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Abstract

The competition between material and thermal induced destabilizing effects in dynamic

shear loading has been previously addressed in detail using a fully numerical approach in

Osovski et al. (2013). This paper presents an analytical solution to the related problem

of dynamic tensile instability in a material that undergoes both twinning and dynamic

recrystallization. A special prescription of the initial and loading conditions precludes

wave propagation in the specimen which retains nevertheless its inertia. This allows for

a clear separation of material vs. structural effects on the investigated localization. The

outcome of this analysis confirms the dominant role of microstructural softening in the

lower strain-rate regime (of the order of 103 s−1), irrespective of the extent of prescribed

thermal softening. By contrast, the high strain-rate regime is found to be dominated by

inertia as a stabilizing factor, irrespective of the material’s thermo-physical conditions,

a result that goes along the predictions of Rodŕıguez-Mart́ınez et al. (2013a) regarding

dynamically expanding rings.

Keywords: dynamic necking, linear stability analysis, numerical simulation, dynamic

recrystallization, thermal softening

1. Introduction

Recrystallization is a process in which nucleation and growth of new strain-free grains,

assumed to occur on grain boundaries, replace the deformed microstructure of a strained
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material. Together with slip, recovery, grain growth or phase transformation, it is one

of the most important microstructural evolution processes. Recrystallization may occur

after deformation, the post-deformation annealing process called static recrystallization, or

during deformation. The latter is termed dynamic recrystallization (DRX), and it takes

place in many alloys when they deform at high strains and high strain rates (Tanner

and McDowell, 1999; Qu et al., 2005; Medyanik et al., 2007; Osovski and Rittel, 2012;

Li et al., 2013). DRX initiates upon reaching a critical condition. The two most widely

accepted criteria for the onset of DRX make use of a critical strain (Fan and Yang, 2011)

or a critical dislocation density (Bailey and Hirsch, 1962; Ding and Guo, 2001). The last

criterion is equivalent to a critical stored energy if the stored energy is assumed to be

a function of dislocation density only (Brown and Bammann, 2012). Thus, Rittel et al.

(2006, 2008) suggested to consider the dynamically stored energy of cold work, namely the

part of the energy that is not dissipated into heat, as a criterion for the onset of dynamic

recrystallization (DRX), which may appear long before final failure. Recently, Medyanik

et al. (2007) proposed a criterion for the onset of DRX deformation mechanism, formulated

in terms of temperature. This approach, however, still requires elevated temperatures as

a trigger for DRX (0.4 to 0.5 of melting temperature), while this requirement stands in

contradiction with some of the experimental observations reported by Rittel and Wang

(2008).

When the critical value for the onset of DRX is reached, the elimination of dislocations

reduces the stored energy, resulting in a decrease of flow stress, hardness and a simultane-

ous increase in the ductility (Ganapathysubramanian and Zabaras, 2004; Fan and Yang,

2011; Brown and Bammann, 2012). As a result, the material locally softens giving rise

to inhomogeneous deformation patterns which can, in turn, be important precursors to

plastic instabilities. Regarding dynamic shear loading conditions, Rittel et al. (2006, 2008)

suggested that the onset of the so-called ”adiabatic shear bands” is primarily related to

microstructural transformations which were indeed observed long before any significant

self-heating of the material develops. The formation of dynamically recrystallized grains,

which may appear long before final failure, creates soft enclaves in the surrounding hard-

ening material. Final failure occurs therefore as a result of the growth and coalescence of
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islands of dynamically recrystallized phase, as shown by Osovski et al. (2012b). Moreover,

if DRX is present it may override thermal softening effects, thus emerging as the main

cause of ASBs (Osovski et al., 2013) in materials that exhibit early DRX (e.g. Ti6Al4V

alloy).

In parallel to adiabatic shear banding, which was considered by the above authors to

analyze the respective influence of microstructural and thermal softening, dynamic necking

represents a paradigmatic case of plastic instability occurring at high strain rates. Dynamic

necking is known to be strongly affected by thermal effects since the deformation process

approaches adiabaticity. In such conditions, the thermal softening of the material appears

to be a critical factor for localization (Klepaczko, 1968; Fressengeas and Molinari, 1985).

In materials with a strong thermal softening, the temperature increase may dictate the

conditions for stability, on top of other softening effects. However, following the results

by Rittel and co-workers for a shear stress state (Rittel et al., 2008; Osovski and Rit-

tel, 2012; Osovski et al., 2012a,b, 2013), it is worth analyzing the respective influence of

microstructural and thermal softening in dynamic necking inception.

In this work, the role of both microstructural and thermal softening on the localization

of plastic deformation in dynamically stretching rods is examined. Two different modeling

methodologies are used: Linear stability technique derived within a quasi-1D theoretical

framework and finite element simulations of slender bars subjected to uniaxial tension.

The constitutive equation accounts for hardening due to twinning and softening – dynamic

recrystallization– microstructural effects, as well as for thermal softening of the material.

A parametric study, performed on the constants of the constitutive model, driving these

effects, allows for the identification of their relative role in the onset of dynamic necking.

2. Constitutive model

The constitutive model uses Huber-Mises plasticity as in the previous work of Osovski

et al. (2013). The model considers three possible mechanisms responsible for the plastic

flow: Slip, twinning and dynamic recrystallization. Those three mechanisms are treated

using a rule of mixture to describe the mechanical, microstructural and thermal evolution

of the material. In the undeformed configuration the material is only formed by the slip
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phase. Twinning is triggered by plastic deformation and complements dislocation activity

increasing the material flow stress and strain hardening. Twinning is assumed to stop once

DRX starts, whose onset is determined by a threshold value of the stored energy of cold

work. Dynamic recrystallization contributes to the material strain softening. It should

be noted that the material is considered strain rate independent in order to facilitate

interpretation of the respective influence that microstrutural and thermal softening effects

have on flow localization.

In this paper, flow localization in a rapidly stretched bar is analyzed using linear sta-

bility -derived within a 1D framework– and finite element simulations –developed within a

3D framework-. Therefore one-dimensional and three-dimensional approaches will be pre-

sented, understanding that both coincide in their essential features and that, for a uniaxial

state of stress, the 3D model provides the same results as its 1D counterpart.

2.1. 1D model

The material constitutive equations of the problem were presented in Osovski et al.

