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Abstract

Modal decomposition is widely used to simplify complex fluid mechanics problems

by splitting the data set of the problem into different modes, which collect the main

effects of the parameters involved in the problem. This data set is collected in a

matrix form. Nevertheless, in case of the presence of more than two parameters

affecting the system, a tensor multilinear modal decomposition should be applied.

In this thesis, a brief development of matrix and tensor decomposition is addressed.

In addition, multilinear modal decomposition is applied to perform a parametric

study of an experimental flapping wing problem, where a large number of parameters

can influence the system.

Finally, it is obtained that the multilinear modal decomposition is a powerful method

to simplify and extract the most significant features of a system. Since this method

is only an experimental and mathematical method, it allows to extract the most

relevant behaviors of each parameter without the necessity of entering into too much

detail in the field of fluid mechanics.

Keywords: modal decomposition, N-way principal component analysis, multilinear

singular value decomposition, flapping wings
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LATEX was used as text editor.

Matlab 2017a was used as programming tool.

TensorLab package [1] was used to work with tensors.
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1 Introduction

1.1 Motivation

Fluid mechanics problems are very complex to understand and they are tried to

be solved using complex physical models which need a large amount of resources.

However, there is one method that could be able to extract the most relevant infor-

mation of a system without the use of such complex models. This method is called

modal decomposition. Modal decomposition is a mathematical procedure that can

be used to extract the most energetic features of a flow field. There are two types

of modal decompositions: the analitical and the data-driven modal decomposition.

The analitical consists on the extraction of the modes parting from the equations

that govern the system. In case of fluid mechanics, those equations are usually the

Navier-Stokes equations. On the other hand, the data-driven procedure is based

on the matrix decomposition of the data set coming from either numerical simu-

lations or experimental data. The experimental method could be able to extract

reliable information of the system without the necessity of entering into detail in-

side the complex equations that govern the problem. This thesis is based on the

experimental procedure.

Modal decomposition for two variables has been already applied to fluid mechanics

problems, e.g. using the Singular Value Decomposition (SVD) for an experimental

data set. The data-driven modal decomposition in fluid mechanics is called Proper

Orthogonal Decomposition (POD).

Regarding the fluid mechanics field, the POD has been widely used to study veloc-

ity fields which only implies two variables: space and time. However, the modal

decomposition for the case of more than two variables has remained untouched. In

this way, a multilinear modal decomposition can be used to study the effect of more

than two parameters on a fluid mechanics problem without the necessity of entering

into too much detail in the field studied.

1
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1.2 Socio-economic impact of the project

A multilinear modal decomposition could significantly simplify complex problems

not only on the fluid mechanics field but on any other field involving a large num-

ber of variables like structural analysis, chemometrics, or even fields not related to

engineering tasks such as sociology, economics or biology.

This modal decomposition allows to extract the most relevant behaviors of each

parameter affecting the system without the necessity of entering into too much

detail in the field studied.

Summarizing, this method could allow to accelerate the process of understanding

complex problems without fully understand the natural laws behind that problem

at a first insight.

1.3 Regulatory framework

As the studied topic is a purely theoretical work applied to a fluid mechanics prob-

lem, there is not a clear defined legislation about this topic. However, this modal

decomposition can be used in other fields like statistics applicable to sociology. In a

sociological study, the privacy policy plays an important role nowadays. The most

recent privacy policy was the so-called GDPR (General Data Protection Regulation)

approved by the European Union in 2016 and become effective in 25th May 2018.

On the other hand, the topic of flapping wings has not a defined regulation yet.

However, flapping wings can be used as propulsive system of micro-air vehicles

(MAVs). MAVs, together with bigger drones, are regulated in Spain by the Real

Decreto 1036/2017. In addition, Unmanned Aerial Vehicles (UAVs) are currently

on the core of discussion for the cooperation between Unmanned Traffic Management

(UTM) and Air Traffic Management (ATM).

2
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1.4 Budget

The first element of the budget would be the personnel costs. The time employed in

this project was around 360 hours. Taking into account that the salary of a junior

engineer in Spain is 10 e/hour, the total personnel cost is 3,600 e.

The last elements accounting for the budget are the resources used for the devel-

opment of the project. In this instance, only Matlab has been used to perform the

required calculations. The Matlab annual license costs 800 e.

Moreover, it should be added the cost of the experiment carried out by Carrillo [2]

from which the data is collected. However, the costs of that experiment is out of

scope for the budget of this project.

Summing up all the mentioned costs, the budget of this project is 4,400 e.

1.5 Outline

The rest of the thesis is organized as follows. In Section 2, the state of the art

of modal decomposition from a theoretical point of view is developed. In Section

3, all the mathematical background around the modal decomposition for matrices

and tensors is briefly explained. In addition, Section 4 tackles the application of

modal decomposition in a flapping wing problem. First, a brief introduction of

flapping wings topic is addressed followed by the explanation of some details about

the experiment from which the data has been taken. Then, in Section 5 the results

obtained by the modal decomposition are presented while in Section 6, these results

are discussed from a literature point of view. Finally, Section 7 concludes with a

couple of ideas of future work about this topic.
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2 State of the art

This section presents the current state of the art of matrix and tensor decomposition

as well as some of its applications. In addition, the most important decomposition

methods are assessed such as the eigenvalue decomposition, the SVD, the POD,

the PCA as well as tensor decomposition methods like the MLSVD and the CP

decomposition.

2.1 Matrix Decomposition

Matrices are used to collect and interpret a two-dimensional data set. Matrix de-

composition tries to split a matrix into several meaningful parts in order to seek out

the most relevant terms and interpret them.

2.1.1 Eigenvalue Decomposition

The first and most basic matrix decomposition is the eigenvalue decomposition,

also called spectral decomposition. Eigenvalues and eigenvectors of a matrix show

the direction and magnitude of the column vectors of the matrix. However, the

main limitation of this method is that it is only applicable to squares matrices. The

eigenvalue decomposition is used in a lot of applications such as differential equations

or vibration analysis but the most important application is that this decomposition

is the foundations of the following decomposition methods of the present work like

the SVD.

2.1.2 Singular Value Decomposition (SVD)

On the contrary of the eigenvalue decomposition, the SVD is not limited to square

matrices and always exists. This is the reason of being the most important matrix

factorization, that improves and expands the eigenvalue decomposition. The main

idea of SVD is to find a set of orthonormal vectors in a subspace. In the present

day, SVD is used in a wide variety of fields. The most basic use of SVD is to solve m

simultaneous linear equations Mx = b in a very efficient way. In addition, singular

decompositions have shown its value in expressing the theory of least squares in a

simpler way [3]. Most recently, SVD has been used for the dimensionality reduction

of the data as well as for the extraction of weak signals from noisy data. The

5
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ability of dimensionality reduction has been used, for instance, in image processing

and compression. SVD allows a simple way of reducing the rank of the matrix

by removing the smallest singular values (see Section 3.3). In this way, not only

compression of the image is achieved but also a considerable noise reduction. Taking

advantage of the noise reduction property of the SVD, Freire & Ulrych [4] applied

this method to vertical seismic profiles (VSP) where they were able to isolate the

uncorrelated noise. Furthermore, SVD is used in applications that involves a large

amount of data such as chemometrics [5], molecular dynamics [6] or gene expression

analysis [7].

2.1.3 Proper Orthogonal Decomposition (POD)

While SVD is a purely mathematical method, POD uses the theory of SVD to extract

physical information. POD, also known as Karhunen-Loève expansion or Principal

Component Analysis (PCA), is a modal decomposition used to extract the modes

based on optimizing the mean square of the data set analyzed. In other words,

POD allows to extract coherent physical structures from a large data set apparently

random and uncorrelated. This coherent structures are called modes and correspond

to the vector columns of the side matrices obtained with the SVD.

POD was first introduced by Lumley in 1967 [8] in order to better study turbulent

flows. Later, in 1987, Sirovich [9] developed the snapshot method as a way to obtain

the POD modes efficiently in problems involving a large amount of data.

POD has been used to obtain dominant features from data sets in a wide variety

of fields like turbulent flows [10] or structural vibration analysis [11]. Additionally,

Bernero & Fiedler [12] used a combination of POD and Particle Image Velocime-

try (PIV) to isolate typical patterns from an apparently chaotic fluctuations of the

counterflow of a jet. An unusual POD application was developed by Bui et al. [13],

who used a ”gappy” POD method in order to reconstruct incomplete or inaccurate

aerodynamic data. They found that this procedure is not only effective to recon-

struct data but to have a simple and effective approach to the inverse design of

airfoil shapes.

