the loop thus providing near-optimal decisions in
real-time;

e an implementation of our solution in an OpenDay-
light/OpenStack testbed as well as in an emulated testbed.

The remainder of this paper is organized as follows. We
review related work in Sec. II. Next, we present our system
model and problem formulation in Sec. III, and detail the
OptiLoop solution strategy in Sec. IV. We then describe our
testbeds’ architecture, reference scenario and benchmarks in

Sec. V, present numerical results in Sec. VI, and conclude the
paper in Sec. VIL

II. RELATED WORK

Many works on VNF placement and traffic routing, in-
cluding [1]-[3], take the approach of matching VNF and
physical topology graphs, also proposing efficient solution
strategies for the ensuing MILP problems. The optimization
objectives are: minimizing network usage in [1], minimizing
VNF deployment cost in [2], minimizing CAPEX and OPEX
in [3]. The later work [4] takes an iterative approach, making
VNF placement and routing decisions when a request arrives.
[5] takes the VNF placement as given and focuses on schedul-
ing and routing.

Other works focus on the interaction between mobile op-
erators and third parties using their services. As an example,
[6] considers a market where operators bid to serve incoming
demands. Among energy-aware works, [7] seeks to optimize
VNF placement and job scheduling in order to minimize
energy consumption. However, the algorithm presented in [7]
optimizes the server utilization but neglects the energy con-
sumed by network elements such as B/F nodes.

Among the services that can be provided through
SDN/NFV-based networks, a prominent example is the EPC.
As suggested by the survey in [8], ILP and MILP are the
most popular modeling tools, and heuristic algorithms the
most popular solution strategy. A common theme [9]-[11]
is splitting EPC elements, e.g., the Packet Gateway (P-GW)
and Service Gateway (S-GW), into separate sub-elements, one
dealing with control traffic and the other with user traffic.
[12] finds that such an approach reduces the total cost of
ownership. Interestingly, other works, e.g., [13], [14], take the
opposite approach and merge P-GW and S-GW in a single
entity (the P/S-GW). [13] focuses on the MME and proposes
to implement it through four separate VNFs, whose number
can vary so as to accommodate traffic fluctuations. Closer to
our own effort is the recent work in [15], which studies the
problem of placing the VNFs implementing the main EPC
network functions — S-GW, P-GW and MME - across the
available physical machines, subject to limits on their power
and link capacity.

A. Novelty

Our approach is novel with respect to the above works in
several important ways:

1) first and foremost, the scope of our work: we jointly
account for (i) the number and placement of VNF
instances, (ii) traffic routing, and (iii) network manage-
ment, e.g., activating/deactivating B/F nodes and links;

2) at the modeling level: accounting for the complexity of
5G traffic, with requests that originate at a network end-
point and traverse multiple VNFs, triggering additional
requests as they do so (hence the quantity of traffic
changes across processing steps);

3) as far as objectives are concerned: adopting energy-
saving as our priority and using detailed and realistic
energy models, instead of proxy metrics as in [7];

4) from a solution strategy viewpoint: optimizing in the
loop, i.e., using optimization as a tool rather than a mere
analysis technique;

5) at implementation level: validating and testing our ap-
proach through a testbed based on OpenDaylight and
OpenStack.

III. SYSTEM MODEL

Our model is based on two graphs, a logical one and a
physical one. For simplicity, we describe it with reference to
unidirectional traffic; notice however that our model and our
results also account for bidirectional traffic. Tab. I summarizes
all the notation we introduce below.

A. The logical graph

The logical graph, exemplified in Fig. 1, describes where,
i.e., which endpoint, the traffic comes from, and how it is
processed. Its vertices are either endpoints e € £ or VNFs v €
V. With reference to Fig. 1, we have £ = {RRH}, and V =
{eNB, P/S-GW, MME, HSS}.

On the logical graph, we have logical flows (e, v, v2)
representing data originating from endpoint e and going from
VNF v; to VNF vs. Additionally, with an abuse of notation,
we indicate with [(e,v) flows that start from endpoint e and
are first processed at VNF v, e.g., from the RRH to the eNB
in Fig. 1. Note that keeping track of the endpoint at which
flows originate, i.e., having an e index in our variables, serves
a manifold purpose. First, it allows our model to account
for the fact that different types of traffic (i.e., originating
from different endpoints) may need different processing, i.e.,
traverse different VNF graphs. Furthermore, such VNF graphs
may overlap; in this case, keeping track of the origin of
the flows makes it possible to distinguish them even if they
traverse the same VNF. Finally, it allows routing each flow in
a different way, in both the logical and the physical graph.
Notice that different traffic flows coming from the same
physical endpoint can be distinguished by associating them
to different logical endpoints.