(2013) and will only be repeated here for the sake of clarity. The effective yield stress is

calculated by the following expression:

σy = Ψ(ε̄p, T ) = h (ε̄p) p (T ) (1)

where the functions h (ε̄p) and p (T ) gather the strain ε̄p and temperature T dependen-

cies of the material, which are defined as follows:

• The function h (ε̄p) is composed by three terms and reads as follows:

h (ε̄p) = (1− fDRX) σ
0
y + fDRXσ

DRX
y + (1− fDRX − ftwins) (2)(

Kt

(
1
χ

)
+Kd (ε̄

p)n
)

where fDRX and ftwins are the volume fractions of DRX and twins respectively. The

first yield stress term in the previous expression represents the initial yield stress of
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the material –which is controlled by the slip phase– and it is defined by σ0
y. The second

yield stress term is to be understood as the flow stress at which DRX first appears

(upon reaching the energetic threshold given by UDRX , see Eqs. (3)-(4)) which is

determined by the parameter σDRX
y = σy|U=UDRX

(to be calculated in the integration

procedure for each loading case). The third yield stress term is an isotropic strain

hardening function which consists of two parts: (a) the contribution of evolving

density of twins, acting as barriers for dislocation motion, enters the equation as a

Hall-Petch like term, where Kt is a strain hardening parameter and χ is the average

distance between twins given by χ = 2t(1−ftwins)
ftwins

with t being the average twin width;

and (b) the strain hardening resulting from dislocation activity during deformation

with Kd being the strain hardening parameter and n the strain hardening exponent.

The evolution law for the twins volume fraction is as follows:

ftwins = g (ε̄p) =

 1
N
[arctan (2πaε̄p − 2πb)− arctan (−2πb)] ; U < UDRX

f ∗
twins = ftwins|U=UDRX

; U > UDRX

(3)

where U is the stored energy of cold work (see Eq. (5)) and UDRX is the threshold

energy for the onset of the recrystallization process. Here, a, b and N are material

parameters to reproduce the average number of twins per grain measured at different

strains.

The evolution law for the DRX volume fraction is defined by:

fDRX = w (U) =

 0; U < UDRX

1− exp
(
−kDRX

(
U−UDRX

UDRX

)nDRX
)
; U > UDRX

(4)

where kDRX and nDRX are material parameters which describe the volume fraction

of DRX upon plastic strain.

The stored energy is calculated by:
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U = (1− fDRX − ftwins) (1− β)

∫ ε̄p

0

σ̄dε̄p (5)

where β is the Taylor-Quinney coefficient of the phase undergoing slip which is as-

sumed as constant and σ̄ is the equivalent stress.

• The function p (T ) reads as follows:

p (T ) = (1− α∆T ) (6)

where α is the temperature sensitivity parameter and ∆T = T − T0, being T the

current temperature and T0 the initial temperature. The linear dependence shown in

the above equation is the simplest dependence one can think of, yet being physical

to some extent.

The yield condition may be written as

Φ = σ̄ −Ψ(ε̄p, T ) = 0 (7)

2.2. 3D model

The previous 1D constitutive model can be extended to a 3D framework. Here, the

above equations are complemented with the generalized Hooke’s law for hypoelastic-plastic

materials:

σ∇ = C : de = C : (d− dp) (8)

where σ∇ is an objective derivative of the Cauchy stress tensor, d, de and dp are re-

spectively the total, elastic, and inelastic rate of deformation tensors, and C is the isotropic

elastic tensor, defined by the elastic constants K and G. Additionally, an associated flow

rule is considered
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dp = λ̇
∂Φ

∂σ
= λ̇

3

2

s

σ̄
(9)

λ being the plastic multiplier, which coincides with the equivalent plastic strain in

Huber-Mises plasticity, and s being the deviatoric stress tensor.

The plastic part of the macroscopic strain rate and the effective plastic strain rate are

related by enforcing the equality between macroscopic and effective plastic work rates as:

σ∇ : dp = σ̄ ˙̄ε
p

(10)

The formulation of the model is completed by introducing the Kuhn-Tucker load-

ing/unloading complementary conditions:

λ̇ ≥ 0, Φ ≤ 0, λ̇Φ = 0 (11)

and the consistency condition during plastic loading:

Φ̇ = 0 (12)

Table 1 shows the values of the model parameters, as taken from Osovski et al. (2013).

3. Problem formulation and linear stability analysis

3.1. Governing equations

The problem addressed is based on the configuration reported in Zhou et al. (2006).

A cylindrical bar of length L0, cross section radius r0 and area A0 = πr20 is considered.

The bar is subjected to a constant stretching velocity on both sides. It is supposed that

this loading condition is always satisfied, and therefore elastic unloading is disregarded.

The bar material is taken to be incompressible, of mass density ρ0, with a constitutive

behaviour described by Eqs.(1-7).

The true strain ε and the strain rate ε̇ are defined as ε = ln [(∂x/∂X)t] and ε̇ = ∂ε/∂t,

X being the Lagrangian coordinate (−L0/2 ≤ X ≤ L0/2), and x the Eulerian coordinate

given by
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Symbol Property and units Value

σ0
y Initial yield stress (MPa), Eq.(3) 500

Kt Strain hardening parameter (mMPa), Eq.(3) 1.8× 10−3

t Average twin width (µm), Eq.(3) 2

Kd Strain hardening parameter (MPa), Eq.(3) 215

n Strain hardening exponent, Eq.(3) 0.25

α∗ Reference temperature sensitivity parameter (K−1), Eq.(6) 10−4

T0 Initial temperature (K), Eq.(6) 293

N Material parameter, Eq.(3) 7.4594

a Material parameter, Eq.(3) 5

b Material parameter, Eq.(3) 1

U∗ Reference threshold energy for DRX formation (MPa/m3), Eqs.(3-4) 92

kDRX Material parameter, Eq.(4) 0.5

nDRX Material parameter, Eq.(4) 8.7

G Elastic shear modulus (GPa) 43.6

K Elastic bulk modulus (GPa) 116

β Taylor-Quinney coefficient, Eqs.(5,20) 0.6

k Thermal conductivity (W/mK), Eq.(20) 21.9

lh Transformation latent heat (MJ/m3), Eq.(20) 118

ρ0 Density (kg/m3), Eq.(20) 4500

c Specific heat (MJ/m3K), Eq.(20) 234

Table 1: Parameters related to yield stress, DRX and twins volume fractions, stiffness parameters, and

conventional material constants representative of titanium alloys as taken from Osovski et al. (2013).
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x = X +

∫ t

0

v(X, τ)dτ (13)

where v is the current axial velocity. Since large deformations are considered, elasticity

can be neglected. Note that for considering uniaxial tensile conditions, ε̄p = ε.

