
This work is licensed under a
 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 

International License

This is an accepted version of the following published document:

Vadillo, G.; Reboul, J.; Fernández-Sáez, J. (2016). A 
modified Gurson model to account for the influence of 
the Lode parameter at high triaxialities. European 
Journal of Mechanics. A/Solids, vol. 56, pp. 31-44.

DOI: https://doi.org/10.1016/j.euromechsol.2015.09.010

Copyright © 2015 Elsevier Masson SAS. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288501768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.is.2017.09.002
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.mechmat.2014.10.001
https://doi.org/10.1016/j.euromechsol.2015.09.010


A modified Gurson model to account for the influence of the Lode

parameter at high triaxialities

G. Vadillo∗, J. Reboul, J. Fernández-Sáez

Department of Continuum Mechanics and Structural Analysis. University Carlos III of Madrid. Avda.
de la Universidad, 30. 28911 Leganés, Madrid, Spain

Abstract

The influence of the Lode parameter on ductile failure has been pointed out by different

authors even at high triaxiality stress states. However, one of the most widely used model

for ductile damage, like the Gurson-Tvergaard (GT) model, systematically disregard the

role played by the third stress invariant. In this paper, an improvement of the classical

Gurson-Tvergaard model is proposed. The new relation takes into account the effect of

triaxiality and Lode parameter through the q1 and q2 GT parameters. The convexity of

the proposed yield surface has been examined and ensured. The integration of the new

constitutive equations as well as the consistent tangent modulus have been formulated

and implemented in a Finite Element code. A computational 3D cell has been used to

prescribe both macroscopic triaxiality and Lode parameter during loading. Numerical

simulations are presented for Weldox 960 steel with different initial porosities and for

different prescribed macroscopic triaxialities and Lode parameters using a computational

3D cell methodology. The results are compared with those obtained with a J2 voided cell.

These comparisons show that the improved model captures adequately the Lode effect on

the stress-strain curves and on the void growth.

Keywords: Gurson model, Lode parameter, Consistent integration, Cell model analysis

1. Introduction

The ductile fracture phenomenon in metals and alloys usually follows a failure mech-

anism involving nucleation, growth and coalescence of voids. Pioneering micromechanical
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studies of this phenomenon were carried out by McClintock (1968); Rice and Tracey (1969)

considering the growth of isolated cylindrical or spherical voids driven by plastic deforma-

tion of the surrounding rigid perfectly plastic matrix material. To analyze the ductile

failure of porous materials, the Gurson-Tvergaard’s damage model (Gurson, 1977; Tver-

gaard, 1981, 1982) is the most widely used approach. Tvergaard (1981, 1982) modified the

Gurson model by introducing the q1 and q2 parameters to more accurately describe the void

growth kinetics observed in unit cell computations. Faleskog et al. (1998) and Gao et al.

(1998) have shown that these values are not constant but depend on both strength and

strain-hardening properties. More recently, Kim et al. (2004) and Vadillo and Fernández-

Sáez (2009) have pointed out that the qi parameters also depend on the triaxiality of the

stress field, as well as on the initial porosity, and highlighted the importance of a proper

choice of q1 and q2 for the correct modelling of the void growth process.

Various extensions of the Gurson model have been developed and provided elsewere in

order to better represent the response of ductile metals (Gologanu et al., 1997; Gărăjeu

et al., 2000; Pardoen and Hutchinson, 2000; Zhang et al., 2000; Benzerga, 2002; Flandi

and Leblond, 2005 b; Monchiet et al., 2008). These modifications make all the assumption

of axisymmetric cavities remaining spheroidal during plastic deformation. For a review on

constitutive models developed to simulate ductile failure up to recent times, see Besson

(2010); Pineau and Pardoen (2007).

In the last years, several researchers (Zhang et al., 2001; Kim et al., 2003, 2004; Bao

and Wierzbicki, 2004; Wen et al., 2005; Gao and Kim, 2006; Kim et al., 2007; Xue, 2007;

Barsoum and Faleskog, 2007; Xue, 2008; Bai and Wierzbicki, 2008; Brünig et al., 2008; Gao

et al., 2009, 2011; Barsoum and Faleskog, 2011; Barsoum et al., 2011; Jackiewicz, 2011;

Danas and Ponte-Castañeda, 2012; Benallal et al., 2014) outlined that the stress triaxiality

measure by itself is insufficient to caracterize plastic yielding, and highlighted the role of

the third invariant of the deviatoric stress tensor, on void growth rates and other aspects

of void behaviour which play an important role in strain softening and localization.

At high triaxialities, where the controlling damage mechanism is the void growth, the

influence of Lode parameter can be also important (Barsoum et al., 2011). This effect

cannot be properly accounted for with the classical GT model. At low triaxialities, the
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source of the instability cannot be identified with a void growth mechanism (Yamamoto,

1978). The GT model was recently modified to introduce a Lode dependent softening term

for low triaxialities (Nahshon and Hutchinson, 2008). By construction, this modification

is inconsistent with mass conservation (Danas and Ponte-Castañeda, 2012).

