
This is a postprint version of the following published document:

Yala, L., Frangoudis, P. A., Lucarelli, G. y Ksentini, A. 
(2018). Cost and availability aware resource allocation and 
virtual function placement for CDNaaS provision. IEEE 
Transactions on Network and Service Management, 
15(4),pp. 1334 - 1348.

DOI: https://doi.org/10.1109/TNSM.2018.2874524

© 2018 IEEE. Personal use of this material is permitted. However, 
permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution to 
servers or lists, or to reuse any copyrighted component of this work in other 
works must be obtained from the IEEE.



1

Cost and availability aware resource allocation and
virtual function placement for CDNaaS provision
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Abstract—We address the fundamental tradeoff between de-
ployment cost and service availability in the context of on-demand
content delivery service provision over a telecom operator’s
Network Functions Virtualization Infrastructure. In particular,
given a specific set of preferences and constraints with respect to
deployment cost, availability and computing resource capacity,
we provide polynomial-time heuristics for the problem of jointly
deriving an appropriate assignment of computing resources to a
set of virtual instances and the placement of the latter in a subset
of the available physical hosts. We capture the conflicting criteria
of service availability and deployment cost by proposing a multi-
objective optimization problem formulation. Our algorithms are
experimentally shown to outperform state-of-the-art solutions in
terms of both execution time and optimality, while providing the
system operator with the necessary flexibility to balance between
conflicting objectives and reflect the relevant preferences of the
customer in the produced solutions.

Index Terms—Content delivery networks, cloud computing,
network functions virtualization, resource allocation, service
availability, VNF placement.

I. INTRODUCTION

Recent studies in networking and cloud computing focus
on virtualizing network functions with the aim of provid-
ing highly scalable and flexible service deployment, cost
reductions, and improved end-user experience. The ETSI has
recently proposed a Network Functions Virtualization Manage-
ment and Orchestration framework (NFV-MANO) [1], which
specifies a set of architectural components and interfaces to
realize the NFV vision. Among the many use cases envisioned
in such an environment is the provision of a virtualized
Content Delivery Network (vCDN) service [2, Use Case #8].

The interactions between CDN providers and network op-
erators [3] have received considerable attention. Many content
delivery models involve different degrees of cooperation be-
tween stakeholders [4]. The telco CDN is one of the studied
models, where a telecom operator installs data centers at points
of presence in its network and offers a CDN service to content
providers. NFV facilitates the deployment of such a service.
The operator moves from deploying dedicated hardware for
hosting CDN components, such as content origin servers,
caches, load balancers, and DNS resolvers, to leasing its
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telco cloud resources for launching virtual instances (Virtual
Machines (VMs) or other containers) of the above components
on demand, allocating resources intelligently at the optimal
locations in its network, and scaling them to match dynamic
workloads.

In our prior work [5], we presented an architecture for CDN-
as-a-Service (CDNaaS) provision over a network operator’s
cloud, with a design following the NFV-MANO spirit. Our
architecture allows content providers to request the dynamic
instantiation of a full vCDN using RESTful northbound inter-
faces, expressing their expected end-user demand per region,
as well as Quality of Experience (QoE) and service availability
requirements. At the heart of this system, service orchestration
components are responsible for taking all necessary steps for
run-time management of the vCDN instance on the underlying
NFV Infrastructure (NFVI) of the operator, abstracting internal
details and offering the customer (content provider) only the
necessary entry points to the vCDN, e.g., in order to infuse
content or terminate the service.

One distinctive characteristic of our design is that it al-
lows for the application of a multitude of service-tailored
dimensioning, resource allocation, and resource management
algorithms in a plugin fashion. This article focuses on these
aspects in particular. A vCDN deployment request generally
involves solving the following problems: (i) Deciding on
the necessary amount of computing (and other) resources to
dedicate in order to efficiently respond to user requests. (ii)
Deriving an appropriate placement of virtual CDN service
components on the underlying NFVI, with the aim ideally of
minimizing cost and offering availability guarantees. Trying
to achieve these two objectives can be compromising, due to
their conflicting nature; employing more virtual or physical re-
sources to improve on service availability via redundancy and
fault tolerance naturally increases management (e.g., power
consumption) cost. It should be noted that the importance of
resilience and availability for NFV has been acknowledged
by the ETSI NFV Industry Specification Group, which has
published specific requirements and guidelines, identifying,
among others, the cost-availability tradeoff [6].

We have provided solutions for the first problem in our
prior work [7], where the main objective was to combine
customer-provided demand dimensioning information (e.g.,
target number of users/video streams per region) with network
and compute infrastructure awareness for optimal resource
allocation. For that, we focused on a video content delivery
service; we experimentally quantified the relationship between
video QoE and service workload, and used this information to
optimally decide on the amount of CPU resources to allocate
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to satisfy customer QoE requirements while minimizing the
cost for the operator. With this as a starting point, this
article provides solutions to the second problem, namely the
distribution of the necessary virtual computing resources to
a number of virtual service components and the appropriate
placement of the latter in the operator’s NFVI. We make the
following contributions:
• We capture the conflicting objectives of service availabil-

ity and deployment cost by proposing a multi-objective
optimization formulation for the problem of joint com-
pute resource allocation and VM placement, which we
initially introduced in [8].

• By relaxing some of the problem’s assumptions, we
provide polynomial-time heuristic algorithms to solve
it and show experimentally that the derived solutions
are close to the optimal, while at the same time being
significantly faster than an exact algorithm provided by
a commercial solver.

• We show our approach to outperform two baseline
schemes (random placement and first-fit), as well as a
genetic algorithm inspired from the state of the art [9]
which we have devised as an alternative solution.

This article is organized as follows: In Section II we review
the state of the art. In Section III we provide an overview of
our architecture for CDNaaS provision over a telco cloud, in
the context of which we put our proposed algorithms. Fur-
thermore, we provide an overview of our measurement-driven
methodology for determining the amount of CPU resources
necessary to satisfy specific QoE levels for a CDN service,
presented in our prior work [7], which is the input to the
algorithms presented in this article. In Section IV we propose
a model for joint vCPU-to-VM allocation and VM placement,
and propose a heuristic solution for a relaxed version of it in
Section V. Furthermore, we study an alternative way to tackle
our problem by proposing an adaptation of a genetic algorithm
from the state of the art in Section VI. We present experimental
results on the performance of our scheme compared with
heuristics widely used in the literature, the aforementioned
genetic algorithm, and an exact solution in Section VII and
conclude the article in Section VIII.

II. RELATED WORK

The placement of virtual instances to physical hosts is cen-
tral in NFV in particular, and cloud computing in general. The
main objective is to find a suitable set of physical machines
(PMs) with enough capacity to host the virtual instances with
specific resources allocated to each one of them. In NFV, these
instances host Virtual Network Functions (VNFs), and are im-
plemented as VMs or other container technologies. A suitable
VNF placement is mostly motivated by maximizing resource
utilization or overall performance, while minimizing cost in
terms of energy consumption, network traffic or penalties
associated with SLA violations under various constraints [10],
[11], [12].

Mann [13] reviews different VM placement models and al-
gorithms, citing, among different formulations, the problem of
packing the VMs into a minimal number of PMs, considering

PM capacities and the load of VMs. This reduces to the bin
packing problem which is NP-hard. Various heuristics to solve
it in this context exist, such as first-fit, where the items (VMs)
are placed in the first suitable bin (PM) [14], [15].

Li and Qian [16] survey different network function or-
chestration frameworks. In particular the authors compare
different network function placement strategies and highlight
the positive and negative points of different approaches of
VNF placement.