Although POD has been widely used to capture the time variation of fluid mechan-

ics problems, the use in parametric studies has been less common. For instance,

Epureanu et al. [14] used the POD to develop models for turbomachinery flows with

sampling in both time and over a range of interblade phase angles. In addition, Ly

& Tran [15] used the POD to predict the steady-state temperature distribution of

6
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a flow in a square cavity as the Rayleigh number is varied. The method used was a

simple combination of POD and an interpolation.

Another examples of the applications of PCA include image processing, data com-

pression and visualization, time series prediction and pattern recognition.

2.2 Tensor Decomposition

Matrix modal decomposition can be only applied to a two-dimensional data set.

Nevertheless, it is often desirable to have a more global vision of a problem and

take into account more than two variables to perform a parametric study. In case

of multivariable data, analyzing a data set as a loose collection of isolated matrices

leads to loss of information about correlations between parameters. Therefore, mul-

tivariable data should be stored in multidimensional arrays, also called tensors. An

N th order tensor is composed by N number of variables.

During the last decades, there has been a fast development of the mathematics

and implementation of efficient algorithms about tensor decomposition thanks to its

applications in a wide variety of fields involving large data sets like chemometrics,

signal and imaging processing, bioinformatics or pattern recognition [16].

In the literature, there exist several ways of decomposing a higher-order tensor, being

the two most relevant procedures the CP decomposition and the HOSVD.

The method of decomposing a higher-order tensor was first introduced by Tucker

& Messick in 1963 [17] and improved until the so-called Tucker3 Decomposition

[18]. In the literature, Tucker3 is also called Multilinear Singular Value Decom-

position (MLSVD), Higher-Order Singular Value Decompostion (HOSVD) [19] or

N-way Principal Component Analysis (N-way PCA) [20]. The aim of the Tucker3

Decomposition is to represent the multivariable data set as a linear combination of

few orthogonal factors called modes, similarly to the POD modes.

Polyadic form, this is, decomposing a tensor as a sum of a finite number of rank-one

tensors, was first introduced by Hithcock in 1927 [21]. Later, Cattell proposed in

1944 the idea of parallel proportional analysis [22]. Afterwards, the concept gained

popularity in 1970 in the form of CANDECOMP (canonical decomposition) by Car-

roll et al. [23]. Their work consisted of analyzing multiple variable data sets from a

wide variety of subjects. The purpose was simply to do an average of the samples

with respect to several points of view. On the other hand, Harshman [24] introduced

PARAFAC, which allows to eliminate the ambiguity of the two-dimensional PCA

7
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and has better uniqueness properties. Nowadays, it is commonly referred as CP

decomposition (CANDECOMP/PARAFAC) introduced by Kiers [25].

In reality, CP Decomposition is a special case of the Tucker Decomposition when

the so-called core tensor is superdiagonal (see Section 3.7).

Ordinary SVD leads to a very simplified solution, which translates into a fast recog-

nition of the most relevant modes of the two-dimensional data set. On the other

hand, HOSVD consists on decomposing an N th order tensor into a core tensor and

N side matrices, being N the order of the original tensor. On the contrary of the

SVD, the core tensor is not usually diagonal, so it is desirable to simplify it in order

to have an easy interpretation of the most significant modes of the system. The first

approach to simplify the core tensor was developed by Kroonenberg & De Leeuw in

1980 [26] using the Alternating Least Squares (ALS) algorithm. Briefly explained

for a case of a third order tensor, this algorithm starts with three initial orthonormal

matrices G, H and E. Two of them are fixed while the third one is optimized (in

terms of minimum error) by means of an eigenvector problem. After convergence

of the three matrices, the core tensor is simplified. A second approach can be done

by estimating orthonormal transformations of the core tensor until reaching a sim-

plified array [27]. These two approaches can be very time-consuming and they are

not suitable for tensors of order higher than three. Besides, core tensors cannot

be simplified to be completely diagonal so there is still a problem related with the

interpretation of core arrays. The third approach was introduced by Henrion et al.

[28] in 1999. This approach is based on the variance-of-squares measure and the fact

that the squared core entries reflect the significance of the mode combinations in the

system. Then, this method allows to extract the most relevant mode combinations

from comparing the square of each entry with the sum of the squared entries of the

whole core tensor. Besides, this approach does not need any prior assumption on the

structure so it can be applied to any core tensor without regarding its shape. This

final approach has resulted to be the most efficient for the extraction of the results

for this thesis. There are other simplifications of the core tensor in the literature but

they are referred to particular cases. For instance, Murakami et al. [29] performed

a simplification of a core tensor of size P ×Q× R when P = QR − 1. In addition,

Kiers & Berge [30] developed an extreme simplification for 3× 3× 3 core tensors.

Finally, multilinear modal decomposition has been used in a wide variety of fields

which involve large amount of multivariable data. A few examples are the applica-

tion in image processing and denoising [31], in a fluorometric study [27] and in the

classification of algae species through a fluorescence spectroscopic study [28].

8
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3 Mathematical background

In this section, all the mathematical methodology of the decompositions mentioned

in the previous section is briefly explained.

First, there is a small remark to understand the notation follow in this thesis. Then,

all the matrix decomposition methods are explained. Afterwards, some preliminary

concepts of tensor calculus are introduced to fully understand the later decomposi-

tion methods for tensors. Lastly, the Matlab matrix notation is explained in order

to ease the reading of the project.

This section is mainly inspired by the works of Taira et al. [32], Lathauwer et al.

[19] and Kolda & Bader [33].

3.1 Notation

Hereafter, in order to avoid confusion, the notation will follow some rules. Scalars

will be denoted as lower-case letters (a, b, c, ...), vectors as lower-case letters with an

arrow above (~a,~b,~c, ...) or also by bold lower-case letters (a, b, c,...); matrices are

represented by bold capital letters (A,B,C,...) and tensors as calligraphic letters

(A,B, C, ...). The coordinates of a tensor are depicted as (i, j, k), e.g., the element

at 1st row, 3rd column and 2nd tube of tensor A is A132. The index of an element

at the end of a given dimension is depicted as the capital letter of that dimension,

e.g., i = 1, 2, ..., I.

3.2 Eigenvalue Decomposition

This type of decomposition can be only applied to square matrices when the rank

coincides with the domain of the matrix. So that, this procedure is very limited.

First of all, let introduce the concept of eigenvalue and eigenvector. An eigenvector

(~v) and an eigenvalue (λ) are defined in such a way that the following expression is

satisfied.

A~v = λ~v (1)

9
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Where A ∈ Rnxn, ~v ∈ Rn and λ is a scalar. The eigenvalue decomposition starts

with:

AV = VΛ (2)

Such that V is the matrix form by the eigenvectors of A as column vectors and Λ

is a diagonal matrix composed by the eigenvalues of A.

V=[~v1, ~v2, ... ~vn]

Λ=diag(λ1, λ2,... λn)

Finally the eigenvalue decomposition results in:

A = VΛV−1 (3)

3.3 Singular Value Decomposition (SVD)

The SVD can be applied to any matrix independtly of its shape and rank so it is

less limited than the eigenvalue decomposition.

SVD starts assuming that:

A~vj = σj~uj (4)

In matrix form:

AV = ΣU (5)

Where A ∈ Rmxn, V ∈ Rnxn, U ∈ Rmxm and Σ is a diagonal matrix composed by

the singular values of matrix A (σ1 ≥ σ2 ≥ ... ≥ σn)

The Singular Value Decomposition results in:

A = UΣVT (6)

In order to obtain the SVD of a matrix A, the matrices U and V are composed by

the eigenvector of the matrix AAT and ATA respectively. On the other hand, the

singular values (σj) are the square root of the eigenvalues of either matrices AAT

or ATA.

SVD is typically used for dimensionality reduction by reducing the rank of Σ elim-

inating the smallest singular values of the matrix.

10
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3.4 Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition is a modal decomposition technique that iden-

tifies the modes of a flow field, e.g., in order to extract coherent structures from

turbulent flows.