In the present paper, an improvement of the Gurson-Tvergaard model that accounts

for the influence of the Lode parameter at high triaxiality stress states is presented. The

modification consists on incorporating the Lode parameter effect into the GT yield surface

through q1 and q2, which depend not only of the stress triaxiality T, but also on the

third invariant of the deviatoric stress tensor J3. This new term is calibrated to ensure

the convexity of the yield surface. The integration of the new constitutive equations has

been implemented using a full implicit Euler-backward scheme combined with the return

mapping algorithm. Additionaly, the consistent tangent modulus has been formulated. For

validation purposes, a 3D extension of the computational cell model employed by Xia and

Shih (1995 a,b, 1996) has been developed extending the prescription to both macroscopic

triaxiality and Lode parameter. Numerical simulations using the Finite Element code

ABAQUS/Standard (Simulia, 2014) are presented for Weldox 960 steel considering different

initial porosities and various prescribed macroscopic triaxialities and Lode values. The

obtained results using the new continuum damage model are compared with those found

with a J2 voided cell for both the void growth and the stress-strain response of the material.

2. Unit-3D cell model with prescribed triaxiality and Lode parameter

2.1. The unit-cell model

Under the assumption of a periodic microstructure, a porous material can be approxi-

mated by representative volume elements (RVE), each containing a void. The axisymmetric

cell model is a very convenient way to simplify the problem, because it requires only two-

dimensional calculations, so is the most frequently way to analyse the material behaviour.

Those authors who only deal with axisymmetric conditions ignore the influence of other

possible Lode parameter values in the response of the material. To analyse the influence

of the Lode parameter, a cubic 3D cell in which a spherical void is contained should be

considered (Zhang et al., 2001; Kim et al., 2007). In this paper, a unit cell with initial
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lengths 2D01, 2D02 and 2D03 and a spherical void located at its center of radius r0 is chosen.

The RMV will be modelled by two approaches, one governed by the classical J2 plasticity

with a cell containing a discrete spherical void and another considering a homogeneous

continuum damage model cell with the same initial void volume fraction as the voided

one (f0 = π r30/ (6D01D02D03)). Both cells are subjected to the same macroscopic loading

history, obtained prescribing the displacements on the outer surfaces of each unitary cell.

In both cases all boundaries are shear traction free, and the void surface in J2 unit cell is

also traction free, as shown in Fig. 1. Due to symmetry of the problem, only the eighth

part of the region needs to be modelled.
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Figure 1: Geometry and displacements imposed as boundary conditions on the unitary J2 voided

cell and on the continuum damage model cell.

Assuming that the outer surfaces are always parallel to the 1, 2 and 3 directions re-

spectively, the boundary conditions at the cell during the deformation process are:

u1 = 0 at x1 = 0; u1 = U1 at x1 = D1;

u2 = 0 at x2 = 0; u2 = U2 at x2 = D2; (1)

u3 = 0 at x3 = 0; u3 = U3 at x3 = D3;
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The macroscopic logaritmic principal strains have the form:

E1 = ln

(
D1

D01

)
; E2 = ln

(
D2

D02

)
; E3 = ln

(
D3

D03

)
(2)

and the effective strain:

Ee =

√
2

3

(
(E1 − E2)

2 + (E1 − E3)
2 + (E2 − E3)

2)1/2 (3)

with the rates of macroscopic logarithmic principal strains given by:

Ė1 =
Ḋ1

D1

; Ė2 =
Ḋ2

D2

; Ė3 =
Ḋ3

D3

(4)

where D1 = D01 + U1, D2 = D02 + U2 and D3 = D03 + U3 are the current lengths of the

representative deformed cell.

The macroscopic principal stresses, Σ1,Σ2 and Σ3 are defined as:

Σi =
1

DjDk

∫ Dj

0

∫ Dk

0

[σii]xi=Di
dxjdxk with i, j, k = 1, 2, 3

σii being the Cauchy stress components, and Σe and Σh, the effective and hydrostatic

macroscopic stresses:

Σe =
1√
2

(
(Σ1 − Σ2)

2 + (Σ1 − Σ3)
2 + (Σ2 − Σ3)

2)1/2 ; Σh =
Σ1 + Σ2 + Σ3

3
(5)

The stress triaxiality T and the Lode parameter L can be written as:

T =
Σh

Σe

; L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3

(6)

Defining the following ratios between Σ1, Σ2 and Σ3:

R =
Σ2

Σ1

; Q =
Σ3

Σ1

(7)

the stress triaxiality, T , and the Lode parameter, L, are given by:

T =

√
2 (R +Q+ 1)

3
√

(1−R)2 + (1−Q)2 + (R−Q)2
; L =

2R−Q− 1

1−Q
(8)
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2.2. Boundary conditions for prescribing triaxiality and Lode parameters

In order to study the effect of stress triaxiality T and Lode parameter L in the me-

chanical behaviour of the representative volume element, boundary conditions should be

implemented to prescribe the ratios of the principal stresses R = Σ2/Σ1 and Q = Σ3/Σ1

during the whole loading history of the RVE.

