
This work is licensed under a
 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 

International License

This is a postprint version of the following published document:

Rubin, M.B.; Rodríguez-Martínez, J.A. (2014). The 
effect of radial inertia on flow localization in ductile 
rods subjected to dynamic extension. International 
Journal of Impact Engineering. 69, pp. 157-164.

DOI: https://doi.org/10.1016/j.ijimpeng.2014.02.006

© 2014 Elsevier Ltd. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288501894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ijimpeng.2014.02.006
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

The effect of radial inertia on flow localization in ductile 
rods subjected to dynamic extension 

 

 

 

MB Rubin 

Faculty of Mechanical Engineering 

Technion - Israel Institute of Technology  

32000 Haifa, Israel  

Email: mbrubin@tx.technion.ac.il 

 

JA Rodríguez-Martínez 

Department of Continuum Mechanics and Structural Analisis 

University of Carlos III of Madrid 

Avda. de la Universidad 30, 28911 Leganés 

Madrid, Spain 

Email: jarmarti@ing.uc3m.es 

 

 

May 2013 

 

Keywords: Flow localization; Linear stability analysis; Perturbation growth; Radial 

Inertia 



 2 

Abstract 

The objective of this work is to investigate the influence of radial inertia on the flow 

localization in ductile rods subjected to dynamic extension.  Using the theory of a straight 

Cosserat rod which includes normal cross-sectional extension it is possible to obtain an 

exact solution for nonlinear uniform extension of a rigid-plastic material using a 

functional form of the yield stress that models the effect of the more general stress field 

in the necking region of the rod.  Linear stability analysis of this exact nonlinear solution 

yields equations that generalize the formulation reported by Zhou et al. (2006) to include 

radial stretching and inertia.  Examples show the quantitative effect of radial inertia on 

the stabilization of the localization process and on the determination of the expected 

length of fragments. 
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1. Introduction 

 The foundation of analytical investigations of necking of ductile rods was proposed 

by Considère (Considère 1885) who postulated the well-known load maximum criterion: 

the onset of necking occurs when the increment of strain hardening becomes equal to the 

geometric softening in a simple tension test.  To this day Considère's criterion is used in 

many engineering applications to estimate the onset of necking. Straightforward 

application of Considère's condition provides the necking strain, which is considered as 

the reference variable for assessment of material ductility.  More specifically, Considère's 

condition is based on the following assumption: 

 The gauge of the specimen must be such that the elongation of the neck is small in 

comparison with the uniform elongation which occurs before localization. 

 The material is strain rate and temperature insensitive. 

 The material is tested under quasi-static conditions. 

 The latter restriction is related to the fact that the well-established concepts of ductile 

failure under static loading no longer apply in the dynamic regime. At high strain rates, 

necking and failure are delayed by the influence of the inertia. This was the conclusion of 

Fyfe and Rajendran (1980) who performed a series of quasi-static and dynamic tests on 

different metals and observed that fracture was inhibited at high strain-rates. More 

specifically, these authors (Fyfe and Rajendran 1980, Rajendran and Fyfe 1982) 

incorporated inertia terms in the theory of plastic instability and obtained results 

consistent with their experimental observations. Further insight into the role played by 

inertia in dynamic failure of ductile materials was provided by Grady (1982).  He 

explicitly stated that the global continuum laws used to predict dynamic failure must 
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include the effects of inertia. More specifically, in the closure of his work Grady (1982) 

claimed that “material ductility as a phenomenon driven by local inertia forces” needed 

additional investigation. This gave rise to extensive research in the field of dynamic 

ductile failure using experimental, computational and analytical methods. 

 Experimental work: Most of the experimental work is based on radial expansion of 

axially symmetric structures like rings (e.g. Grady and Benson, 1983; Gourdin, 1989; 

Altynova et al., 1996; Grady and Olsen, 2003; Zhang and Ravi-Chandar, 2006; 

Janiszewski, 2012), tubes (e.g. Goto et al., 2008; Hiroe et al., 2008; Zhang and Ravi-

Chandar, 2010) and hemispheres (e.g. Juanicotena, 1998; Mercier et al., 2010). The 

symmetry of these structures nearly eliminates the effects of wave propagation before the 

onset of necking, which facilitates the interpretation of the experimental findings. Within 

the typical range of expansion velocities attained in these tests – from 50 to 300 m/s – the 

experimental results show that, without exception, the strain to failure of ductile materials 

is enhanced by the loading rate. 

