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Abstract

In this paper we develop a new constitutive model to describe the viscoelastic response of
elastomers subjected to high strain rates. The key and original feature of the model is that
it takes into account the failure of the material using an energy limiter. We calibrate the
constitutive model for various strain rates using the experimental data reported by Hoo Fatt
and Ouyang (2008) and show the capacity of the proposed formulation to describe the rate-
dependent behavior of styrene butadiene rubber. In addition, we implement the model into
ABAQUS/Explicit using a simple scheme for the temporal integration of the constitutive
equations. Finally, we show sample numerical simulations to illustrate the joint performance
of the constitutive model and the integration algorithm.

1 Introduction
Elastomers are used in tires, isolation bearings, shock absorbers, coatings etc. They can be
exposed to shock, vibrations, blast and impact. An elastomer may stretch easily more than 500%
under an applied load. Failure of elastomers is a fundamental issue. The breakdown of rubber
tires because of the catastrophic crack propagation results in more severe loss of capital and life
than airplane accidents. It is apparent that the correct modeling of failure can improve the design
of all kinds of parts, components and structures manufactured with rubber-like materials.

Complicated mechanical behavior of long molecular chains underlies the macroscopic response
of elastomers including their strain rate dependence. The micro-structural mechanism of the rate-
dependence or viscosity is not well understood. Nevertheless, there are various ways to incorporate
viscosity in constitutive models of finite elasticity. For example, a plenty of integral formulations
of nonlinear viscoelasticity started from Green and Rivlin (1957, 1960). Further developments
are reviewed in Lockett (1972); Carreau et al. (1997); Hoo Fatt and Ouyang (2007) and Wineman
(2009). There are also numerous differential formulations of nonlinear viscoelasticity based on
the introduction of internal variables and their evolution equations: Lubliner (1985); Lion (1996);
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Govindjee and Reese (1997); Reese and Govindjee (1998); Bergström and Boyce (1998); Huber
and Tsakmakis (2000); Miehe and Keck (2000) and Amin et al. (2006).

All mentioned viscoelasticity theories were developed for relatively low strain rates of about
1 s-1. High strain rates of 1100-3000 s-1 for silicone rubber were considered by Yang et al. (2000)
and Shim et al. (2004). Strain rates of about 5000 s-1 for a filled polybutadiene were studied by
Quintavalla and Johnson (2004). Recently, Hoo Fatt and Ouyang (2008) explored the dynamic
behavior of styrene butadiene rubber (SBR) and found that its rate-dependence is very limited
at sufficiently high strain rates. Importantly and uniquely, experiments by Hoo Fatt and Ouyang
(2008) also tracked the changing strength of SBR at varying strain rates.

It is worth noting that most theories considered the intact material behavior, in which the
deformation description did not incorporate mechanical failure. However, real materials do fail
and their constitutive equations should include a description of failure. In the context of purely
elastic deformation (without viscosity) a very simple account of material failure in the constitutive
laws was proposed in a series of recent publications: Volokh (2004, 2007, 2010, 2011, 2013b,
2014). The basic idea was to introduce an energy limiter in the expression for strain energy. Such
limiter enforces saturation –the failure energy– in the strain energy function, which indicates
the maximum amount of energy that can be stored by an infinitesimal material volume prior to
rupture.

The mentioned approach of elasticity with energy limiters does not include the viscosity effect.
The first attempt to fill this gap was made in Volokh and Trapper (2008) in a very simple
quasi-linear integral formulation. The latter theory is limited in applications and more general
nonlinear viscoelastic formulation with energy limiters is desirable. Thus, in the present paper
we: (1) develop a new constitutive model which includes material failure to describe the viscous
response of rubber at high strain rates, (2) calibrate the model for various strain rates using the
experimental data reported by Hoo Fatt and Ouyang (2008), (3) implement the novel constitutive
theory into ABAQUS/Explicit via a user subroutine and (4) show the performance of the model
in a series of numerical examples. It is worth emphasizing that our formulation is by no means
unique and it has to be understood as a starting point to provide new insights into the (largely
unexplored) rate dependent deformation and failure behaviour of rubber like materials.