Faleskog et al. (1998) developed a method to prescribe displacement rates in a 3D

unitary cell under plane strain condition which results in a constant macroscopic triaxiality.

In this work, this strategy is extended to prescribe both triaxiality and Lode parameter

during the entire deformation history of the 3D unitary cell.

In the voided J2 cell, the macroscopic stresses Σi are calculated as the average stress on

the cell boundaries. In the continuum damage model cell, Σi are the macroscopic stress in

the prevailing homogeneous stress field. Since the macroscopic true stresses (Σ1, Σ2, Σ3)

and the macroscopic strain rates (Ė1, Ė2, Ė3) are equal to the volume average values in a

cell (Hill, 1967), the total rate of deformation work Ẇ in both continuum damage model

cell (CC) and J2 voided cell (VC), can be written as:

ẆCC = ẆV C = V Σ1Ė1 + V Σ2Ė2 + V Σ3Ė3 (9)

V being the present volume of each cell.

Defining P1 = V Σ1, P2 = V Σ2 and P3 = V Σ3 as generalized forces and work rate

conjugate quantities to Ė1, Ė2 and Ė3, respectively, the above expression becomes:

ẆCC = ẆV C = P1Ė1 + P2Ė2 + P3Ė3 (10)

in which the generalized forces P1, P2 and P3 should satisfy, to prescribe the ratios of

principal stresses R = Σ2/Σ1 and Q = Σ3/Σ1, the relations P2/P1 = R; P3/P1 = Q.

Consider the transformation:

(11)
Ė(I)

Ė(II)

Ė(III)

 = N


Ė1

Ė2

Ė3

 ;


P(I)

P(II)

P(III)

 = N


P1

P2

P3
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N being an orthonormal
(
N−1 = NT

)
unsymmetric matrix of the form:

N =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 ;

with elements:

A11 =
1√

1 +R2 +Q2
; A12 =

R√
1 +R2 +Q2

; A13 =
Q√

1 +R2 +Q2

A21 = − R√
1 +R2

; A22 =
1√

1 +R2
; A23 = 0. (12)

A31 =
Q√

(1 +R2) (1 +R2 +Q2)
; A32 =

RQ√
(1 +R2) (1 +R2 +Q2)

A33 = − (1 +R2)√
(1 +R2) (1 +R2 +Q2)

The total rate of deformation work (ẆCC and ẆV C) can be expressed as:

ẆCC = ẆV C = P(I)Ė(I) + P(II)Ė(II) + P(III)Ė(III) (13)

If in the transformed coordinate system, the imposed incremental boundary conditions are

stress uniaxial:

Ė(I) = ĖI ; P(II) = 0; P(III) = 0 (14)

the total rate of deformation work has in this system the form ẆCC = ẆV C = P(I)ĖI ,

that follows, in the original one and considering the relations given in Eqs. (11), the three

relations:

(1) Ė(I) = ĖI → A11Ė1 + A12Ė2 + A13Ė3 = ĖI (15)

(2) P(II) = 0 → A21P1 + A22P2 + A23P3 = 0

(3) P(III) = 0 → A31P1 + A32P2 + A33P3 = 0

or in a similar manner:

(1) Ė1 +RĖ2 +QĖ3 = ĖI

√
1 +R2 +Q2

(2) RΣ1 = Σ2

(3) QΣ1 = Σ3 (16)
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For given values of R, Q and ĖI , imposing the three boundary conditions in the transformed

system of each cell (Ė(I) = ĖI , P(II) = 0, P(III) = 0), lead to prescribe, in both continuum

damage model cell (CC) and J2 voided cell (VC) of the original system, the relations:

(1)
(
Ė1 +RĖ2 +QĖ3

)
CC

=
(
Ė1 +RĖ2 +QĖ3

)
V C

(17)

(2) (Σ2/Σ1)CC = (Σ2/Σ1)V C = R

(3) (Σ3/Σ1)CC = (Σ3/Σ1)V C = Q

with R and Q, from Eqs.(8) and for Σ3 < Σ1, as functions of T and L.

The boundary conditions are implemented in ABAQUS/Standard (Simulia, 2014) via

a MPC subroutine. This method overcomes difficulties associated with cell softening due

to void growth.