 Computational work: Knoche and Needleman (1993) used finite element (FE) 

simulations to evaluate the influence of inertia on failure initiation in the round bar tensile 

test. It was demonstrated that inertia effectively introduces a length scale so that for fixed 

material properties and a fixed imposed strain rate, specimen ductility is a function of 

specimen size. Han and Tvergaard (1995) revisited the findings in (Knoche and 

Needleman, 1993) and confirmed by FE simulations that the effect of inertia delays the 

onset of necking in plane strain tensile test specimens. The numerical simulations of Hu 

and Daehn (1996) on rings subjected to rapid expansion indicated that the observed 

ductility of the expanded rings increases with loading rate, virtually without limits. These 
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numerical results were consistent with experimental observations and provided further 

verification of the role played by inertia in retarding flow localization. Additional more 

recent numerical simulations which emphasize the stabilizing role of inertia in different 

loading situations and for different types of material behaviors can be found in (Pandolfi 

et al., 1999; Sørensen and Freund, 2000; Nilsson 2001, Becker, 2002; Tuğcu 2003, 

Rusinek and Zaera 2007, Rodríguez-Martínez 2013a,b). 

 Analytical work: Typically this work uses linear stability analysis of a fundamental 

solution to determine the growth rate of the most preferred perturbations. This analysis 

yields analytical expressions that reveal the individual influences of the loading and 

material parameters on the necking process. Fressengeas and Molinari (1985, 1994) 

studied plastic localization in bars and sheets subjected to rapid extension.  Their results 

explained the increased material ductility at high strain rates and were in qualitative 

agreement with experimental observations. Similarly, Sørensen and Freund (1998) and 

Shenoy and Freund (1999) analyzed the stability of a rectangular plate strained under 

plane strain tension and also showed that inertia tends to slow down the perturbation 

growth.  More recent publications, Molinari and co-workers developed the analysis for 

the rapid expansion of tubes (Mercier and Molinari 2004) and hemispheres (Mercier et al. 

2010) which further justifies the conclusion that inertia is a stabilizing factor which 

delays flow localization (irrespective of the loading configuration addressed). Rodríguez-

Martínez et al. (2013a,b) re-examined the rapid axial stretching of ductile rods and 

showed that at sufficiently high strain rates, inertia dominates other effects and 

completely controls the onset of necking. This conclusion was derived by analyzing the 

stability of a 1D model proposed by Zhou et al. (2006) which incorporated axial inertia. 
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However, like other analysis of 1D structural elements subjected to uniaxial extension 

(Vadillo et al. 2012, Rodríguez-Martínez et al. 2013a, Zaera et al. 2013), the model did 

not include the influence of radial inertia. Consequently, the influence of radial inertia on 

flow localization in ductile rods subjected to rapid stretching still needs further study. 

 In this paper, use is made of the theory of a Cosserat  curve (e.g. Green et al., 1974a,b 

and Rubin, 2000) to develop equations for rigid plastic deformations of a straight rod 

with a deformable circular cross-section. This formulation extends that in (Zhou et al., 

2006) by including an averaged effect of the balance of linear momentum associated with 

radial motion of the cross-section. Examples show the quantitative effect of radial inertia 

on the stabilization of the localization process. 

 An outline of the paper is as follows:  Section 2 presents the basic equations of a 

Cosserat rod with specialization for the case of rigid-plastic deformation of a straight rod. 

Section 3 records the specialized form of the yield strength used in previous analyses and 

Section 4 develops the equations for linearized deformations superimposed on a 

nonlinear uniform solution. Section 5 discusses the stability analysis, Section 6 presents 

results and discussion and Section 7 presents conclusions. Also, the Appendix presents 

some connections with the three-dimensional theory. 