POD starts with an input vector field (e.g velocity) ~q(ξ, t) and assuming that it can

be decomposed as follows:

~q(ξ, t) =
∑

aj~φj(ξ, t) (7)

Where ~φj(ξ, t) represents the modes, aj the expansion coefficients and ξ denotes the

spatial component.

In order to have a better comprehension, it is helpful to split the space and time

magnitudes, where ~φj(ξ) denotes the spatial modes

~q(ξ, t) =
∑

aj(t)~φj(ξ) (8)

3.4.1 Classical POD Method

Starting from the input vector field ~q(ξ, t), the vector ~x(t) is the fluctuating term of

the data vector with the time-averaged value q̄(ξ) removed such that:

~x(t) = ~q(ξ, t)− q̄(ξ) (9)

Where ~x(t) is considered as a snapshot of the flow at time t = t1, t2, ..., tn.

The aim of POD is to find a set of vectors ~φ(ξ) that best represents the flow data

~q(ξ) in an optimal way and with the least number of modes. In order to do that,

the eigenvalue problem will be used for the next expression:

R~φj = λj~φj (10)

Where ~φj ∈ Rn, R = XXT ∈ Rnxn and X=[~x(t1), ~x(t2), ..., ~x(tm)] ∈ Rnxm.

The eigenvectors found from Eq. 10 are called POD modes.

If the eigenvalues of XXT are arranged from the largest to the smallest, it is pos-

sible to extract the more energetic modes of the flow field to be used in a future

interpretation. With the most energetic modes, it is possible to show the most im-

portant behaviors of the flow by imposing Eq. 8, where the term aj is the vectorial

product of ~x(t) and ~φj(ξ).
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3.4.2 Method of Snapshots

When the sample n becomes very large, also does the eigenvalue problem since

R = XXT ∈ Rnxn. The method of snapshots consist of solving a reduced eigenvalue

problem to find the POD modes. This method takes a collection of snapshots ~x(ti)

ti = t1, t2, ...tm (m << n) such that the important fluctuations in the flow field are

well resolved in time:

XTX ~ψj = λj ~ψj (11)

Where ~ψj ∈ Rm and XTX ∈ Rmxm instead of Rnxn. Relating the eigenvalues, they

are the same that in the previous procedure.

With the eigenvectors ~ψj, the POD modes can be obtained according to the next

equation:

~φj = X~ψj
1√
λj

(12)

3.4.3 SVD and POD

The POD can be related to the SVD as follows:

X = ΦΣΨT (13)

This means that SVD can be applied to a matrix X to obtain the POD modes ~φj(ξ)

(column vectors of matrix Φ). Furthermore, eliminating the smallest terms of the

matrix Σ it is possible to obtain the most relevant modes of the flow field.

Fig. 1 illustrates the first and second modes, blue and red respectively, of an arbi-

trary snapshot matrix A. Identifying the dimension n as the time domain and d as

the spatial one, the time modes are the columns of matrix U and the spatial modes

are the rows of matrix V T .
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Figure 1: Illustration of the first mode (blue) and second mode (red). Adopted from
[34].

3.5 Preliminary concepts of tensor calculus

3.5.1 Subtensors and fibers of a tensor

A subtensor, also known as a slice, is the result of fixing one dimension of the tensor,

e.g., horizontal slices are obtained by fixing the i dimension and is depicted by Ai::.
A particular case is the frontal faces A::k that can be simplified to Ak.

Figure 2: Subtensors of a 3rd order tensor. Adopted from [33].

On the other hand, fibers are obtained by fixing two dimensions of the tensor, e.g.,

tube fibers (mode-3) are denoted as Aij:
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Figure 3: Fibers of a 3rd order tensor. Adopted from [33].

Moreover, the Frobenius norm of a tensor A ∈ RI1×I2×I3×...×IN is the square root of

the sum of the square of all its elements:

||A|| =

√√√√ I1∑
i1=1

I2∑
i2=1

...

IN∑
iN=1

x2i1i2...iN (14)

3.5.2 Matricization

Matricization, also known as unfolding, is the process of arranging the terms of

a tensor transforming a tensor into a matrix. Thus, an N th order tensor can be

unfolded in N different ways. For example, a 3 × 5 × 4 tensor (3rd order tensor)

can be transformed as a 3 × 20 matrix, 5 × 12 and 4 × 15 matrix.

There are more than one method to perform the matricization but only the n−mode
matricization will be explained since it is the most relevant for the case of study of

this paper. The n-mode unfolding of a tensor A is depicted as the matrix A(n). The

methodology is condensed in the next Figure.
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Figure 4: Matricization of a I1 × I2 × I3 tensor. Adopted from [19].

The matrix A(1) will have a shape of I1 × I2I3. In the same way, the dimensions of

matrix A(2) will be I2 × I3I1 and the matrix A(3) will be a I3 × I1I2 matrix.

The best method to understand this procedure is with the use of an example.

Let the frontal slices of a tensor A ∈ R3×4×2:

A1 =

1 2 3 4

5 6 7 8

9 10 11 12


3×4

A2 =

13 14 15 16

17 18 19 20

21 22 23 24


3×4

Then, the unfolded matrices of A are:
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A(1) =

1 2 3 4 13 14 15 16

5 6 7 8 17 18 19 20

9 10 11 12 21 22 23 24


3×8

A(2) =


1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

4 8 12 16 20 24


4×6

A(3) =

[
1 5 9 2 . . . 4 8 12

13 17 21 14 . . . 16 20 24

]
2×12

3.5.3 Matrix Kronecker product

The Kronecker product of two matrices A ∈ RI×J and B ∈ RK×L is denoted by A

⊗ B. The result of this product is a (IK) × (JL) matrix defined by:

A⊗B =


a11B a12B a13B . . . a1JB

a21B a22B a23B . . . a2JB
...

...
...

. . .
...

aI1B aI2B aI3B . . . aIJB


In order to better understand the Kronecker product let introduce, as an example,

the matrices A and B and then compute the Kronecker product between them:

A =

[
1 2

3 4

]
; B =

[
5 6

7 8

]

A⊗B =


5 6 10 12

7 8 14 16

15 18 20 24

21 24 28 32


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3.5.4 Khatri-Rao product

The Khatri-Rao product is defined as the ”matching columnwise” Kronecker product.

The Khatri-Rao product of matrices A and B is denoted by A � B. The result is

a (IJ) × K matrix such that:

A�B = [a1 ⊗ b1a2 ⊗ b2 . . . aK ⊗ bL] (15)

A�B =


5 12

7 16

15 24

21 32


3.5.5 Multiplication of a tensor by a matrix: n-mode product

The n-mode product is used to multiply a tensor times a matrix. The n-mode

product of a tensor A and a matrix U is depicted as A ×nU. The idea of this

product is that the matrix U multiplies every n-mode fibers of the tensor A. This

can also be seen in terms of matrix subtensors.

Y = A ×nU ⇔ Y(n)=UX(n)

In order to match dimensions for the matrix product, the number of columns of

matrix U must coincide with the length of the n-mode fibers.

Again, the best method to understand this product is with an example. Let consider

the tensor A ∈ R3×4×2 of section 3.5.2 and the matrix U ∈ R2×3.

U =

[
1 2 3

4 5 6

]
;

Then, the tensor X is obtained as follows: X = A ×1U.

X1 =

[
38 44 50 56

83 98 113 128

]
; X2 =

[
110 116 122 128

263 278 293 308

]
;
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3.6 Multilinear Singular Value Decomposition (MLSVD)

The MLSVD, also called Tucker Decomposition or High Order Singular Value De-

composition (HOSVD) consists on the decomposition of an N th order tensor. The

MLSVD for a 3rd order tensor A is illustrated in the next Figure.

Figure 5: Visualization of a Tucker decomposition of a 3D tensor A. Adopted from
[33].

Since the MLSVD is used as a tool in this thesis, there is no need of a full explanation

of the MLSVD algorithm. However, in case of more interest, the algorithm is well

explained by Kiers & Kinderen [35].

The tensor A ∈ RI×J×K is called original tensor and it is decomposed into a core

tensor S ∈ RP×Q×R and three matrices [ U (1) ∈ RI×P ; U (2) ∈ RJ×Q; U (3) ∈ RK×R].