Another important aspect of the system is that there is no
flow conservation in the logical graph. As an example, in
Fig. 1 we see a user flow of 1 traffic unit going from the
RRH to eNB and thence to the gateway, which triggers some
additional control traffic from the eNB and the gateway to
the MME. Indeed, the following generalized flow conservation
law holds for each endpoint e and VNFs vs, v3:

l(e,vg,v3)= Z l(e,v1,v2)x(v1,v2,v3)+ (e, v2)x (e, v2,v3).
v1EV

The above expression represents the logical flow originated
at endpoint e, outgoing from VNF wv, and directed to
VNF wv3. Such a quantity is equal to the sum between
logical flows entering vy, from either a VNF wv; or the

.......
. s

:.’/‘ . :.\ . - q
s
oNB ;gx ‘::‘ MME HSS
RRH] A | K2l
— :X: | —

Fig. 2. Example implementation of the logical graph in Fig. 1 over a physical
network. Each line corresponds to a physical flow, i.e., to a T-variable; their
color and style match the logical flows in Fig. 1.

endpoint e itself, multiplied by a factor x. In particu-
lar, x(v1,v2,v3) is used to quantify the amount of logical
flow directed to w3 that is generated when traffic com-
ing from wv; is processed at VNF wvy. With reference to
the eNB in Fig. 1, we have x(RRH,eNB,P/S-GW) = 1,
while y(RRH,eNB,MME) = 0.3. Similarly, for the gate-
way, we have x(eNB,P/S-GW,MME) = 0.2. At the MME
we have flow conservation, i.e., x(eNB,MME, HSS) =
x(P/S-GW,MME, HSS) = 1. In x(e,vq,vs), we abuse the
notation and allow the first index of y to be an endpoint
instead of a VNF. We remark that y-values lower than one can
also represent, e.g., a firewall dropping some of the incoming
traffic. Also notice that y-values different from one can happen
for both control traffic (e.g., the eNB in Fig. 1) and user traffic
(as in the case of the firewall).

B. The physical graph

In the physical graph, vertices correspond to the end-
points e € £ and the B/F nodes c € C. In general, B/F nodes
have computational capabilities k(c); B/F nodes that cannot
host any VNF (e.g., switches) have k(c) = 0. Fig. 2 presents
a possible implementation of the logical VNF graph in Fig. 1,
where VNFs are placed on each of the two B/F nodes with
processing capabilities. For simplicity, we present our model
with reference to the case where multiple VNF instances can
be deployed across different nodes, but at most one instance
of each VNF can be deployed at each B/F node.

Physical links (4,7) € £ C (CU &)? have a capacity C; ;,
corresponding to the maximum amount of traffic that can go
from B/F node ¢ to B/F node j. Traffic traversing link (4, j)
is also subject to a network delay D ;.

Our main variable 1is represented by physical
flows T; j(e,v1,v2), representing the amount of traffic
that was originated from endpoint e, last visited VNF v, will
next visit VNF v, and is now traveling on link (i, 7). Recall
that we have to keep track of the flow originating endopint,
in order to model traffic routing. If the flow has never been
processed, i.e., it is going from e € £ to its first VNF v € V,
we will conventionally set vy = vo = v and write 7; ;(e, v,v).

Given a B/F node ¢ € C, we denote by t.(e,v1,v2) the
amount of traffic that is just tramsiting by c (i.e., it is not
processed at c) and it was originated at e, last visited VNF v
and will next visit VNF vs. Similarly, p.(e, v1, v2) is the traffic
that is processed at B/F node c, it was originated at e, and last
visited VNF v;. Note that p.(e,v1,v2) > 0 implies that an
instance of VNF vy is deployed at c.

Traffic being processed at VNF v is subject to a delay D(v).
Normally, processing delay is linked to the amount of re-
sources (e.g., CPU) allocated to each VNF, and such an
amount depends on the other VNFs deployed at the same
B/F node. In our case, however, energy is the main metric
of interest, and we can therefore assume that no VNF will be
allocated more resources than the minimum amount required
by the VNF itself.

A first constraint we need to impose is that, given a generic
VNF wvs, the traffic originated at e, that has been processed
through VNF wv; and is entering B/F node c, is either (i)
processed at an instance of vy located in ¢, or (ii) transiting
by ¢ while being routed toward an instance of v,. Thus, for
any c, e, vq,ve, we have:

Z Ti,e(e,v1,02) = te(e, v1,v2) + pele, v1,v2). (1)
(i,c)eL

A similar constraint concerns the traffic outgoing from c. For
any ¢, endpoint e and VNFs vq, v3, we have:

D o€ vz, v3)=te(e, va,v3)) pele,vi,va)x(v1, v2,v3)

(e.d)eL v1€V
2

where vy is the last VNF that traffic visited, either before
arriving at c¢ (if traffic just transits by c) or at c itself (if v
is deployed therein, i.e., p.(e,v1,v2) > 0). vs instead is the
VNF that traffic will visit next. In other words, (1)-(2) enforce
ordinary flow conservation for the traffic that is transiting
at c, i.e., using c as a traditional switch, and generalized flow
conservation for the traffic that is processed at c.

Next, we need to ensure that we only use active B/F nodes
and links, and their capacity is not exceeded. We define
two sets of binary variables, x; ; and y., indicating whether
link (4, 7) and B/F node c are active or not.