The fundamental equations governing the loading process are presented below:

• Mass conservation:

∂v

∂X
= eεε̇ (14)

• Momentum balance in the axial direction:

ρ
∂v

∂t
=

∂

∂X
(σe−ε) (15)

• Flow stress:

σ =
(
1 + θ−1

)
ln(1 + θ)σy (16)

where σ is the true stress, defined as the averaged axial stress in the cross-section.

The correction factor θ (Bridgman, 1952; Walsh, 1984; Fressengeas and Molinari,

1985) is used to take into account that, in case of necking, the local axial stress is

enhanced by the hydrostatic stress. The factor θ is defined as

θ =
1

2
r

(
∂2r

∂x2

)
=

2A
(

∂2A
∂x2

)
−
(
∂A
∂x

)2
8πA

=
A0e

−3ε

8π

((
∂ε

∂X

)2

− ∂2ε

∂X2

)
(17)

where the relation A = A0e
−ε, derived from the incompressibility condition, has been

used.

• Twinning transformation law: from Eq. (3)

ftwins = g (ε) (18)
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• DRX transformation law: from Eq. (4)

fDRX = w (U) (19)

• Conservation of energy: assuming no heat flow at the specimen’s boundaries (a slen-

der bar subjected to rapid stretching will be analysed as further described in section

4) and neglecting the contribution of thermoelastic effects :

c
∂T

∂t
= βσε̇+ k

∂2T

∂x2
+
∂fDRX

∂t
lh (20)

where c, k and lh stand for the heat capacity per unit volume, the thermal conductiv-

ity and the latent heat per unit volume of transformed DRX due to the exothermic

character of the phase transformation (Zaera et al., 2013a). Note that in uniaxial

stress conditions σ̄ = σ.

Considering the domain [−L0/2, L0/2], the equations (14-16) and (18-20) are to be

solved under the following initial conditions formulated in Lagrangian coordinates:

v(X, 0) = ε̇0X (21)

σ(X, 0) = Ψ (0) = σ0
y

ε(X, 0) = 0

T (X, 0) = T0

ftwins(X, 0) = 0

fDRX(X, 0) = 0

and boundary conditions:

v(L0/2, t) = −v(−L0/2, t) = ε̇0L0/2 (22)

∂T (X, t)/∂X|X=L0/2 = ∂T (X, t)/∂X|X=−L0/2 = 0

The constant ε̇0 defines the value of the initial strain rate in the bar.
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3.2. Linear perturbation analysis

Let S(X, t) = (v(X), σ(t), ε(t), T (t), ftwins(t), fDRX(t))
T be the fundamental time-dependent

solution, at time t, of the previous problem. S is obtained by integration of Eqs. (14-16)

and (18-20) satisfying the initial and boundary conditions previously listed.

At time t = t1, at which the fundamental solution reaches the value S1(X, t1) =

(v1(X), σ1, ε1, T1, ftwins1, fDRX1)
T , consider a small perturbation of this solution δS(X, t)t1 ,

with |δS(X, t)t1 | ≪ |S1(X, t1)|, given by

δS(X, t)t1 = δS1e
iξXeη(t−t1) (23)

where δS1 = (δv, δσ, δε, δT, δftwins, δfDRX)
T is the perturbation amplitude, ξ the wavenum-

ber and η the growth rate of the perturbation at time t1. The perturbation becomes un-

stable when Re(η) > 0. According to Rodŕıguez-Mart́ınez et al. (2013b) the perturbation

growth η+ is assumed to represent the onset of diffuse necking, the very first stages at

which the local plastic flow deviates from the background value.

By substituting Eq. (23) into Eqs. (14-16) and (18-20) and retaining only first-order

terms, the following linearized equations are obtained:

• Mass conservation:

δv + iξ−1eε1 (ε̇1 + η) δε = 0 (24)

• Momentum balance in the axial direction:

ρηδv − iξe−ε1δσ + iξσ1e
−ε1δε = 0 (25)

Concerning the value of the stored energy of cold work, there are two possible scenarios,

for the remaining equations, depending on the perturbation time:

1. The perturbation time t1 is such that U < UDRX
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• Flow stress:

δσ − (σ1
A0ξ

2

8π
e−3ε1 +H)δε− PδT −Rδftwins = 0 (26)

• Twinning transformation law:

δftwins −Gδε = 0 (27)

• DRX transformation law:

δfDRX = 0 (28)

• Conservation of energy:

βε̇1δσ + βσ1ηδε− (cη + kξ2)δT = 0 (29)

2. The perturbation time t1 is such that U > UDRX

• Flow stress:

δσ − (σ1
A0ξ

2

8π
e−3ε1 +H)δε− PδT −QδfDRX = 0 (30)

• Twinning transformation law:

δftwins = 0 (31)

• DRX transformation law:

δfDRX −WδU = 0 (32)
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where δU is obtained linearising Eq. (5) as follows:

δU = −(1− β)Ep δfDRX + (1− fDRX1 − ftwins1) (1− β)σ1δε (33)

• Conservation of energy:

βε̇1δσ + βσ1ηδε− (cη + kξ2)δT + lhηδfDRX = 0 (34)

in Eqs. (24-34) the following definitions have been used

H =
∂Ψ

∂ε

∣∣∣∣
t1

; P =
∂Ψ

∂T

∣∣∣∣
t1

; Q =
∂Ψ

∂w

∣∣∣∣
t1

; R =
∂Ψ

∂g

∣∣∣∣
t1

G =
∂g

∂ε

∣∣∣∣
t1

; W =
∂w

∂U

∣∣∣∣
t1

; Ep =

∫ ε1

0

σdε

A non-trivial solution for δS1 is obtained only if the determinant of the systems of linear

algebraic equations (24-29) or (24-25) and (30-34) is equal to zero. Using the following

dimensionless variables and constants

η̄ =
η

ε̇1
; ξ̄ = r0ξ ; ψ(ε, T ) =

Ψ(ε, T )

