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Abstract In this paper, the classical Gurson model for ductile porous media is extended for strain-rate-
dependent materials. Based on micromechanical considerations, approximate closed-form macroscopic 
behav-ior equations are derived to describe the viscous response of a ductile metallic material. To this end, 
the analysis of the expansion of a long cylindrical void in an ideally plastic solid introduced by McClintock 
(J Appl Mech 35:363, 1968) is revisited. The classical Gurson yield locus has been modified to explicitly 
take into account the strain rate sensitivity parameter for strain rate power-law solids. Two macroscopic 
approaches are proposed in this work. Both models use the first term of a Taylor series expansion to 
approximate integrals to polynomial functions. The first proposed closed-form approach is analytically more 
tractable than the second one. The second approach is more accurate. In order to compare the proposed 
approximate Gurson-type macroscopic functions with the behavior of the original Gurson yield locus, 
numerical finite element analyses for cylindrical cells have been conducted for a wide range of porosities, 
triaxialities, and strain rate sensitivity parameters. The results presented evidence that, for large values of the 
rate sensitivity parameters, the proposed extended Gurson-type models have the important quality to better 
predict the behavior of rate sensitive materials than the classical one. They also provide simpler and accurate 
alternatives to more traditional viscoplastic models.

1 Introduction

The process of fracture in the form of evolving crack surfaces in ductile solid materials is preceded by 
significant plastic deformations. Prediction of failure mechanisms due to void initiation and growth is an 
intriguingly challenging task and plays an extremely important role in various engineering applications like 
cutting, machining, metal forming, and high-speed impact.

The early analyses by McClintock [1] and Rice and Tracey [2] based on the growth of cylindrical or 
spherical voids in ductile matrices have provided the basis for numerous studies on the micromechanics of 
porous plastic solids. Distinct features of these models are that voids are explicitly taken into account, and 
precise constitutive models for characterization of the void-containing material behavior are used. The most 
widely known is that originally introduced by Gurson [3]. Gurson’s analysis proposed a macroscopic yield 
criterion for a rigid plastic isotropic matrix containing either a cylindrical or a spherical void and considers 
the solid matrix obeying the von Mises criterion.

Over the past three decades, various extensions of the Gurson model have been developed and provided 
to better represent the response of ductile metals: void nucleation and coalescence [4,5], void shape effects 
[6–9], strain hardening [10], plastic anisotropy of the matrix material [11–13], influence of the third stress 
invariant
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in the yielding of porous materials [14,15], etc. For viscoplastic solids, one of the most largely employed
modifications of the Gurson model is the one that replaces, in the yield criteria, the constant σ0 with the
relation σ0

( ˙̄ε). The σ0
( ˙̄ε) relation gives the dependence of the equivalent stress of the matrix solid as function

of the effective plastic strain rate ˙̄ε.
Reliable modeling of the damage process in viscoplastic ductile materials is of paramount importance for

many scientific and engineering applications. In order to analyze the homogenized response of porousmaterials
with a Bingham viscoplastic matrix, Perrin [16] obtained, following Rice and Tracey’s [2] and Gurson’s [3]
approaches, explicit expressions of the macroscopic potentials for the case of cylindrical and spherical voids.
For viscoplastic power-law materials, methods based on variational principles have been proposed by [17–
19] among others. The predictions generated by these variational models have been found to be quite good
for low to moderate stress triaxialities. At high stress triaxialities, by contrast, variational models become
progressively less accurate than Gurson models, leading to unrealistic predictions for pressure-dominated
processes. A general improvement along these lines has been introduced by Danas et al. [20] and Idiart [21].

Various generalizations of the theory of Gurson [3] have been also developed by several authors [22,23]
in order to include the effects of power-law viscoplasticity. These Gurson-type approaches, from a practical
point of view, mostly require significant computational costs with implementation complexity. The original
key contribution of this paper is to overcome this drawback.

Based on first principles, themain effort in thiswork has been concentrated to provide, for the entire range of
positive stress triaxialities and using only material-independent parameters, accurate and simple Gurson-type
ductile damage models to correctly describe the ductile behavior of strain rate sensitive materials.

The structure of this article is organized as follows: in Sect. 2, we outline the ductile fracture model of
McClintock [1] by the growth of a cylindrical hole. This description serves as the basis for the formulation
of the new damage plasticity model. Next, in Sect. 3, new extensions of the Gurson damage model have been
proposed for strain-rate-dependent materials. For that task, two different explicit closed-form approximate
macroscopic behavior equations are developed for a wide range of stress states and porosities. In Sect. 4, the
accuracy of the developed models is assessed by comparison with numerical results using the original Gurson
model in finite element cell calculations. Comparisons with Leblond et al. [22] viscoplastic model’s results
are also presented. Finally, the main conclusions and remarks are given in Sect. 5.

2 Problem formulation

Let us consider a cylindrical cell containing a single cylindrical void, thus representing a material with a
periodic array of voids. The material of the cell obeys the theory of J2 plasticity. The initial height of the cell
is H0, and the initial inner and outer radius is a0 and b0, respectively (see Fig. 1). The void grows as remote
axisymmetric loadings are applied to the cell. It is assumed that both the cell and the void remain cylindrical
throughout the entire growth process.