For links, we need to impose:

r;; <min{y;,y;}, V(i,j) €L, 3)

i.e., no link can be active if either of its ends is off, and

Z Z Tijle,v1,v2) < ;Ci 5, V(i,5) € L. (4)

ec€ vi,v2€V

With regard to processing, inactive B/F nodes cannot host
any VNE. We track this through a binary variable §(c,v)
expressing whether an instance of VNF v is deployed at B/F
node ¢, and impose:

d(c,v) <ye, Veel,ve. (5)

Additionally, no processing can be done for VNFs that are not
deployed at a given B/F node:

pe(e,v1,v2) < d(c,v2)k(c), VeeClC,ec & vi,va €V, (6)

Finally, each traffic unit processed by VNF v requires r(v)
computational capability, and, assuming c is a software switch,
each unit of traffic switched by ¢ consumes p(c) CPU. Clearly,

TABLE I
NOTATION
[Symbol [Type [Meaning |
£ Set Set of network endpoints
C Set Set of B/F nodes
L Set Set of links
% Set Set of VNFs
Ci,j Parameter |Capacity of link (4,7) € £

x(v1,v2,vs) |[Parameter [How much traffic resulting from the processing at
VNF w3, which was previously processed at VNF vy,

is meant to be next processed at VNF v3

0(c, v) Binary var. | Whether we deploy VNF v € V at B/F node ¢ € C

fo Function Energy consumption due to placing a VNF at a B/F node

fidie Function Energy consumption due to activating a B/F node

Sproc Function Traffic-dependent energy consumption due to processing

fsws fiink Function Traffic-dependent energy consumption at switches and
links

k(c) Parameter | Computational capability of B/F node ¢ € C

l(e,v1,v2) |Parameter |Logical flow originated at ¢ € & and going from
VNF v; € Vto VNFuy € V

l(e,v) Parameter |Logical flow originating at e € & and first being

processed at VNF v € V
pe(e, vy, v2) [Continuous [How much traffic coming from users connected to end-

variable point e € & for service that was last processed at VNF v
is processed by an instance of VNF vy deployed at B/F
node c
r(v) Parameter | Computational capability required to process one traffic
unit of VNF v € V
p(c) Parameter | Computational capability consumed by one unit of traffic

transiting by B/F node (SW switch) ¢ € C

74,5 (e, v1, v2 | Continuous |How much traffic coming from users connected to end-
variable point e € & that was last processed at VNF v; and
meant to be next processed at VNF wv2 goes through
link (i,) € L

Continuous [How much traffic originating from e that was last pro-

tc(ev v1, U2)

variable cessed at VNF vy and meant to be next processed at

VNF w3 transits (without processing) by B/F node ¢ € C
i Binary var. |Whether link (¢,) € L is active
Ye Binary var. | Whether B/F node ¢ € C is active

the computational capability of each B/F node ¢ must be
sufficient for both, i.e., for any B/F node c,

D000 D [rwpeles v)+

ecEvieV vV

+ple) Y Tejleviv)| <k(e), (D)
(c,j)eEL
where p(c) multiplies the total traffic outgoing from c.
Next, we ensure that the delay of the traffic originated at
any endpoint e does not exceed a threshold D™?*(e):

Yijer 2ov ey DiTij(e,v1,v2)
ZvGV l(e7 1})
Y v vpey 2ocee D(v2)pe(e, vi, v2)
Z’UGV l(€7 ’U)
The two terms on the left hand side of (8) correspond to the
network and processing delay, respectively.

At last, logical and physical flows have to match. To this
end, it is sufficient to impose that, for each logical flow (e, v)
going from endpoint e to VNF wv, there are corresponding
physical flows of the type 7. ;(e, v, v), such that:

l(e,v) = Z Tejle,v,v), Vee & veV. 9)
(e,j)EL

+ < D™*(e). (8)

Eq. (9) ensures that the traffic injected from endpoints to B/F
nodes on the physical graph matches the logical traffic going

traffic demand changes...

fixProblems
procedure

Initial
solution

saveEnergy

procedure wait

—

Fig. 3. The OptiLoop strategy. We begin by obtaining an initial feasible
solution, as described in Sec. IV-A. After that, we periodically check the
current solution for problems (procedure £ ixProblems, described in Alg. 1)
and for opportunities to deactivate some B/F nodes and/or links (procedure
saveEnergy, described in Alg. 2).

from endpoints to VNFs. Thanks to the flow conservation con-
straints (1)—(2), this also implies that such traffic is processed
and transformed as dictated by the y-parameters, i.e., that all
physical flows match their logical counterpart.

C. Energy and objective

There are five contributions to the overall energy consump-
tion we are interested in tracking:

« activating a B/F node, resulting in a consumption of figie;

e placing a VNF on a B/F node, resulting in a consump-
tion fj due to, e.g., virtual machines (VMs) or containers
overhead;

o using said VNF, resulting in a consumption of fyrc
depending on the computational resources used;

« switching traffic at a B/F node, resulting in a consumption
of fqw depending on the traffic switched by the node;

« having traffic going through links, resulting in a consump-
tion of fj depending on the traffic over each link.

The total energy consumption due to the above four com-

ponents is as follows:
Bae=Y fae(We); Eo=Y_ > fo(d(c,v));

ceC ceC vaeV
Eproc = § fproc § T(U) E § pc(e» U1, UQ) ;
ceC vo €V ecE vV

Esw:Zfsw Z Z Tc,j(eavlav2))

ceC ecf vi,v2€V

Bk = Y fuk | Y. D> Tijle,vi,v0)

(1,7)€L e€€ v1,v2EV

Given all this, our objective can be written as:

min F = EO + Eproc + Eidle + Esw + Elink~
z,y

(10)

IV. THE OPTILOOP STRATEGY

The problem stated in Sec. III falls into the MILP category,
and is thus impractical to solve in real time. We can however
solve its relaxed version, where binary variables are allowed
to take any value in [0, 1]. Optimal solutions to the relaxed
models cannot be directly used to manage (or plan) a network;
however, they can provide useful guidelines.