2 Nonlinear viscoelasticity with energy limiters

2.1 Basic equations
Consider a material point that occupies position X in the reference configuration Ω0 of a de-
formable body. The current position vector x in the deformed configuration Ω is given by
x= χ(X, t), where χ is a bijective and twice continuously differentiable mapping. Deformation
in the vicinity of the material point is described by the deformation gradient tensor F

F = ∂x
∂X

(1)

The linear and angular momentum balance take the following forms accordingly

divσ + b = ρa (2)

σ = σT (3)
where the divergence operator is calculated with respect to the current coordinates x, σ is the
Cauchy stress tensor, b is the body force pure unit of current volume, ρ and a are the current
mass density and acceleration vector correspondingly.
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Balance of linear momentum on the body surface ∂Ω reads

σn = t̄ (4)

where t is a prescribed traction per unit area of the surface with the unit outward normal n.
Alternatively to (4) a surface boundary condition can be imposed on placements

x = x̄ (5)

where x is prescribed on the surface ∂Ω.
Initial conditions are

x(t = 0) = x0, v(t = 0) = v0 (6)
where v is the velocity vector and x0 and v0 are prescribed in Ω.

2.2 Constitutive model
In the present work we adapt the Eulerian constitutive framework for large inelastic deformations
developed by Volokh (2013a) for a description of isotropic finite viscoelasticity with energy lim-
iters. We assume that the standard solid rheological model underlies the constitutive equations,
see Fig. 1.

          

                   

Figure 1: Rheological model of the standard solid.

We assume an aditive decomposition of the strain energy function of the form

ψ(B,BB, ξ) = ψA(B, ξ) + ψB(BB, ξ) (7)

where ψA is the strain energy function of the spring A which serves to characterize the thermo-
dynamic equilibrium states of the elastomer and ψB is the strain energy function of the spring B
which serves to account for the additional energy storage and non-equilibrium states. Further-
more, B = FFT is the left Cauchy-Green strain tensor, BB is an (strain like) internal variable
of the model and ξ is a switch parameter (that will be defined later). We further impose the
following conditions on the strain energy function of spring A

ψA(B, ξ) = ψf
A − H(ξ)ψe

A(B) (8)

ψf
A = ψe

A(1) (9)
‖B‖ → ∞⇒ ψe

A(B)→ 0 (10)
where ψf

A and ψe
A(B) designate the constant bulk failure energy and the elastic free energy of the

spring A, respectively. Moreover, H(ξ) is a unit step function, i.e. H(z) = 0 if z < 0 and H(z) = 1
otherwise; 1 is a second-order identity tensor; and ‖...‖ is a tensor norm.
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The switch parameter ξ ∈ (−∞, 0] is defined by the evolution equation

ξ̇ = −H
(
ε− ψe

A
ψf

A

)
, ξ(t = 0) = 0 (11)

where 0 < ε� 1 is a dimensionless precision constant.
The physical interpretation of the strain energy function is straightforward: the response of

the spring A is elastic as long as the strain energy is below its limit, ψf
A . When the limit

is reached, the strain energy remains constant for the rest of the deformation process, thereby
making material healing impossible. The parameter ξ is not an internal variable (like in Damage
Mechanics); it works as a switch: if ξ = 0 then the process is elastic and if ξ < 0 then the material
is irreversibly damaged and the stored energy is dissipated.

In order to enforce the energy limiter in the strain energy function, we use the following form
of the elastic energy

ψe
A(B) = Φ

mΓ

(
1
m ,

WA(B)m

Φm

)
(12)

where Γ (s, x) =
∫∞

x ts−1e−tdt is the upper incomplete gamma function, WA(B) is the strain energy
of intact material, Φ is the energy limiter and m is a dimensionless material parameter which
controls the sharpness of the transition to material failure in the stress-strain curve. Increasing or
decreasing m it is possible to simulate more or less steep ruptures of the internal bonds accordingly.

The failure energy can be calculated as follows

ψf
A = ψe

A(1) = Φ
mΓ

(
1
m ,

WA(1)m

Φm

)
(13)

Note that the failure energy is a constant that depends on the two failure parameters (Φ,m)
through the gamma function. There is no need to limit the energy of spring B as long as the
failure of spring A leads to the overall failure. Therefore, we define the strain energy function for
the spring B as

ψB(BB, ξ) = H(ξ)WB(BB) (14)
where WB(BB) stands for the strain energy without failure. Note that this formulation is valid
for any pair of strain energies WA and WB used to describe the intact behavior of the material.