σ0
y

Ī =

√
σ0
y

ρr20 ε̇
2
1

; Λ = e−ε1 ; ψ1 =
σ1(t1)

σ0
y

; l̄h = lh
1

σ0
y

H̃ = H
1

σ0
y

; P̃ = P
T0
σ0
y

Q̃ = Q
1

σ0
y

; R̃ = R
1

σ0
y

; G̃ = G ; W̃ =W
(1− fDRX1 − ftwins1) (1− β) σ1

W (1− β)Ep + 1
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c̃ = c
T0
σ0
y

; k̃ = k
T0

σ0
y ε̇1r

2
0

The resulting condition is found to be a cubic equation in η̄

B3η̄
3 +B2η̄

2 +B1η̄ +B0 = 0 (35)

with

B3 = c̃ (36)

B2 = ξ̄2k̃ + c̃− P̃ β (37)

with B1 and B0 depending on the perturbation time, namely:

1. The perturbation time t1 is such that U < UDRX

B1 = Λ2ξ̄2Ī2(c̃H̃ + c̃G̃R̃− c̃ψ1 + βP̃ψ1 +
c̃
8
Λ3ψ1ξ̄

2)− βP̃ + k̃ξ̄2 (38)

B0 = Λ2ξ̄2Ī2(βP̃ψ1 + H̃k̃ξ̄2 + G̃k̃R̃ξ̄2 − k̃ψ1ξ̄
2 +

k̃

8
Λ3ψ1ξ̄

4) (39)

2. The perturbation time t1 is such that U > UDRX

B1 = Λ2ξ̄2Ī2(c̃H̃ + c̃W̃ Q̃− c̃ψ1 + βP̃ψ1 +
c̃
8
Λ3ψ1ξ̄

2 + W̃ l̄hP̃ )− βP̃ + k̃ξ̄2 (40)

B0 = Λ2ξ̄2Ī2(βP̃ψ1 + H̃k̃ξ̄2 + W̃ k̃Q̃ξ̄2 − k̃ψ1ξ̄
2 +

k̃

8
Λ3ψ1ξ̄

4) (41)
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Summarizing, Eq. (35) gives, for a certain value of the time at perturbation t1, the

real value of η̄ as a function of the dimensionless wavenumber ξ̄. The requisite for unstable

growth of S1 is given by the condition Re (η̄) > 0. Eq. (35) has three roots in η̄, one

real and two complex conjugates. Only the one having the greater positive real part

has to be considered for the analysis of the dimensionless perturbation growth rate η̄+.

Moreover, imposing the condition for maximum perturbation growth ∂η̄+/∂ξ̄ = 0, the

critical wavenumber ξ̄c and the critical perturbation growth η̄+c are determined numerically.

It is important to note here that the stability analysis does not allow for calculation of

the necking strain, but it allows identifying the dependence of necking strain with material

behavior. Namely, the necking strain ε̄pneck correlates with the critical perturbation growth

η̄+c as described by the authors (Vadillo et al., 2012; Rodŕıguez-Mart́ınez et al., 2013b;

Zaera et al., 2013b).

4. 3D Finite element modelling

The axisymmetric finite element model used to simulate the rapid stretching of a ductile

cylindrical bar is based on that developed by Zaera et al. (2013b), but we present here its

main features for completeness.

The numerical analyses are carried out using the finite element program ABAQUS/Explicit

(Simulia, 2012). The dimensions of the cylindrical bar are L0 = 2 · 10−2 m initial length,

and r0 = 5 ·10−4 m initial radius. Due to the symmetry of the model, only the z ≥ 0 half of

the specimen needs to be analyzed (see Fig.1). The bar was meshed using a total of 2000

four-node, thermally coupled, axisymmetric reduced integration elements (10 elements in

the radial direction and 200 elements along the half-length), CAX4RT in ABAQUS nota-

tion, with an element aspect ratio equal to 1:1 (Fig.1). Neither geometrical nor material

imperfections were introduced into the model, the numerical round-off being sufficient to

perturb the stress and the strain fields (Rusinek and Zaera, 2007; Vadillo et al., 2012;

Rodŕıguez-Mart́ınez et al., 2013b).

The imposed loading conditions can be formulated as Vz(r, L/2, t) = ε̇0L0/2, Vz(r, 0, t) =

0. In order to avoid the spurious propagation of waves along the bar, caused by the ap-

plication of these boundary conditions in a solid at rest showing elastic behavior, specific
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initial conditions consistent with the boundary conditions are imposed, Vr(r, z, 0) = − ε̇0
2
r

and Vz(r, z, 0) = ε̇0z (see Zaera et al. (2013b) for detailed explanation of these initial

conditions).

Likewise, in order to avoid the abrupt jump in the stress field caused by application of

the boundary conditions, the material flow has been initialized in the whole domain with

a value of σz equal to the initial yield stress of the material (see Eqs. (21)). If neither the

velocity nor the stress fields were initialized, for sufficiently high velocities the generated

wave could induce by itself a neck (Needleman, 1991; Xue et al., 2008). Regarding initial

thermal conditions, the initial temperature was set to 293 K in all cases.

�

R
0

Vz

L
0
/2

10 elements along
the radius of the
mesh

aspect ratio 1:1 

�

�

�����		
���� ����

���
�����		
���

Figure 1: Finite element mesh and mechanical boundary conditions of the cylindrical bar, modeled as an

axially symmetric specimen (Zaera et al., 2013b).

The set of equations describing the constitutive behavior of the material are imple-

mented -using a fully coupled thermomechanical scheme- in the finite element code through

a user subroutine following the integration scheme reported in Zaera et al. (2013b).

5. Results and discussion

Results of stability analysis and finite element simulations are presented, the goal being

to asses the respective influence of microstructural and thermal softening effects on dynamic

necking inception. The analysis is divided into two parts: (1) influence of microstructural

softening effects on flow localization, (2) influence of thermal softening effects on flow

localization.
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UDRX (MPa/m3)

0.125U∗ 0.25U∗ 0.5U∗ U∗

Table 2: Values of UDRX used to analyse the influence of microstructural softening on dynamic necking.

The range of values is taken following Osovski et al. (2013).

5.1. Influence of microstructural softening effects on dynamic necking inception

Following the procedure reported by Osovski et al. (2013), the material parameter

controlling thermal softening is set to be constant α = α∗ (see Table 1) and the DRX

threshold energy UDRX is varied as illustrated in Table 2.