3. Numerical cell results for the voided J2 and for the classical Gurson-Tvergaard

model

Many authors (Zhang et al., 2001; Kim et al., 2007; Gao et al., 2005; Xue, 2008)

show that a voided cell subjected to the same stress triaxiality ratio, would tends to

react differently when Lode parameter is different. In this section, we will discuss the

macroscopic stress-strain evolution and the growth of the porosity (until coalescence) of

a voided J2 cell subjected to prescribed triaxiality and Lode parameter values during the

deformation history. For this purpose, the range of high stress triaxialities (1 ≤ T ≤ 2)

and L values within the range (−1 ≤ L ≤ 1) are analyzed. The chosen material for the

analysis is Weldox 960, material which presents a Lode parameter dependence behaviour

as was experimentally proved by Barsoum et al. (2011). This high strength steel can be

approximated by the following true stress-strain relation:

σ =

 Eε ε ≤ ε0

σ0

(
ε
ε0

)N

ε > ε0
(18)

where σ0 represents the initial yield stress, N the strain hardening exponent and ε0 = σ0/E,

E being the Young Modulus. All material properties are listed in Table 1.
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It should be noted that at high triaxiality level, the prediction of ductile fracture de-

pends on void growth, which is clearly different from the mechanism leading to failure at

the low positive or negative hydrostratic stress fields (T values not considered in this work).

Table 1: Material properties of Weldox 960

E(GPa) ν σ0 (MPa) N ε0

208 0.3 956 0.059 0.0046

3.1. J2 voided cell results

The RMV voided cell considered in this study has the initial length ratios D01/D02 =

D01/D03 = 1, and two initial void volume fractions f0 = 0.005 and f0 = 0.01 are ana-

lyzed. The finite element mesh used in the calculations for f0 = 0.005 is shown in Fig. 2,

and consists of 8680 eight-node linear brick hexaedrical elements with reduced integration

and hourglass control. This mesh includes 22 elements in the intersection of each outer

surfaces with the void surface, and 20 elements along each longitudinal direction. The

numerical analyses of the Weldox 960 material that obeys the theory of J2 plasticity are

carried out using the Finite Element code ABAQUS/Standard (Simulia, 2014) within an

updated Lagrangian formulation. The nonlinear boundary conditions are prescribed fol-

lowing the method presented in previous section. Fig. 3 (a) illustrates the evolution of the

Figure 2: Example of the finite element mesh of a cell with initial void volume fraction f0 = 0.005.

macroscopic effective stress versus effective strain curve for T=1, initial void volume frac-

tion f0 = 0.005 and Lode parameters L = −1,−0.5,−0.2, 0, 0.2, 0.5, 1. The competition

between matrix material strain hardening and porosity induced softening is showed. As
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macroscopic effective deformation increases, a maximum Σe/σ0 value is reached, and the

macroscopic effective stress decreases as strain-hardening of matrix material is insufficient

to be balanced for a reduction in the cell ligament area caused by void expansion. When

the Lode parameter has the minimum value (L=−1), the stress carrying capacity of the

cell is reduced at lower Ee, whereas when L=1, the stress carrying capacity of the cell

is lost much later (Zhang et al., 2001). The larger the L, the slower the lost of carrying

capacity. The differences in the lost carrying capacity strongly depend of the evolution of

the porosity f . As shown in Fig.3 (b), the larger the value of L tested, the smaller the

increment of void volume fraction reached. Similar behaviour can be found for other high

triaxialities tested.
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Figure 3: Evolution of macroscopic effective stress (a) and void volume fraction (b) versus macro-

scopic effective strain with different prescribed Lode parameters for f0 = 0.005 and T = 1.

The rapid drop of stress carrying capacity and the fast increase of porosity f is marked

with a circle in Fig. 3 (a) and (b) defining the onset of void coalescence. Following the pro-

cedure developed by Koplik and Needleman (1988) and Kim et al. (2004) for axisymmetric

deformation mode, the evolution of ligament length ratios (Di − Di0)/Di0 in direction

i = 1, 2 and 3 is represented as a function of Ee in Fig. 4 for f0 = 0.005, T=1 and

L=1, 0. The value of deformation where the evolution of ligament stretching stops in one

(or two) directions and a rapid deformation in one (or two) directions take place, capture

flow localization and the beginning of coalescence.

Not only void growth and critical strain for void instability are influenced by Lode

parameter, also the expansion of the void can adopt different shapes for different L values

under the same triaxiality level. It is well known that the influence of L on the deformation
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Figure 4: Variation of the deformed cell length ratio in directions i= 1, 2 and 3 vs. Ee for

f0 = 0.005, T = 1 and L = 1, 0 revealing in each case a shift (circle) which corresponds to flow

localization.

is more important at small values of T than at higher ones (Zhang et al., 2001). For high

triaxialities, the shape of the voids remain nearly spherical for every L value analyzed.