 Throughout the text, vectors and second order tensors are denoted by bold symbols,    

a  b denotes the usual dot product between two vectors {a, b},  ab denotes the tensor 

product between two vectors {a,b}, A • B = tr(ABT) denotes the inner product between 

two second order tensors {A,B} and I is the second order identity tensor.  
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2. Basic equations of a Cosserat rod 

 Following the work in Chapter 5 of (Rubin, 2000) the kinematics of a Cosserat rod in 

its present configuration at time t are specified by  

  x = x(3,t) ,  d = d(3,t) , (2.1) 

where x locates a material point on the reference curve of the rod and d (=1,2) are 

director vectors that characterize the rod's cross-section.  Also, 3 is a convected 

coordinate characterizing material points along the reference curve.  These quantities can 

be used to obtain an approximation of the three-dimensional position vector x* which 

locates material points in the rod region 

  x* = x(3,t) +  d(3,t)  , (2.2) 

where  are convected coordinates locating material points in the rod's cross-section and 

the usual summation convention is used for repeated indices. Here, Greek indices have 

the range (=1,2) and Latin indices have the range (i=1,2,3).  Also, the director d3, which 

is tangent to the rod's reference curve, and the scalar d33 are defined by 

  d3 = x,3  ,  d33 = d3 • d3  , (2.3) 

where a comma denotes partial differentiation with respect to i.  Furthermore, the 

velocity v and director velocities wi are defined by 

  v = 
•
x , wi = 

•
di  , (2.4) 

where a superposed (•) denotes material time differentiation holding 3 fixed. 

 The scalar d1/2 and reciprocal vectors di of di are defined by 

 d1/2 = d1d2 • d3 > 0 ,  d1 = d–1/2(d2d3) ,  d2 = d–1/2(d3d1) , d3 = d–1/2(d1d2) , 
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  di • dj = i
j , (2.5) 

where i
j is the Kronecker delta symbol.  Moreover, the rate tensor L, the rate of 

deformation tensor D and its deviatoric part D' are defined by 

  L = widi ,  D = 
1

2
 (L + LT) ,  D' = D – 

1

3
 (D • I) I  . (2.6) 

 In the absence of body forces and tractions on the rod's lateral surface, the balances of 

linear momentum and director momentum can be written in the forms (Rubin, 2000) 

  m
•
v = t3,3 ,   my 

•
w = – t + m,3  , (2.7) 

where m is the constant mass per unit length d3, y = y are constant director inertia 

coefficients, t3 is the force and m are director couples both applied to the end of the rod 

whose cross-section has a unit outward normal making an acute angle with d3, and t are 

intrinsic director couples.  These kinetic quantities {ti, m} need to be specified by 

constitutive equations.  Moreover, the balance of angular momentum requires the tensor 

T be symmetric 

  d33
1/2T = tidi + md,3 = d33

1/2 TT  . (2.8) 

Once constitutive equations are specified for {d33
1/2T, m}, the expression (2.8) can be 

used to determine constitutive equations for ti, such that 

  ti = (d 33
1/2 T – md,3) di  . (2.9) 

 In this paper, attention is limited to a straight rod with circular cross-section that has 

radius B in its undeformed reference configuration.  For this rod the vectors {x, di} can 

be specified by 
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  x = z(3,t) e3 ,  d = (3,t) e ,  d3 = (3,t) e3 ,  d33
1/2 =  = 

∂z

∂3 , (2.10) 

where ei are fixed rectangular Cartesian base vectors, z denotes the axial position of a 

material point on the reference curve,  denotes the radial stretch of a material fiber in the 

rod's cross-section and  denotes the axial stretch, all in the deformed present 

configuration.  The associated reciprocal vectors are given by 

  d = 
1


 e ,  d3 = 

1


 e3  . (2.11) 

and the initial (t=0) undeformed configuration is uniform and characterized by 

  z(3,0) = 3 ,  (3,0) = 1 , (3,0) = 1 . (2.12) 

Furthermore, the rate of deformation tensor D associated with (2.11) is given by 

  D = 

•



 (e1e1+e2e2) + 

•



 (e3e3)   . (2.13) 

Now, for isochoric motion 

  2 = 1 ,   D • I = 2 

•



 + 

•



 = 0  , (2.14) 

so that 

  D = D' = 

•



 (e1e1+e2e2 – 2 e3e3)  . (2.15) 

 In the Appendix it is shown [(A.8) and (A.9)] that the average area of the rod's 

deformed cross-section is given by 

  a = 2(B2)  , d33
1/2 a = 2(B2) . (2.16) 