The common ground in the way various flavors of the VM
placement problem are tackled is the need to provide heuristics
to problems with typically high computational complexity.
Minimizing the number of physical hosts to place VMs for
cost and performance optimizations, a procedure known as
VM consolidation, may have an adverse effect on service
resilience and availability in the face of PM failures. Contrary
to the aforementioned works, service availability is our special
focus.

Mijumbi et al. [17] propose an evaluation of resource al-
location algorithms considering parameters such as successful
service mappings, total service processing times, revenue or
cost under varying network conditions. In particular, they
define cost as the total amount of physical resources that
are used by a given mapping and scheduling. The difference
between revenue and cost is that the revenue only consists of
the processing time of the functions, while the cost involves
time gaps that are left unused due to functions waiting for
their assignment. On the other hand, Bari et al. [18] propose
an optimization problem formulated as an Integer Linear
Program (ILP) referred to as the VNF orchestration problem
(VNF-OP), which consists in minimizing the cost (deployment
cost, energy cost, and cost of forwarding traffic), penalties
for Service Level Objective (SLO) violations, and resource
fragmentation. The constraints taken into account are related
with server/link capacities and service chaining. In our work
we consider cost as the fixed managerial overhead of operating
a virtual machine (resp. physical machine), which is not a
function of its workload.

Integer Linear Programming (ILP) has been a popular
modeling technique for VM allocation problems. However,
experimental results from Rankothge et al. [19] show that
using ILP to find an optimal configuration can have a very long
execution time even for a small number of network functions.
The authors thus studied approximations by means of finding
the best fitted solution according to a Genetic Algorithm (GA)
model of the problem. In particular, they proposed a Genetic
Programming-based approach to solve the VM allocation and
network management problem, exploring a fixed amount of
generations. Although their GA may not provide the optimal
solution, it can compute configurations orders of magnitude
faster than ILP. GAs are a part of evolutionary computing
and were introduced as a computational analogy of adaptive
systems [20, p. 64–75].

The relevant state of the art also includes the GA of Xu and
Fortes [9], which aims to solve VM placement formulated
as a multi-objective optimization problem of simultaneously
minimizing the total resource wastage, power consumption and
maximum thermal dissipation. With this work as a starting
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point, in Section VI we propose a GA tailored to our problem
settings. The heuristic algorithms we present in this article,
however, are shown to outperform our GA both in terms of
approximating the optimal solution and execution time.

Yang et al. [21] focus on reliable VM placement, and, in
a similar spirit to our case, model service availability as the
probability that a subset of the requested VMs is operational.
However, they address a different VM placement problem,
which, among others, does not consider the distribution of
the resources (in our case vCPUs, in their case storage) to
be committed, assuming fixed VM resource specifications,
and does not take into account VM-level failures. Ecarot
et al. [22] present a method for cloud resource allocation
which aims to satisfy both consumers’ (or end-users’) and
providers’ interests. Their model is an ILP which minimizes
the costs and service unavailability, the latter corresponding to
the penalties for quality of service degradations or violations
by the providers of a service, which are in turn associated
with excessive service workload. This is contrary to our
approach, where availability is defined as the probability that
a virtualized service is accessible. To deal with the complexity
of the problem, the authors apply evolutionary algorithms.
Others, such as Casazza et al. [23], propose to guarantee the
availability of a service by replicating VNFs across multiple
servers. They apply a probabilistic metric for availability but,
contrary to our work, they aim at maximizing the minimum
service availability considering the latter as their sole objective
under server capacity and other constraints.

Qu et al. [24] focus on the problem of VNF chaining and
aim to minimize the network-wide communication bandwidth
for the operation of VNF chains under service reliability
constraints. Their model does not consider failures at the VM
level in its reliability functions and their focus is rather on
chain-specific issues such as routing and VNF ordering, which
constrain VNF-to-host placement. Furthermore, their model
does not include CPU capacity constraints.

Regarding cost modeling, Callau-Zori et al. [25] experimen-
tally quantify how the number of VMs deployed impacts both
energy cost and performance. This work verifies our model
assumption that cost is linear to the number of VMs and PMs
utilized.

Ouarnoughi et al. [26], on the other hand, focus on storage
cost. They propose a detailed cost model for IaaS infras-
tructures which takes into account at the same time various
parameters, such as VM execution and storage migration,
system storage performance, power and wear out. They also
consider cloud Service Level Agreement (SLA) violations and
the associated penalties. Our cost model is more abstract,
encompassing all related sub-costs in linear functions of the
number of PMs and VMs utilized. Also, it is not considering
the operational cost due to service workload, since this cost
is assumed proportional to the workload and in any case
independent on the number of PMs or VMs deployed, thus
not influencing the selection of an appropriate virtual function
placement.

A relevant aspect is fault recovery to maintain high cloud
service availability. To tackle this issue Israel and Raz [27] pro-
pose approximation algorithms with performance guarantees

and heuristics. This topic is outside the scope of this article.
A classification of existing papers dealing with the VNF

placement problem proposed in the state of the art is presented
in Table I, according to the different optimization criteria used
in each model.

TABLE I
STATE OF THE ART CLASSIFICATION ACCORDING TO THE CRITERIA

CONSIDERED.

Network operation/management and other costs [22], [19], [18]
Energy consumption [10], [11], [25], [9]
Availability [24], [22], [23]
Failure recovery [27]
SLA violation [12], [26]

As can be seen in Table I, most of the works in the relevant
literature focus only on a single objective, knowing in advance
the number of VNF instances to place and having as an
objective to place these virtual instances on physical hosts.
Rare are those works which treat the subjects of availability
and cost jointly, and there lies the distinctive characteristic
of our approach. Furthermore, we should note that in the
context of CDNaaS provision, our design tackles the problem
of compute resource allocation for a video service and virtual
instance placement in a holistic manner, although this article
mainly focuses on the latter, namely the joint vCPU to VM
assignment and VM-to-PM placement.

III. A CDNAAS ARCHITECTURE FOR THE TELCO CLOUD

A. Design

In our prior work [5] we presented an architecture which
offers the flexibility to a telecom operator to lease its CDN
infrastructure in a dynamic manner, offering a virtual CDN
(vCDN) service that can be deployed on demand over the
operator’s private cloud. We highlighted the fact that our
design offers a flexible sharing by allowing the customer to,
for example, use the leased infrastructure to respond to pre-
dicted traffic surges at particular regions, enjoying the network
operator’s regional presence. From the network provider side,
this concept allows more efficient use of its infrastructure
resources, compared to a less dynamic resource reservation
model with static allocation of data center resources to cus-
tomers.

Our CDNaaS architecture (Fig. 1) involves various func-
tional blocks which communicate via well-specified interfaces.
This decouples their operation from any physical location,
allowing the CDNaaS provider to execute any block au-
tonomously as a virtual function over its own, or any, cloud
infrastructure. Notably, our design is in line with the ETSI
NFV-MANO specification [1], with its functional blocks and
interfaces mapping to MANO components.

Via the Customer Interface Manager component, our system
features a northbound RESTful API through which customers
(content providers) can request to deploy a virtual CDN over
the telco cloud. This API offers the customer a way to specify
details on the expected end user demand for its service per
region, and, importantly, a target QoE level for the end users
of the content delivery service.
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Fig. 1. CDNaaS architectural components [5].