3.2. Classical Gurson-Tvergaard cell results

The yield function of the Gurson-Tvergaard (GT) model has the form:

Φ (Σe,Σh, σ̄, f) =
Σ2

e

σ̄2
+ 2q1fcosh

(
3q2Σh

2σ̄

)
−

(
1 + q21f

2
)

(19)

f being the current void volume fraction, σ̄ the current flow stress of the matrix material,

and Σe and Σh the effective and hydrostatic macroscopic Cauchy stresses:

Σe =

√
3

2
Σ

′
: Σ

′
; Σh =

1

3
Σ : 1 ; Σ

′
= Σ− Σh1 (20)

The parameters q1 and q2 were introduced by Tvergaard (1981, 1982) to improve model

predictions. The GT model does not capture the effect of the coalescence phase. The

material behaviour in this phase prior to separation is not considered in this work.

The (q1, q2) Gurson-Tvergaard parameters strongly depend of material properties (Gao

et al., 1998; Faleskog et al., 1998), and also are function of the initial void volume fraction

f0 and of the stress triaxiality ratio T (Kim et al., 2004; Vadillo and Fernández-Sáez, 2009).

The proper selection of these two parameters are critical for the accurate representation

of the ductile fracture of materials. The (q1, q2) values should be calibrated to match the

stress-strain response and the void growth rate of the GT cell and that predicted by the

J2 voided cell analysis.
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To minimize the differences between the two models, and for calibration purposes, two

error functions are introduced, namely:

Rf =
|F I − F II |

F I
RW =

|W I −W II |
W I

(21)

where F denotes the area under the curve of porosity f versus Ee,
(
F =

∫ Ec

0
fdEe

)
, and

W the area under the curve of the effective stress versus Ee,
(
W =

∫ Ec

0
(Σe/σ0)dEe

)
. Ec is

the effective strain when coalescence is reached. Superscripts I and II refer to the voided

cell and the GT model. |F I −F II | and |W I −W II | are respectively the areas between both

curves in f vs. Ee and Σe vs. Ee schemes (blue zone in Figs. 5 (a) and (b))

Following Aravas (1987), a consistent integration procedure is used to integrate the GT

model equations for Weldox 960. With the use of the backward Euler integration scheme, a

numerical algorithm implicit in all variables is developed. The proposed algorithm as well

as the corresponding tangent modulus is implemented in the Finite Element commercial

code ABAQUS/Standard (Simulia, 2014) through a UMAT user subroutine.

It was already mentioned for the voided cell model that, in the case that both triaxiality

and initial void volume fraction remain constant, the macroscopic stress-strain curves, the

void growth rate and the coalescence strain differs markedly for every Lode parameter

analyzed. In this work, and to calibrate GT parameters for fixed and constant T and f0,

the Lode parameter is chosen to be the one which gives earlier coalescence (L=−1) for all

the cases tested.

For a given initial porosity, T and L, different pairs of (q1, q2) values give the same

prediction for the error functions: Rf=tol and RW=tol, with the chosen tol= 0.01.

Fig.5 (c) shows, for f0 = 0.005, T = 1 and L = −1, the relations q1-q2 that minimize both

Rf and RW . The optimal choice for q1, q2 are obtained by the intersection of both curves.

The q1 and q2 values are in this case q1=0.855 and q2=1.175.

A summary of the optimal GT parameters for two initial porosities f0 = 0.005, f0 = 0.01

and two different triaxialities 1 and 2 is given in Table 2. As mentioned, in all cases the

chosen Lode parameter used for calibration purposes was L = −1. the coalescence strain

Ec obtained from the voided cell and necessary for the calibration method is also given.

For simplicity, for the continuous field of triaxiality stress, qi(T ) can be assumed to
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vary following a linear function of the form (Vadillo and Fernández-Sáez, 2009):

qi(T ) = Ai T +Bi (22)

with the interpolation coefficients Ai and Bi given in Table 2. Is a matter for discussion how

to ensure yield surface convexity. Many authors test the convexity of the yield surface in

a simple way, namely by plotting its two-dimensional projection at different loading stages

(Pietryga et al., 2012). By taking advantage of this way, in the present work, convexity of

the yield function is confirmed within the range of triaxialities 1 ≤ T ≤ 2 and L = −1 for

porosities f0 ≤ f ≤ 0.08 for the initial void volume fractions f0 = 0.005 and 0.01.
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Figure 5: Fitting squemes for Σe vs. Ee and f vs. Ee, (a) and (b), and example of calibration procedure

for q1 and q2 parameters for f0 = 0.005, T = 1 and L = −1 (c).