Our basic idea of is to leverage the software-defined nature
of our network to make an optimizer interact with SDN
controllers and NFVOs, i.e., optimize problems as a part of our

network management strategy. Our solution strategy is called
OptiLoop (for Optimization in the Loop) and it includes the
following steps, as outlined in Fig. 3:
1) we initialize the system with a feasible (albeit potentially
suboptimal) solution, as detailed in Sec. IV-A;
2) after that, we periodically:
a) check that the network configuration is adequate to
the current (and/or predicted) demand;
b) if not so, activate additional VNFs, B/F nodes,
and/or links as needed,;
¢) check whether there are B/F nodes and/or links that
can be deactivated in order to save energy;
d) if so, update the current network configuration
accordingly.
Sec. IV-A explains how we obtain the initial solution, i.e.,
Item 1 above. Items (a)-(b) and (c)-(d) correspond to the
fixProblems and saveEnergy procedures respectively,
which are described in Sec. IV-B and Sec. IV-C.

It is worth pointing out that the fixProblems and
saveEnergy procedures are designed to take no action if
no action is warranted, and therefore there is no harm in
cascading them. As an example, fixProblems will never
take any action the first time it is executed after an initial
solution is generated, as that solution is guaranteed to be
feasible. Similarly, saveEnergy is unlikely to find elements
to deactivate if fixProblems just had to activate some.

A. Initial solution

The initial solution used to initialize OptiLoop has to be
feasible, but does not have to be optimal. It can come from
one of the heuristics we reviewed in Sec. II, or it can be
obtained by solving a version of our problem where:

1) all B/F nodes and links are active, i.e., y. = 1,Vec € C

and T 5 = 17V(Z7j) S L:;
2) there is an instance of all VNFs deployed at each B/F
node, i.e., §(c,v) = 1,Ve € C,v € V.

The resulting solution will be highly suboptimal, as we are
likely to needlessly activate B/F nodes and/or links and to
place useless VNF instances, all of which increase the power
consumption. On the plus side, the problem is LP, as all binary
variables are fixed; furthermore, the following property holds.

Property 1: If a problem instance is feasible, then there is
at least one feasible solution where the x,y and § variables
are all set to 1.

Please refer to [16] for the proof.

In other words, setting all binary variables to one is an easy
way to obtain a feasible solution to our problem to start with.
This solution can be vastly improved, as discussed next.

B. The fixProblems procedure

The high-level goal of the fixProblems procedure is to
check whether the current network configuration can cope with
the current (and projected) traffic demand. If this is not the
case, then we take one or more of the following actions: (i)
activating additional B/F nodes; (ii) activating additional links;
(iii) deploying additional VNF instances.

Algorithm 1 The fixProblems procedure.
Require: S
1: ‘P < new problem()

2: P.ﬁx(mi’j — x%’ﬂ V(’L,]) S ﬂ)

3: PAix(ye <y, Veel)

4: P.Aix(6(c,v) < 6 (¢c,v), VYeeCl,ve€V)
5: solve(P)

6: if P.is_feasible then

7: return

8: if (4)c P.IIS then

9: P.relax(z;, ;1 27 = 0)

10: P.relax(y.: y&* = 0)

11 Z,7 < solve(P)

12: (i*,j*)<—choose from £ with prob. Z; ;
13: 'P.ﬁX(IEi*J* — 1)

14 PAix(y; < Liy; < 1)

15: goto Line 5

16: if (7)€ P.IS then

17: P.relax(y(c): y*"(c) = 0)

18: P.relax(d(c,v): 6" (c,v) = 0)

19: 0 < solve(P)

20: ¢*,v*<choose from C x V with prob. §(c, v)
21: P.fix(y(c*) < 1)

22: P.fix(d(cr,v*) < 1)

23: goto Line 5

Specifically, as detailed in Alg. 1, we take as an input the
current solution S®'". We then proceed, in Line 1-Line 4,
to create a new instance P of the problem, where all binary
variables are fixed to their values in S“T. In Line 5, we
solve such a problem: if it is feasible, then no action is
required and the algorithm exits (Line 7). Otherwise, we look
at why the problem is unfeasible, by inspecting its irreducible
inconsistent subsystem (IIS), i.e., the subset of constraints such
that removing any of them would make the problem feasible.
This set allows us to discriminate between the different reasons
that can make the network unable to operate properly (hence,
the problem unfeasible).

If constraint (4) (mandating that no link is used for more
than its capacity) is in the IIS, then we need to activate some
more links and/or B/F nodes. To decide which ones, we relax
all z- and y-variables related to B/F nodes and links that
were inactive in S (Line 9-Line 10) and solve the new
problem (Line 11). We then choose one link to activate, with
a probability proportional to its relaxed Z; ; value, and fix to 1
the corresponding x-value and the y-values of its endpoints
(Line 12-Line 14). We then go back to Line 5 and test the
new solution (Line 15). If it is still infeasible, we will activate
further network elements until feasibility is achieved.

We proceed in a similar way if constraint (7) is in the IIS,
i.e., if we have a computational capability issue. We relax
variables y and 4, allowing for more B/F nodes to be activated
and VNFs to be deployed if needed, and solve the new problem
obtaining the relaxed values § (Line 17-Line 19). We then

have to decide which VNF to place and where. We do so by
selecting a B/F node ¢* and a VNF v* at random, with a
probability proportional to the relaxed values d(c,v), and fix
the corresponding y and J-variable to 1 (Line 20-Line 22).
Finally, we go back to testing the new solution (Line 23).