According to the material parameters listed in Table 1, Fig. 2 shows the dimensionless

flow stress upon plastic strain for the values of UDRX reported in Table 2. Below, some

observations are reported:

• UDRX = 0.125U∗: For plastic strains ε̄p . 0.1 slip is the main mechanism responsible

for the plastic flow leading to visible strain hardening effects. Within the range

ε̄p & 0.1 the material develops DRX and strain hardening effects are cancelled. It

has to be noted that strain softening effects are almost negligible.

• UDRX = 0.25U∗: The stress-strain curve is largely similar to that shown for UDRX =

0.125U∗. The difference resides in the plastic strain corresponding to the onset of

DRX, which is slightly delayed in the present case. Thus, at large strains the yield

stress corresponding to UDRX = 0.25U∗ is a little larger than that corresponding to

UDRX = 0.125U∗. Strain softening effects are almost negligible.

• UDRX = 0.5U∗: The material characteristic coincides with those reported for previous

cases up to ε̄p ≈ 0.1. Subsequently the material shows a dramatic increase in strain

hardening and yield stress caused by the formation of twins. The maximum strain

hardening is recorded for ε̄p ≈ 0.2 (corresponding to the maximum rate of twinning

formation). Twinning development stops for ε̄p ≈ 0.3, this value of plastic strain
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defines the onset of dynamic recrystallization which leads to strain softening and

yield stress decrease.

• UDRX = U∗: The stress-strain curve coincides with that reported for UDRX = 0.5U∗

up to ε̄p ≈ 0.3. Unlike in the case of UDRX = 0.5U∗, now the onset of DRX is delayed

until ε̄p ≈ 0.75. This value of plastic deformation determines the onset of slight strain

softening effects.
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Figure 2: Dimensionless flow stress ψ versus equivalent plastic strain ε̄p for different values of the DRX

threshold energy: UDRX = 0.125U∗, UDRX = 0.25U∗, UDRX = 0.5U∗ and UDRX = U∗. To be noted that

α = α∗ (see Table 1).

5.1.1. Stability analysis results

Next, the results obtained from the stability analysis are discussed. Here it is important

to emphasize the relation between critical perturbation growth and necking strain. The

stability analysis provides η̄+c , whereas the necking strain will be obtained from finite

element simulations.

Fig. 3 illustrates the dimensionless critical perturbation growth η̄+c versus plastic strain

at perturbation ε1 for the values of UDRX listed in Table 2. Two different loading rates are

analysed: ε̇0 = 103 s−1 in Fig. 3-a and ε̇0 = 105 s−1 in Fig. 3-b. It must be highlighted
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that as the loading rate increases the critical perturbation growth decreases (to be noted

from the different scale in the axis corresponding to η̄+c for Figs. 3-a and 3-b). The strain

rate enhances the role played by inertia on the material response, stabilizing the plastic

flow and delaying the onset of flow localization. Therefore, one should expect that as the

loading rate increases, so does the necking strain (Zaera et al., 2013b).

Now we pay attention to the differences between the η̄+c – ε1 curves corresponding to

each value of UDRX considered in this analysis. The observations reported below apply for

any loading rate.

• UDRX = 0.125U∗: For ε1 = 0 the perturbation does not grow, strain hardening

caused by deformation of the slip phase precludes strain localization. As plastic

deformation proceeds, strain hardening effects are gradually reduced and the material

yield stress increases. Both are destabilizing factors which promote flow localization

and the perturbation starts to grow for ε1 ≈ 0.05. Any additional increase in plastic

deformation causes a continuous rise of η̄+c , i.e. material straining leads to a more

unstable material favouring flow localization.

• UDRX = 0.25U∗: The functional dependence of η̄+c upon ε1 is almost identical to that

reported for UDRX = 0.125U∗ for the whole spectrum of ε1 assessed since both cases

show largely similar stress–strain characteristics, see Fig. 2.

• UDRX = 0.5U∗: Identically to UDRX = 0.125U∗ and UDRX = 0.25U∗ the perturbation

starts to grow for ε1 ≈ 0.05. Then, η̄+c increases until ε1 ≈ 0.11 when it reaches a

relative maximum. From this point on, the critical perturbation growth decreases

until η̄+c = 0 for ε1 ≈ 0.16 due to the drastic increase in strain hardening caused by

twinning development (see Fig. 2). The material remains stable within the range

0.16 . ε1 . 0.23, which precludes flow localization. For ε1 ≈ 0.23 the material

becomes again unstable and the perturbation grows. When ε1 & 0.3 the η̄+c – ε1

relation obtained for UDRX = 0.5U∗ does not differ significantly (neither qualitatively

nor quantitatively) from those obtained for UDRX = 0.125U∗ and UDRX = 0.25U∗.

• UDRX = U∗: The relation η̄+c – ε1 looks very much like that reported for UDRX =
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0.5U∗ for the whole range of ε1 examined since both cases show largely similar stress–

strain characteristics, see Fig. 2.

Previous observations allow to draft two main conclusions:

1. If flow localization develops for values of strain ε1 < 0.3, the necking strain will be

presumably greater in the cases of UDRX = U∗ and UDRX = 0.5U∗ than in the cases

of UDRX = 0.25U∗ and UDRX = 0.125U∗. At such low strains, twinning development

stabilizes material behaviour (decreases η̄+c ) for UDRX = U∗ and UDRX = 0.5U∗

whereas DRX destabilizes material behaviour (increases η̄+c ) for UDRX = 0.25U∗ and

UDRX = 0.125U∗.

2. If flow localization develops for values of strain ε1 & 0.3, the necking strain will

be presumably similar for any value of UDRX considered. At large strains the η̄+c

– ε1 relation shows little dependence on UDRX . This suggests that, at sufficiently

large strains, the values of UDRX analysed are such that the resulting stress-strain

characteristics show similar propensity to flow localization.

Next, the results of the finite element computations are presented and rationalized

based on the linear stability analysis.

5.1.2. Finite element results

The localized necking strain ε̄pneck has been determined in the numerical computations

following the procedure reported elsewhere (Triantafyllidis and Waldenmyer, 2004; Xue

et al., 2008; Rodŕıguez-Mart́ınez et al., 2013; Zaera et al., 2013b). The localized necking

strain (from this point designated indistinctly as necking strain) is assumed as determined

by the condition dε̄p/dt = 0, where ε̄p is measured within the unloading zone which sur-

rounds the neck.