This information is critical for service deployment, a task
which is coordinated by the Service Orchestrator (SO) compo-
nent. In particular, the SO is responsible for deriving an appro-
priate compute resource allocation and VNF placement, taking
into account the customer requirements (demand and QoE)
included in the service request and its operational capacity.
With flexibility in mind, our design allows for the application
of various such schemes in a pluggable manner. This article
targets this aspect in particular: While in [5] we focused
on the infrastructure support, here we provide concrete, low-
complexity algorithmic solutions for the problem of compute
resource allocation and VNF placement for a vCDN instance.

The output of the above process is represented as a Service
Instance Graph (SIG), which maps VNF instances (VMs)
and the respective resources allocated to each one of them
to physical nodes. The SIG is then handed to the Virtual
Infrastructure Manager (VIM) for deployment on the under-
lying cloud substrate. Since OpenStack [28] is the de facto
VIM software solution, we opted for its use in our system
implementation.

B. Virtualized CDN service-level features

Although our architecture is fairly generic and could support
heterogeneous types of services,1 we focus on the specifics of
a video content delivery service. Shifting our attention from
infrastructure- to service-level features, we present some spe-
cific characteristics and assumptions regarding the operation
of the vCDN application.

The vCDN delivers video content over HTTP via a number
of caches which operate as streaming servers. Caches are
implemented as VNFs. An end-user request for a video
item is redirected to a nearby cache using DNS geolocation
techniques (other options are also possible). Each regional
cache is composed of a set of VMs with identical functionality
(HTTP servers caching and streaming video) and user requests
are transparently balanced among them using an HTTP load
balancer.

The CDNaaS operator has data centers in a number of
regions, on which vCDN instances for video distribution can
be deployed. The dimensioning and placement algorithms are
to be executed per region included in the customer request.

1For example, apart from supporting various different CDN flavors, we have
successfully used our scheme to orchestrate the deployment of a virtualized
Evolved Packet Core network, in a 4G mobile network context.

This is because the target of the operator is to deliver con-
tent to each region’s end users from the local data center.
We assume that vCDN traffic is handled exclusively by the
vCDN instance components assigned to a specific region and
thus resources are allocated in a region-local manner. Issues
regarding redirecting user traffic across regional data centers
are outside the scope of this work. For each region, a sufficient
number of virtual CPUs needs to be allocated for cache
(streaming) servers to cope with the expected service demand
and QoE constraints. The vCPUs are distributed to a number
of VMs which are identical from a functional perspective for
reasons of fault tolerance, but also because it may not be
possible to consolidate them in a single VM, due to potential
capacity limitations of the underlying physical host. From a
performance viewpoint, we assume that the number of VM
replicas used to deliver a service does not have any effect;
only the number of vCPUs allocated to handle the service
workload matters.2

In this work, we pay a particular attention to the fault
tolerance of the vCDN service. By design, and not taking into
account other service components such as load balancers and
DNS servers, the video service is considered available in a
region if at least one VM hosting a cache is accessible to
users. This is due to the load balancers which transparently
redirect user requests to available local cache instances. It
should be noted that service availability defined as such does
not guarantee that the required QoE levels are met in the event
of failures, since the latter depend on the number of compute
resources available for responding to user demand. If a VM
fails and appropriate repair activities are not in place, the CPU
resources allocated to this VM become unavailable. However,
with appropriate service monitoring and management schemes,
this issue could be adequately addressed: The released CPU
resources could be automatically and transparently reallocated
to a running VM on the same host, if such one already exists
(scaling up), VMs on other physical hosts covering the same
region could be scaled up if there is available CPU capacity
in their hosts, or, as a last resort, the failing VM could
be relaunched on the same host. Such self-healing/repairing
techniques are outside the scope of this article.

C. Resource allocation

This procedure is composed of two main phases. First, a
resource dimensioning algorithm which decides on the optimal
allocation of vCPU resources per region needs to be executed,
aiming to satisfy the constraints dictated by the customer
request and the operator’s capacity for a given service demand.
For a video streaming vCDN service, these can be expressed
in terms of a maximum number of concurrent users that
will be accessing the video service per region, respecting the
minimum QoE constraint set by the customer, which takes the
form of a minimum Mean Opinion Score (MOS) for specific
video characteristics (e.g., high definition video).

2In practice, using a load balancer to distribute user requests for content
can have a performance effect (e.g., increased latency) compared to serving
requests directly, without the intervention of the load balancer. However, we
consider these performance effects negligible in this study.
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In our prior work [7], following extensive testbed measure-
ments, we derived an empirical model of video QoE as a
function of the compute resources utilized and the workload
in terms of parallel video streaming sessions. Based on this
model, we proposed a mechanism for the CDNaaS provider
to optimize the amount of compute resources to allocate to
guarantee the desired video QoE levels, and demonstrated
how such informed resource allocation decisions offer savings
on operator costs while improving on user experience. In
particular, this mechanism calculates the minimum number of
vCPUs needed to serve a given customer-specified demand
under capacity (operator) and quality (customer) constraints.

The second phase, which is the main focus of this article,
uses as input the amount of compute resources (number of
vCPUs) calculated in the first phase and derives an appropriate
assignment of them over a number of VMs to be deployed
on a subset of the available telco cloud physical hosts. How
exactly these resources are allocated and how the respective
virtual instances are placed is a matter of addressing the
tradeoff between availability and cost: Splitting resources
across instances and distributing the latter across multiple
physical hosts can result in higher service availability, but also
increased operational cost (e.g., power consumption) for the
operator, which may be reflected in the service price. In this
work we respond to the latter by proposing a multi-objective
optimization formulation for the joint CPU resource alloca-
tion and virtual instance placement problem, where customer
preferences are translated to specific weightings for the two
conflicting objectives. Note that the two resource allocation
phases are independent. The model and algorithms presented
in this article could be directly applied in conjunction with any
algorithm for deriving the number of vCPUs necessary for a
service request.

We should note that our model and algorithms, detailed
in Sections IV and V, have been introduced in our prior
work [8]. This article extends this work by putting them in
context of our CDNaaS design and presenting a comparison
with an adaptation of a state-of-the-art genetic algorithm
which we also implemented, beyond the random and first-fit
placement methods which are typically used in the literature
as benchmarks. Importantly, in this article we also delve into
computational aspects; we discuss the problem’s complexity
and quantify the performance of our algorithms in terms of
execution time vs. solution quality. For the latter, we have
implemented our model using the CPLEX solver to derive
exact solutions and compare them with our heuristic ones.

IV. A MODEL FOR JOINT VCPU-TO-VM ALLOCATION AND
VM PLACEMENT

A. Preliminaries

We aim to assign p vCPUs, the output of the first phase
of the resource allocation procedure, to a number of up to p
virtual machines (VMs), and the placement of the latter in
(a subset of) the available m physical machines (PMs) of
a regional data center, aiming to minimize the deployment
cost and to maximize service availability, while respecting PM
vCPU capacity constraints. The outcome of this process is a

matrix X = (xij) with i ∈ [1, p] and j ∈ [1,m], where xij
denotes the number of vCPUs assigned to VM i hosted in PM
j. The upper bound for i is the number of vCPUs to assign
(since our unit of processing is a vCPU, we cannot have more
VMs than the number of vCPUs to assign). The calculation of
the optimal assignment should respect physical capacity, cost,
and availability constraints.

B. Cost model

We consider that the deployment of a VM comes with a
fixed management overhead which is not a function of its
workload. For example, this cost can account for the energy
consumed for booting the VM or for operating other system- or
service-level components (e.g., operating system). We further
assume that for each PM which hosts service instances, there is
a fixed overhead which is not a function of the PM workload
nor the number of VMs hosted by it (e.g., energy cost for
keeping the physical machine in an operating state, overhead
of various system-level components). We model the above
costs as linear functions of the number of VMs and PMs
utilized by a service deployment, which is in line with the
experimental observations of Callau-Zori et al. [25].