Note that all problems we solve in Alg. 1 are LP: in Line 5,
Line 11 and Line 19 all binary variables are either fixed or
relaxed. Such problems can be therefore solved in polynomial
time (embedded [17] optimization on low-power hardware is
now commonplace in several application domains).

C. The saveEnergy procedure

We can think of the saveEnergy procedure as the dual of
fixProblems. Our aim is to identify B/F nodes and/or links
that can be deactivated, as well as VNF instances that can be
removed from the B/F nodes they run into. The objective is to
reduce our power consumption without impairing our ability to
serve the traffic, i.e., without making the problem infeasible.
As in the fixProblems procedure, we solve a sequence
of LP problems with fixed or relaxed variables, obtaining
guidance on the decisions we should make and their effects.

In Alg. 2, we take the current solution S as an input. We
then create an instance P of the problem where the binary
variables that in the current solution have value 0 are fixed to
0 (Line 2-Line 4), and those that have currently value 1 are
relaxed (Line 5-Line 7). This is because we are not looking
for new nodes/links to activate, but for elements to deactivate.
We do so by solving the problem instance P (Line 8); note
that all binary variables therein are fixed or relaxed, so the
problem is LP.

In Line 9-Line 11 we identify the link, B/F node, and
pair of B/F node and VNF that are active in the current
solution and have the lowest value of the associated relaxed
variable (respectively #; ;, §(c), and d(c, v)). Intuitively, these
are the elements that most likely can be deactivated without
impairing network functionality. We check this by creating a
copy of problem instance P and fixing to O the binary variable
associated to the element with the lowest value of the relaxed
variables (Line 12-Line 20). If that element is a B/F node,
we also need to deactivate the links using it and the VNF
instances it hosts (Line 17-Line 18).

The difference between P and P, is that exactly one
element that was active in P is deactivated in Po, hence Po
is also LP. In Line 21, we solve P and check if it is feasible.
If that is the case, then we use Po as our new solution, and
try to further enhance it (Line 23-Line 24). Otherwise, the
algorithm returns P, the last feasible solution we tried.

In summary, Alg. 2 deactivates zero or more elements, i.e.,
B/F nodes, links, or VNF instances. The element to deactivate
is chosen based on the value taken by the corresponding
relaxed variable, and after each change we check that the
resulting configuration can serve its load, i.e., the problem
instance is feasible.

V. TESTBEDS, SCENARIO AND BENCHMARKS

We validate and evaluate OptiLoop through two testbeds.
We study the interaction between OptiLoop, the SDN con-

Algorithm 2 The saveEnergy procedure.
Require: S
1: ‘P < new problem()
: PAoix(wi; 0, V(i,j) € L: 2{ =0)
: PAix(y. < 0, VeeC:yd™ =0)
: PAix(d(c,v) 0, VeeC,veV:(c,v)=0)
o Purelax(z;j, V(i,j) € L1 2 = 1)
: Purelax(y., VYeeC:y™=1)
: Prelax(d(c,v), VeeC,veV:d(c,v)=1)
. solve(P)
(2, y") < argming y)er wem —1 T j

O 00 N N W bW N

10: ¢* <= argmingec. yem(c)=1 ¥(c))

11 d*,v* = argming yecxy: son(e,v)=19(c, V)
12: Pa + copy(P))

13: 0f T o < G(*) A Zjx j» < 6(d*,v*) then
14: PQ.ﬁX(Ii*J* — 0)

15: if §(c*) < Fe jr AG(ct) < 6(d*
16: 7>2 fix(y(c*) « 0)

v*) then

17: b fix(x; ;< 0, V(i,j)eLii=c"Vji=c")
18: ’Pzﬁx((v) 0, VeeC,veV:ic=c")
19: if 6(d*, v*) < Zix j» A O(d*,v*) < §(c*) then

20: Po.fix(d(d*,
21: SOlVe(Pz)
22: if Py.is_feasible then

v*) + 0)

23: P+ PQ

24: goto Line 1
25: else

26: return P

troller, and the NFVO in a small-scale testbed with real hard-
ware, described in Sec. V-A. For our performance evaluation
we instead use a larger, emulated testbed based on the real-
world topology of a mobile operator, as detailed in Sec. V-B.

A. OpenDaylight/OpenStack testbed

The architecture of our testbed is summarized in Fig. 4(left).
OpenDaylight (Beryllium version) and OpenStack (Mitaka
version) are used to control a network made of three Lagopus

OptiLoop |

e OPEN | Orchestrator | ’m‘ OptlLOOp
Provisiong Mng Power State ‘ |_vercunem |

Statistics Topology Flows | VIM driver |

SNMP Driver OpenFlow Driver n openstack

Fig. 4. Architecture of our testbeds: real hardware (left) and emulated (right).
In both testbeds, OptiLoop is implemented as standalone application. In the
real testbed, it controls a network composed of three software switches running
Lagopus and three B/F nodes nj . ..n3. In the emulated testbed, it controls a
Mininet-emulated topology reproducing the network of a real-world operator.

software switches (with DPDK support enabled for faster
switching) and three physical servers. The OpenDaylight SDN
controller configures the data plane, by activating/deactivating
links and switches via SNMP protocol and configuring the
forwarding rules via OpenFlow 1.3 protocol. A custom-built
NFVO - integrated with the VNFM (VNF manager) and VIM
(Virtual Interface Manager) OpenStack modules — manages the
VMs that run the VNFs. We adopt the OpenAirlnterface [14]
vEPC implementation, including the four VNFs in Fig. 1.