Fig. 4 shows the localized necking strain ε̄pneck measured for the values of UDRX listed

in Table 2 within a wide range of initial strain rates 102 s−1 6 ε̇0 6 105 s−1. Consistent

with the procedure followed in previous section, the results obtained for the values of UDRX

considered will be analysed separately:
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Figure 3: Critical perturbation growth η̄+c versus equivalent plastic strain at perturbation ε1 for

different values of the DRX threshold energy: UDRX = 0.125U∗, UDRX = 0.25U∗, UDRX = 0.5U∗

and UDRX = U∗. (a) ε̇0 = 103 s−1, (b) ε̇0 = 105 s−1. To be noted that α = α∗ (see Table 1).
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• UDRX = 0.125U∗: For 102 s−1 6 ε̇0 . 2 · 103 s−1 the necking strain shows very

little increase with loading rate, being ε̄pneck ≈ 0.05. Note that this is the value of

ε1 reported in previous section for which the perturbation starts to grow. Conse-

quently, flow localization is determined by strain hardening/softening effects. For

ε̇0 > 2 · 103 s−1 the necking strain experiences a continuous increase with loading

rate. The necking strain does not correspond to the threshold strain required by the

perturbation to grow, see Fig. 3, since the contribution of inertia is large enough

to further delay strain localization. Therefore, flow localization becomes noticeably

controlled by inertia.

• UDRX = 0.25U∗: As expected from the stability analysis results, the functional

dependence of ε̄pneck upon ε̇0 is largely similar to that reported for UDRX = 0.125U∗

for the whole spectrum of loading rates assessed.

• UDRX = 0.5U∗: For 102 s−1 6 ε̇0 . 2 · 103 s−1 the necking strain shows very little in-

crease with loading rate, being ε̄pneck ≈ 0.23. This value was identified in the stability

analysis as the threshold strain required by the perturbation to develop the second

branch of growth, see Fig. 3. Interestingly, flow localization does not occur within

the range of plastic strains corresponding to the first branch of perturbation growth.

In fact, in the simulations, one can observe the onset of necking for ε̄pneck ≈ 0.05 (the

beginning of the first branch of perturbation growth) but necking development is

arrested as soon as the plastic strain reaches ε̄pneck ≈ 0.16 (the end of the first branch

of perturbation growth). Necking preclusion homogenizes the plastic strains along

the bar and flow localization becomes postponed until ε̄pneck ≈ 0.23 (the onset of the

second branch of perturbation growth) when necking can develop since any further

increase in plastic strain leads to material destabilization. Therefore, flow localiza-

tion is mainly dictated by the strain hardening/softening effects. For ε̇0 > 2 · 103 s−1

the necking strain shows a marked increase with loading rate. The necking strain

does not correspond to the threshold strain required by the perturbation to develop

the second branch of growth illustrated in Fig. 3, since the contribution of iner-

tia is large enough to further delay strain localization. Therefore, flow localization
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becomes again controlled by inertia. It has to be highlighted that, as predicted by

the stability analysis, the results obtained for UDRX = 0.5U∗ become very similar to

those obtained for UDRX = 0.25U∗ and UDRX = 0.125U∗ for the largest loading rates

considered (specifically when the loading rate is such that the necking strain exceeds

0.3).

• UDRX = U∗: As expected from the stability analysis results, the relation ε̄pneck – ε̇0

is very similar to that reported for UDRX = 0.5U∗ for the whole spectrum of loading

rates assessed.
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Figure 4: Localized necking strain ε̄pneck versus initial loading rate ε̇0 for different values of the DRX

threshold energy: UDRX = 0.125U∗, UDRX = 0.25U∗, UDRX = 0.5U∗ and UDRX = U∗. To be noted that

α = α∗ (see Table 1).

Two main conclusions are derived from previous observations:

1. At sufficiently low loading rates the necking strain is dictated by strain harden-

ing/softening effects whereas inertia shows negligible influence on flow localization.

This results in necking strains which are directly tied to the microstructural trans-

formations experienced by the material.

2. At sufficiently high loading rates the material ductility to necking is essentially dic-

tated by inertia whereas strain hardening/softening effects play a secondary role on



24

α (K−1)

0 α∗ 4α∗ 8α∗

Table 3: Values of α used to analyse the influence of thermal softening on dynamic necking. The range of

values is taken following Osovski et al. (2013).

flow localization. This results in necking strains which show negligible influence of

the microstructural transformations experienced by the material.

5.2. Influence of temperature softening effects on dynamic necking inception

Following the procedure reported by Osovski et al. (2013), the DRX threshold energy

is set to be constant UDRX = U∗ (see Table 1) and the material parameter controlling

thermal softening α is varied as illustrated in Table 3.

According to the material parameters listed in Table 1, Fig. 5 illustrates the dimen-

sionless flow stress upon plastic strain for the values of α reported in Table 3. Below, some

observations are reported:

• α = 0: The material yield stress is assumed as temperature independent. Slip con-

trols plastic flow within the range of plastic strains ε̄p . 0.1. Then, there is a rapid

development of twinning which leads to a drastic increase of material strain harden-

ing. ε̄p ≈ 0.2 determines the point of maximum rate of twinning formation, further

material straining leads to gradual reduction of strain hardening effects. Saturation

of the stress-strain characteristic occurs for ε̄p ≈ 0.8. This value marks the onset of

DRX formation which in turn triggers slight material strain softening.

• α = α∗: The stress-strain curve is largely similar to that shown for α = 0. The

difference resides in the plastic strain value for which saturation of the stress-strain

characteristic occurs. In the present case this occurs at ε̄p ≈ 0.75 due to thermal

effects. From this point on, material strain softening is clearly visible.

• α = 4α∗: Qualitatively the stress-strain curve looks like those described for α = 0

and α = α∗. However, in the present case stress saturation occurs at ε̄p ≈ 0.55 due
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to the larger temperature sensitivity of the material. Further material straining leads

to strain softening effects larger than those reported for α = 0 and α = α∗.

• α = 8α∗: The stress-strain curve is very similar to those corresponding to α = 0,

α = α∗ and α = 4α∗. The larger temperature sensitivity brings the stress saturation

to ε̄p ≈ 0.3 and leads to material strain softening effects higher than those reported

for α = 0, α = α∗ and α = 4α∗.
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Figure 5: Dimensionless flow stress ψ versus equivalent plastic strain ε̄p for different values of the temper-

ature sensitivity parameter: α = 0, α = α∗, α = 4α∗ and α = 8α∗. To be noted that UDRX = U∗ (see

Table 1).