If generalized plane strain and cylindrical symmetry are assumed, with polar coordinates (r , θ , z), all field
quantities are functions solely of the radius r .

• With no body force, the equilibrium equation in cylindrical coordinates is given by:

dσr
dr

+ σr − σθ

r
= 0. (1)

• The radial displacement u(r) is the only non-vanishing in-plane displacement. The strain rates (ε̇r , ε̇θ , ε̇z)
relations are then given by:

ε̇r = du̇

dr
; ε̇θ = u̇

r
; ε̇z = Ė3, (2)

being Ė3 = Ḣ
H the rate of macroscopic logarithmic principal strain in x3 direction.

• Imposing incompressibility condition of the matrix material:

ε̇r + ε̇θ + ε̇z = 0. (3)

• The Mises associated flow rule reads:

σ ′
r = 2

3

σ̄

˙̄ε ε̇r ; σ ′
θ = 2

3

σ̄

˙̄ε ε̇θ ; σ ′
z = 2

3

σ̄

˙̄ε ε̇z, (4)
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Fig. 1 Simplified representation of a unit cylindrical cell. Geometric parameters and boundary conditions are also presented

being σ ′
r , σ

′
θ , σ

′
z the deviatoric local stress components with the expressions:

σ ′
r = σr − σ ; σ ′

θ = σθ − σ ; σ ′
z = σz − σ ; σ = 1

3
(σr + σθ + σz) , (5)

and σ̄ and ˙̄ε the matrix Mises equivalent stress and the matrix Mises equivalent strain rate, respectively:

σ̄ = σ̄
( ˙̄ε) ; ˙̄ε =

√
2

3

(
ε̇2r + ε̇2θ + ε̇2z

); σ̄ =
√
3

2

(
σ ′
r
2 + σ ′

θ
2 + σ ′

z
2
)
. (6)

• Imposing boundary conditions to ensure that the radial stress vanishes at the void surface and remote
axisymmetric loadings are prescribed on its external surface yields:

σr (a) = 0, σr (b) = �r , σz(±H/2) = �z, (7)

representing �r , �z the macro average stress, and σr , σz the local stress of the matrix material, with the
relations:

�1 = �2 = �r = 1

V

∫

V
σrdV ; �3 = �z = 1

V

∫

V
σzdV . (8)

The effective stress �eq expressed in terms of the macroscopic average stresses in principal directions �1,
�2, and �3 (�3 > �1 = �2 ) is:

�eq = �3 − �1. (9)
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To obtain the radial velocity field u̇(r) and the strain rates (ε̇r , ε̇θ , ε̇z) expressions, the equation of matrix
incompressibility (Eq. 3) should be solved imposing boundary conditions, then:

u̇(r) = − Ė3

2
r + A

r
, (10)

ε̇r = − Ė3

2
− A

r2
, (11)

ε̇θ = − Ė3

2
+ A

r2
, (12)

ε̇z = Ė3 (13)

being the effective strain rate:

˙̄ε = Ė3

(
1 + α2

(a
r

)4)1/2

, (14)

and A and α:

A = −a2

2

V̇void
Vvoid

; α = 2√
3

|A|
Ė3a2

(15)

where a is the current radius of the void, and Vvoid and V̇void the void volume (Vvoid = πa2H) and the void
volume rate of the cell, respectively.

With the above expressions, the components of the deviatoric stresses of Eq. (4) can be expressed as:

σ ′
r = 2

3
· σ̄

Ė3

[
1 + α2

( a
r

)4]1/2
·
(

− Ė3

2
− A

r2

)
,

σ ′
θ = 2

3
· σ̄

Ė3

[
1 + α2

( a
r

)4]1/2
·
(

− Ė3

2
+ A

r2

)
,

σ ′
z = 2

3
· σ̄
[
1 + α2

( a
r

)4]1/2
. (16)

The boundary traction conditions on the outer and inner radial surfaces of the cell (Eqs. (7) and (8)) are
specified by σr (a) = 0, σr (b) = �1. The principal components of the macroscopic stress tensor, �1 and �eq,
are obtained by integrating σr , σθ and σz along the internal and external cell such that:

�1 = σr (b) − σr (a) =
∫ b

a

dσr
dr

dr =
∫ b

a

σθ − σr

r
dr =

∫ b

a

σ ′
θ − σ ′

r

r
dr, (17)

�eq = �3 − �1 = 1

V

∫

V
σzdV − 1

V

∫

V

1

2
(σr + σθ ) dV = 1

V

∫

V

(
σ ′
z − σ ′

r + σ ′
θ

2

)
dV (18)

or equivalently:

�1 = 4

3

∫ b

a

σ̄

Ė3

[
1 + α2

( a
r

)4]1/2
· A

r3
dr, (19)

�eq = 2

b2

∫ b

a

σ̄
[
1 + α2

( a
r

)4]1/2
· rdr. (20)

With the change of variable defined by:

x = α
(a
r

)2
, (21)
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Equations (19) and (20) become:

�1 = −
√
3

3

∫ f ·α

α

σ̄
(
1 + x2

)1/2 dx, (22)

�eq = − f · α

∫ f ·α

α

σ̄

x2
(
1 + x2

)1/2 dx . (23)

being f = ( a
b

)2.
The macroscopic function �, that is dependent of macroscopic strain rates and stresses, will be obtained

by the integration and combination (where α is removed from the formulation) of the above two mentioned
equations.