OptiLoop is implemented as a standalone application, writ-
ten in Java and including two main components, devoted
to monitoring and decision-making. OptiL.oop interacts with
both OpenDaylight and the NFVO through their REST APIs,
gathering up-to-date information on the status of switches,
links, physical servers and VNFs. When a decision is made, it
communicates it to OpenDaylight (if the decision concerns
link activation/deactivation) or the NFVO (if the decision
concerns VNF deployment or server activation/deactivation).
The decision-making component essentially implements Alg. 1
and Alg. 2, using the Gurobi solver for optimization. Since
Gurobi features Java bindings, using it within the OptiLoop
application is as simple as importing a library.

B. Emulated testbed

Our performance evaluation is carried out through an emu-
lated testbed based on Mininet, the de facto standard solution
to study SDN-based networks. Its architecture is summarized
in Fig. 4(right): similarly to the previous case, OptiLoop
interacts with the OpenDaylight controller for network man-
agement, and directly with Mininet via its Python API to
turn servers and switches on and off. Notice that the actual
VNFs are not implemented in Mininet; the traffic they serve is
emulated via iperf and the energy consumption is estimated
via realistic models, as detailed in Sec. V-B2.

The switches and servers emulated by Mininet reproduce the
real-world topology of a major mobile operator, as detailed
in Sec. V-B1. Links and servers are implemented through
the TCLink and CPULimitedHost Mininet classes, which
allow us to assign them bandwidth, delay and computational
capability matching those of their real-world counterparts. All
iperf-generated traffic is based on the real-world traffic
figures we have access to.

1) Network topology and traffic: Our reference topology,
displayed in Fig. 5, represents the real-world topology of
a major mobile network operator. It includes 42 endpoints
and 51 B/F nodes, with each endpoint connected to exactly
two B/F nodes. A total of 1,497 antennas are connected
to the endpoints. Accounting for the expected future traffic
growth [18], we have an aggregate traffic varying between
74 Mbit/s and 473 Mbit/s per endpoint, with a 82:18 down-
link/uplink proportion. The dataset we use only represents a
snapshot of the network conditions, i.e., traffic demand does
not change over time.

Based on the real-world vEPC implementation [14] we
consider a total of four VNFs, namely eNB, MME, HSS, and
a gateway implementing both the P-GW and S-GW functions.

endpoints. The size of pink dots is proportional to the traffic they generate.

Notice that in [14] no VNF is split into user- and control-plane
sub-entities. We set our y-values, expressing how traffic gets
transformed as it travels between VNFs, leveraging the anal-
ysis in [10]; in particular, the fraction of control traffic going
to the MME is given by x(eNB,P/S-GW,MME) = 0.32.

Still based on [10], we set the link bandwidth C;; to
10 Gbit/s for endpoint-to-node links and 100 Gbit/s for node-
to-node ones. Based on [10] and [19], we assume that each
B/F node can process 100 Gbit of traffic every second. Since
our scenario is constrained by B/F node and link capacity, we
ignore network and processing delays.

2) Power consumption figures: Idle power is the power
consumed by any active B/N node, no matter how much it is
used; in our model, it is indicated as fq. Based on [20], we
set that power to 65 W. Upon deploying a VNF at a B/F node,
we might expect to incur an allocation energy cost due to, for
example, the overhead of the VM or container. However, the
measurements [20] show that such overhead is negligible, i.e.,
we can set fo = 0.

Assuming a software switch running Lagopus, switch-
ing 40 Gbit/s fully utilizes an Intel Xeon E5-2680 processor
[19], which has a 130 W thermal design power. This gives
us a figure of fiw(c) = 3.25nJ/bit - > tc(e,v1,v2).
fiink, instead, can be neglected [20]. Using the computational
capability figures from [10] and assuming a high-end, 32-core
processor, we set fproc(c) = 48nJ/bit->° pe(e, vi,v2).

It is worth stressing that all these energy consumption
figures are subject to rapid change as technology evolves, and
that they represent only an input to our problem.

3) Benchmark solutions: We compare OptiLoop with two
alternatives: what is done in current real-world systems, i.e.,
keeping all network elements active regardless of traffic con-
ditions, and state-of-the-art approaches from the literature.

Among the VNF placement schemes reviewed in Sec. II, we
select the popular approach of consolidation (used, e.g., in [7])
as our benchmark. The consolidation procedure consists of
three-stage decision process. For every flow, it first looks for an
already-deployed VNF to serve the flow; if none can be found,
it deploys a new instance of the VNF at an already active
B/F node. If no suitable node is found, it activates a new one.
Also, the procedure activates any additional B/F nodes needed
to ensure connectivity between endpoints and the serving B/F
nodes.

VI. RESULTS

We start this section by summarizing our validation results
from the OpenDaylight/OpenStack testbed, in Sec. VI-A.