In matrix X , the number of non-zero elements represents the
number of VMs deployed. Therefore, the cost of an assignment
X at the VM level is given by

CV (X) = eV

p∑
i=1

m∑
j=1

1(xij > 0), (1)

where eV is the fixed cost per deployed VM. In a similar spirit,
the cost of an assignment X at the PM level is determined by
the number of PMs that host at least one VM. This corresponds
to the number of columns in X that contain at least one non-
zero element. This cost is thus given by

CP (X) = eP

m∑
j=1

1(

p∑
i=1

xij > 0), (2)

where eP is the fixed cost per used PM, and the overall cost
of an assignment follows:

C(X) = CV (X) + CP (X). (3)

C. Availability model

We define service availability as the ability of the system to
offer at least a minimal service, i.e., to have, at any time, at
least one VM accessible, which implies that at least one PM
should be up to host the respective VM(s).

We make the following assumptions:
• A VM i can fail with probability q(V )

i , independently of
the other VMs and PMs, and irrespectively of the load
imposed on the VM.

• Each PM j can fail with probability q(P )
j , independently

of the other PMs or the load imposed on it. The above
probabilities are assumed to be known to the operator as a
result of measurement studies, prior experience, or other
historical information. (The same applies to VM failure
probabilities.)
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• If a PM fails, all VMs deployed on top of it are assumed
to fail because of that.

Therefore, a VM may become inaccessible either because
it fails or because the PM that hosts it fails. VM failures can
be correlated due to their dependence on the underlying PMs.
Based on this, we define a correlated group of VMs as the
VMs which are executed on the same PM. For a correlated
group to be available, the following conditions should hold:
• The PM is up, and
• At least one of the VMs deployed on the PM does not

fail.
The probability that a correlated group deployed on PM j

is available is thus given by:

aj = (1− q(P )
j )(1−

∏
i∈[1,p]|xij>0

q
(V )
i ) (4)

For a vCDN service deployment to be available, at least
one correlated group should be available. Since correlated
groups fail independently, the probability that a vCDN service
deployment is available is given by

A(X) = 1− Pr{All correlated groups fail}

= 1−
∏

j∈[1,m]|Σp
i=1xij>0

(1− aj)

= 1−
∏

j∈[1,m]|Σp
i=1xij>0

q(P )
j + (1− q(P )

j )
∏

i∈[1,p]|xij>0

q
(V )
i


(5)

Since, by construction, any feasible solution includes at least
one PM with at least one VM assigned to it, both product terms
in (5) are over non-empty sets.

D. Problem formulation

The aim of the system operator is to derive an optimal
assignment X∗ which minimizes cost while maximizing avail-
ability. These two criteria are conflicting: the more the VMs
deployed and the PMs used to host them, the less the risk
of service unavailability, but, at the same time, the higher the
cost of the deployment. Since it is not possible to optimize
for both criteria simultaneously, we apply a scalarization
approach to transform the problem to a single-objective one.
The relative importance of the two criteria in deriving an
optimal assignment is dictated by a specific policy, which is
encoded in a pair of weights wa and wc (resp. availability
and cost) such that wa +wc = 1. Given a specific policy, the
system operator derives the optimal solution to the following
problem:

minimize
X

wcC(X)− waA(X) (6)

subject to C(X) ≤ E (7)
A(X) ≥ A (8)
m∑
j=1

1(xij > 0) ≤ 1,∀i ∈ [1, p] (9)

p∑
i=1

m∑
j=1

xij = p (10)

p∑
i=1

xij ≤ Cj ,∀j ∈ [1,m] . (11)

To deal with the potential difference in the magnitude of
the two components of the objective function, the values
of C(X) and A(X) are appropriately normalized in the
(0, 1) interval using the upper-lower-bound approach [29].
This model supports specific maximum cost and minimum
availability constraints (C and A, respectively; see (7) and (8)).
Constraint (9) ensures that, for any VM, its vCPU resources
are allocated on a single PM, since a VM cannot be split.
Note that an assignment can result in this sum being zero for
multiple values of i. This occurs when the number of VMs
to deploy is less than the number of vCPUs to assign, a case
typical in practice. Constraint (10) ensures that all vCPUs are
allocated, and constraint (11) guarantees that the CPU capacity
of each PM is not exceeded.

Resource allocation and virtual function placement prob-
lems such as the one that we address in this work are typically
shown to be hard to solve by reduction from known packing or
knapsack problems [13]. Our case has the particular properties
that (i) the function to minimize involves multiple objectives,
(ii) it is non-linear and non-separable due to the availability
component that it includes and its weighted combination with
the cost objective, and (iii) involves a non-linear constraint (8).
Such characteristics are known to make such problems harder
to tackle [30]. For example, the non-separable integer knap-
sack problem with the additional restriction that the objective
function has quadratic form is already NP-hard [31], [32].
Moreover, we should note that our availability model is generic
in the sense that it allows for heterogeneous PMs with different
failure probabilities. Even for the simpler version that we
consider in the rest of this article, where PMs are assumed
identical from a reliability perspective, thus having equal fail-
ure probabilities, we show experimentally that deriving exact
optimal solutions is computationally expensive by solving the
problem using the CPLEX optimizer.

Table II summarizes our notation.

TABLE II
SUMMARY OF NOTATION

p number of vCPUs to allocate
m number of available PMs
v number of VMs

C(X) cost function
A(X) availability function
Cj capacity of a physical machine j
wa availability weight
wc cost weight
eV fixed cost per VM instantiated
eP fixed cost per PM utilized
q
(V )
i failure probability of VM i

q
(P )
j failure probability of PM j

E. Relevance with ETSI NFV

Our model and algorithms reflect the particular character-
istics of the vCDN use case described by ETSI [2]. From a
service viewpoint, the ETSI vCDN use case specifically targets
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video distribution; our overall design is centered around video
delivery, too. The scenario described in the aforementioned
specification involves a centralized CDN controller and a
number of cache VNF instances distributed across data centers.
These caches are identical from a functional perspective.
This is in line with our model, where we are interested in
allocating CPU resources to identical VNF instances following
specific criteria, constraints and performance targets. We are
focusing on the placement of cache VNF instances, as these
are the ones which will mainly absorb the load of the vCDN,
not considering in our algorithms the placement of other
components of a vCDN instance. Caches are relatively simple
network functions and, as such, it is reasonable to assume that
there is a 1:1 mapping between the cache instance and the VM
that hosts it, treating it as a VNF composed of a single VNF
component. This is the reason why in this article we use the
terms VM and VNF instance interchangeably.

Furthermore, at the heart of our model is the cost-
availability tradeoff, with both criteria appearing in the objec-
tive function and the constraints. This makes our model partic-
ularly relevant to NFV. The ETSI has published specifications
on NFV resiliency requirements [6], explicitly mentioning
the issues and tradeoffs we face and try to capture with
our model. The relevance of our work with NFV from a
modeling perspective is further established by the fact that,
as per the ETSI specifications, there is a requirement for
service availability to be defined on a service basis and to
be considered together with the total cost and its importance
for the customers (in our case content providers). The policy
mechanism that we have introduced serves exactly to this end.
Different policies and availability constraints can be thus put
in effect for different service instances.

As a final note, although the focus of this work is on
CDN, other types of services are not out of the question.
We remark that our model and algorithms could be extended
with minor adaptations towards other families of virtualized
applications, provided that a similar cost and availability
model are assumed, and that the VNF instances to place have
identical functionality, as is the case for CDN caches. Such
potential extensions are a topic for further study.