Based on the additive decomposition of the strain energy function ψ, the Cauchy stress is
given by

σ = σA + σB (15)
where

σA = 2I−1/2
3

∂ψA

∂B
B = 2I−1/2

3

(
I3ψ31 + (ψ1 + I1ψ2) B− ψ2B2

)
(16)

σB = 2I−1/2
B3

∂ψB

∂BB
BB = 2I−1/2

B3

(
IB3ψB31 + (ψB1 + IB1ψB2) BB − ψB2B2

B

)
(17)

The principal invariants are given by

I1 = trB, 2I2 = (trB)2 − tr (B)2 , I3 = detB (18)

IB1 = trBB, 2IB2 = (trBB) 2 − tr (BB)2, IB3 = detBB (19)
and we use the shot notation ψi = ∂ψ/∂Ii and ψBi = ∂ψ/∂IBi.

The constitutive law (flow rule) for the dashpot is written in the following general form

σB = β11 + β2DB + β3D2
B (20)
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where βi is a function(al), generally, depending on stresses and strains, and DB is the rate of
deformation tensor corresponding to the dashpot.

Following Eckart (1948), Leonov (1976) and Volokh (2013a), we introduce the following evo-
lution equation which relates BB and DB

O
BB+DBBB + BBDB = 0, BB(t = 0) = 1 (21)

where
O
BB = ḂB − LBB −BBLT (22)

is the Oldroyd objective rate of the (strain like) internal variable BB. In previous expression L
refers to the velocity gradient tensor of the whole model.

2.3 Thermodynamic restrictions
We write the Clausius–Duhem dissipation inequality in the following form

(σA + σB) : D− I−1/2
3

∂ψ

∂B
: Ḃ− I−1/2

B3
∂ψ

∂BB
: ḂB ≥ 0 (23)

where D is the strain rate measure corresponding to the whole model.
The second and third terms in previous expression can be rewritten as

I−1/2
3

∂ψ

∂B
: Ḃ = 2I−1/2

3
∂ψ

∂B
B : D (24)

I−1/2
B3

∂ψ

∂BB
: ḂB = 2I−1/2

B3
∂ψ

∂BB
BB : D− 2I−1/2

B3
∂ψ

∂BB
BB : DB (25)

where the relations Ḃ = LB + BLT and ḂB = BB (L−DB)T + (L−DB) BB (the latter is de-
rived from equations (21) and (22)) have been used.

Substitution of (24) and (25) in (23) yields(
σA − 2I−1/2

3
∂ψ

∂B
B + σB − 2I−1/2

B3
∂ψ

∂BB
BB

)
: D + 2I−1/2

B3
∂ψ

∂BB
BB : DB ≥ 0 (26)

Using the constitutive equations (16) and (17), previous equation reduces to

σB : DB ≥ 0 (27)

Substituting the flow rule (20) in the latter inequality we get the final thermodynamic restric-
tion

β1trDB + β2trD2
B + β3trD3

B ≥ 0. (28)
As pointed out by Volokh (2013a), an alternative formulation for the constitutive model could be
developed using the multiplicative decomposition of the deformation gradient tensor into elastic
and viscous parts. Nevertheless, the difference between the present formulation and the alternative
based on the multiplicative decomposition of F is mostly formal: the expressions for the stresses
remain unchanged.

2.4 Specialization to incompressible and compressible materials
In this section we specialize the constitutive formulation to incompressible and (slightly) compress-
ible materials. The hypothesis of incompressibility is used in section 3 to approach analytically
the uniaxial tension problem and calibrate the constitutive model. Compressibility of the mate-
rial is taken into account in section 4 to integrate the constitutive equations and implement the
model into a finite element code.
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2.4.1 Incompressible formulation

The incompressibility condition implies that detB= 1, detBB= 1 and trDB= 0. The constitutive
laws for the springs (16) - (17) are written as follows

σA = −pA1 + 2 (ψ1 + I1ψ2) B− 2ψ2B2 (29)

σB = −pB1 + 2 (ψB1 + IB1ψB2) BB − 2ψB2B2
B (30)

where pA and pB are undefined Lagrange multipliers enforcing incompressibility.
The constitutive law for the dashpot (20) is written in the following simple form

β1 = 1
3trσB, β2 = η2, β3 = 0 (31)

where η2 is the only viscosity parameter or function.
Substitution of (31) in (20) leads to

σB = 1
3 (trσB) 1 + η2DB (32)