Algebraically, the MLSVD of a complex (I1 × I2 × . . . IN) tensor A can be written

as the next product:

A = S ×1 U
(1) ×2 U

(2) · · · ×n U (n) (16)

The matrix U (n) is quite similar with the side matrices in SVD in the sense that it

is composed by orthonormal columns. The core tensor S is composed by subtensors

that fulfill the all-orthogonality property:

〈Sin=α,Sin=β〉 = 0 (17)
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Eq. 17 means that every horizontal subtensors (i1 is fixed) are mutually orthogonal.

The same happens with the frontal (i2 fixed) and vertical subtensors (i3 fixed).

Each subtensor is ordered in descendent order as function of the Frobenius norm of

each slice:

||Sin=1|| ≥ ||Sin=2|| ≥ · · · ≥ ||Sin=In|| ≥ 0 (18)

This order is quite similar with the order of the singular values of the diagonal matrix

of the SVD.

The entries of the core tensor S measures the level of importance between the

different elements. On the contrary of the diagonal matrix of the SVD, the entries

of S are not necessarily positive and real. Another important difference with the

diagonal matrix of SVD is that the core tensor is not a purely diagonal tensor, which

means that the only non-zero terms would be at indices i1 = i2 = · · · = iN . Instead,

S fulfills the all-orthogonality property.

On the other hand, although the right matrix in SVD is transposed, U (2) has not

been transposed because of symmetry reasons. Moreover, similarly than in the

ordinary SVD, in MLSVD the modes are identified as the column vectors of each

U (n) matrix, e.g., the modes of the J-dimension are represented in the columns of

matrix U (2).

3.6.1 The n-rank

As in the SVD case, it is desirable to reduce the rank of the core tensor in order to

better identify the most significant modes.

The rank of a tensor A is denoted as rank(A) and it is defined as the smallest

number of rank-one tensors that generate A. The definition of tensor rank is an

exact analogue of matrix rank. However, the properties are not the same and the

main difference is that there is no simply algorithm to obtain the rank of a tensor,

e.g., the rank of a 9 × 9 × 9 tensor can oscillate between 18 and 23.

Despite of this, in order to simplify the core tensor, it is needed to introduce the

n-rank. Let A an N th order tensor of size I1× I2× . . . IN . The n-rank of A, denoted

as rankn(A), is the column rank of matrix A(n). To have a better comprehension,

let define Rn=rankn(A) for n= 1,2,...,N. Then, it can be said that A is a rank-

(R1, R2, ..., RN) tensor. It is clear that Rn< IN . Thus, the difference between tensor
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rank and the n-rank is that for the latter it is used the matrix unfoldings. Note that

both definitions are completely different.

The MLSVD saw in section 3.6 was a decomposition of A where Rn=rankn(A).

In order to reduce the size of the core tensor it is required to set the condition

Rn< rankn(A) for one or more n. This method is known as Truncated MLSVD

which is illustrated in the next Figure.

Figure 6: Truncated Tucker Decomposition. Adopted from [33].

One method to perform the Truncated HOSVD is using some equivalent represen-

tation of the Tucker Decomposition to try to see some relation between the matrix

SVD and HOSVD. Taking advantage of the matrix unfoldings, the decomposition

of tensor A can be expressed as:

A(n) = U (n) · S(n) ·
(
U (n+1) ⊗U (n+2) ⊗ · · · ⊗U (N) ⊗U (1) ⊗U (2) · · · ⊗U (n−1))T

(19)

An example for a third-order tensor would be:

A(1) = U (1) · S(1) ·
(
U (3) ⊗U (2)

)T
A(2) = U (2) · S(2) ·

(
U (3) ⊗U (1)

)T
A(3) = U (3) · S(3) ·

(
U (2) ⊗U (1)

)T
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Now, let define a diagonal matrix Σ(n) ∈ RIn×In and an orthonormal matrix V (n)

∈ RIn+1In+2...IN I1I2...In−1×In such that:

Σ(n) = diag
(
σ
(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

)
(20)

V (n)H = S̃(n) ·
(
U (n+1) ⊗U (n+2) ⊗ · · · ⊗U (N) ⊗U (1) ⊗U (2) · · · ⊗U (n−1)) (21)

In which σ
(n)
i is the Frobenius norm of the rows of S(n) and S̃(n) is the normalized

matrix of S(n) defined as:

S(n) = Σ(n) · S̃(n) (22)

Expressing Eq. 19 in terms of V (n)H and Σ(n), the HOSVD results in a SVD matrix

form:

A(n) = U (n) ·Σ(n) · V (n)T (23)

Now, the least important diagonal terms of Σ(n) could be removed in order to sim-

plify the MLSVD method.

3.7 CP Decomposition

CP Decomposition is the special case of the HOSVD when the core tensor is super-

diagonal, i.e., Sijk = 0 if any two indices are distinct.

CP Decomposition, illustrated in Fig. 7, consists of obtaining the tensor X as the

sum of rank-one tensors. Given a tensor X of size I × J × K, it is desirable to have

the decomposition:

X =
R∑
r=1

ar ◦ br ◦ cr (24)
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Such that r = 1, ..., R, ar ∈ RI , br ∈ RJ , cr ∈ RK . The outer product of two vectors

is defined as:

u ◦ v = uvT (25)

Elementwise, Eq. 24 can be expressed as:

xijk ≈
R∑
r=1

airbjrckr (26)

For i = 1, ..., I, j = 1, ..., J and K = 1, ..., K.

Figure 7: Illustration of the CP decomposition. Adopted from [33].

Although this particular case for which the CP Decomposition (core tensor is diago-

nal) cannot be applied in a general form, note that this rank-one tensors are similar

to the columns of the matrix U (n) of the HOSVD. In this way, the original tensor A
can be expressed as the outer product of the core tensor and these rank-one tensors:

A =
I∑
i=1

J∑
j=1

K∑
k=1

N∑
n=1

Si,j,k,n ◦U (1)
i ◦U

(2)
j ◦U

(3)
k ◦U

(n)
N (27)

A combination of the HOSVD and this multilinear modal decomposition form (Eq.

27) is the tensor decomposition method used during the development of this thesis.
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3.8 Matlab matrix notation

In order to ease the reading of the next sections of the thesis, the Matlab matrix

notation should be explained.

In fact, the Matlab notation for matrices is very similar to other programming

languages such as Python or C/C++.

Let consider a 2-D matrix A. Then the entry corresponding to the first row and

second column will be denoted as A(1, 2). So, the first number means the row

and the second number represents the column. In case of selecting just the second

column of A would be A(:, 2). Conversely, in case of selecting the third row would

be A(3, :). In contrary of other languages, the position index in Matlab starts at

one instead of zero. In addition, in case of dealing with tensors, the third dimension

would be denoted in the third position. For instance, to access to the second matrix

with all the rows and columns would be A(:, :, 2). The same procedure applies to an

N th order matrix.
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4 Flapping wings parametric study

Flapping wings problems are very complex and they have not been well understood

yet. Besides, they are influenced by a large number of parameters. In this way, it

could be interesting to perform a multilinear decomposition over a flapping wing

problem and make a parametric study of multiple variables at the same time.

This section introduces the problem of flapping wings through some kinematic con-

cepts and a brief state of the art. Then, the motivation to apply a multilinear modal

decomposition in this type of problems is discussed. Finally, the experimental pro-

cedure, from which the data is taken, is explained with some remarks in the data

collection, the experimental sources of error and the tensor construction for its later

modal decomposition.

4.1 Introduction of flapping wings

The main source of lift and propulsion in nature is flapping wings, which are present

in fish, birds and insects. Nowadays, there is an increasing interest in the study of

the aerodynamics of flapping wings due to its use in ornithopters [36], robotic fish

[37] and micro air vehicles (MAVs). The operating conditions of MAVs are close to

those in which birds and insects actually fly: a low Reynolds (Re) number, a high

amplitude and moderate frequency motion [38]. For a better design of MAVs, a deep

study of the aerodynamics of flapping wings is crucial.

First, let introduce some kinematic concepts of flapping wings. The motion of a

flapping wing is governed by two harmonic oscillations: pitching and plunging, also

called heave.

• Pitch motion. The pitching is the rotation about a wing pivot point and its

expression is:

θ(t) = θm + θ0sin(2πft+ φ) (28)

In which θm is the mean pitching angle, θ0 is the pitching amplitude, f is the

motion oscillation frequency and φ is the phase lag angle between the pitch

and plunge motion.

25



Daniel Rubio Garćıa

• Plunge motion. The plunging, also called heave, is the vertical wing dis-

placement whose mathematical expression is:

h(t) = h0 sin(2πft) (29)

Where h0 is the plunging amplitude.