V. SOLVING A RELAXED VERSION OF THE PROBLEM

Finding an exact optimal solution to the problem can
be prohibitive computationally. We thus propose an efficient
heuristic algorithm to derive solutions which we show to be
near-optimal in Section VII. In particular, instead of jointly
deciding on optimally distributing the number of vCPUs
to VMs and placing the latter in PMs, we tackle the two
subproblems separately in two stages: First, we decide on the
appropriate number of VMs to utilize and, second, on their
actual placement on PMs and the CPU resource distribution
to them. Both steps of our Two-step Resource Allocation
and Placement (TRAP) heuristic algorithm can be efficiently
solved in polynomial time. Therefore, the overall procedure
of deriving an appropriate resource allocation and placement
following a customer’s CDNaaS instance deployment request
involves three sub-problems outlined below:

1) Find an optimal number of vCPUs to allocate per region
to serve customer demand. We solve this problem using
the procedure proposed in our prior work [7].

2) Decide on the optimal number of VMs to launch under
a specific policy, satisfying cost and availability con-
straints.

3) Place those VMs on an optimal number of physical
hosts and distribute vCPUs among them using a suitable
placement algorithm, having as input the results of the
previous steps (optimal number of VMs, number of
vCPUs). Specific host capacity, cost, and availability
constraints apply.

Sections V-A and V-B detail our methods to solve the
second and third subproblems respectively. We address each
subproblem independently, providing for each one a problem
formulation and an algorithm to optimally solve it.

We should note that, for each subproblem, the same mini-
mum availability constraint value (A) as in the original prob-
lem is applied, although the availability functions themselves
may differ. For the management cost, there is a specific budget
for each subproblem (EV and EP for the VM- and the PM-
level problems respectively), such that EV + EP = E. The
system operator is free to decide how the overall budget
is split and various methods for this may be possible. For
example, a split ratio s ∈ (0, 1), such that EV = sE and
EP = (1 − s)E, can be selected by defining a parameter
ε ∈ (0, 1) and successively solving the two subproblems for
each s ∈ [ε, 2ε, . . . , 1), eventually selecting the assignment
which minimizes (6). This procedure involves b1/εc execu-
tions of the proposed algorithms for the two subproblems.
If this method is applied, the operator can tune ε to force
a specific number of iterations.

A. Deciding on the number of VMs to launch

In this section, we describe our solution to the second sub-
problem, which consists in finding the optimal number of VMs
to launch. We define an objective function to minimize, which
includes a management cost and an availability component.

1) Availability: Given a known VM failure probability qV ,
assumed to be fixed and identical for all VMs of the same
type included in a vCDN instance (VMs of a specific type,
e.g. streaming servers, are considered identical and their failure
probability does not depend on the resources allocated to them
nor their workload), we define service availability at the VM
level as

AV (x) = 1− qxV , (12)

where x is the number of VMs to deploy. This expression
for availability corresponds to the probability that at least one
VM is available and is heuristic in the sense that it ignores
PM failures and considers VM failures independent.

2) Management cost: The management cost at the VM
level is given by (1) and is assumed linear on the number
of VMs used. A simplified expression defined in terms of the
number x of VMs to deploy is

CV (x) = eV x. (13)
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3)Problemformulation:Applyingthespecifiedpolicyex-
pressedasthecombinationofweights(wc,wa),thefunction
tominimizeattheVMlevelbecomes

minimize
x

wcCV(x)−waAV(x) (14)

subjectto AV(x)≥A, (15)

CV(x)≤EV, (16)

x≥mmin, (17)

x≤p, (18)

where A,EV aretherespectiveconstraintsofavailability
andcost,andmmin the minimumnumberofPMscapable
ofaccommodatingtherequirednumberofvCPUs.Thelatter
isgivenby

mmin =min{l∈[1,m]|
l

i=1

Ci≥p}, (19)

whereC1≥C2≥C3≥...≥Cm arethecapacitiesofthem
PMsofagivenregioninnon-increasingorder.

Theobjective(14)istofindanoptimalnumberofxunder
availability(15)andcost(16)constraints. Constraint(17)
ensuresthatxissuchthatnosingle VMisassigned more
vCPUsthanthe maximumsingle-hostavailablecapacity.If
xisnotlargeenough,andgiventhatthenumberofvCPUs
todistributetotheseVMsisfixed,andat mostxPMswill
eventuallybeused(wecannotusemorePMsthattheVMsto
deploy),itcouldhappenthatthereexistsnosubsetofxPMs
withenoughaggregatevCPUcapacity(i.e.,atleastp).This
would meanthatatleastoneVMwouldneed morevCPUs
thaneventhehighest-capacityPMcouldoffer.Forinstance,
whenx=1(withpvCPUstodistribute),ifthereisnophysical
hostwithacapacitysuperiortop,suchasolutionisinfeasible.
Ontheotherhand,(18)ensuresthattheVMstobelaunched
willnotbemorethanthenumberofvCPUstoallocate.

4)SelectionoftheoptimalnumberofVMs:Inordertofind
theoptimalnumberofVMsbysolving(14)underaspecific
policy,weproposeanalgorithmwhoseinputsare(i)thetotal
number,p,ofvCPUstobeallocatedacrosstheregion’shosts
inordertoservethecustomerrequest,derivedinthefirst
phase,(ii)theconstraintsperobjective(A,EV),and(iii)
thecombinationofweights(wc,wa)thatdefinestheadopted
policy.

Wefirstobservethattheobjectivefunctionisconvexand
thevaluethatminimizesitscontinuousversionwithx∈R>0

isx0 =logqV

wceV

walnq 1
V

. Constraints(15)and(16)canbe

rewrittenasx≥ logqV
(1−A)andx≤ EV

eV
,respectively.

Constraints(15)and(17)thusprovidealowerboundto
theoptimalvalueofx. Whichofthetwoconstraintsis
morerestrictivedependsontheconfigurationoftheproblem.
Similarly,anupperboundisprovidedbythecostconstraint
(16),and(18).

To minimize(14)wecalculatethevaluex0∈R>0 which
minimizesthecontinuousversionof(14).If x0 lies within
thefeasibleregiondefinedbytheabovebounds,weselectthe
closest(feasible)integervaluetox0astheoptimal.Otherwise,
weselectthevalueoftheconstraintthatx0violates.

Weshouldnotethatinotherproblemsettings wherethe
objectivefunctionisnotconvex,anoptimalsolutioncan
befoundinpseudo-polynomialtimeinpbyevaluatingthe
objectivefunctionandtheconstraintsforeachx∈[mmin,p].
Thecasex = mmin correspondstoadeployment which
minimizesthenumberofdeployed VMs, while x = p
toadeploymentthatperformsaone-to-onevCPU-to-VM
assignment.Thisalgorithmrunsefficientlyforrealisticvalues
ofp.

B.VMplacementandvCPUdistribution

Withthenumberof VMs vtolaunchinplace, weneed
todecideontheirsuitableplacementontheunderlyingPMs
andthedistributionofthevCPUsamongthem.Theoutput
ofthisstepisanassignmentX =(xij),withi∈[1,v]and
j∈[1,m],whichrepresentsaheuristicsolutionto(6).

Similartohowwetreatedthesub-problemofselectingan
optimalnumberofVMs,wedefineappropriateavailabilityand
costfunctionsatthePMlevelasfollows.

1)Availability: To measureasolution’savailability, we
use(5),assumingidenticalPMswithaknownfailureproba-

bilityfixedtoq
(j)
P =qP,∀j∈[1,m].