Substitution of (32) in (27) yields
η2trD2

B ≥ 0 (33)

This dissipation inequality is obeyed imposing the following restriction on the viscosity

η2 ≥ 0 (34)

2.4.2 Compressible formulation

Material compressibility is required to implement the constitutive equations into a numerical
code. The constitutive laws for the springs (16) - (17) are written as follows

σA = 2I−1/2
3

(
(I3a − b) 1 + (ψ1 + I1ψ2) B− ψ2B2

)
(35)

σB = 2IB3
−1/2

(
(IB3aB − bB) 1 + (ψB1 + IB1ψB2) BB − ψB2B2

B

)
(36)

where a, b and aB,bB are the penalizing bulk moduli for springs A and B, respectively (see Trapper
and Volokh (2010)).

We note that the bulk moduli are not independent and they should obey the conditions of
zero stress for B = BB = 1 and D = 0

0 = a − b + ψ1 + 2ψ2, 0 = aB − bB + ψB1 + 2ψB2 (37)

Thus, choosing (for B = BB = 1 and D = 0)

a ≈ b� ψ1 + 2ψ2, aB ≈ bB � ψB1 + 2ψB2 (38)

it is possible to enforce incompressibility in computations.
Following Reese and Govindjee (1998), we write the constitutive law for the dashpot as

β1 = 3η1 − 2η2

9η1
trσB, β2 = η2, β3 = 0 (39)

where η1 and η2 are two viscosity parameters or functions.
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Substitution of (39) in (20) leads to

σB = 3η1 − 2η2

9η1
(trσB)1 + η2DB (40)

Substitution of (40) in (27) yields

6η1 − 4η2

27η1
(trσB)2 + η2trDB

2 ≥ 0 (41)

This dissipation inequality is obeyed imposing the following restrictions on the viscosities

η2 ≥ 0, 3η1 > 2η2 (42)

Furthermore, to enhance incompressibility we can impose η1 >> η2.

3 Calibration of the constitutive model
In this section the (incompressible) constitutive model is calibrated to describe the mechanical
behavior of styrene butadiene rubber. For the calibration we use dynamic tensile tests for various
stretch rates performed by Hoo Fatt and Ouyang (2008). Therefore, we restrict our attention to
the case when then material undergoes uniaxial tension

x = λX1e1 + λ−1/2(X2e2 + X3e3) (43)

The left Cauchy-Green tensor B and the internal variable BB admit the spectral representa-
tions

B = λ2e1 ⊗ e1 + λ−1(e2 ⊗ e2 + e3 ⊗ e3) (44)
BB = λ2

Be1 ⊗ e1 + λ−1
B (e2 ⊗ e2 + e3 ⊗ e3) (45)

which fulfill the incompressibility conditions: detB = 1 and detBB = 1.
Consequently, the stress-stretch curve, σ ∼ λ , is given by the following equation

σ = 2
(
λ2 − λ−1

) (
ψ1 + λ−1ψ2

)
+ 2

(
λ2

B − λ−1
B

) (
ψB1 + λ−1

B ψB2
)

(46)

where, λB(t) is given by the following evolution equation

λ̇B = λ̇λ−1λB −
4λB

3η2

(
λ2

B − λ−1
B

) (
ψB1 + λ−1

B ψB2
)

= 0, λB(t = 0) = 1 (47)

In the case of steady stretching λ = 1 + λ̇t, with constant λ̇, the evolution equation can be
rewritten as follows

dλB

dλ = λ−1λB −
4λB

3η2λ̇

(
λ2

B − λ−1
B

) (
ψB1 + λ−1

B ψB2
)

= 0, λB(λ = 1) = 1 (48)

We use the formulation proposed by Lopez-Pamies (2010) for the intact strain energy functions

WA(B) = 31−α1

2α1
µ1 (Iα1

1 − 3α1) + 3(1−α2)

2α2
µ2 (Iα2

1 − 3α2) (49)

WB(BB) = 31−αB1

2αB1
µB1 (IαB1

B1 − 3αB1) + 3(1−αB2)

2αB2
µB2 (IαB2

B1 − 3αB2) (50)
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The viscosity function is taken from Hoo Fatt and Ouyang (2008)

η2 = (C1 (1− exp (C2(I1 − 3))) + C3)
(
C4I3

B1 + C5I2
B1 + C6IB1 + C7

)
(51)