2.1 Rate-independent material case

In the particular case where the matrix material is strain rate independent, the equivalent stress is given by the
formula:

σ̄ = σ0 (24)

with σ0 a reference yield stress. Calculation of �1, �eq, from Eqs. (22, 23), yields:

�1 = − σ0√
3

∫ f ·α

α

dx
(
1 + x2

)1/2 = σ0√
3
Ln

⎛

⎝ α + √
1 + α2

f · α +
√
1 + ( f · α)2

⎞

⎠ , (25)

�eq = − f · α · σ0

∫ f ·α

α

dx

x2
(
1 + x2

)1/2 = σ0

(√
1 + ( f · α)2 − f

√
1 + α2

)
. (26)

If Eq. (25) is inserted into Eq. (26) in order to remove α, the flow potential for a porous plastic rate-independent
material can be written as the well-known form:

� = �2
eq

σ 2
0

+ 2 f cosh

(√
3 �1

σ0

)

− (1 + f 2) = 0 (27)

which is Gurson’s criterion for cylindrical voids.

2.2 Rate-dependent material case

For the sake of simplicity, for a rate-dependentmaterial, theMises stress σ̄ is defined by a power-type hardening
formulation as:

σ̄ = σ0
( ˙̄ε)m , (28)

being m the strain rate sensitivity parameter and σ0 a reference value (with units Pa · sm). Equations (19) and
(20) become in this case:

�1

σ0 · (
Ėeq

)m =
√
3

3

1
(
1 − f ·α√

3

)m

∫ α

f ·α
(
1 + x2

)m−1
2 dx, (29)

�eq

σ0 · (
Ėeq

)m = f · α
(
1 − f ·α√

3

)m

∫ α

f ·α

(
1 + x2

)m−1
2

x2
dx, (30)

5



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
eq

/(
0

eq
m

) 

1/( 0 eq
m) 

f=0.00
f=0.10
f=0.25
f=0.50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

eq
/(

0
eq

m
) 

1/( 0 eq
m) 

f=0.00
f=0.10
f=0.25
f=0.50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

eq
/(

0
eq

m
) 

1/( 0 eq
m) 

f=0.00
f=0.10
f=0.25
f=0.50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 0.5 1 1.5 2 0 0.5 1 1.5 2

eq
/(

0
eq

m
) 

1/( 0 eq
m) 

f=0.00
f=0.10
f=0.25
f=0.50

Fig. 2 Exact representation of the relations�1/(σ0(Ėeq)
m)−�eq/(σ0(Ėeq)

m) (obtained by numerical evaluation) for cylindrical
voids with porosities f = 0.0, 0.1, 0.25, and 0.5. The strain rate sensitivity parameters considered are m = 0.05 (a), 0.25 (b), 0.5
(c), and 1.0 (d)

with Ėeq taking into account incompressibility of the matrix material:

Ėeq = 2

3

(
Ė3 − Ė1

) = Ė3

(
1 − f · α√

3

)
. (31)

According to the numerical computation of the integrals (Eqs. (29, 30)), a graphical representation of both

equations in the�1/
(
σ0

(
Ėeq

)m)
−�eq/

(
σ0

(
Ėeq

)m)
space is presented in Fig. 2. Different values of porosity

f and strain rate sensitivity parameter m have been considered. The results show an important effect of the

m parameter on the value of the macroscopic surface. The �1/
(
σ0

(
Ėeq

)m)
− �eq/

(
σ0

(
Ėeq

)m)
surface is

larger when the m value is higher. The change of shape in the surface is a consequence of the term σ0
(
Ėeq

)m

that divides �1 and �eq introduced to define dimensionless stress variables. This does not in any way mean a
loss of convexity of the flow potential in the macroscopic stress space.

The exact analytical solution of Eqs. (29), (30), to the best of our knowledge, does not exist if m �= 0, 1. In
this work, various approximations aremade in order to give accurate approximate solutions of the homogenized
behavior equations for rate sensitive materials.

3 Analytical approach for the macroscopic behavior of the material

In order to explore the role played by material rate sensitivity in the response of the cylindrical shell, in
forthcoming Sections, we will explore, by making various mathematical assumptions and based on Taylor
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Fig. 3 Variation of G(m) and G(0) versus α for the strain rate sensitivity parameter m = 0.1 and the porosity values f = 0.01
and f = 0.1

series expansion, new analytical approaches to provide accurate macroscopic behavior equations for strain
rate power-law materials.