2) Managementcost:AssumingidenticalPMs,andinturn
afixed managementoverheadforeachPMonwhichweare
placingthecustomer’sVMs,irrespectiveoftheirnumberand
theservice workloadimposed, we modelPM-levelcostas
alinearfunctionofthenumberofPMseventuallyusedfor
hostingatleastoneVM.Thiscostisgivenby(2),substituting
pforvintheupperlimitofthesecondsummation,sincethe
numberofVMsinthiscaseisalreadyknown,ascalculated
atthesecondstepofourscheme.

3)Problemformulation:Weproposethefollowing multi-
objectiveformulationfortheproblemofplacingvVMsto
asubsetoftheavailablem PMsanddistributingpvCPUs
tothemundercapacity,availabilityandcostconstraints,and
givenpolicy(wc,wa):

minimize
X

wcCP(X)−waA(X) (20)

subjectto A(X)≥A, (21)

CP(X)≤EP, (22)
m

j=1

✶(xij>0)=1,∀i∈[1,v] (23)

v

i=1

xij≤Cj,∀j∈[1,m] (24)

where A,EP aretherespectiveavailabilityandcostcon-
straints.

Constraint(23)ensuresthataVMisallocatedtoonlyone
PM,andthesetofconstraints(24)guaranteesthattheavailable
capacityperPMisnotexceeded.

4)AnalgorithmforVMplacementandvCPUdistribution:
Weproposethefollowingalgorithmtoderiveanoptimal
solutionto(20)inpolynomialtime, whoseinputis(i)the
number,p,ofvCPUstobeallocated,(ii)thepolicyand
constraintsperobjective,(iii)thesortedPMsinnon-increasing
orderofcapacities,i.e,C1 ≥ C2 ≥ C3 ≥ ....≥ Cm,(iv)
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mmin, and (v) the number, v, of VMs; the latter three are
obtained in the previous step.

This algorithm consists in creating and evaluating a can-
didate assignment of VMs to m′ PMs, for each m′ ∈
[mmin,min(m, v)]. More than v PMs are not necessary, since
that would directly mean that at least one PM would not host
any VM. We observe that the value of the objective function
only depends on the number of PMs used and the number of
VMs assigned to each PM. Our algorithm starts by carrying
out the following steps for each m′:

1) Distribute the v VMs among the m′ first PMs propor-
tionally to their capacities.

2) Evaluate the objective function and the constraints for
the derived assignment.

Our algorithm returns the assignment X of VMs to PMs
which minimizes the objective function for the given policy,
or responds that there is no feasible solution under the given
constraints.

This procedure has O(m×min(m, v)) complexity: The two
steps have to be repeated at most min(m, v) times. Step 1
takes time linear on the number of PMs. (Using the largest
remainder apportionment method for proportional distribution
is O(m).) Evaluating the availability function could also be
implemented to take O(m) time, if we separately keep track of
the number of VMs assigned per PM in a candidate solution.

If a feasible solution using m∗ PMs is found, the algorithm
ends by:

1) Distributing the p vCPUs among the first m∗ PMs
proportionally to their capacities.

2) For each of the first m∗ PMs, distributing the number
of the allocated vCPUs evenly to the VMs assigned to
it.

The complexity of the algorithm is dominated by the
first two steps. Finally, since only the number of PMs and
VMs, and the placement of the latter influence the objective
function value, any method of sharing vCPUs to PMs/VMs is
equivalent.

C. A note on network resource allocation

Our model and algorithms are oriented towards computing
resources; allocating network resources is not in its scope.
A basic underlying assumption of this work is that for a
given level of user demand for video traffic (which has
been translated to specific compute resources), it is more
straightforward for the operator of the CDNaaS infrastructure
to calculate the amount of necessary network resources. Then,
it can accordingly provision the network paths between the
virtual instances and end users, and/or perform the necessary
traffic engineering tasks.

We should also remark that with appropriate load balancing
policies in place (this is straightforward to implement at the
CDN service level), a VM with more vCPUs assigned would
receive more video requests. Therefore, the traffic that a VM
(and in turn a PM) receives is proportional to the amount of
compute resources allocated to it. This means that processing
resources can be directly linked/translated to networking ones.
The system operator then has to provide as input to the

algorithm the number of CPU resources per host for which
it can guarantee the availability of network capacity necessary
for the traffic these vCPUs will handle, which as we argue
here is realistic to assume.

Therefore, in this scenario where CPU and network ca-
pacities are tightly coupled, our solutions indirectly capture
network constraints. However, this would not necessarily hold
true if network parameters were part of the objective function
to optimize. For example, if network link reliabilities need
to be considered in the service availability model or network
link costs need to be accounted for, our model and algorithms
would have to be reconsidered.

VI. A GENETIC ALGORITHM AS AN ALTERNATIVE
APPROACH

A question that may naturally emerge is whether applying
meta-heuristics, such as Genetic Algorithms (GA), could offer
high-quality solutions with reasonable computational cost. A
GA generally operates as follows. Each potential solution
to the problem is encoded as a string (chromosome) of
properties (genes) and is characterized by a fitness value,
which is an expression of the solution’s quality. Starting from
an initial population of candidate solutions (chromosomes), a
GA iteratively applies genetic operations on them to produce
new generations of better quality. Genetic operations include
crossover, where new chromosomes are generated by selected
parents, and mutation, where a single chromosome is randomly
altered.

In this direction, we build on the approach of Xu and
Fortes [9] who, as in our case, deal with a related multi-
objective VM placement problem. In particular, they propose
a Grouping Genetic Algorithm (GGA) to overcome the limi-
tations of standard GAs when dealing with grouping problems
and solve the problem of instantiating VMs on a set of physical
hosts aiming to simultaneously minimize resource wasteage,
power consumption, and maximum thermal dissipation. These
objectives are conflicting, since consolidating VMs in a small
number of PMs may lead thermal dissipation to increase
significantly in loaded PMs, albeit minimizing the first two
objectives.

Inspired by the GGA of Xu and Fortes and adapting it to
our problem settings, we have appropriately modified it to
integrate our cost and availability objectives. Furthermore, Xu
and Fortes apply a fuzzy logic system as a fitness function
to jointly consider the conflicting objectives. In our case,
however, the preferences with respect to the objectives are
known a priori and are expressed using the combination
of weights (policy). We thus apply directly our weighted
objective function of (6) as the fitness function. Moreover, their
algorithm takes as input the number of VMs to place. To obtain
this input, we execute the first phase of our heuristic which
determines the number of VMs to deploy and then use the GA
to select their placement on PMs. After having decided on the
number of VMs (see Section V-A), our adapted version of the
GA starts by creating an initial population of chromosomes by
generating S random assignments of VMs to PMs. For each
solution in S, each group of VMs of a PM represents a gene.
Then, the algorithm operates iteratively for G generations.
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In each generation, as Xu and Fortes suggest, the ranking-
crossover operator is applied, which is an improved version of
the classical crossover. In particular, the advantage of ranking-
crossover lies in the fact that it does not select genes blindly
from the selected parents, but instead attempts to pick the
ones which are ranked higher according to the average value
of specific efficiency functions defined per objective, thus
expected to produce higher quality offspring.