Thus, the proposed model contains 17 parameters: six for spring A (µ1, µ2, α1, α2, m, Φ),
four for spring B (µB1, µB2, αB1, αB2) and seven for the dashpot (C1, C2, C3, C4, C5, C6, C7),
see Table 1. The calibration process developed in this paper consists in two stages. In the first
stage, the 15 visco-elastic parameters are determined by fitting simultaneously the experimental
data reported by Hoo Fatt and Ouyang (2008) for various stretch rates: 76 s−1, 110 s−1 , 150 s−1,
300 s−1, 370 s−1and 450 s−1. The genetic algorithm and the non-linear unconstrained minimization
algorithm (fminsearch) inbuilt in the MATLAB Optimization Toolbox have been used for this
task. It is important to note that this method does not warrantee a global optimal solution.
Nevertheless, the agreement between the model and the experimental results is very good. In the
second stage, the energy limit Φ is directly determined from the failure stretch and the parameter
m is selected depending on the desired sharpness of the transition to material failure in the
stress-strain curve.

A salient feature of the energy limiter formulation is its simplicity and applicability to already
existing visco-elastic models. Note that the calibration of the two failure parameters is decoupled
from the rest of the model.

Spring A

µ1[MPa] α1 µ2[MPa] α2 m Φ[MPa]
0.391 1.045 2.162 −3.065 30 7.5

Spring B

µB1[MPa] αB1 µB2[MPa] αB2

3.99 0.382 2.868 −11.295

Dashpot B

C1[MPa·s] C2 C3[MPa·s]
23.095 7.421·10−8 −8.458·10−7

C4 C5 C6 C7

−872.52 −7975.595 22150.457 27310.182

Table 1: Material parameters for SBR rubber.

Figure 2 shows the comparison between the proposed constitutive model (solid lines) and the
experiments (markers) reported by Hoo Fatt and Ouyang (2008). Results are shown for various
stretch rates. While the material flow stress significantly increases with strain rate, the failure
stretch is largely constant for all the loading rates investigated. These experimental observations
are properly captured by the constitutive model which shows satisfactory agreement with the
experimental evidence for all the loading conditions investigated. Note that our model captures
the saturation of the material viscosity at high strain rates.
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Figure 2: Comparison between the predictions of the constitutive model (solid lines) and the
experiments (markers) performed by Hoo Fatt and Ouyang (2008). Uniaxial (Cauchy) stress-
stretch curves (σ−λ). A wide range of stretch rates is explored: 76 s−1, 110 s−1 , 150 s−1, 300 s−1,
370 s−1 and 450 s−1.

4 Finite element implementation
In this section we develop a simple integration algorithm to implement the (slightly compressible)
constitutive model into ABAQUS/Explicit code via a user subroutine. The code provides all
variables at time tn and the deformation gradient for time tn+1. The goal is to update all variables
of the constitutive model at time tn+1.

For that purpose we need to integrate equation (21) which provides a relation between the
time evolution of the (strain like) internal variable

O
BB and the strain rate in the dashpot DB.

The idea of the integration comes from the standard notion that the Oldroyd objective rate can
be written with respect to an arbitrary reference configuration z in the following form

O
BB = ḂB − LBB −BBLT = K

(
∂

∂t
(
K−1BBK−T

))
KT (52)

where
K = ∂x

∂z
; L = ∂v

∂z
∂z
∂x

= K̇K−1 (53)

Substitution of (52) in (21) yields

K
(
∂

∂t
(
K−1BBK−T

))
KT = −DBBB −BBDB (54)

with the initial condition BB(t = 0) = 1.
Using the Euler explicit approximation of the time derivative within the interval [tn, tn+1] and

taking into account that DBBB = BBDB we get(
Kn+1

)−1
Bn+1

B

(
Kn+1

)−T
− (Kn)−1 Bn

B (Kn)−T = −2(tn+1 − tn) (Kn)−1 Dn
BBn

B (Kn)−T (55)

in which we designated
(•)(tn) ≡ (•)n, (•)(tn+1) ≡ (•)n+1 (56)
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Furthermore, taking the arbitrary reference configuration z to be the xn we have

z = xn, Kn+1 = ∂xn+1

∂xn = Fn+1 (Fn)−1 , Kn = 1 (57)

substitution of (57) in (55) yields

Bn+1
B = Kn+1

(
1− 2(tn+1 − tn)Dn

B

)
Bn

B

(
Kn+1

)T
(58)