5.2.1. Stability analysis results

Next, the results obtained from the stability analysis are discussed. Fig. 6 illustrates

the dimensionless critical perturbation growth η̄+c versus plastic strain at perturbation ε1

for the values of α listed in Table 3. Two different loading rates are analyzed: ε̇0 = 103 s−1

in Fig. 6-a and ε̇0 = 105 s−1 in Fig. 6-b.

It is important to remember here that the loading rate decreases the critical pertur-

bation growth, thus stabilizing the plastic flow. We pay attention now to the differences

between the η̄+c – ε1 curves corresponding to each value of α considered in this analysis.

The discussion conducted below applies for any loading rate.
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• α = 0: The material becomes unstable for ε1 ≈ 0.05. Then, η̄+c increases until

reaching a relative maximum for ε1 ≈ 0.11. Subsequently, the material becomes

gradually stabilized by the drastic increase in strain hardening caused by twinning

development (see Fig. 5) until ε1 ≈ 0.16 when the condition η̄+c = 0 is reached. The

perturbation does not grow within the range 0.16 . ε1 . 0.23, which precludes flow

localization. For ε1 ≈ 0.23 the material becomes unstable again, further material

straining causes continuous rise in η̄+c .

• α = α∗: The relation η̄+c – ε1 is qualitative very similar to that reported for α = 0.

The strain values for which the condition η̄+c = 0 is fulfilled remain practically the

same. However, within the range of ε1 for which the perturbation grows, the values

of η̄+c registered in the present case are slightly higher than those obtained for α = 0.

• α = 4α∗: The relation η̄+c – ε1 is qualitative very similar to those reported for α = 0

and α = α∗. The only difference resides in the values of η̄+c –within the ranges of ε1

for which the perturbation grows– which are slightly larger in the present case.

• α = 8α∗: The relation η̄+c – ε1 is almost identical to those described for previous

cases. Again, the only difference resides in the values of η̄+c which are slightly larger

in the present case.

Previous observations allow to derive two main conclusion:

1. Qualitatively, thermal effects play a negligible role on the η̄+c – ε1 curves. For the

material cases analyzed here, the range of plastic strains for which the perturbation

growth is not affected by thermal softening. The condition of stability or instability

of the material is dictated by the microstructural transformations which show great

influence on the yield stress level and strain hardening of the material.

2. Quantitatively, thermal effects act as a destabilizing factor. Increasing temperature

sensitivity triggers greater strain softening effects which in turn lead to larger values

of η̄+c within the range of plastic strains for which the perturbation grows. However

such increase of η̄+c is shown to be very limited for the material cases analyzed here.
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Figure 6: Critical perturbation growth η̄+c versus equivalent plastic strain at perturbation ε1 for

different values of the temperature sensitivity parameter: α = 0, α = α∗, α = 4α∗ and α = 8α∗.

(a) ε̇0 = 103 s−1, (b) ε̇0 = 105 s−1. To be noted that UDRX = U∗ (see Table 1).
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The value of η̄+c is mainly controlled by the microstructural transformations which

show great influence on the yield stress level and strain hardening of the material.

This analysis suggests that the necking strain is largely independent of the thermal

softening parameter, irrespective of the loading rate considered.

5.2.2. Finite element results

Next, the results obtained from the finite element computations are discussed. Fig.

7 shows the localized necking strain ε̄pneck measured for the values of α listed in Table 3

within a wide range of initial strain rates 102 s−1 6 ε̇0 6 105 s−1. Consistent with the

procedure followed in previous section, the results obtained for the values of α considered

will be analysed separately:

• α = 0: Within the range of loading rates 102 s−1 6 ε̇0 . 2 · 103 s−1 the necking

strain shows very little increase with loading rate, being ε̄pneck ≈ 0.23. This value was

identified in the stability analysis as the threshold strain required by the perturbation

to develop the second branch of growth illustrated in Fig. 6. As reported in previous

section, at low strain rates the necking strain is dictated by the strong influence

that microstructural transformations have on yield stress and strain hardening of the

material. For ε̇0 > 2 · 103 s−1 the necking strain shows continuous increase with

loading rate. The necking strain does not correspond to the threshold strain required

by the perturbation to develop the second branch of growth illustrated in Fig. 7,

since the contribution of inertia is large enough to further delay strain localization.

• α = α∗: The necking strain is largely similar to that obtained for α = 0 within the

whole range of loading rates considered.

• α = 4α∗: Identical comments to the previous case.

• α = 8α∗: Identical comments to the previous two cases.

Two main conclusions are derived from previous observations:

1. At low strain rates the necking strain is controlled by the strong influence of twinning

and DRX on material yield stress level and strain hardening, playing thermal effects

a negligible role.



29

0

0,2

0,4

0,6

0,8

1

100 1000 10
4

10
5

Initial loading rate, ε
0
 (s

-1
)

.

L
o

c
a

liz
e

d
 n

e
c
k
in

g
 s

tr
a

in
, 

ε
 p

n
e

c
k α= 0

α= α
*

α= 4α
*

α= 8α
*

Figure 7: Localized necking strain ε̄pneck versus initial loading rate ε̇0 for different values of the temperature

sensitivity parameter: α = 0, α = α∗, α = 4α∗ and α = 8α∗. To be noted that UDRX = U∗ (see Table 1).

2. At high strain rates the necking strain is mainly controlled by inertia irrespective of

thermal effects.

This analysis suggests that in presence of microstructural transformations with strong

influence on the stress-strain characteristics of the material like those considered in this

analysis – i.e. twinning and DRX – thermal softening effects may play a minor role on

material flow localization for any loading rate considered.

6. Discussion

The present paper provides an analytical investigation of the respective role of mi-

crostructural (phase transformation) and thermal softening mechanisms to the generation

of dynamic instabilities. As such, it is a direct extension of the recent previous numerical

study of Osovski et al. (2013), with the following major differences: The paper studies

another type of instability, namely tensile (necking), as opposed to the previous study of

shear localization. The approach adopted here is completely different: A one-dimensional

stability analysis is performed analytically, albeit based on the same constitutive parame-

ters used by Osovski et al. (2013). This analysis provides a new type of information, namely
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the rate of perturbation growth and its modes, which is to be contrasted with the previous

emphasis on the onset of shear localization. The one-dimensional analysis is then con-

fronted to a fully coupled three dimensional numerical analysis of the necking phenomenon

for one basic material (titanium alloy) whose physical properties are systematically varied.