4000

40 == Consolidation _ 77 _/
'03 =@- OptiLoop $ S
o Optimal 2 =
v 30 %3000 S5
2 ©
= o g
S - 4
& 20 < 2000 g
(O] 2 A A RA .
5 8 S3p—-p—O—0—0
o
2 st .
< ¥ 1000 == Consolidation 32 == Consolidation
c 10 [} © .
w 2 -@- OptiLoop g, -@- OptiLoop
> Optimal Z Optimal
8.5 1.0 1.5 2.0 2.5 3.0 8.5 1.0 15 2.0 2.5 3.0 8.5 1.0 1.5 2.0 2.5 3.0

Traffic multiplier

Traffic multiplier

Traffic multiplier

Fig. 6. Energy savings obtained as a function of traffic (left); spare computational capabilities of the active topology (CCAT) (center); number of hops traveled

by requests (right).

-
N
o

Processing
120 mmm Networking
. (dle

o Ill

[
o
S

Power consumption [M]]
e]
o

3 & & 3 %
o <] o
1 © 2
Traffic multiplier

Cons.
Cons.
oL
Opt.

Fig. 7. Breakdown of energy consumption for the consolidation-based
(“Cons.”), OptiLoop (“OL”), and optimal (“Opt.”) strategies.

We then present, in Sec. VI-B, a performance evaluation of
OptiLoop carried out by emulating a real-world topology in
Mininet, as described in Sec. V-B.

A. Validation results

Our validation has a twofold purpose. The first is to ensure
that the interaction between OptiLoop, OpenStack and Open-
Daylight — both information retrieval and decision enacting
— works as intended. The second is measuring the delay
resulting from OptiLoop’s decisions. As we can see from
Tab. VI-B, the delays of powering on/off servers and switches
and activating/deactivating links are quite low. Conversely,
instantiating a new VNF can require over a minute, mainly
due to the time it takes to start a new VM.

It is however interesting to note that the time to instantiate
the full service, i.e., all four VNFs, is only slightly higher
than the time to instantiate one VNF, as the NFVO can handle
multiple VNFs in parallel. This suggests that our system can
scale to complex services requiring many VNFs. Also, the
delays in Tab. VI-B suggest that containers could represent an
attractive alternative to VMs, due to their shorter setup times.

B. Emulation-based performance evaluation

The first answer we seek from the performance evaluation
carried out through the emulated testbed concerns the mag-
nitude of possible energy savings. In Fig. 6(left), we vary
the traffic demand between 0.5 and 3 times the real-world
amount, and study how much energy we can save compared
to what is done today, i.e., leaving all B/F nodes and links
active. We can observe that OptiLoop yields dramatic savings,
consistently very close to the optimum, while consolidation

TABLE II
DRIVING REAL HARDWARE: INCURRED DELAYS [S]
[Component [[Maximum [Minimum | Average |
Server power on 0.021 0.010 0.016
Switch power on 0.039 0.019 0.026
Link activation 4.246 3.556 3.786
VNF instantiation 60.442 40.222 54.559
Service instantiation 82.066 62.356 64.710

does not perform as well. An intuitive reason is that OptiLoop
accounts for all the three main contributions to energy con-
sumption (processing, idle power, and networking), while the
consolidation-based approach focuses on keeping the number
of active B/F nodes low.

Fig. 6(center) shows the spare computational capability of
the active topology (CCAT); intuitively, this is a measure of
how much power is being wasted, i.e., how inefficient the
network management strategy is. The consolidation algorithm
has the highest spare CCAT, because of the higher number of
B/F nodes that have to be activated in order to guarantee con-
nectivity. The spare CCAT yielded by OptiLoop is much lower,
and very close to the optimum. It is interesting to remark that
even the optimum leaves substantial spare CCAT. This is due
to the fact that some B/F nodes have to be active in order to
keep the topology connected, even if they do not have to host
any VNF. Fig. 6(right) depicts how many hops data travels
across the network. OptiLoop again matches the optimum,
while the consolidation strategy results in substantially longer
paths, due to the fact that VNF placement decisions are made
without accounting for connectivity.

Fig. 7 breaks the total energy consumption into its main
components, namely, processing, networking, and idle power.
Note that these components have comparable magnitude, i.e.,
none of them dominates the overall consumption. It follows
that network management strategies have to account for them
all. We can also see that the processing component never
changes across strategies, since the amount of traffic to process
is always the same. The difference between the strategies
lies mostly in the networking component (longer paths in
Fig. 6(right) correspond to higher consumption) and, to a lesser
extent, in the idle energy. In other words, it is important to
place VNFs close to the traffic they have to serve, while at
the same time activating as few B/F nodes as possible.

Fig. 8(left) and Fig. 8(center) show that placing VNFs
close to the traffic they serve also means placing many of
them. This goes against the traditional concept of activating

35 D—.\Q/.—H

50

=
o
8
v 3
3.0
8 240
<25 [
‘;‘-\; == Consolidation 8_30
L 20 @- OptiLoop]
@)
Q15 Optimal 0
n 320
8 1.0 15 2.0 25 30 210 + + * ¥ § == Consolidation
) : Traffic multiplier ’) 0.5 S 10 @ OptiLoop
= Optimal
4 Consolidation m— eNB 0 “(E
@ OptiLoop = GW 'B.S 1.0 1.5 2.0 2.5 3.0 ': B.S 1.0 1.5 2.0 2.5 3.0

Optimal

Traffic multiplier

Traffic multiplier

Fig. 8. Number of deployed instances for the eNB and P/S-GW VNFs (left); average number of VNFs deployed in each B/F node (center); average traffic

processed at each B/F node (right).

only the strictly required number of elements, and it is a
direct consequence of the features of modern, software-based
networks. As discussed in Sec. V-B2, there is little or no
penalty for placing an underutilized VNF instance on an
already active B/F node, while there is a significant energy
cost for transferring even modest amounts of data between B/F
nodes. Indeed, we can say that OptiLoop outperforms state-of-
the-art alternatives because it properly accounts for the unique
features of 5G, thus being more aggressive in deploying VNFs.