Consequently, with the help of (A.7) the quantity d 33
1/2T in (2.8) can be expressed in terms 

of the average Cauchy stress Tav
*

g, such that 
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  d33
1/2T = d33

1/2 a Tav
*

g = (B2) Tav
*

g   , (2.17) 

where use has been made of the incompressibility condition (2.14).  Furthermore, for an 

incompressible rigid-plastic material the average Cauchy stress can be expressed in the 

Levy-Mises form 

  Tav
*

g = – pav
*

g I + Tav
*'g ,  

  Tav
*'g = Y 

2

3
 

D'

D' • D'
 = 

Y

3
 (

•


|
•
|

) (e1e1+e2e2 – 2 e3e3) , (2.18) 

where the pressure pav
*

g is an arbitrary function of {3,t} and Y is the yield strength in 

uniaxial stress. Moreover, since the rod remains straight and the deformation is 

axisymmetric, the director couples m are specified to be zero 

  m = 0  . (2.19) 

Next, with the help of (2.9), (2.11), (2.14) and (2.17)-(2.19) it follows that 

  t = 
B2


 [– pav

*
g + 

Y

3
 (

•


|
•
|

)] e ,  t3 = – 2 (B2)[pav
*

g + 
2Y

3
 (

•


|
•
|

)] e3  . (2.20) 

Moreover, it was shown in (A.9) that 

  m = *(B2) ,  y11 = y22 = 
B2

4
 ,  y12 = 0 , (2.21) 

where * is the constant mass density.  Thus, the equations of motion (2.7) yield two 

scalar equations given by 

  * 
••
z  = – [2{pav

*
g + 

2Y

3
 (

•


|
•
|

)}],3 ,   *y11 
••
  = – 

1


 [– pav

*
g + 

Y

3
 (

•


|
•
|

)] . (2.22a,b) 

Solving (2.22b) for  
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  pav
*

g = 
Y

3
 (

•


|
•
|

) + *y11 
••
   , (2.23) 

differentiating (2.22a) with respect to 3 and using (2.10) and (2.14) yields an equation 

for  of the form 

  
d2

dt2
(

1

2) = – [2 Y
* (

•


|
•
|

) + y113••
],33 . (2.24) 

Alternatively, using the incompressibility condition (2.14) this equation can be rewritten 

in terms of the stretch  to obtain 

  


 = [
Y

*
 (

•


|
•
|

) + (
y11

2
)–3(



 – 
3

2
 –1 2)],33  . (2.25) 

Now, differentiating the balance of linear momentum, equation (9) in (Rodríguez et al. 

2013b), with respect to X=3 and using the expressions A0=B2, A=A0/, =Y, 

v/X=


 it can be shown that the result is identical to (2.25) when radial inertia is 

neglected (y33=0) and the rod is stretching (


>0).  
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3. Influence of the multiaxial stress state during necking  

 The yield strength Y in the above equations represents the average uniaxial stress 

required to yield the rod in axial extension or compression.  However, when the cross-

section of the rod is not axially uniform, as in a necked region, the three-dimensional 

stress state is multiaxial. Following the work in (Bridgman, 1952; Walsh, 1984; 

Fressengeas and Molinari, 1985, Zhou et al. 2006) the main effect of this multiaxial stress 

state can be modeled by specifying Y in the form 

  Y = Y0 (1 + 
1


) ln(1+) ,   = 

1

2
 b 
2b

z2 = 
1

2
 b –1 [–1b,3],3  , (3.1) 

where b is the current radius of the rod 

  b = B = –1/2B  . (3.2) 

This form of the yield strength is an essential feature of the model (Zhou et al. 2006, 

Rodríguez et al. 2013a) used to determine the critical growth rate of the most unstable 

perturbation. 
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4. Linerized deformation superimposed on a nonlinear uniform solution 

 For this solution is it assumed that the rod is stretching uniformly with 
•
 > 0 and  

being independent of space so that (2.25) yields 

  
2
t2

 = [–1(
Y

*) + (
y11

2
)–3{

2
t2

 – 
3

2
 –1(



t
)2}],33 . (4.1) 