This study shows the various evolutions of the necking strain, when necking has been iden-

tified in the first stage as the perturbation itself, as a function of the strain rate. In that

respect, the numerical part of this work bears some resemblance to the previous work of

Osovski et al. (2013), with the following major differences: The first point that is empha-

sized is that of the dependence of the necking strain on the applied strain-rate. Our study

shows that, whereas for the lower strain-rates, the necking strain is indeed the perturba-

tion strain at which the perturbation exhibits a maximal growth rate (analytical result),

the two strains differ significantly as soon as the strain rate grows beyond 103 s−1. This

point, which was not noted previously, is in perfect agreement with the previous results

of Rodŕıguez-Mart́ınez et al. (2013a) who showed that inertia has a dominant stabilizing

role on the onset of the tensile instability. As such, while the previous study of Osovski

et al. (2013) outlined two dominant regimes, one being the microstructural dominance, the

second involving thermal softening, one sees here that a third regime overrules the previous

two when the strain rate increases significantly, to a point where neither microstructural

nor thermal softening effects are relevant any longer. In this regime, all the investigated

nuances of material are no longer distinguishable. One main outcome of this study is the

minor role played by thermal softening on the onset of the tensile instability, with respect

to the dominant microstructural influence.

While one must be careful in generalizing this observation, the point remains definitely

new and of interest. While dynamic shear instabilities, investigated e.g. by Osovski et al.

(2013) were long primarily attributed to thermal softening, a point which prompted the

study in question, the same cannot be claimed for the onset of tensile instability. One could

argue here that provided necking occurs at relatively small tensile strains, the probability

for material self-heating, assuming that the Taylor-Quinney coefficient of the material is

well known, still remains rather small. Hence, one has to look for other destabilizing

mechanisms, one of which being the microstructural evolutions studied in this work. One
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can therefore rationalize the observed lack of thermal softening influence based on those

physical premises. However, should there be no such phase transformations, such as DRX,

and given the delaying influence of inertia at very high strain rates, one could expect that

thermal softening plays some role on the onset of necking. The present results do not

absolutely contradict this point, but as noted in Figs. 6-7, thermal softening is definitely

not the dominant parameter here.

From a broader perspective, the following points should be mentioned. First, this

analysis presents a framework to investigate the onset of dynamic instabilities, at this stage

tensile necking. One can expect the similar framework to apply to other instabilities, such

as (adiabatic) shear bands for example. The present analysis, comprises one important

simplifying assumption, namely that the material is not strain rate sensitive. For the

titanium alloy in question here, the experimental results show that this is not the case,

however, this assumption must be made to facilitate the interpretation of the perturbation

and numerical analyses results. Yet, when the current results are compared to the previous

numerical work of Osovski et al. (2013) who considered a rate-sensitive material, one cannot

really see a significant qualitative difference, a point that seems to indicate that the neglect

of the rate sensitivity is not affecting the outcome of the analysis to a significant extent.

Finally, one should pay attention to the numerical approach employed in this work.

Instead of solving the fully transient problem in which waves propagate throughout the

specimen, the dynamic loading was applied by means of initialized velocity (and stress)

fields. In this case, inertia (mass and velocity) is preserved, but waves do not propagate

since there is no prescribed velocity jump. Consequently, this method allows for the separa-

tion of structural (inertia and wave related) and material (constitutive) effects in a simple

and straightforward manner. Such a separation and its outcome is highly desirable for

the kind of studies carried out here, as opposed to full transient analyses (Osovski et al.,

2013) in which structural and material aspects were all analysed simultaneously. The cur-

rent approach allows for a clear separation between material aspects of the problem in

the lower strain-rate regime, which become structural in nature at the higher strain-rates

where inertia prevails. To summarize the present study and its main results, a new sta-

bility analysis has been presented, based on previous physical observations and numerical
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results, in which the emphasis is on the joint influence of the microstructural evolutions and

thermal softening. The analytical study has defined the rate of growth of the critical mode

as a function of those parameters, while the critical strain at which necking commences

was calculated numerically. Although conducted from a radically different perspective, the

present study supports and complements our previous work, showing the important role of

microstructural softening at the expense of the thermal one, added to the dominant role

of inertia as a stabilizing factor at very high strain rates, a point that was not previously

considered in this specific case of dynamically necking phase transforming materials and

their stability.

7. Conclusions

A stability analysis has been presented, that includes two competing deformation mi-

cromechanisms, twinning and dynamic recrystallization. The analysis is completed by a

numerical simulation of dynamic necking in a tensile bar. The specific formulation of the

initial and prescribed loading conditions of the fully coupled thermomechanical problem at

hand, allow for a clear separation of the material and structural aspects of the problem.

In the lower range of strain rates (up to about 103 s−1) the analysis shows a clear

influence of the microstructural mechanisms on the perturbation growth (necking). As

expected, twinning stabilizes the material whereas DRX promotes localization. On the

other hand, thermal softening is shown to have a minor influence, if at all, on the onset

of the tensile localization. Those results are in full agreement with the previous work of

Osovski et al. (2013) who studied a similar related problem (shear) using a purely numerical

approach in which wave propagation was accounted for.

In the higher strain rate regime, the results show that inertia governs the onset of

the localization, by postponing neck formation. In this case, which was not addressed

previously, one can notice that the thermomechanical characteristics of the bar play a very

minor role to a point where all materials and thermal couplings combinations collapse into

a single curve. This result is consistent with previous work about multiple necking in

metallic rings subjected to very high strain rates (Rodŕıguez-Mart́ınez et al., 2013a).

It is expected that the approach proposed here can be applied in the future to the
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analysis of the dynamic shear localization case, as in Molinari (1997).
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necking in materials with strain induced martensitic transformation. Journal of the Me-

chanics and Physics of Solids, Submitted for Publication.

Zhou, F., Molinari, J. F., Ramesh, K. T., 2006. An elasto-visco-plastic analysis of ductile

expanding ring. Int J Impact Eng 33, 880–891.