These two motions are illustrated in Fig. 8 and 9.

Figure 8: Plunge motion. Adopted from
[2].

Figure 9: Pitch motion. Adopted from [2].

To make these two motions more clear, Fig. 10 shows the combination of these two

motions: heave and a 180° pitching.

Figure 10: Airfoil trajectory combining heave motion and a 180° pitch change.
Adopted from [39].
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These two motions result in an effective angle of attack given by the following equa-

tion:

αeff (t) = θm + θ0sin(2πft+ φ)− atan(
1

U∞

dh

dt
) (30)

Another important parameter in flapping wings is the Strouhal number (St), which

is defined as the dimensionless number given by the following expression:

St =
2fh0c

U∞
(31)

The first study of flapping wings was carried out by Leonardo Da Vinci in 1505 when

he tried to make a man powered ornithopters [40].

Later, at the beginning of the twentieth century, independently Knoller (1909) [41]

and Betz (1912) [42] noted that the vertical movement of an airfoil produces an

effective angle of attack and an aerodynamic force that could be decomposed as

lift, in the perpendicular direction of flight, and thrust, in the direction of flight.

In 1922, Katzmayr [43] made the first experimental observations of this phenomena

and Ober (1925) [44] gave some theoretical explanations to this topic.

In 1935, Theodorsen [45] carried out theoretical computations of an airfoil under

small amplitude plunging leading to the conclusion that all pure plunging motions

generate thrust, which is proportional to the square of the frequency of the motion.

Moreover, another conclusion he obtained was that the propulsion efficiency ap-

proaches to 1.0 as the frequency of the heaving motion approaches to zero and that

the efficiency behaves asymptotically with a value of 0.5 at high frequencies of heave

motion. Additionally, in 1936, Garrick [46] used Theodorsen´s work to obtained

that the drag in a flapping wing can be split in two contributions: the pressure force

acting along the airfoil and the leading-edge suction. Later, Theodorsen in 1949 [47]

developed a complete theory based on potential flow that was able to predict the

aerodynamic forces on a thin airfoil for small-amplitude motions at high Re.

Thanks to experiments, Freymuth [48] discovered in 1988 that the drag wake is

analogous to the von Kármán street behind a bluff body. Also demonstrated that

any airfoil under either pure pitching or pure plunging generates a thrust force.

It is acknowledged in the flapping wings field that the performance highly depends on

the formation of leading edge and trailing edge vortices (LEV and TEV). Ellington

et al. [49] discovered that the formation of a LEV is the main mechanism of lift
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generation in flapping wings. Streitlien et al. [50] demonstrated experimentally the

effect of the interactions between the LEV and TEV on the thrust and propulsive

efficiency. In addition, Anderson et al. [51] stated that the optimum propulsion

efficiency happens at an specific level of interaction between the leading edge and

trailing edge vortices.

As in fixed-wing aerodynamics, an increase of the angle of attack will translate into

an increase of lift but as long as the LEV remains attached to the foil. If the angle

of attack continues increasing, there will be a point in which the flow separates

at the leading edge followed by a sudden drop of lift force. This phenomenom is

called dynamic stall [52]. It has been theorized that many insects fly at the limit

of dynamic stall, where high lift coefficients are generated after a sudden change in

the effective angle of attack [53] [54].

Furthermore, Read et al. [39] performed an experiment varying the heave and

pitching phase angle obtaining the conclusion that a phase angle of 90 - 100° gives

the best thrust performance.

4.2 Objective of the study

The aerodynamic forces acting on flapping wings have been tried to assess using

complex models. An example is the one developed by Hall & Hall [55] who takes

advantage of vortex lattice method to extract the optimal circulation distribution for

a certain lift and thrust force. This vortex lattice method works without regarding

the geometry or the airfoil movement. However, as it is based on potential flow

theory, this model does not include flow separation. This method was improved by

Hall, Pigott & Hall [56] including viscous drag effects. Jones, Dohring & Platzer

[57] developed another model to determine the wake of a flapping airfoil under

plunging and pitching which resulted to be very accurate with the experimental

data, obtaining the conclusion that the wake evolution is mainly due to an inviscid

phenomenon.

These models try to describe the complex physical phenomena under flapping motion

but modal decomposition allows to perform a simpler parametric study. With a

modal decomposition, it can be easily seen how each parameter affects individually

to the system without the necessity of entering into too much detail in the fluid

mechanics field.
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N-way principal component analysis permits to performed a modal decomposition

of more than two parameters at the same time. This thesis will be focused on the

parametric study of the pitching amplitude (θ0), the mean pitching angle (θm) and

the Strouhal number (St) based on the experimental data set obtained by Maŕıa del

Mar Carrillo [2].

4.3 Experimental data set details

4.3.1 Data collection

The data set analyzed is an experimental data set taken by Maŕıa del Mar Carrillo

[2] carried out in the water tunnel facility of the Aerospace Engineering department

of the Universidad Carlos III de Madrid. Using this data set, Carrillo studied the

influence of certain parameters on the CL and CD of a flapping wing.

For all the experiments, the wing tested was a rectangular wing NACA0012 airfoil

with a chord of 0.03m, a thickness-to-chord ratio t
c

= 0.12, a span of 0.49 m and

an aspect ratio of 16.3m. The experiment was done under low Reynolds number

(Re ≈ 3500− 3600), Re = U∞c
ν

, with a plunging amplitude (h0) equals to the wing

chord under an upstream velocity (U∞) equals to 0.12 m/s and assuming air as the

working fluid with a dynamic viscosity of the order of 10−5m2/s. The phase angle

φ between heave and pitching has been set to 90°. The flapping frequencies are 0.2

Hz, 0.4 Hz and f=0.6 Hz which gives three values of St: St = 0.1, St = 0.2 and

St = 0.3 respectively.

The experiments could have been done either in a water or a wind tunnel. However,

the forces measured in a water tunnel are larger so the overall force resolution is also

better. The difference in force magnitude of air and water is shown in Eq. 32.

Fwater
Fair

=
1
2
ρwaterU

2
water

1
2
ρairU2

air

≈ 10 (32)
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On the other hand, the time parameter was made dimensionless by diving the time

by the period (t/T ), taking values from 0 to 1. The values of mean pitch angle

(θm) and the ones of pitch amplitudes (θ0) chosen for the experiment goes from 0°
to 15° with an interval of 5 degrees. The values of the different parameters in the

experiment are summarized in Table 1.

θ0 0° - 5° - 10° - 15°
θm 0° - 5° - 10° - 15°
t/T 0 - 1 (in 100 steps)
St 0.1 - 0.2 - 0.3

Table 1: Values of parameters

4.3.2 Sources of error

In the experiment carried out by Carrillo [2], there are three main sources of error:

• Error due to sensor bias. When the sensor is turned on, the strain gauges

of it starts to emit power proportional to the product of the gauge resistance

and the square of the current. This is called the Joule´s effect. This bias error

was already corrected by Carrillo in her work [2].

• Sensitivity error or random error. As it is a random, Carrillo [2] removed

this error easily after a long measurement since it decreases with the square

root of samples measured.

• At the time of performing the experiment, in order to join the sensor to the

wing and to the rod mechanism, a L-type beam is used. This support mecha-

nism implies that the centre of pitching is not in the wing, but 12 mm vertically

displaced. This will produce an azimuthal component of the velocity during

the pitching motion. For a general rotation, the azimuthal component of the

velocity is given by the following equation:

Vh = rθ̇ = 2πrfθ0 cos(2πft+ φ) (33)

Where r = 12mm.

This velocity causes an unavoidable error. Nevertheless, the maximum value

of this azimuthal velocity is 0.016 m/s, so it will not be noteworthy for the

results.
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4.3.3 CL and CD rotation

At a first instance, the modal decomposition would be perform on CL and CD
coefficients. However, the results obtained were not smooth enough. This is the

reason why the modal analysis has been applied to the vertical and horizontal force

coefficients instead, CY and CX respectively.

CY =
FY

1
2
ρSU2

∞
(34)

CX =
FX

1
2
ρSU2

∞
(35)

In order to do the conversion from CL and CD to CY and CX , a projection with

respect to the angle θ has to be performed according to Fig. 11 and Eq. 36 and 37:

CY = CL cos θ + CD sin θ (36)

CX = −CL sin θ + CD cos θ (37)

Figure 11: Scheme of the rotation of CL and CD.
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4.3.4 Tensor construction

HOSVD was used to perform a parametric study to see the influence of θ0, θm and

the Strouhal number (St) on CX and CY over time.