Using (3.1) and (3.2) it follows that a solution of (4.1) which is uniform in space is given 

by 

   = 0[1+ (


0
0

)t]   ,  (0) = 0 = 0
–2 ,  



(0)  = 
•
0  , (4.2) 

where 0 is the initial axial stretch, 0 is the initial radial stretch, and 
•
0 is the initial rate 

of axial stretch.  Motivated by the form of this solution it is convenient to introduce the 

normalized variables 

  T = (


0
0

)t ,  Z = 
3

B
  . (4.3) 

Then, taking =(Z,T) equation (4.1) can be rewritten in the form 

  
∂2
∂T2  = 

∂2

∂Z2 [–1(
Y0

2

*B2•
0

2
) + (

y11

2B2)–3{
2
T2 – 

3

2
 –1(



T
)2}]  , (4.4) 

where Y is given by (3.1).  

 Next, consider a perturbation of the solution (4.2) given by 

   = 0(1+T) +  ,   = (Z,T)  . (4.5) 

Then, neglecting quadratic terms in  and its derivatives and using the approximations 

   = 0(1+T)[1+ 


0
(1+T)–1] ,  –1 = 0

–1(1+T)–1[1 – 


0
(1+T)–1] , (4.6) 
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the expressions (3.1) and (3.2) reduce to 

   = – 
1

4
 0

–4(1+T)–4  
2
Z2   ,  Y = Y0(1 + 

1

2
 ) = Y0[1 – 

1

80
4 (1+T)–4  

2
Z2]  , (4.7) 

and equation (4.4) can be approximated by 

  
∂2
∂T2 – (

y11

2B20
3)(1+T)–3 

4
T2Z2 + 3 (

y11

2B20
3) (1+T)–4 

3
TZ2 

  +  [(
Y0

*B2•
0

2
) (1+T)–2 –  6 (

y11

2B20
3) 0

–2(1+T)–5] 
2
Z2 

  + 
1

8
 (

Y0

*B2•
0

2
)0

–3 (1+T)–5  
4
Z4 = 0  . (4.8) 
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5. Stability analysis 

 In order to analyze the stability of the solution (4.5) consider a perturbation of the 

form 

   = g(T) cos(Z)  , (5.1) 

where K is a normalized wavenumber.  Substituting this function into (4.8) yields an 

equation for g(T) of the form 

  [1 + (
y11

2B20
3)K2(1+T)–3] 

d2g

dT2  – 3 (
y11

2B20
3)K2 (1+T)–4 

dg

dT
 – K2[(

Y0

*B2•
0

2
)(1+T)–2  

  –  6(
y11

2B20
3)0

–2(1+T)–5 –  
1

8
 (

Y0

*B2•
0

2
)0

–3(1+T)–5K2] g = 0 . (5.2) 

Short time solution 

 For the short time solution the term (1+T) is approximated by unity to obtain the 

equation 

  (1+a1K2)
d2g

dT2 – 3a1K2 
dg

dT
 – K2[

1

a0
(1 – 

1

80
3K2) – (

6

0
2)a1] g = 0    , (5.3) 

where the normalized axial loading rate a0 and the normalized radial inertia a1 are 

defined by  

  a0 = 
*B2•

0
2

Y00
4  ,    a1 = 

y11

2B20
3 = 

1

80
3   . (5.4) 

and where use was made of (2.21).  The reciprocal of a0 was referred to in (Knoche and 

Needleman, 1993; Mercier and Molinari, 2003, Mercier and Molinari 2004; Zhou et al., 

2006; Vadillo et al., 2012) as an axial inertia parameter.  Here, it is referred to as a 
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loading rate parameter since for fixed rod geometry and material properties the value of 

a0 can be changed by orders of magnitude by specifying different axial extension rates 

0.  

Moreover, the parameter a1 controls the influence of radial inertia and is positive (a1 > 0) 

when radial inertia is included and is zero (a1 = 0) when radial inertia is excluded.   