In our context, for minimizing cost, a good solution uses a
minimum of virtual and physical resources, while maximizing
availability requires instantiating more VMs and spreading
them across more PMs. For each ranking-crossover operation,
the algorithm selects two random chromosomes as parents
and calculates the efficiency values for each involved gene
(i.e., group of VMs assigned to a PM). In our algorithm, the
efficiency function is defined as the euclidean distance between
the pair of values of availability and cost for a gene, given
respectively by (12) and (13) with x representing the number
of VMs contained by the gene, and a centroid. We define
the centroid as a “utopian” point which represents the pair
of cost-availability values considered ideal (and probably not
attainable by a single solution at the same time; e.g., a solution
with minimum cost and maximum availability). The efficiency
function (object-centroid distance) of a gene is thus given by

E(c, a) =
√
(uc − c)2 + (ua − a)2

where the centroid (uc, ua) is the vector of ideal values of the
cost (uc) and availability (ua) objectives and (c, a) represents
the obtained cost and availability values for the gene.

Our algorithm ranks the genes of the parents in increasing
order of the object-centroid distance and creates a new chro-
mosome by combining the highest-ranking genes, i.e. the ones
with the smallest values of E .

For each generation round, this procedure is repeated ac-
cording to the desired crossover rate, rc, which determines
the number of new chromosomes to be generated per round.
Typically, the crossover rate is set to a value between 0.5 and
1, producing rcS offspring on average. The eventual solution
pool population at the end of a generation is constructed
by evaluating the fitness function for each chromosome and
keeping the top-S of them. The algorithm is terminated after
G generations, where the solution with the minimum value
of (6) is returned. According to the observations of Xu and
Fortes, mutation does not offer tangible advantages in their
case. We therefore chose not to perform mutation either.

Xu and Fortes report that the complexity of their Grouping
Genetic Algorithm is O(SNlogN + NSG), where N is the
number of VMs to place. The first term is due to the execution
of the First-Fit placement algorithm to generate the initial pool
of S solutions and the second for generating and evaluating
all potential placements for G generations.

Our GGA has a slightly different complexity. Instead of
performing First-Fit, we generate the initial pool of S solutions
by randomly placing N VMs over the m PMs in O(SN) time.
Then, each of the G generation rounds involves rcS ranking-
crossover operations and the selection of the population of the
next generation. For each of the two parents involved in a
crossover, calculating the efficiency of up to m genes (in case

all m PMs are utilized) requires O(m) time, sorting the genes
of the parents according to their efficiency is O(mlogm),
and creating a new offspring is O(m). This is repeated rcS
times yielding an O(Smlogm) time per generation. Finally,
selecting the top-S solutions of the population which also
includes the offspring requires evaluating the fitness function,
i.e. computing the objective function of (6), for each solution
in the population. This be carried out in O(m) time (see Sec-
tion V-B4) per chromosome, while selecting an (unordered) set
of the top-S chromosomes of the population to create the next
generation is O(S(1+rc)) = O(S). The computation time for
each generation is thus dominated by the creation of offspring
and the overall complexity of our GA is O(SN+GSmlogm).

VII. PERFORMANCE EVALUATION

We evaluate the performance of our algorithms under two
perspectives. First, we aim to demonstrate how our model and
algorithms address the cost-availability tradeoff and show how
the selection of specific policies drives the solutions towards
different optima. Second, we compare the performance of our
scheme (TRAP) with alternative approaches in terms of the
quality of the produced solutions (i.e., how close they are to
the optimal) and the execution time. Note that for the latter we
implemented our model in the CPLEX3 environment and used
its optimizer to derive exact optimal solutions as a benchmark.

A. Cost vs. availability tradeoff

We begin with an experiment where we run our algorithms
under different combinations of weights (wc,wa), each cor-
responding to a different policy and for the same problem
settings. In particular, we use (i) the same number of vCPUs
to allocate, (ii) the same number of available hosts and their
capacities, and (ii) the same cost and availability constraints.
We set the availability constraint to “five nines” (99,999%),
a popular availability target for carrier-grade NFV. We fix
the overall cost constraint to E = 160 and assume that the
costs for a single VM and PM are eV = 1 and eP = 1
respectively. The failure probabilities for VMs and PMs are
set to qV = qP = 0.001. Unless otherwise noted, these values
are used all across the experiments of this section. We consider
a system with 50 PMs, each with a capacity between 2 and
15 vCPUs selected uniformly at random.

Fig. 2 presents the solution space, where the x-axis and y-
axis represent the absolute values of the cost and availability
functions respectively. Each filled square point corresponds
to the outcome of the TRAP algorithm (a vCPU-VM-PM
assignment identified as the optimal) according to a specific
policy, while empty squares are feasible but suboptimal so-
lutions. The vertical and horizontal lines are the respective
cost and availability constraints and limit the space of feasible
solutions. Note that in our tests it is possible that for two
different policies the same optimal solution is derived. These
points are superimposed in the figure.

The selected solutions represent what our algorithm iden-
tifies as the Pareto frontier, which, in our context, is the

3http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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set of solutions for which it is not possible to improve on
cost without sacrificing on availability and vice versa. Each
such solution represents a different availability-cost trade-
off. A cost-centric policy, e.g. (wc, wa) = (0.8, 0.2), guides
our algorithm to select as the optimal a low-cost solution,
which, according to the cost function, uses a small number
of VMs/PMs. In turn, this corresponds to a lower service
availability. (The algorithm guarantees that it is a feasible
solution, not violating the 0.99999 availability constraint.)
Availability is increasingly higher (≈ 1) when more hosts
are used. Such solutions correspond to increasing wa values,
which our mechanism takes into account to drive the calcula-
tion towards an appropriate VNF placement which uses more
virtual instances and PMs.
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Fig. 2. Solution space. The straight lines represent cost and availability
constraints. The filled boxes are the assignments selected as optimal by our
TRAP algorithm under different policies, while the empty boxes are feasible
but suboptimal solutions.

This is more evident in Fig. 3, where we detail the evolution
of the value of each objective (cost and availability) in each
optimal solution as a function of the given policy. For reasons
of clarity, the values presented are normalized by mapping the
lowest and highest value per objective to 0 and 1 respectively.
The figure indicates that as the weight of the cost objective
wc increases, both functions are decreasing. This is positive
from a cost but not from an availability perspective, and is
due to less VMs/PMs being used as wc approaches 1 and wa

approaches 0. (The inverse holds for availability.)

B. Performance comparison

We compare TRAP with the following placement algo-
rithms:
• Random: Given a number of VMs, Random places each

VM at an available host selected uniformly at random.
• First-Fit (FF): This algorithm places each VM at the first

available machine that has the capacity to host it.
• Genetic Algorithm (GA): This is the grouping genetic

algorithm we proposed in Section VI.
• CPLEX: This is an exact algorithm which derives the

optimal solution to (6) using the CPLEX optimizer.
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Fig. 3. Availability and cost as a function of the selected policy.

Random, FF and GA require the number of VMs to place as
input. In the experiments presented in this section, it is implied
that this input is provided by executing the first step of TRAP.
This improves the performance of these schemes compared to
a random or policy-unaware decision for the number of VMs
to place. As our results show, though, our two-step heuristic
still brings about significant performance gains.

In our comparison, our metric for the quality of a solution
is the ratio of the objective function value of the solution
returned by the algorithm in question to the respective value
of the (exact) optimal solution returned by CPLEX. This is
expressed as a percentage and is denoted as optimality. CPLEX
corresponds to an optimality of 100%.

Fig. 4 presents a comparison of TRAP (purple curve, cross
points) with our grouping genetic algorithm (green curve, “x”
points), random (blue curve, “*” points), and first-fit placement
(yellow curve, square points) in terms of optimality as a
function of the number of available PMs.

To obtain these results we ran the five schemes under the
same configuration, which corresponds to the same policy (in
this case, wc = wa = 0.5), the same number of PMs, each with
available capacity selected uniformly at random and ranging
from 2 to 15 vCPUs, p = 700 vCPUs to distribute, and
the same capacity constraint. Each point is the mean of 50
iterations for the same configuration except for PM capacities
which vary, presented with 95% confidence intervals.