We assume now that variables Fn, Bn, Dn, Bn
B, Dn

B, σn
A, σn

B are known. Besides, the de-
formation gradient Fn+1 is provided by the code. Then, we update variables at time tn+1 as
follows

Bn+1 = Fn+1
(
Fn+1

)T
(59)

Kn+1 = Fn+1 (Fn)−1 (60)

Bn+1
B = Kn+1

(
1− 2(tn+1 − tn)Dn

B

)
Bn

B

(
Kn+1

)T
(61)

σn+1
A = 2

(
In+1
3

)−1/2
((

In+1
3 a − b

)
1 +

(
ψn+1

1 + In+1
1 ψn+1

2

)
Bn+1 − ψn+1

2

(
Bn+1

)2
)

(62)

σn+1
B = 2

(
In+1
B3

)−1/2
((

In+1
B3 aB − bB

)
1 +

(
ψn+1

B1 + In+1
B1 ψ

n+1
B2

)
Bn+1

B − ψn+1
B2

(
Bn+1

B

)2
)

(63)

Dn+1
B = 2

9η1
(trσn+1

B )1 + 1
ηn+1

2
devσn+1

B (64)

To remove the failed element the following condition should be obeyed at one of the element
Gauss points

H(ξn+1) = 0 (65)

where
ξn+1 = −(tn+1 − tn)H

(
ε− (ψe

A)n+1

(ψf
A)n+1

)
+ ξn, ξ0 = 0 (66)

5 Numerical simulations
In this section we show sample finite element computations conducted in ABAQUS/Explicit
which illustrate the joint performance of the constitutive model and the integration algorithm.
The calculations simulate the dynamic tension tests performed by Hoo Fatt and Ouyang (2008).

5.1 Finite element model
Fig. 3 shows the ASTM D638 type IV dumbbell specimen used in the experiments of Hoo Fatt
and Ouyang (2008). In the numerical calculations, due to the symmetry of the model, we have
only modeled 1/4 of the specimen. The finite element model is initially at rest and unstretched.
The mechanical boundary conditions are shown in Fig. 3, where ui are the components of the
displacement vector u, θi are the components of the rotation vector θ and v1 = vimp is the impact
(loading) velocity.

The finite element model has been meshed using a total of 7560 eight-node solid elements
with reduced integration and hourglass control, C3D8R in ABAQUS notation. Three elements
are placed through the thickness of the model. In the gauge of the specimen, the elements show
an aspect ratio 0.2 : 1 : 1. Short elements along the axial direction are required to capture
(accurately) the failure of the specimen since the material undergoes large axial strains (λ > 5)
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before fracture. Elements with larger axial dimension are badly stretched by the time of fracture
and the failure process is not properly described. Furthermore, a mesh convergence study was
performed, in which the time evolution of the stress, strain and strain rate fields were compared
against a measure of mesh density until the results converged satisfactorily. We hold that viscosity
and inertia act as regularization factors that contribute to the well-possessedness of the problem,
see Molinari (1997) and Needleman (2008). We assume that this minimizes the spurious influence
of the mesh in the solution of the boundary value problem.

T

D

R

Ro

Wc

v1=vimp

u2=u3=0

v1=vimp

u2=u3=0

D L T Wc R

L

Ro

65 33 1 6 14 25

13

2

Central section
u1=θ2=θ3=0

Symmetry plane
u2=θ1=θ3=0

Loaded site
 u2=u3=0; v1=vimp

Figure 3: Geometry and dimensions (in mm) of the ASTM D638 type IV dumbbell specimen.
Finite element model, mesh and mechanical boundary conditions applied in the calculations.

5.2 Sample results
Fig. 4 compares the experimental (axial) stress-stretch curves reported by Hoo Fatt and Ouyang
(2008) with our finite element calculations. In the computations the stress is calculated as σ = F

A0
λ

where F is the axial force measured in the loaded site of the model, A0 is the initial cross-section
area of the gauge and λ is the axial stretch calculated measuring the increase in length of the
sample gauge referred to as L in Fig. 3. The stretch rate which denotes each loading case in the
simulations corresponds to the (average) value of λ̇ registered in the specimen gauge during the
calculations. The maximum stretch shown in the numerical results corresponds to the onset of
failure. Beyond this point, the stress state is no longer uniaxial. The agreement between experi-
ments and numerical calculations reveals the satisfactory performance of the (simple) integration
algorithm presented in the previous section.
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Figure 4: Comparison between the numerical calculations (solid lines) and the experiments (mark-
ers) performed by Hoo Fatt and Ouyang (2008). Unixiaxial (Cauchy) stress-stretch curves (σ−λ).
Various stretch rates are considered: 76 s−1, 110 s−1 , 150 s−1, 300 s−1, 370 s−1and 450 s−1.