 Next, the solution of (5.3) is taken in the form 

  g = exp(T)  , (5.5) 

where  is the normalized growth rate of perturbations.  Then, substitution of (5.5) into 

(5.3) yields the dispersion relationship 

  (1+a1K2)2 – 3a1K2 – K2[
1

a0
(1 – 

1

80
3 K2) – (

6

0
2) a1] = 0  . (5.6) 

The critical values {cr, Kcr} of {,K} can be determined by solving  

  
d

dK
 = 0  , (5.7) 

to deduce that 

  cr = 
3

2
 [1 + {1 + 

4

9a0a1
 [1 – (

6

0
2) a1 – 

1

40
3 Kcr

2 ]}1/2] , 

  with 0  Kcr  20
3/2(1 – 

6a1
0

2 )1/2  and   
6a1
0

2   1 . (5.8) 

Then, setting  = cr and K = Kcr in (5.6) and using (5.8) yields an equation for Kcr 

which needs to be solved numerically.  Moreover, with the help of (5.1) the critical 

wavelength Lcr associated with this critical wavenumber is given by  
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  Kcr(
Lcr
B

) = 2  ,  Lcr = (
2

Kcr
)B  . (5.9) 

It has been shown in (Rodríguez-Martínez et al., 2013b) that Lcr is a good estimate of the 

length of the fragments caused by necking of a rapidly elongating rod. 

 For the examples considered later the value of a0 remains less than about 10–2 (large 

strain rates) so the dispersion relation (5.6) can be approximated by 

  2 = 
K2

a0(1+a1K2)
 (1 – 

1

80
3 K2)   for  0  

1

80
3 K2  1 , (5.10) 

which yields the critical values 

     cr = [
Kcr

2

a0(1+a1Kcr
2 )

 (1 – 
1

80
3 Kcr

2 )]1/2  ,  Kcr = [
1

a1
{– 1 + (1 + 8a10

3)1/2}]1/2  . (5.11) 

 The results in this section can be compared with those in (Rodríguez-Martínez et al., 

2013b) by noting that the parameters there can be related to the parameters here using the 

expressions 

  r0  B , m  0 , n  0 ,    Y0 , 

1  


0 ,  

    
1

0
  ,  

–
   ,  

–
  K ,  

–
L2  

Y0


*
B

2
0

2  , (5.12) 

where the effects of hardening due to strain and strain rate have been neglected.  Then, 

the equation (16) in (Rodríguez-Martínez et al., 2013b) can be written in the form 

  2 +  – 
K2

a0
 (1 – 

1

80
3 K2) = 0 . (5.13) 

This equation can be compared with (5.6) when radial inertia is neglected (a1 = 0) 
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  2 = 
K2

a0
 (1 – 

1

80
3 K2)  , (5.14) 

which yields the critical values  

  Kcr = 20
3/2 , Lcr = (0)B ,  cr = (

2

a0
)1/20

3/2  . (5.15) 

The differences between (5.13) and (5.14) are most likely due to the fact that here 

perturbations are taken relative to the exact nonlinear uniform solution (4.2).  However, 

as mentioned previously, for the small values of a0 associated with the example problems 

discussed later the linear term in  in (5.13) can be neglected so (5.13) and (5.14)  yield 

nearly the same results. 
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6. Results and discussion 

 The objective of this section is to consider examples that reveal the quantitative 

influence of radial inertia on flow localization in ductile rods subjected to dynamic 

extension.  Rodríguez-Martínez et al. (2013b) have suggested that since  is always 

greater than 12 for the values of a0 of interest (see Fig. 1) it is reasonable to assume that 

the onset of necking occurs immediately with the initial value of 0 being unity 

  0 = 1 . (6.1) 

More specifically, the full equations (5.6) and (5.8) are solved to determine the growth 

rate  of perturbations with wavenumber K.  These equations include radial inertia when 

a1 is given by (5.4) and they exclude radial inertia when a1 = 0.  Figure 1 shows plots of 

 versus K for different values of the axial inertia parameter a0.  The shapes of these 

curves are typical of those predicted by this type of stability analysis (Mercier and 

Molinari 2003, Mercier and Molinari 2004, Zhou et al. 2006, Vadillo et al. 2012, 

Rodríguez-Martínez 2013b). More specifically, sufficiently short and large wavelengths 

are stabilized, with the maximum growth rate  = cr occurring when K = Kcr.  As 

reported in (Mercier and Molinari 2003, Mercier and Molinari 2004, Zhou et al. 2006, 

Vadillo et al. 2012, Rodríguez-Martínez 2013a) the critical value Kcr determines the 

spacing between localization points in multiple necking processes.   