The usefulness of the proposed analytical approximation methods will be explored within the range of
triaxialities from 0 (pure torsion) up to T = 3. The porosities and strain rate sensitivity parameters are within
the intervals 0 ≤ f ≤ 0.3, 0 ≤ m ≤ 0.1. The proposed ranges are thought to be sufficient to cover the
main range of applications of rate sensitive ductile metals. At low-stress triaxiality regime, ductile fracture is
controlled by not only void growth, also void shape changes and void rotation under shear-dominated loading
are very important.However, since the range of triaxiality considered in thiswork encompasses low triaxialities,
these effects are not taken into account in this work.

3.1 Approximation procedure

We define the functions G(m) and H(m) as:

G(m) =
∫ α

f ·α
(1 + x2)

m−1
2 ,

H(m) =
∫ α

f ·α
(1 + x2)

m−1
2

x2
. (32)

The value of m is assumed to be small enough so that we can expand the expression of the integrals G(m)
and H(m) into Taylor series at m = 0. For simplification, in the present contribution, we only consider the
first-order approximation of the series:

G(m) = G(0) + m G ′(0) + RG ,

H(m) = H(0) + m H ′(0) + RH (33)

where the truncation errors RG and RH in G and H are defined as:

RG = G ′′(m1)

2! m2; RH = H ′′(m2)

2! m2; (34)

for some m1 and m2 between 0 and m. |RG | < 0.128 and |RH | < 0.002.
Let us represent in Figs. 3 and 4, and in order to illustrate the previous assumption, G(m) and G(0) as

functions of α, and H(m) and H(0) also as functions of α for m = 0.1 and the porosities f = 0, 0.01 and
f = 0.1. The values of α in the x-axis cover triaxialities within the interval 0 ≤ T ≤ 3 for eachm and f value
represented. The values of the curves for triaxiality T = 3 are marked in the plots with a circle. For other m
rate sensitivity parameters and porosities, similar curves are found.
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Fig. 4 Evolution of H(m) and H(0) with α for m = 0.1 and the porosities f = 0.01 and f = 0.1

It should be also noted, and as can be verified in Figs. (3) and (4), that:
∣∣mG ′(0) + RG

∣∣ >>>
∣∣mH ′(0) + RH

∣∣ with
∣∣mH ′(0) + RH

∣∣ < 0.074 (35)

holds true for every f, T , and m value analyzed. Under this assumption, the solution of the functions G(m)
and H(m) can be further approximated as:

G(m) = G(0) + m · G ′(0),
H(m) = H(0) (36)

being the functions G(0) and H(0) the f and α-dependent solutions for the case m = 0 (classical Gurson
yield function) with analytical solution of the form:

G(0) = Ln

⎛

⎝ α + √
1 + α2

f · α +
√
1 + ( f · α)2

⎞

⎠ ; H(0) =
√
1 + f 2α2 − f

√
1 + α2

f α
(37)

and G ′(0) the integral:

G ′(0) = 1

2

∫ α

f ·α
(1 + x2)−

1
2 ln(1 + x2)dx, (38)

f and α dependent and without analytical solution.

3.2 First closed-form approximation

The following step in the approach is based on the idea that, for the porosities and triaxialities analyzed, the

relation
(
1 − f α√

3

)
can be approximated to 1 that allows, from Eq. (31), to propose the identity (Ė3 = Ėeq).

Considering also the assumption made in Eq. (36), the relations given in Eqs. (29), (30) can be now written in
the form:

�1

σ0 · Ėm
eq

=
√
3

3

(
G(0) + m · G ′(0)

)
, (39)

�eq

σ0 · Ėm
eq

= f · α · H(0). (40)
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Defining the dimensionless stress variables:

�̂1 = �1

σ0 · Ėm
eq

; �̂eq = �eq

σ0 · Ėm
eq

(41)

and following the same procedure as in the previous Section for rate-independent materials, for a porous plastic
rate-dependent material, the first proposed closed-form �̂1 − �̂eq relation can now be written as:

�
(
�̂eq, �̂1, f,G ′(0),m

) = (
�̂eq

)2 + 2 f cosh
(√

3�̂1 − mG ′(0)
)

− (1 + f 2) = 0.

(42)

From this point on, the goal is that of approximating G ′(0) Eq. (38) via a simple and accurate function that
allows the function � given in Eq. (42) to be defined in terms of the variables f , m, �̂1, and �̂eq.

Figure5 represents the evolution of G ′(0)with α for different values of porosity ( f = 0, 0.05, 0.1, 0.2, and
0.3). In addition, for each porosity,G ′(0) as function of α is marked by an asterisk (*) for triaxiality T = 3. For
the range of f values analyzed (0 ≤ f ≤ 0.3), it can be easily proved that the differences in G ′(0) between
the reference case ( f = 0) and the rest of porosities studied do not exceed, for (0 ≤ T ≤ 3), 18.7%. For the
sake of simplicity, let us adopt a logarithmic fitting function, only α dependent, to approximate the integral
G ′(0):

G ′
0 Fitted = A1 · Log10

(
α

A2
+ 1

)
. (43)

A1 and A2 are defined as two fitting parameters of the proposed approximated function to G ′(0) for the case
with f = 0 in (0 ≤ T ≤ 3). The values of the fitting parameters, obtained using a least squares method, are
A1 = 10.56 and A2 = 11.50 (see Fig. 6).