As can be seen from Fig. 4, TRAP approximates well the
optimal solution. In particular our heuristic gives objective
function values that are very close to the ones returned by
CPLEX. GA is also remarkably close to the optimal solution,
but is consistently outperformed by our heuristic and at the
same time comes with significant processing overhead, as we
shall show.
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Random and FF placement, on the other hand, result in
solutions that are increasingly far from the optimal as the
number of available PMs increases, which is due to the fact
that they do not take into account the main objectives and the
respective policy. With an increase in the number of available
PMs, the solution space also expands and these algorithms fail
to “explore” it effectively. Random tends to result in solutions
which utilize increasing numbers of PMs thus driving cost up,
while FF tends to consolidate VMs in the least number of
PMs, which reduces availability.
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Fig. 4. Performance of different placement schemes for the same policy and
increasing numbers of available PMs.

Then, we carry out an experiment where we fix the number
of available PMs and measure how each of the candidate
algorithms approaches the optimal solution for different poli-
cies. Fig. 5 confirms that our heuristic tops the candidate
schemes in terms of optimality. Importantly, policy-unaware
schemes cannot perform consistently across the spectrum of
available policies. For configurations with many available
PMs, such as the one in this experiment, and when only
availability is critical (wc → 0), Random may have acceptable
performance since it will tend to distribute VMs uniformly
across PMs. This advantage quickly diminishes as we move
towards more cost-centered policies. Conversely, FF performs
near-optimally when availability is not a concern and cost
minimization is what mainly matters (wc > 0.7), since it
aims to pack VMs in as few PMs as possible. On the other
hand, our two-step heuristic and our genetic algorithm, which
incorporate policies in their design, address successfully the
cost-availability tradeoff, producing solutions near the optimal
for all weight combinations.

If we delve further into the performance of these two
algorithms and consider the two objectives separately, we
notice that TRAP achieves better performance in terms of
both cost and availability at the same time, compared with the
genetic algorithm. Fig. 6 presents the (normalized) value of the
cost component for different policies. As optimizing for cost
becomes more important, the performance improvement of
TRAP compared to the GA grows. The solutions derived using
this scheme also improve on availability, especially when the
applied policy seeks for a balance between the two objectives,
as Fig. 7 indicates. The gains in terms of optimality that our
heuristic brings about compared to our GA can be attributed, to
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Fig. 5. Performance of different placement schemes for the same configuration
(number of available PMs) as a function of the applied policy (criteria
weights).

an extent, to the fact that the latter creates the original pool of
solutions by randomly assigning VMs to PMs. In some cases,
apart from slower convergence, this may affect the quality of
the solutions produced by the GA.
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Fig. 6. Comparison between our two-step heuristic (TRAP) and our GA in
terms of the cost objective for different policies (lower is better).
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Fig. 7. Comparison between our two-step heuristic (TRAP) and our GA in
terms of the availability objective for different policies (higher is better).

Although both our heuristic and our GA approximate well
the optimal solution, they come with different processing over-
heads. To quantify their running time performance, we carried



13

out an experiment where we fixed the policy to wc = wa = 0.5
and measured the execution time of the CPLEX solver, the
TRAP algorithm, and the GA. Regarding the GA, and as in
our previous experiments, we configure the size of the solution
pool to S = 70 and the number of generations to G = 20.
These numbers were selected experimentally and represent a
good compromise between execution time and the quality of
the derived solutions. For reasons of a fair comparison, the
execution time reported for the GA also includes the time it
takes to determine the number of VMs to launch, for which we
apply the first step of our heuristic; the GA then proceeds by
selecting their appropriate placement. Our experiments were
performed on an Intel i7 machine with 8 CPU cores and 8 GB
of RAM, running Ubuntu 14.04.

Fig. 8 verifies that our TRAP scales well as the number of
PMs grows. Even for 600 PMs, it produces a solution which
is close to the optimal in the order of few minutes. The GA
scales poorly for such problem instances, which is justified
by its higher computational complexity (see Section VI). Its
running time performance could be improved by reducing the
number of generations or the solution pool size, but this would
come at the expense of the quality of solutions it produces,
which are already suboptimal to the ones of TRAP. Note that
for more than 600 PMs, it was not tractable to derive the
exact optimal solution using CPLEX, since its execution time
increases dramatically when the number of variables and/or
constraints of the model increases.

Fig. 8. Execution time as a function of the number of available PMs for
different algorithms.

VIII. CONCLUSION

This article presented our study on the problem of jointly
allocating compute resources to virtual instances and their
placement on an NFVI for the provision of CDN-as-a-Service.
Our focus was on simultaneously addressing the conflicting
requirements for improved service availability and reduced
management cost. To this end, we proposed a multi-objective
optimization formulation of the problem, as well as efficient
heuristic algorithms to solve it. We demonstrated quantitatively

how our algorithms optimally address the cost-availability
tradeoff. By comparing our scheme to simple baseline algo-
rithms that are often used as benchmarks in related work,
we demonstrated that in order to address more effectively
both objectives, a flexible scheme which incorporates their
relative importance in its design is necessary. Our approach
can prove beneficial for the operator of such a system in
order to appropriately dimension a virtualized CDN service,
implementing resource allocation policies that reflect customer
(i.e., content provider) preferences, and assisting in the estab-
lishment and enforcement of specific service-level agreements.
The heuristic algorithms we devised run efficiently, without
sacrificing on solution quality. We have shown experimentally
that they can derive near-optimal solutions in the order of few
minutes for large problem instances, where exact solutions by
means of solvers such as CPLEX are intractable to get. Finally,
we explore alternative strategies to tackle our problem by
proposing a genetic algorithm suitable for our model, inspired
by the related state-of-the-art. Our heuristics were shown to
outperform the genetic algorithm, both in terms of optimality
and efficiency.

Although the proposed scheme allows deriving a near
optimal solution to place vCDN resources over a telco or
federated cloud, it requires a special focus when fixing the
weight values, which mainly rely on the vCDN service type to
deploy. For example, for a vCDN that delivers highly-popular
content, higher reliability may be required by the content
provider, and thus wa should be significantly higher than wc.
For deployments which deliver less popular content or which
involve short service duration, on the other hand, the customer
might be less interested in high availability guarantees. In these
cases, the operator might select a cost-centered policy with a
high value for wc to reduce operational cost and possibly to
be able to provide a more affordable offer to the customer.
Therefore, the service type has critical impact on the selected
deployment policy.

Our work on the subject is ongoing and focuses on cases
which our model and algorithms cannot currently address. One
direction is adapting our cost functions to consider whether
cloud hosts are already active hosting virtual instances; it could
be argued that favoring such PMs in the placement process
would lead to more significant energy savings. Another line
of research studies extensions of our design towards edge
computing. The main challenges therein lay in the inherent
scarcity of edge resources, and the heterogeneity naturally
introduced in the underlying physical infrastructure both in
terms of operating cost and reliability. On the other hand,
edge computing offers the potential for lower latency and
thus improved user experience while saving on the operator’s
backhaul network capacity. These new features require modi-
fications both at our model and our algorithms. In view of the
upcoming 5th Generation (5G) mobile networks, these modi-
fications will need to account for more dynamic environments
with the appropriate architectural support [33], where VNF
components may need to be shifted across (edge and other)
hosts following shifts in user demand or the conditions in the
NFVI. Finally, extensions to account for failure recovery costs
are a topic for future study.
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