 From Figure 1 it is observed that the growth rate of the perturbation is larger for the 

smaller value of a0, which corresponds to a small axial strain rate, and is smaller for the 

larger value of a0, which corresponds to a large axial strain rate. Radial inertia does not 

change the range of wavenumbers which grow.  This range is determined mainly by the 
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combined effect of axial inertia and stress multiaxiality effects (Fressengeas and 

Molinari, 1994). As expected, radial inertia tends to reduce the maximum rate of growth 

of perturbations, with a larger influence on short wavelengths. Figure 1 also shows that 

radial inertia tends to increase the critical wavelength, which is consistent with the 

approximate analytical result (5.11). 

 In order to study the quantitative influence of radial inertia it is convenient to define 

the parameters {
–
cr, 

–
Kcr} by 

  
–
cr = 

cr(NR)

cr(R)
  ,   

–
Kcr = 

Kcr(NR)

Kcr(R)
  , (6.2) 

where {cr(R),Kcr(R)} and {cr(NR), Kcr(NR)} are the critical values {cr, Kcr}, 

respectively, including (R with a1 > 0) and excluding (NR with a1 = 0) the effect of radial 

inertia.  Figure 2 shows the plot of 
–
cr versus K for two values of the loading rate 

parameter a0.  From this figure it can be observed that the influence of radial inertia on 

the growth rate is a nonlinear function of the wavenumber K.  Mercier and Molinari 

(2003, 2004) indicated that axial inertia has a greater stabilizing effect on long 

wavelengths.  In contrast, from Fig. 2 it can be seen that radial inertia has a greater 

stabilizing effect on short wavelengths, which is in addition to the stabilization of short 

wavelengths due to the multiaxial stress state in the necking region.  Moreover, for the 

smaller strain rate (the smallest value of a0) radial inertia decreases the rate of growth of 

the larger wavenumbers by about 40%.   
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 Next, attention is focused on the influence of radial inertia on the critical perturbation 

growth rate cr and on the critical wavenumber Kcr.  Figures 3 show: (a) the critical 

growth rate cr and (b) the critical wavenumber Kcr versus a0 including (R) and 

excluding (NR) the effect of radial inertia.  From Figure 3a it can be seen that the growth 

rate increases with decreasing loading rate (smaller values of a0), with the influence of 

radial inertia becoming smaller with increasing loading rate (large values of a0).  

 In the absence of radial inertia (5.15) predicts that the critical wavenumber Kcr is 

constant.  This constant value of Kcr suggests that the number of necks formed (neck 

spacing) in an axially stretched rod is independent of the loading rate. However, the 

numerical observations reported for rate-independent materials in (Rodríguez-Martínez et 

al., 2013a,b) indicate that the neck spacing increases as the loading rate decreases 

(decreasing values of a0).  This observation would suggest that Kcr decreases with 

decreasing values of a0. Figure 3b shows the dependence of the critical wavenumber Kcr 

on the value of a0 predicted by the constant value (5.15) when radial inertia is neglected 

and by the numerical solution of the full equation (5.8) when radial inertia is included.  

The small drop in Kcr shown in Figure 3b for the solution with radial inertia is consistent 

with the numerical results in (Rodríguez-Martínez et al., 2013a,b) however it is 

inconsistent with the approximate value (5.15) for large a0.  This partially quantifies the 

error in the approximate values (5.15). 

 Figure 4 plots the relative quantities {–
cr, 

–
Kcr} defined in (6.2) versus a0.  From this 

figure it can be seen that neglecting radial inertia causes an increase in both the growth 
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rate cr and the wavenumber Kcr, with larger increases for slower loading rates (smaller 

values of a0).  Specifically, for the smallest value a0 = 10-6 neglecting radial inertia 

increases cr by about 21% and increases Kcr by about 10%.  Whereas, for the largest 

value a0 = 10-2 neglecting radial inertia increases cr by about 17% and increases Kcr by 

about 8%. Unlimited increase in extension rate (increase in a0) will cause the effect of 

radial inertia to become negligible. 
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7. Conclusions 

 The effect of radial inertia on flow localization in ductile rods subjected to rapid 

extension has been examined using linear stability analysis of an exact solution for 

nonlinear uniform extension of a rigid-plastic straight Cosserat rod. This model 

generalizes the original formulation derived by Zhou et al. (2006) by taking into account 

the radial stretching experienced by the rod. The main results of this investigation can be 

summarized as: 

 Radial inertia tends to stabilize the localization process by slowing down the rate 

of growth of perturbations. 