As shown in Fig. 7a, b, f αH(0) = �̂eq is well approximated, for different values of f ( f = 0.01, f = 0.1
in the Figures), by the linear function:

�̂eq = (1 − f ) − B( f ) · α (44)

that allows α to be written as function of �̂eq and f without loss of significant accuracy:

αFitted = 1 − f − �̂eq

B( f )
. (45)
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Table 1 B fitting values

f 0 0.001 0.01 0.025 0.05 0.075 0.1 0.2 0.3
B 0.000 0.001 0.008 0.019 0.032 0.046 0.052 0.079 0.087

To obtain B( f ), several porosities in the range 0 ≤ f ≤ 0.3 have been checked. The optimal B values for
f = 0, 0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 0.2, and 0.3 are the ones given in Table 1 (obtained using a least
squares fitting method for the range of triaxialities 0 ≤ T ≤ 3).

In an attempt to define the continuous field B( f ) from Eq. (44), let us propose the polynomial function:

B( f ) = B1 · f + B2 · f 2 (46)

that can be calibrated from the discrete B values given in Table 1 (Fig. 8). The interpolation coefficients that
are obtained are B1 = 0.63 and B2 = −1.17.

To summarize what is mentioned above, the first proposed closed-form macroscopic function to describe
the behavior of strain-dependent materials can be written as:

�
(
�̂eq, �̂1, f,m

) = (
�̂eq

)2 + 2 f cosh
(√

3�̂1 − mG ′
0 Fitted

)
− (1 + f 2) = 0 (47)
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with

G ′
0 Fitted = A1 · Log10

(
αFitted

A2
+ 1

)
; αFitted = 1 − f − �̂eq

B1 f + B2 f 2
(48)

and the four parameters:

A1 = 10.56; A2 = 11.50; B1 = 0.63; B2 = −1.17. (49)

It should be noted here that the parameters of the proposed model are all material independent.

3.3 Second closed-form approximation

As a second step, and in order to improve the description of the Gurson yield model, we shall not consider the
assumption 1 − f α√

3
≈ 1 made in the first approximation of the macroscopic function �. The approximation

will be improved taking into account the relation given in Eq. (48):

1 − f α√
3

= 1 − 1 − f − �̂eq√
3 (B1 + B2 f )

. (50)

From Eq. (31):

Ė3 = Ėeq(
1 − 1− f −�̂eq√

3(B1+B2 f )

) . (51)

. or simplifying:

Ė3 = Ėeq

KF
. (52)

being KF the factor:

KF =
(

1 − 1 − f − �̂eq√
3 (B1 + B2 f )

)

; (53)

B1 = 0.63, B2 = −1.17.
The proposed relations provide a new expression for the Gurson-type function � for strain-rate-dependent

materials given in the form:
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�
(
�̂eq, �̂1, f,G ′(0),m

) = (
(KF )m �̂eq

)2 + 2 f cosh
(√

3((KF )m · �̂1) − mG ′(0)
)

− (1 + f 2) = 0

(54)

with

G ′(0) = A1 · Log10
(

1 − f − �̂eq

A2
(
B1 f + B2 f 2

) + 1

)

, KF =
(

1 − 1 − f − �̂eq√
3 (B1 + B2 f )

)

(55)

and the four material-independent parameters of the model given in Eq. (49):

A1 = 10.56; A2 = 11.50; B1 = 0.63; B2 = −1.17. (56)

4 Validation of the proposed macroscopic functions

We will further assess the accuracy of the two criteria proposed. First, and with the aim to validate the
approximations made in the analytic evaluation of the macroscopic surfaces, we will present comparisons
between the proposed closed relations for macroscopic �̂1 − �̂eq stresses and the “exact” solution obtained by
numerically integrating Eqs. (29) and (30). Second, and in order to assess the approximations of Eq. (47) and
(54), we will also present comparisons between the derived approximate relations and the results obtained by
numerical calculations using a commercial finite element code. Numerical finite element calculations are made
considering the yield locus originally proposed by Gurson and taking into account the strain rate dependence
replacing σ0 by the yield stress σ̄ of the matrix material.

4.1 Cell model and numerical implementation

Theoretical results will be validated performing unit cell analysis. This versatile numerical methodology was
first introduced by Koplik and Needleman [24] and Brocks et al. [25], and allows to easily study the effect
of various micromechanical ductile parameters such as second phase particles and void population [26–29],
void shape or cell shape [8], material anisotropy [30], the effects of complex stress states [31–34] or matrix
hardening rate behavior [35–37].