Table 2: Optimal q1, q2 and Ec for T = 1, 2, and interpolation coefficients of qi(T ) for f0 = 0.005

and 0.01.

f0 = 0.005 f0 = 0.01

T 1 2 1 2

q1 0.855 1.455 1.011 1.583

q2 1.175 0.992 1.104 0.957

Ec 0.580 0.160 0.480 0.130

q1(T ) q2(T )

f0 A1 B1 A2 B2

0.005 0.600 0.255 -0.183 1.358

0.01 0.572 0.439 -0.147 1.251
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Fig.6 compares the evolution of macroscopic stress-strain and the predicted void-volume

fraction growth till coalescence using GT model with calibrated qi parameters (Table 2)

using the results of the J2 voided cell model. The cases analyzed corresponds to f0=0.005,

T = 1, 2 and L=−1, 0 and 1. It can be seen how the classical GT model, Lode independent,

predicts the same behavior for different stress states when the triaxiality ratio is the same,

meanwhile voided J2 cell response differs when Lode parameter changes. It is observed,

for every triaxiality studied, how the difference between the two models increase when the

value of the Lode parameter increases.
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Figure 6: Comparison of Σe vs. Ee curve and f vs. Ee curve for a voided cell and a continuum

GT cell with different calibrated qi parameters. Here, f0=0.005, T=1, 2 and L=-1, 0, 1.

4. Modified Gurson-Tvergaard model with Lode parameter dependence

4.1. Constitutive equations

One of the major limitations of the GT model is that, although it is extensively used,

it can only handle the growth of spherical voids remaining spherical, which is only aprox-

imately true for L =−1 and at triaxialities around 1.5. However, at high triaxialities, it

is possible to calibrate q1 and q2 parameters in GT model to reproduce the behavior of

the material in these stress situations. These calibrated qi values are not constants, but
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dependent on the material, the stress triaxiality ratio and the initial void volume fraction

considered (Kim et al., 2004; Vadillo and Fernández-Sáez, 2009).

J2 cell model analysis conducted in previous sections show that the macroscopic stress-

strain response and the void growth behaviour not only depend on the first and the second

stress invariants, but also on the Lode parameter (third stress invariant). However, the

original GT model predicts the same void growth rate and macroscopic stress-strain re-

sponse for different Lode parameter values as long as the stress triaxiality ratio T remains

the same.

At low triaxialities (Nahshon and Hutchinson, 2008) have proposed a modification of

the Gurson model to capture softening in shear. The modification takes into account the

third invariant of the stress deviator.

At high triaxialities, and in order to account for the influence of T and L on the response

of the material, the main innovative feature of this work is to propose a modification of

the yield function of the classical GT model (Eq. (19)) introducing new dependences in

q1 and q2 Gurson-Tvergaard parameters as functions of triaxiality and Ω. The proposed

yield function has the form:

Φmod (Σe,Σh, T,Ω, σ̄, f) =
Σ2

e

σ̄2
+ 2q1modfcosh

(
3q2modΣh

2σ̄

)
−

(
1 + (q1mod)

2 f 2
)

(23)

with q1mod, q2mod, for the sake of simplicity, defined as linear functions of T and Ω as:

q1mod(T,Ω) = q1(T ) · (1 + kΩ · Ω); (24)

q2mod(T,Ω) = q2(T ) · (1 + kΩ · Ω) (25)

The functions q1(T ) and q2(T ) in q1mod and q2mod follows (Eq. 22) with Ai and Bi interpo-

lated coefficients based of fitted discrete qi values obtained from the axisymmetric stress

state field (Ω = 0). Ω is a stress measure, function of the effective stress Σe and J3 as:

Ω =
27J3
2Σ3

e

− 1; J3 = det(Σ′)

lying in the range −2 ≤ Ω ≤ 0 , with Ω = 0 for L= −1, and Ω = −2 for L = 1. kΩ

is a proposed adjustment parameter. This modification is purely phenomenological, but

formulated to retrieve the original GT formulation for L= −1 and T=constant.



16

For hypoelastic-plastic materials, the relation between the macroscopic stress rate, Σ̇,

and the plastic part of the rate of macroscopic deformation Ė
p
is given by:

Σ̇ = C :
(
Ė− Ė

p
)

(26)

Ė being the macroscopic rate of deformation tensor andC = 2GI′+K1⊗1 the fourth-order

tensor of isotropic elastic moduli. G and K are the Shear and Bulk modulus respectively,

I′ the unit deviatoric fourth order tensor and 1 the unit second order tensor.

The plastic part of the rate of macroscopic deformation Ė
p
is derived from the associated

flow rule:

Ė
p
= λ̇

∂Φmod

∂Σ
(27)

λ̇ being the plastic flow proportionality factor, and Φmod the GT yield condition modified in

this work to take into account the influence of the Lode parameter on the ductile behaviour

of elasto-plastic porous materials.

The plastic part of the macroscopic strain rate and the effective plastic strain rate are

related by enforcing equality between the rates of macroscopic and matrix plastic work:

Σ : Ė
p
= (1− f) σ̄ ˙̄ε

p
(28)

Here, the flow stress of the matrix material σ̄ and the effective microscopic plastic strain

rate ˙̄ε
p
are related by the law σ̄ = σ̄ (ε̄p) with ε̄p =

∫ t

0
˙̄ε
p
(τ)dτ ,

The evolution of porosity can be written as:

ḟ = (1− f)Ė
p
: 1 (29)

One should note that the evolution law for the void volume fraction is affected by the

definition of the yield surface, having a dependence with Lode parameter as far as the yield

function does.