 The stabilizing effect of radial inertia becomes more significant as the rate of 

extension decreases. 

 Radial inertia decreases both the critical growth rate of the perturbation and the 

critical wavenumber, with a larger effect for smaller rates of extension. 

 In contrast with axial inertia, which has a greater stabilizing effect on long 

wavelengths (Mercier and Molinari, 2003, 2004), radial inertia has a greater 

stabilizing effect on short wavelengths. 
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Appendix:  Some connections with the three-dimensional theory 

 From the point of view of the three-dimensional theory the kinematic approximation 

(2.2) can be used to obtain the covariant base vectors gi and the scalar g1/2 by 

  g = x*, = d ,  g3 = x*,3 = d3 + d,3 ,  g1/2 = g1g2 • g3 > 0 , (A.1) 

and the reciprocal vectors gi are defined by 

  g1 = g–1/2(g2g3) ,  g2 = g–1/2(g3g1) , g3 = g–1/2(g1g2) ,  gi • gj = i
j  . (A.2) 

Moreover, the vectors t*i are defined in terms of the three-dimensional Cauchy stress T* 

by 

  t*i = g1/2T*gi  . (A.3) 

Then, the mass quantity m, the director inertia coefficients y and the kinetic quantities 

ti and m can be defined by the integrals 

  m = 
A

 *g1/2d1d2  ,  my = 
A

  *g1/2d1d2 , 

  ti = 
A

 t*id1d2 , m = 
A

  t*3d1d2  , (A.4) 

where * is the mass density per unit current volume and A characterizes the region of 

the cross-section in terms of the convected coordinates . Also, in writing the balance 

laws (2.7) the convected coordinates  have been specified so that 

  
A

  *g1/2d1d2  = 0 . (A.5) 

 Next, substituting (A.4) into (2.8) and using the fact that 

  gigi = I  , (A.6) 

it follows with the help of (A.1) that 
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  d33
1/2T = 

A
 [t*d + t*3(d3+d,3)] d1d2 =  

A
 T* g1/2d1d2 .   (A.7) 

Now, it is convenient to define the scalar a by the expression 

  d33
1/2 a = 

A
 g1/2d1d2  . (A.8) 

Since {d 33
1/2 d3} represents the element of arc-length of deformed reference curve, the 

scalar a represents the average area of the rod's deformed cross-section 

 Using the kinematics (2.10) for a straight rod and the condition of incompressibility 

(2.14) it follows that g1/2 = 2 = 1.  Moreover, considering a circular rod with reference 

radius B and transforming the rectangular Cartesian convected coordinates  to 

convected polar coordinates {R,} it can be shown that 

  1 = R cos ,  2 = R sin , 

  d33
1/2 a =  a = 

2
 
0

 
B
 
0

 2  RdRd = B2 ,  a = 2(B2) ,  

  m = 
2
 
0

 
B
 
0

 *2  RdRd = *(B2) ,   

  my11 = 
2
 
0

 
B
 
0

 *2 R2 cos2  RdRd = m 
B2

4
 , 

  my22 = 
2
 
0

 
B
 
0

 *2 R2 sin2  RdRd = m 
B2

4
 . (A.9) 

In these expressions it has been assumed that the density * is constant and uniform.  
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(a) 

 

(b) 

Fig. 1  Perturbation growth rate ω versus wavenumber K including (R) and excluding 

(NR) radial inertia for two values of the axial loading rate a0. 
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Fig. 2  Ratio of the critical growth rate 
–
cr of the predictions with no radial inertia 

relative to those with radial inertia versus the wavenumber K for two values of the axial 

loading rate a0.  
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(a) 

 

(b) 

Fig. 3 (a) Critical perturbation growth rate cr and (b) critical wavenumber Kcr, both 

versus the axial loading rate a0 including (R) and excluding (NR) the effect of radial 

inertia. 
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Fig. 4  The normalized critical perturbation growth rate –cr and the normalized critical 

wavenumber Kcr versus the axial loading rate a0.  

 

 

 
 
 

 