Fig. 5 illustrates force-time curves (F− t) measured at both ends of the model: loaded site
and central section (see Fig. 3). The applied stretch rate is 76 s−1. We observe that both curves
practically overlap each other. The specimen is largely equilibrated. The only difference resides at
the very beginning of loading when inertia effects lead to slight fluctuations in the force recorded
in the loaded site.

The force first increases and reaches a local maximum for t ≈ 0.005 s which leads to localization
of deformation in the gauge, see Fig. 6. The local maximum corresponds to the attainment of
the Considère condition. Beyond the local maximum, the deformation tends to increase quickly
until a minimum is reached in the F− t curve for t ≈ 0.012 s. The minimum corresponds to the
change of curvature in the corresponding σ − λ characteristic shown in Fig. 4. The subsequent
increase in strength stabilizes the flow stress leading to largely uniform distributions of stretch
(Fig. 6) and stretch rate (Fig. 7) within the gauge of the specimen. Heterogeneity in the field
variables is just observed immediately before the maximum force is reached for t ≈ 0.046 s, see
Figs. 6 and 7. Then, rapid localization of deformation occurs within a small zone of the sample
gauge leading to material failure.

0.00 0.01 0.02 0.03 0.04 0.05
ts0
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20

30

F N

Central section
Loaded site

2   t=0.026s

t=0.046s   3

1   t=0.012s

 

0

3

0 0.002
0

Figure 5: Finite element calculations. Force-time curves (F − t) measured at both ends of the
model: loaded site and central section. The applied stretch rate is 76 s−1.
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Figure 6: Finite element calculations. Contours of axial stretch λ. The applied stretch rate is
76 s−1.
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Figure 7: Finite element calculations. Contours of axial stretch rate λ̇. The applied stretch rate
is 76 s−1.

Fig. 8 shows force-time curves (F− t) measured at the loaded site and the central section.
The applied stretch rate is 450 s−1, the highest explored in this paper. At the beginning of loading
we observe significant fluctuations in the force which are caused by the propagation of stress waves
within the specimen. It is apparent that, for this loading rate, inertia effects are meaningful. The
stretch rate fields within the specimen are rather heterogeneous, see Fig. 10. These fluctuations
are progressively attenuated and, for t ≥ 0.002 s, both curves become practically coincident (the
specimen is largely equilibrated) and the field variables show uniform distributions along the
gauge (see Figs. 9 and 10). A maximum in the F− t curves is reached for t ≈ 0.0094 s which
leads to fast strain localization and subsequent material failure.
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Figure 8: Finite element calculations. Force-time curves (F − t) measured at both ends of the
sample: loaded site and central section. The applied stretch rate is 450 s−1.
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Figure 9: Finite element calculations. Contours of axial stretch λ. The applied stretch rate is
450 s−1.
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Figure 10: Finite element calculations. Contours of axial stretch rate λ̇. The applied stretch rate
is 450 s−1.

These numerical examples demonstrate the ability of the constitutive model and the integration
algorithm developed in this paper to simulate deformation and failure of structures (or compo-
nents, or parts...) manufactured with non-linear viscoelastic materials and subjected to dynamic
loading.

6 Concluding remarks
In this work we have developed a new viscoelastic constitutive model to describe deformation
and failure of elastomers subjected to high strain rates. The model has been calibrated for
styrene butadiene rubber using experimental data reported in the literature and implemented
into ABAQUS/Explicit via a user subroutine. Finite element simulations of dynamic tensile
experiments reported by Hoo Fatt and Ouyang (2008) have been carried out to exemplify the
joint performance of the constitutive model and the integration algorithm. The simplicity of the
constitutive theory and the efficiency of the implementation scheme make the formulation devel-
oped in this research especially suited to study engineering applications in which rate-dependent
rubber-like materials are subjected to dynamic deformation and failure.
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