As can be seen in Section 4.3.2, the error is mainly concentrated on the mean value

of the force. For this reason, the mean value of each experimental data was removed

at the time of constructing the tensor. In this way, the parametric study was focused

only on the fluctuating part of the force coefficients.

The data set for CY and CX was located in a fourth-order tensor CY and CX ∈
R4×100×4×3 in which the first dimension (i = 1, 2, 3, 4) means the variation of θ0,

the second (j = 1, 2, ..., 100) identifies the dimensionless time variable, the third one

(k = 1, 2, 3, 4) means the θm parameter and the fourth dimension (l = 1, 2, 3) means

the St variation, i.e., CY ∈ Rθ0×t×θm×St. The coefficient letter corresponding to each

parameter is summarized in Table 2.

Parameter Coefficient
θ0 i
t/T j
θm k
St l

Table 2: Coefficient letter corresponding to each parameter.

After the simulation, the results are a core tensor S of size 4× 20× 4× 3, and the

matrices U (n) are [ U (1) ∈ R4×4; U (2) ∈ R100×20; U (3) ∈ R4×4; U (4) ∈ R3×3].

Consequently, as detailed in Section 3.6, the columns of the matrices U (n) are iden-

tified with the modes of the n parameter. In this particular flapping wing data set,

the columns of U (1) identify the modes of the parameter θ0, U
(2) with dimensionless

time, as well as U (3) with θm and U (4) with St.
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5 Results

This section shows the results after performing the multilinear modal decomposition

of the tensor of both force coefficients studied, CY and CX respectively. In addition,

the application of the called comparison method and the coefficient of determination

are explained to have a better discussion of the results. The modes obtained are

compared with the experimental results obtained by Carrillo [2] to proof the validity

of the multilinear modal decomposition.

5.1 Parametric study of CY .

The Frobenius norm of the subtensors of the core tensor obtained by fixing one

parameter are depicted in Figure 12a, 12b,12c and 12d.

(a) Frobenius norm of θ0 subtensors. (b) Frobenius norm of time subtensors.

(c) Frobenius norm of θm subtensors . (d) Frobenius norm of St subtensors.

Figure 12
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Fig. 12a, 12c 12b and 12d show that the different subtensors of the tensor CY are

ordered in a descendent way as already explained in Eq. 18. Now, let focus on Fig.

12b which has a large sample. It is clear that the most significant subtensors are the

first three ones while the rest can be considered as noise and they are not relevant

for the aim of the parametric study.

Regarding the parametric study, the output of the HOSVD is much more compli-

cated to interpret than the case of the ordinary matrix SVD. The main issue is that

the core tensor is not diagonal. However, as seen in Figure 12b, the entries of the

core tensor are organized in descendent order, also seen in [19]. In other words, the

most relevant entries of the core tensor are located at low values of i, j, k, l. This

property was used by Henrion et al. [28] reducing the size of the core tensor in order

to remove the least relevant entries of the tensor and to decrease computation time.

In the case of the present paper, the core tensor is truncated up to a 3×3×3×3 ten-

sor. Although this truncation may be seen severe, the reality is that the tensor still

has 81 (34) rank-one tensors that have to be analyzed (instead of the 4,800 rank-one

tensors of the original tensor) which means that no relevant information is missing

after the truncation. To summarize, this truncation has the power of simplifying

the original tensor as well as get rid of the non-relevant rank-one tensors, which

translates into a large reduction in computation time. Of course, this truncation

has an effect on the all-othogonality property of the core tensor, but this property

does not have any relevance at the time of performing a parametric study.

After this truncation, the comparison of the square of each core tensor entry is per-

formed with respect to the sum of the squared entries of the whole tensor. The

comparison is shown in Table 3. According to the rank-one tensor property ex-

plained in Section 3.7, the coefficients of each entry (i, j, k, l) are related to their

corresponding modes in the following way: U
(1)
i , U

(2)
j , U

(3)
k and U

(4)
l as seen in Eq.

38.

A =
I∑
i=1

J∑
j=1

K∑
k=1

L∑
l=1

Si,j,k,l ◦U (1)
i ◦U

(2)
j ◦U

(3)
k ◦U

(4)
l (38)

Hereafter, this method will be called comparison method.
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n (i, j, k, l) S2
i,j,k,l/

∑
S2
i,j,k,l,(%)

1 (1,1,1,1) 93.82
2 (1,2,1,2) 3.50
3 (2,1,1,2) 0.43
4 (2,2,1,1) 0.37
5 (1,2,2,1) 0.35
6 (2,1,1,3) 0.28
7 (2,2,1,1) 0.19

Table 3: Leading mode combinations of CY according to the comparison method.

Table 3 shows the effect of the parameters for the overall set of cases. The values

of the right column represent the relative weight of the particular mode combina-

tion to the whole system. As expected, the combination of the first mode of each

parameter (1,1,1,1) is the most relevant one, since the core tensor and side matrices

are organized in descendent order [19]. On the other hand, the combination of the

first θ0 mode, the second mode of the time, the first mode of θm and second mode of

the St, (1,2,1,2), has a less impact on the system, but still plays an important role

as it will be discussed later. The rest of the combinations seems to have a negligible

effect on the average of CY over the entire ensemble.

After the development of the comparison method, it is needed to show its validity

comparing the results obtained by the comparison method with the experimental

data obtained by Carrillo [2].

Fig. 13 shows the effect of the variation of θ0 (Fig. 13a), θm (Fig. 13b) and St (Fig.

13c) parameters on the CY over time. These figures will be very helpful at the time

of discussing the results obtained with the MLSVD and the comparison method.
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(a) (b)

(c)

Figure 13: (a) θ0 effect on CY with θm = 0° and St = 0.3; (b) θm effect on CY with
θ0 = 5° and St = 0.3; (c) St effect on CY with θ0 = 0° and θm = 0°.

Moreover, Fig. 14 shows the most relevant modes of the CY tensor according to the

comparison method seen in Table 3.

First of all, the first time mode of Fig. 14b shows clear sinusoidal dependency of CY
with time. Indeed, this shape is the one that appears in almost all the cases of CY
as can be seen in Fig. 13b for instance.
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(a) First θ0 mode of CY . (b) Time modes of CY .

(c) First θm mode of CY . (d) St modes of CY .

Figure 14: Most relevant modes of CY .

Furthermore, the effect of the first θ0 mode (Fig 14a) is very close to be linear, with

a slope of -0.129 deg−1, in such a way that if θ0 increases, the amplitude of CY
decreases as seen in Fig. 13a.

On the other hand, the behavior of the first θm mode is almost constant (with a

little positive slope of 0.0043 deg−1) which can be translated into a no relevant effect

of θm on CY . Having the reference of Fig. 13b, it can be seen that there is no a

relevant tendency while changing the θm parameter.

The first Strouhal mode (Fig. 14d) behaves like a linear function with a slope of

6.3745. This linear tendency can be seen in Fig. 13c where an increase of the St

means an increase of the amplitude of the force coefficient.
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(a) (b)

Figure 15: (a) CY variation with θ0 (θm = 0° and St = 0.2) and the reconstruction
using just the most relevant mode combination; (b) CY variation with St (θ0 = 0°
and θm = 0°). Reconstruction cases are depicted in dotted lines.

In addition, Fig. 15a and 15b show the curves obtained after performing the re-

construction with only the first mode combination (dotted lines). These two figures

show, with more clarity, the effect of the first θ0 mode (Fig. 15a), which is a decrease

of the amplitude of CY as θ0 increases, and the effect of the first mode of St (Fig.

15b), the increase of the amplitude of CY as Strouhal number increases.

The second relevant combination of modes (1, 2, 1, 2) is exactly the same for the

modes of θ0 and θm but the time and St modes change. The second time mode (Fig.

14b in red) has the shape of a nearly sine function (it is still a periodic function) but

it is shifted to the right (around 90°) with respect to the first mode. The contribution

of the two time modes (with a larger contribution of the first mode) leads to a shift

to the right. This shift can be easily seen in Fig. 13c where it is very appreciable the

effect of the first two time modes. In addition, the impact of this shift is even more

clear in Fig. 15a and 15b where, as the second time mode has not been considered

to perform the reconstruction, no shift appears in the reconstruction cases.