Numerical simulations were carried out using the commercial finite element code ABAQUS/Standard [38].
The representative elementary cell volume is a cylindrical cell having an initial half length H0 and a radius
R0 = H0/2. Due to the symmetry of the problem with respect to Z = 0, only the Z ≥ 0 half of the cell is
analyzed. The cell is homogeneous, and the evolution of the void volume fraction f is governed by the void
evolution law from the Gurson model. (There is no explicit void located in the cell.) The 2D, axisymmetric
mesh used in the computations is represented in Fig. 9 in its undeformed configuration. The mesh is made of
50 axisymmetric quadrilateral 8-node elements with reduced integration (CAX8R).

The boundary conditions on the outer surfaces of the homogeneous cell are specified as:

u1 = U1, for X1 = R; u1 = 0, for X1 = 0,

u3 = U3, for X3 = H ; u3 = 0. for X3 = 0.

U1 and U3 are calculated such that the macroscopic transverse stress �1 in the cylindrical surface:

�1 = 1

H

∫ H

0
[σ1]X1=R dX3, (57)

and the macroscopic axial stress �3 in the top surface:

�3 = 2

R2

∫ R

0
[σ3]X3=H X1 · dX1 (58)

as prescribed values during the whole loading history. σ1 and σ3 are the Cauchy stress components, and
R = R0 + U1, H = H0 + U3. This strategy, used by different authors [35,39,40] to prescribe boundary
conditions, allows to overcome numerical problems associated with cell softening due to void growth. For
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(a) (b)

Fig. 9 Initial mesh of the cylinder (a) and displacement boundary conditions imposed on the unitary cell (b)

further details of this procedure see Vadillo and Fernández-Sáez [40]. Displacement boundary conditions are
implemented in a finite element code [38] via an MPC routine.

For hypoelastic-plastic materials, the macroscopic rate of plastic deformation tensor, Ė
p
, is related with

the macroscopic stress rate by:

�̇ = C :
(
Ė − Ė

p
)

(59)

with C the tensor of isotropic elastic moduli:

C = 2GI′ + K1 ⊗ 1 (60)

and G = E/(2(1 + ν)) and K = E/(3(1 − 2ν)) elastic constants. E is Young’s modulus, and ν is Poisson’s
ratio. I′ is the unit deviatoric fourth-order tensor with the form:

(I′)i jkl = 1

2
(δikδ jl + δilδ jk) − 1

3
δi jδkl . (61)

The ductile material is approximated using Gurson [3]’s criterion for cylindrical voids, with the yield condition
of the form:

� = �2
eq

σ̄ 2 + 2 f cosh

(√
3 �1

σ̄

)

− (1 + f 2) = 0 (62)

where the Mises stress σ̄ is described by the power-law equation:

σ̄ = σY

(
ε̇

ε̇0

)m

. (63)

The evolution of void volume fraction, considering only growth, can be written as:

ḟ = (1 − f )Ė
p : 1 (64)

with Ė
p
:

Ė
p = λ̇

∂�

∂�
, (65)
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and the plastic proportionality factor λ̇:

λ̇ = (1 − f )σ̄ ˙̄ε p

� : ∂�

∂�

, (66)

To complete the above formulation, the Kuhn–Tucker loading–unloading conditions should be considered.
This implies that λ̇ = 0 and � < 0 during elastic loading or unloading, and λ̇ > 0 and � = 0 during plastic
yielding.

The values of the reference material parameters are taken to be E = 200GPa, ν = 0.3, σY = 2000 MPa,
ε̇0 = 1 s−1, and m = 0.01, 0.05, and 0.1. These values of strain rate sensitivity parameter are used to model
a wide variety of metallic materials, e.g., Gosh [41], Klöcker and Tvergaard [42]

The set of constitutive nonlinear equations is integrated into a finite element scheme at the level of amaterial
point. Two different tasks should be carried out. The first one is related to update stress and state variables
driven by the strain increment. The second one consists in creating a consistent tangent operator to preserve
the quadratic convergence in the iterative solution based on Newton’s method. The algorithm is implemented
in the commercial Finite Element code ABAQUS/Standard [38] by a UMAT user subroutine. Details of the
implementation can be found in [40,43].

4.2 Comparison between the exact solution and the proposed macroscopic functions

First approximation

Results of the macroscopic behavior of a porous rate-dependent material, according to the first approximation
given in Eq. (47), are presented in Fig. 10 for f = 0.01, f = 0.05, and f = 0.1 in the �̂1 − �̂eq space
considering m = 0.01 (a), m = 0.05 (c), and m = 0.1 (d). These results are compared with the “exact”
solution obtained by numerically integrating Eqs. (29) and (30). The range of triaxiality values analyzed
comes from T = 0 up to T = 3. As shown in Fig. 10a for m = 0.01, both macroscopic surfaces practically
coincide for all the porosities studied in the whole stress range. However, for higher m values, the differences
between both functions increase as f values increase (see Fig. 10c, e), being in all the cases the approximated
curve for �̂1 − �̂eq below that corresponding to the “exact” representation. Note that for every f value the
new proposed �̂1 − �̂eq relations reduce to the existing Gurson yield locus if m = 0.