Comparing Fig. 8(left) to Fig. 8(center), we can see that
OptiLoop deploys more VNFs than the optimum, but the
number of VNFs per B/F node is similar. This is because
OptiLoop activates slightly more B/F nodes than the optimum,
as confirmed by Fig. 8(right) showing that the average amount
of traffic processed per B/F node is slightly lower in OptiLoop.

VII. CONCLUSIONS

We considered 5G networks where nodes may have both
networking and computation capabilities. We addressed the
problem of the energy-efficient management of such networks,
requiring to decide (i) which B/F nodes and links to activate,
(i) how many instances to deploy for each VNF, and how
to place them across the active B/F nodes, and (iii) how
to route traffic between them. We proposed an optimization
model accounting for the unique features of 5G traffic, and
used it to formulate OptiLoop: a real-time, efficient network
management strategy based on repeatedly solving relaxed
optimization problems.

We validated OptiLoop through a testbed including the
OpenDaylight SDN controller and the OpenStack virtualiza-
tion infrastructure. We then evaluated its performance through
network emulation, with both the network topology and the
traffic demand coming from a real-world dataset provided by a
major network operator. We found that OptiL.oop outperforms
state-of-the-art alternatives and performs very close to the
optimum, mainly thanks to its ability to account for all the
main sources of energy consumption that characterize 5G
systems.

ACKNOWLEDGEMENT

This work was supported by the EU project “5G- Crosshaul:
The 5G Integrated fronthaul/backhaul” (grant no.671598)
within the H2020 programme.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]
[15]

[16]
(17]

[18]
[19]

[20]

REFERENCES

N. Gazit, F. Malandrino, and D. Hay, “Coopetition between network
operators and content providers in SDN/NFV core networks,” in /IEEE
INFOCOM SWFAN Workshop, 2016.

R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in IEEE INFOCOM, 2015.

L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint Optimization
of Service Function Chaining and Resource Allocation in Network
Function Virtualization,” IEEE Access, 2016.

T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in IEEE INFOCOM, 2016.

L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Trans. on
Communications, 2016.

X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. Lau, “An Online Stochastic
Buy-Sell Mechanism for VNF chains in the NFV market,” IEEE Journal
on Selected Areas in Communications, 2017.

N. El Khoury, S. Ayoubi, and C. Assi, “Energy-Aware Placement and
Scheduling of Network Traffic Flows with Deadlines on Virtual Network
Functions,” in IEEE CloudNet, 2016.

V. G. Nguyen, A. Brunstrom, K. J. Grinnemo, and J. Taheri, “SDN/NFV-
based Mobile Packet Core Network Architectures: A Survey,” IEEE
Communications Surveys Tutorials, 2017.

A. Baumgartner, V. S. Reddy, and T. Bauschert, “Mobile core network
virtualization: A model for combined virtual core network function
placement and topology optimization,” in /IEEE NetSoft, 2015.

G. Hasegawa and M. Murata, “Joint Bearer Aggregation and Control-
Data Plane Separation in LTE EPC for Increasing M2M Communication
Capacity,” in IEEE GLOBECOM, 2015.

S. Khairi, M. Bellafkih, and B. Raouyane, “QoS management SDN-
based for LTE/EPC with QoE evaluation: IMS use case,” in SDS, 2017.
X. An, W. Kiess, J. Varga, J. Prade, H.-J. Morper, and K. Hoffmann,
“SDN-based vs. software-only EPC gateways: A cost analysis,” in IEEE
NetSoft, 2016.

J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and Dimensioning of
a Virtualized MME for 5G Mobile Networks,” IEEE Trans. on Veh.
Tech., 2017.

OpenAirlnterface: 5G software alliance for democratising wireless in-
novation. http://www.openairinterface.org.

D. Dietrich, C. Papagianni, P. Papadimitriou, and J. S. Baras, “Network
function placement on virtualized cellular cores,” in COMSNETS, 2017.
Proof. https://1drv.ms/b/s!AIVUQf67dIbfabNZ3elEmtk VIXg.

J. Mattingley and S. Boyd, “Cvxgen: A code generator for embedded
convex optimization,” Optimization and Engineering, 2012.

Cisco, “Cisco Visual Networking Index,” 2017.
Lagopus Project. It’s kind of fun to do the impos-
sible with DPDK. https://www.slideshare.net/lagopus/

dpdk-summit-2015-its-kind- of-fun-to-do-the-impossible- with-dpdk.

S. S. Tadesse, C. E. Casetti, C.-F. Chiasserini, and G. Landi, “Energy-
efficient Traffic Allocation in SDN-based Backhaul Networks: Theory
and Implementation,” in IEEE CCNC, 2017.