Moreover, in the second mode of the Strouhal number (Fig. 14d) can be seen what

Triantafyllou et al. [58] discovered experimentally. They discovered that the point

of maximum efficiency of lift generation lies between a range of Strouhal number of

0.25 ≤ St ≤ 0.35. In addition, it has been assessed that swimming animals actually

operates at the same range of Strouhal [59]. A data with more measured points

would make to see this conclusion in a clearer way.

Although the comparison method was first introduced by Henrion et al. [28], they
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did not show its validity with a much more confident tool than simply comparing

the results with the experimental data. A much more reliable tool for analyzing

the validity of the comparison method is the coefficient of determination (R2). The

coefficient of determination, introduced by Wright [60] and used by Devore [61] and

Cameron [62] among others, can be used to determine how close the reconstruction,

using just a few combination of modes, is compared to the real function. In the

present paper, the function is the different time vectors of the tensor CY (i, :, k, l)

denoted in Table 4 following the Matlab notation.

R2 = 1− SSres
SStot

(39)

Where:

SSres =
∑

(y − f)2, (40)

SStot =
∑

(y − ȳ)2 (41)

Being y the real time case from the data set of the experiment, ȳ the mean value of

the vector y and f the reconstruction time vector using n mode combinations.

y = CY(i, :, k, l) for a certain i, k and l.

f(n) ' Sn ×1 U
(1) ×2 U

(2) ×3 U
(3) ×4 U

(4) (42)

Where Sn is a 3× 3× 3× 3 tensor whose entries are all zero except for the entries

corresponding to the value n, where n ↔ (i, j, k, l).

This iterative procedure gives as a result the Table 4. Each value of the table

represents the value of the coefficient of determination obtained by the contribution

of the sum of mode combinations. For instance, the value of the first time case

(1,:,1,1) corresponding to the fourth column, which is 0.8644, is the value of the

coefficient of determination corresponding to the time case reconstruction using the

four previous combination of modes, that is, using the mode combination (1,1,1,1),

(1,2,1,2), (2,1,1,2) and (2,2,1,1). In addition, the last column shows the comparison

of the tensor entries previously seen in Table 3. The time cases selected to show the

coefficient of determination were chosen randomly.
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Time vector cases

n (1,:,1,1) (1,:,1,2) (1,:,2,1) (2,:,1,1) (2,:,1,2) (2,:,2,2)
S2
i,j,k,l/

∑
S2
i,j,k,l

(%)
1(1,1,1,1) 0.6543 0.8300 0.6398 0.7971 0.8717 0.8799 93.82
2(1,2,1,2) 0.8241 0.9686 0.2915 0.9549 0.9824 0.9948 3.49
3(2,1,1,2) 0.8711 0.9686 0.3199 0.9577 0.9828 0.9952 0.43
4(2,2,1,1) 0.8644 0.9633 0.3981 0.9551 0.9803 0.9822 0.37
5(1,2,2,1) 0.8801 0.9767 0.3395 0.9551 0.9809 0.9833 0.35
6(2,1,1,3) 0.9300 0.9767 0.3186 0.9619 0.9807 0.9831 0.28
7(2,2,1,1) 0.9360 0.9848 0.3194 0.9691 0.9881 0.9802 0.19

Table 4: Coefficient of determination as function of time cases and number of mode
combinations.

Table 4 shows that the combination of the first two modes is valid for the majority

of cases of the tensor CY , for instance the case (2,:,2,2) shown in Fig.16a. Note that

four out of six random cases are clearly defined with only the use of the first two

mode combination to performed the reconstruction. This means that comparison

method is a valid method to extract the global behavior of the different parameters

present in the experiment.

Moreover, other interest information that can be extracted from Table 4 is that there

are some cases, for instance (1,:,1,1) shown in Fig.16b, that need more than these

two mode combination to be clearly defined.

Furthermore, the case (1,:,2,1), shown in Fig. 16c, clearly shows that the previous

method is not valid for this particular case. This concludes that the comparison

method is not valid for all cases. In this instance, a different set of mode combinations

must be used to be able to define this case.

Summarizing, the comparison method is a good method to extract the global be-

havior of each variable of the experiment. Nonetheless, there are some exceptions:

• Some cases need more mode combination than others to be fully understand-

able.

• Some cases are not defined with the combination proposed by the comparison

method. In these cases, another different set of modes must be used to define

that cases.
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(a) (b)

(c)

Figure 16: (a) Reconstruction of CY (2,:,2,2); (b) Reconstruction of CY (1,:,1,1); (c)
Reconstruction of CY (1,:,2,1)

Once shown the validity of the comparison method, Table 3 shows that the effect of

θ0 and θm on CY is clearly defined with the first mode of each parameter as seen in

the experimental cases. On the other hand, the effect of time as well as the Strouhal

number effect on the force coefficient is a combination of the first two modes of each

parameter, specially in the case of the influence of time, where shift appears.

With this information, a simple approximate mathematical model can be extracted

taking into consideration a shift of 90° and that the θm parameter does not have any

relevant effect on CY . The functions f1, f2 and f3 can be approximated to be linear.

CY = f1(θ0)
[
f2(St)sin(2πft+ φ) + f3(St)sin(2πft+ φ+

π

2
)
]

(43)
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5.2 Parametric study of CX

The results of comparison method for the case of CX are displayed in Table 5.

n (i, j, k, l) S2
i,j,k,l/

∑
S2
i,j,k,l,(%)

1 (1,1,1,1) 78.46
2 (1,2,1,2) 6.18
3 (1,2,2,1) 4.84
4 (2,3,1,1) 2.64
5 (2,3,1,2) 0.64
6 (3,3,1,1) 0.58
7 (3,2,3,1) 0.56

Table 5: Leading mode combinations of CX according to the comparison method.

In the case of the CY , the comparison method gave as a result that the first two

mode combinations were enough to fully describe the behavior of the average of the

whole ensemble. Nevertheless, for the case of CX , it seems that is needed at least the

first four mode combinations to describe the behavior of the system. This translates

into a more complex results because the whole ensemble is influenced by a larger

number of modes.
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(a) (b)

(c)

Figure 17: (a) θ0 effect on CX with θm = 0° and St = 0.1; (b) θm effect on CX with
θ0 = 5° and St = 0.1; (c) St effect on CX with θ0 = 5° and θm = 5°.
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(a) θ0 modes of CX . (b) Time modes of CX .

(c) θm modes of CX . (d) St modes of CX .

Figure 18: Most important modes combination of CX .

Fig. 18 shows the most relevant modes of the CX tensor according to the comparison

method seen in Table 5.

First of all, it should be stand out that the combination of time modes (Fig. 18b)

leads to the actual shape of the cases as function of time. It can be seen a little

shift recurrent in all the cases due to the combination of the first three time modes,

similar to the case of CY .

The overall effect of the θ0 modes (Fig. 18a) for the set of cases is that increasing

θ0, the amplitude of CX increases as well, as seen in Fig. 17a.

The same happens with the effect of the Strouhal number. The St modes (Fig. 18d)

can be approximated accurately to a linear function with a slope of 2.478 for the first

St mode and a slope of 6.615 for the second mode. This means that the amplitude

of CX increases as the Strouhal number value increases as shown in Fig. 17c.
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Time vector cases
n (1,:,1,1) (1,:,1,2) (1,:,2,1) (2,:,1,1) (2,:,1,2) (2,:,2,2) (3,:,3,3)

1(1,1,1,1) -0.0353 0.0760 0.0281 0.8457 0.4967 0.8078 0.9187
2(1,2,1,2) -0.4595 0.0803 -0.3886 0.5863 0.4585 0.7917 0.9548
3(1,2,2,1) -0.3271 0.0734 -0.1188 0.7792 0.5030 0.7665 0.9549
4(2,3,1,1) -0.6259 0.2888 -0.6943 0.7178 0.5720 0.7905 0.9407
5(2,3,1,2) -0.7971 0.3757 -0.8666 0.6311 0.7167 0.8748 0.9487
6(3,3,1,1) -1.3731 0.3673 -0.7388 0.6013 0.7130 0.8670 0.9473

Table 6: Coefficient of determination as function of time cases and number of mode
combinations.