Second approximation

Figure10b, d, and f show that the closed-form macroscopic function proposed in Eq. (54) practically coincides
with the exact solution form = 0.01 and slightly under-predicts the exact solution form = 0.05 andm = 0.1.
The surface obtained considering the second approximation procedure thus satisfactorily reproduces the rate-
dependent material behavior for all the porosities analyzed over the range (0 ≤ f ≤ 0.3) in triaxialities
(0 ≤ T ≤ 3) retrieving again the classical Gurson formulation for null strain rate (m = 0).

4.3 Comparison between the classical Gurson yield locus and the new behavior equations

The classical Gurson model is a rate-independent plasticity model. For rate-dependent materials, the Gurson-
type yield surface is usually not modified, and rate dependence is taken into account replacing σ0 by the yield
stress of the matrix material σ̄ . The matrix stress rate dependence indirectly introduces a rate dependence
to the Gurson flow potential. However, this simple assumption has little physical meaning and could not be
always valid. In the following Section, numerical simulations using the classical Gurson model are developed
using a finite element code, and results are compared with the exact solution of the macroscopic behavior of
the material in the �̂1 − �̂eq space. Also and in order to assess the accuracy and usefulness of the proposed
macroscopic surfaces, the numerical finite element results are compared with the ones obtained with the
suggested approximate closed-form expressions.
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Fig. 10 Comparison of model and exact �̂eq − �̂1 relation considering the first approach (a, c, e) and the second criterion (b,
d, f) for f = 0.01, 0.05, 0.1 (a, c, e), for f = 0.01, 0.05, 0.1, 0.2, 0.3 (b, d, f), and for m = 0.01 (a, b), m = 0.05 (c, d), and
m = 0.1 (e, f)

First approximation

Numerical simulations using the finite element code [38] are presented for a rate-dependent power-lawmaterial
considering different values of strain rate sensitivity parameter m, and various values of porosities f and
triaxialities T . The obtained macroscopic relations are compared with the ones calculated with the exact
solution and with the first-approximated closed-form analytic expression given in Eq. (42).

In Fig. 11a, c, and e, we represent the macroscopic �̂1 − �̂eq relations for the porosity values f =
0.01, f = 0.05, and f = 0.1, respectively, for the strain rate sensitivity parameters m = 0.01, 0.05, and
m = 0.1, and for the range of triaxialities 0 ≤ T ≤ 3. The full and broken lines correspond to the exact and
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Fig. 11 Comparison of model, numerical finite element, and exact �̂eq − �̂1 results considering the first approximation (a, c, e)
and the second proposed approximate macroscopic surfaces (b, d, f), for f = 0.01, 0.05, 0.1 (a, c, e), for f = 0.01, 0.05, 0.1,
0.2, 0.3 (b, d, f), and for m = 0.01 (a, b) , m = 0.05 (c, d), and m = 0.1 (e, f)

approximated closed-form solutions of the problem. The asterisks (*) correspond to the values obtained by
the finite element numerical computations. A good agreement between the exact, approximate, and numerical
criteria is observed for all the analyzed porosities if m = 0.01. It must be emphasized that for m = 0.05 and
m = 0.1 the numerical finite element results differ from the exact solution for all porosities when increasing
the variable �̂1 (or when increasing the triaxiality T values). For the highest values of f , the analytical first-
approximated solution exhibits the same accuracy as the one obtained with the finite elements. For the smaller
f values, the accuracy of the analytical solution is better. The improvement in the results if the value of f is
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small is attributed to the approaches taken in the analytical solution (closer to the exact solution as far as f is
closer to 0).
Second approximation

Figure 11b, d, and f compare the exact solution, the second analytical approach, and the finite element sim-
ulations of the �̂1 − �̂eq surface for different porosities and strain rate sensitivity parameters. As shown in
Fig. 11b, for m = 0.01, all solutions converge to a single continuous curve. For higher values of m, the given
second analytical approach is in closer agreement with the exact solution if the results are compared with
numerical simulations obtained taking into account the effect of strain rate by replacing σ0 by σ̄ in the classical
Gurson yield function.

4.4 Comparison with other viscoplastic models

The aim of the present Section is to compare the predictions of the proposed second analytical formulation
with othermodels previously developed and validated. In particular, the porousmetal Leblond–Perrin–Suquet’s
[22] (LPS) theory is used in order to check the predictive power of this work when it is compared with that
one. Following [22], the LPS formulation for power-law viscoplastic voided cylindrical solids is given by the
relations:


̄a(Q, M) = Q2 + f

(
h(M) + 1 − m

1 + m

1

h(M)

)
− 1 − 1 − m

1 + m
f 2,

h(M) =
(
1 + m

(√
3|M|

)m+1
)1/m

, (67)

with Q and M defined in terms of the gauge factor � as Q = �eq/� and M = (�1 + �2) /(2�) with
�1 = �2. The upper bound for the approximate macroscopic potential, 
m , is given by [22]:


m (�, f ) = σY ε̇0 m

m + 1

(
� (�, f )

σY

)m+1
m = σY ε̇0 m

m + 1
(1 − f ) , (68)

and the strain rates Ė1, Ė2, and Ė3 can be calculated from 
m using the relations [22]:

Ė1 = ∂
m

∂�1
, Ė2 = ∂
m

∂�2
, Ė3 = ∂
m

∂�3
. (69)

In the LPS model, for the cylindrical case and for a given ratio ρ = �eq/�1, one can determine the point (M ,
Q) of the gauge surface corresponding to any strain rate parameterm, porosity f , and ratioM by computing Eq.
(67) with 
̄a(M, ρM) = 0. Once the value of M is calculated, and being the gauge factor’s value� = �1/M ,
the point with coordinates (�1, ρ�1) of the Leblond–Perrin–Suquet upper bound macroscopic potential 
m
can be derived from given f,m, ρ, and M values using Eq. (68) for any σY and ε̇0. The corresponding
macroscopic strain rate relations Ė1 and Ė3 follow by differentiation of the potential 
m with respect to �.
In the Leblond–Perrin–Suquet upper bound potential, a point 
m(�1, ρ�1) lies on the �̂1 − �̂eq space with

�̂1 = �1/
(
σY

(
Ėeq/ε̇0

)m)
, �̂eq = ρ �̂1, and Ėeq = 2

3

(
Ė3 − Ė1

)
from Eq. (69). Thus, for given σY , ε̇0, ρ,

f and m values, the relation (�̂1 − �̂eq) in the LPS model requires the solution of all the variables �, �1, Ė1,
and Ė3 that entail, according to the authors’ opinion, in non-negligible computing costs.

Figure 12 shows plots for (�̂1 − �̂eq) relations for the porosities ( f = 0.01, 0.05, 0.1, 0.2, 0.3) and (a)
m = 0.01 and (b) m = 0.1 . The second approach proposed in this work is compared with the exact solution
and LPS predictions. In these plots, it is observed that the proposed analytical approach is in good agreement
with the LPS model and the exact solution for the whole range of stress triaxialities and porosities analyzed.
In practice, however, the approach suggested is a simpler alternative to the problem at hand.
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Fig. 12 Macroscopic surfaces according to the proposed criterion (Eq. (54)), in comparison with the LPS model [22] and exact
solution for the porosities ( f = 0.01, 0.05, 0.1, 0.2, 0.3) and strain rate parameters m = 0.01 (a), and m = 0.1 (b)

5 Conclusions and remarks

Reliable characterization of viscoplastic ductilematerials and precisemodeling of ductile damage processes are
of significant importance for a better understanding of engineering applications like cutting,machining ormetal
forming. In this paper, a modification of the Gurson criterion for cylindrical voids is extended by incorporating
the strain rate dependence of the matrix material. Analytical closed-form approximate expressions of the
macroscopic behavior of viscoplastic power-law porous materials have been obtained and assessed by its
comparison with the “exact” solutions obtained by computing numerically the integrals in Eqs. (29), (30). The
derivation of the macroscopic functions is based on a Taylor series expansion at strain rate parameter m = 0.
Certain additional approximations are introduced in order to obtain analytical closed-form expressions. Two
accurate explicit macroscopic functions are constructed: (a) The first one is analytically simpler. The derived
first criterion exhibits very good results for strain rate sensitivity parameters m ≤ 0.05 for the range of
porosities and triaxialities tested ( f ≤ 0.1, 0 ≤ T ≤ 3). (b) The second approach is a bit more complex than
the first one. Nevertheless, for this second approximation, the ability to accurately describe the behavior of
viscoplastic materials is very good also for the high strain rate parameters tested (m = 0.1) for an extended
range of porosities (0 ≤ f ≤ 0.3). For m = 0, both approaches reduce to Gurson’s model. It is important
to note that, for the proposed homogenized Gurson-type behavior equations, the required parameters of the
models are all material independent.

Furthermore, we also compare the exact solution and the analytical approximated closed-formmacroscopic
surfaces with numerical simulations performed using a finite element code (ABAQUS/Standard). In the numer-
ical finite element simulations, the strain rate dependence of ductile materials is characterized replacing, in the
original Gurson yield locus, the constant flow stress term σ0 by a rate-dependent flow stress term σ̄ = σ0

( ˙̄ε).
The results presented above evidence a progressive loss of accuracy of the classical model of [3] as the strain
rate parameter m increases. The loss of accuracy is important for rate sensitivity parameters m ≥ 0.05.

For the large range of porosities and triaxialities analyzed, the key findings of this study are summarized
as follows:

• For small m strain rate sensitivity parameters (m < 0.05), all macroscopic surfaces presented have practi-
cally the same behavior.

• For highm parameters (m ≥ 0.05), both analytical closed-form functions (first and second approach) have
the important quality to better predict the behavior of rate sensitive materials than the classical Gurson
model.

• The improved accuracy of the second approach allows to model the behavior of rate sensitive power-law
ductile materials for porosities up to 0.3.

The proposed second approach also has shown, when compared with other viscoplastic models, to be
accurate and simpler as others. The proposed formulation is then suitable for power-law rate sensitive materials
and can be easily implemented into finite element codes.
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