On the other hand, the effect of θm modes (Fig. 18b) is that as increasing the

value of θm the amplitude of CX grows and the CX curve losses its periodicity. This

phenomena can be seen in Fig. 17b.

Table 6 shows the values of the coefficient of determination for the case of CX
obtained in the same way that Table 4.

It can be seen that there are some cases that are clearly defined with just two mode

combinations like the case (3, :, 3, 3) depicted in Fig. 19a. Besides, there are other

cases that need extra mode combinations to be clearly defined, for instance the case

(1, :, 1, 2) shown in Fig. 19b. But, on top of this, there are some other cases with

a negative coefficient of determination, which means that the mode combinations

from which the reconstruction is done, cannot be used to describe the behaviour

of that case at all. In those cases, another completely set of combination of modes

must be used to defined them.

In the CY case, the coefficient of determination showed the validity of the comparison

method, but there were some exceptions. These exceptions are accentuated in the

case of CX . In other words, the comparison method is not completely valid to select

the most important mode combination for CX . Even so, it provides good results in

general, as seen before with the plots of each mode.
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(a) (b)

(c)

Figure 19: (a) Reconstruction of CX (3,:,3,3); (b) CX (1,:,1,2); (c) CX (1,:,1,1) with
n mode combinations.

Some of the reasons why the comparison method is not a feasible method to select

the most relevant mode combinations for majority of cases of CX could be:

• The force in the x-direction of a flapping wing is much more complex than the

force in y-direction.

• There may exist some physical phenomena that could change CX abruptly

while changing some of the parameters and cannot be evaluated with the

first mode combinations obtained with the comparison method, e.g., sudden

separation of the LEV for a certain value of St. The comparison method takes

into account all the data set as equal and cannot predict sudden physical

behaviors.
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• The data set for the CX is not as accurate as the one of CY . The data set of

CX should have more sample points and a higher signal-to-noise ratio. The

latter factor plays an important role in modal decomposition problems. The

magnitude of the forces in y-direction are much larger than in x-direction.

However, the measure instruments used by Carrillo [2] were the same, so the

magnitude of the noise for the case of CY and CX is similar. With a similar level

of noise but with a less signal intensity, the signal-to-noise ratio of CX is much

smaller than for the case of CY . This larger level of noise could accentuate

the error produce by the comparison method at extracting the most important

mode combinations.
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6 Discussion and summary

This section discusses the results from a literature point of view. Finally, the final

conclusions of the thesis are summarized.

In order to ease the reading of the discussion section, Table 7 summarizes the effect

of each parameter studied on the amplitude of both force coefficients.

Increasing θ0 Increasing θ0 Increasing St
CY Decreases (linear) Constant (small positive slope) Increases (linear)
CX Increases Increases Increases (linear)

Table 7: Summary of the effect of each parameter on the amplitude of CY and CX
according to the modal decomposition results.

6.1 Effect of pitching amplitude θ0 and mean pitch angle θm

After an extensive literature review, the effect of θ0 and θm parameter on the fluc-

tuating part of the force magnitude is difficult to predict and there is no a common

agreement that explains the effect of θ0 on the magnitude. Nevertheless, in the thesis

of Carrillo [2], the effective angle of attack is studied varying θ0 and θm parameters.

These variations are depicted in Fig. 20a and 20b. As seen in Eq. 30, the effective

angle of attack depends on the pitching motion θ(t) and the first derivative of the

heave motion ḣ(t). Besides, assuming that CD << CL, CY of Eq. 36 can be written

as:

CY ≈ CL cos θ (44)

Where CL can be approximated to:

CL ≈ 2παeff (45)
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(a) (b)

Figure 20: Variation of the effective angle of attack (αeff ) with θ0 (a) and θm (b).
Adopted from [2].

Then, Fig. 20a shows a decrease of the effective angle of attack as θ0 increases. This

translates into a decrease of the amplitude of CY as it can be seen in the results

obtained (Fig. 14a). Moreover, it should be pointed out that the linear effect of

θ0 on CY may be only applicable for the specified set of parameters that have been

established, this is, the phase angle between pitching and plunging is 90°(φ = 90°)
and h0/c = 1 among others.

On the other hand, Fig. 20b depicts that the variation of the angle of attack with

θm has much less intensity than for the case of θ0. In addition, it can be seen a little

increase of the effective angle of attack as θm increases. This effect is seen in Fig.

14c where the θm function has a little positive slope.

6.2 Effect of the Strouhal number

The fact that both force coefficients amplitude (CY and CX) increases with an

increase of the Strouhal number is simple to explain. An increase in the Strouhal

means an increase in the heave motion frequency (as seen in Eq. 31) which leads to

an increase in lift force but to an increase in drag too. Additionally, Kang et al. [63]

observed that at higher values of Strouhal number the LEV was formed at later times,

which it can be translated to a larger force magnitudes. Besides, Lai & Platzer [64]
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discovered that the wake produced by pure heave motion can be described as function

of the Strouhal number up to a limit of St = 0.6 where the wake becomes asymmetric

and difficult to predict. Jones, Dohring & Platzer [57] developed a model to predict

the wake structure of a flapping airfoil under pitching and plunging motions. They

discovered that for low values of St (St ≈ 0.06) the viscous effect becomes dominant.

Additionally, an experiment taken by Koochesfahani [65] showed what Triantafyllou

et al. [58] hypothesized in 1993, that the optimal efficiency of a flapping airfoil is

obtained at the frequency of maximum spatial amplification of the wake, which lies

into a range of 0.25 ≤ St ≤ 0.35.

6.3 Summary

With the experimental data obtained by Carrillo [2], the effect of each parameter

was seen. However, it was impossible to predict the actual mathematical function

that governs the effect of each parameter. After doing the modal decomposition, it

can be known deeply how each parameter affects the force coefficient by approxi-

mating this effect into a mathematical function. For instance, thanks to the modal

decomposition it can be concluded that the effect of θ0 parameter on CY is lin-

ear as well as the effect of the Strouhal number. Nonetheless, this conclusion must

be treated carefully. The linear behavior appears under the specific assumption of

certain parameters like a low Reynolds, a phase angle of 90° or h0/c = 1 among

others.

After this work, the modal decomposition has shown that it is a very powerful

method to obtained information about a complex system like flapping wings, without

the necessity of entering into too much detail in the fluid mechanics field. Modal

decomposition method has been able to not only extract the effect of each parameter

but to obtain an approximation function of that effect.

With the coefficient of determination procedure, the comparison method was shown

to be a valid method to extract the most relevant mode combinations. However, the

main limitation of MLSVD is that not all cases are well defined with the same mode

combinations. Even so, it provides good results for the majority of cases.

Moreover, the Tucker Decomposition has allowed to expand to more than two di-

mensions the Singular Value Decomposition method to a very complex field like fluid

mechanics.
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Finally, although the tensor decomposition is the best method to see the influence of

each parameter, it does not provide any information about the physical explanation

of the system. In other words, it is an insufficient method to describe complex

behaviors such as the leading and trailing edge vortexes, wake formation or dynamic

stall.

In a nutshell, MLSVD allows to analyze multivariable data and see how each pa-

rameter affects to the system without the need of using complex models that try to

simulate the physics behind a fluid mechanics problem.
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7 Future work

With this work, the application of modal decomposition for more than two parame-

ters in a fluid mechanics problem has been shown. The N-way principal component

analysis can be used to obtain the most relevant modes of each parameter to any

fluid mechanics problem, or even for any problem involving a large number of vari-

ables out of the scope of fluid mechanics. For instance, one possible application

would be to apply the multilinear modal decomposition to problems that involves

velocity fields, such as the flow over a bluff body in order to see the main modes

that govern the vorticity formation. However, a velocity field instead of force values

results in a much more difficult problem since it involves a vectorial field instead of

a scalar such as a force coefficient.

Moreover, this work should be extended with a data set with more sample points and

by studying the effect of the rest of parameters not considered in this paper, such as

the Reynolds number, the chord, the camber of the airfoil, the heave amplitude, or

the phase angle between heave and pitching motions among others. This extended

study could be used in order to see more effects in case of interaction between

parameters and validate the results obtained in this thesis.

Last but not least, the so-called comparison method of this paper has shown its

effectiveness in ordering the most relevant mode combinations. Nevertheless, this

method has some exceptions, as seen in the case of CX . In this way, the comparison

method could be improved to increase its efficiency.
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