The above formulation must be complemented with the Kuhn-Tucker conditions:

λ̇ ≥ 0, Φmod ≤ 0, λ̇Φmod = 0 (30)

and the consistency condition during plastic loading: Φ̇mod = 0
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5. Numerical implementation

5.1. Integration procedure

In the context of the Finite-Element method, the integration process is local in space

and occurs at each quadrature points of the finite elements. The incremental integration

of the constitutive equations is a strain-driven process in which the total strain tensor

increment at each quadrature point, Ė, is given at a time (n) and both the stress tensor

and the state variables should be updated at time (n+1).

To integrate the set of non-linear constitutive Eqs. (26-30) , two different tasks must

be accomplished. The first one consists in update stress and state variables driven by

the strain increment. The second is related to define a consistent tangent modulus to

preserve the quadratic convergence of the iterative solution based on Newton’s method.

All variables are evaluated in (n+ 1), omitting the subscript for simplicity.

For the first assignment, the classical return mapping algorithm is used (Simo and

Taylor, 1985). Following a fully Backward-Euler scheme, the constitutive relations can be

written in the following incremental form:

• From the time derivative of the generalized Hooke’s law (Eq. (26)):

Σ = Σtrial −C : ∆Ep with Σtrial = Σ(n) +C : ∆E (31)

• From the flow rule (Eq. (27)):

∆Ep = ∆λ
∂Φmod

∂Σ
= ∆λ

(
1

3

(
∂Φmod

∂Σh

+
∂Φmod

∂T

∂T

∂Σh

)
1+ (32)

+

(
∂Φmod

∂Σe

+
∂Φmod

∂T

∂T

∂Σe

)
3Σ′

2Σe

+
∂Φmod

∂Ω

∂Ω

∂Σ

)
with

∂Ω

∂Σ
= −81

2

J3
Σ4

e

· 3
2

Σ′

Σe

+
27

2Σ3
e

(
cof (Σ′) +

1

9
Σ2

e1

)
(33)

1 being the unit second-order tensor, and (cof (Σ′ ))ij = 1
2
ejkreist (Σ

′ )sk (Σ
′ )tr the

minors of (Σ′), with eijk the Levi-Civita permutation symbols which allow the flow

rule dependent on Ω to be written as:

∆Ep = ∆λ
∂Φmod

∂Σ
=

1

3
∆εp1+∆εq

3Σ′

2Σe

+∆εΩ
∂Ω

∂Σ
(34)
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being ∆εp, ∆εq and ∆εΩ in the form:

∆εp = ∆λ

(
∂Φmod

∂Σh

+
∂Φmod

∂T

∂T

∂Σh

)
(35)

∆εq = ∆λ

(
∂Φmod

∂Σe

+
∂Φmod

∂T

∂T

∂Σe

)
∆εΩ = ∆λ

(
∂Φmod

∂Ω

)
that leads, after combining the above relations to eliminate ∆λ:

∆εp

(
∂Φmod

∂Σe

+
∂Φmod

∂T

∂T

∂Σe

)
−∆εq

(
∂Φmod

∂Σh

+
∂Φmod

∂T

∂T

∂Σh

)
= 0; (36)

∆εq
∂Φmod

∂Ω
−∆εΩ

(
∂Φmod

∂Σe

+
∂Φmod

∂T

∂T

∂Σe

)
= 0

Taking into account the identity:

Σ′ : cof (Σ′ ) = 3J3 (37)

it is possible to prove that the product Σ′ : ∂Ω

∂Σ is equal to zero allowing the consti-

tutive relations to be written as:

• Macroscopic and matrix plastic work equivalence: Σh∆εp + Σe∆εq = (1− f)σ̄∆ε̄p

• Void volume fraction evolution equation:∆f = (1− f)∆εp

• Kuhn-Tucker condition for plastic loading: ∆Φmod = 0

Substituting Eq. (34) into the deviatoric part of Eq. (31), the updated deviatoric stress

has the form:

Σ′ = Σ′ trial − 3G∆εq
Σ′

Σe

− 2G∆εΩ

(
−81

2

J3
Σ4

e

· 3
2

Σ′

Σe

+
27

2Σ3
e

(
cof (Σ′) +

1

9
Σ2

e1

))
(38)

with

Σ′ trial = Σ′
(n) + 2GI′ : ∆E (39)

where Σ′ can be written in the form:

XΣ′ = Σ′ trial − Y cof
(
Σ′)− Z1; (40)
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with X, Y and Z given by:

X = 1 +
3G

Σe

∆εq −
243 G J3

2Σ5
e

∆εΩ; Y =
27G

Σ3
e

∆εΩ; Z =
Σ2

e Y

9
; (41)

and cof (Σ′), computing it from the expression given in Eq.(40), as:

(X2 − Y Z)cof
(
Σ′) = cof

(
Σ

′trial
)
−

(
2XZ + Y 2J3

)
Σ′ +

(
XY J3 + 2Z2

)
1 (42)

From Eq. (38), and after some algebra taking into account the identities:

cof (Σ′ ) : cof (Σ′ ) =
Σ4

e

9
, cof (Σ′ ) : 1 = −Σ2

e

3
(43)

the following relations between the trial and current stress measures can be found-see

Appendix A:

(
Σtrial

e

)2
= (Σe + 3G∆εq)

2 +

(
9G∆εΩ

Σe

)2 (
1− (Ω + 1)2

)
(44)

J trial
3 =

2Σ3
e

27

[
(Ω + 1)X3 +

(Y Σe)
3

27

(
2 (Ω + 1)2 − 1

)
+X2 (Y Σe) +

(Ω + 1)X

3
(Y Σe)

2

]

with Σtrial
e =

√
3
2
Σ

′trial : Σ
′trial, J trial

3 = det(Σ′ trial), and

X = 1 +
3G

Σe

∆εq −
9 G (Ω + 1)

Σ2
e

∆εΩ; Y =
27G

Σ3
e

∆εΩ; (45)

In a similar manner, it can be easily proved the relation:

Σtrial
h = Σh +K∆εp (46)

The set of five non-linear equations, involving only scalars, that should be solved to obtain

the five unknown variables ∆εp, ∆εq, ∆εΩ, f and ε̄p using an iterative Newton-Raphson

procedure, are:

∆εp

(
∂Φmod

∂Σe

+
∂Φmod

∂T

∂T

∂Σe

)
−∆εq

(
∂Φmod

∂Σh

+
∂Φmod

∂T

∂T

∂Σh

)
= 0; (47)

∆εq
∂Φmod

∂Ω
−∆εΩ

(
∂Φmod

∂Σe

+
∂Φmod

∂T

∂T

∂Σe

)
= 0

Σh∆εp + Σe∆εq = (1− f)σ̄∆ε̄p

∆f = (1− f)∆εp

Φmod (Σe,Σh, T,Ω, σ̄, f) = 0
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with σ̄ = σ̄(ε̄p), and Σh, Σe and Ω obtained from the relations:

Σh = Σtrial
h −K∆εp (48)

(Σe + 3G∆εq)
2 +

(
9G∆εΩ

Σe

)2 (
1− (Ω + 1)2

)
=

(
Σtrial

e

)2
2Σ3

e

27

[
(Ω + 1)X3 +

(Y Σe)
3

27

(
2 (Ω + 1)2 − 1

)
+X2 (Y Σe) +

(Ω + 1)X

3
(Y Σe)

2

]
= J trial

3

and X and Y given by Eq. (45).

Once the set of equations Eq.(47) are solved, Eqs.(40) and (42) allows (Σ′) to be written

as function of 1 and the trial tensors Σ
′trial and cof

(
Σ

′trial
)
.

Finally, the updated stress Σ at time (n+1) can be calculated as Σ = Σh1+Σ′.

5.2. Consistent tangent modulus

For infinitesimal strain problems, Simo and Taylor (1985) showed that the use of a

consistent tangent modulus J preserves the quadratic rate of asymptotic convergence of

iterative solution schemes based on the Newton’s method. This tangent operator defines

the variation in stress at time (n+1) caused by a variation of the total strain as:

J =

(
∂Σ

∂E

)
(n+1)

(49)

For classical Gurson materials, an explicit expression of the tangent modulus consistent

with the Euler backward algorithm has been given by (Aravas, 1987; Zhang, 1995; Vadillo

and Fernández-Sáez, 2009). Following this procedure, the consistent stiffness matrix for

the modified GT model proposed in this work, J3 dependent, is obtained as follows (since

all quantities in calculating J are referred to time (n+1), the superscript (n+1) will be

dropped hereafter). For the convenience of the finite element implementation, J will be

derived in matrix form. The boldface symbols will be used to denote matrices and vectors

where:

∂Σ = {∂Σ11, ∂Σ22, ∂Σ33, ∂Σ12, ∂Σ13, ∂Σ23, ∂Σ21, ∂Σ31, ∂Σ32}T (50)

∂E = {∂E11, ∂E22, ∂E33, ∂E12, ∂E13, ∂E23, ∂E21, ∂E31, ∂E32}T

Deriving Eqs. (31) considering the relation given in Eq. (46):

∂Σ = ∂Σh1+ ∂Σ′ = ∂Σtrial
h 1−K∂∆εp1+ ∂Σ′ (51)
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Deriving Eq. (40):

Σ′ ∂X +X ∂Σ′ = ∂Σ′trial − ∂Y cof (Σ′)− Y ∂ (cofΣ′)− ∂Z1; (52)

1 and I′ being the vector and matrix mapping of the unit second order tensor and the unit

deviatoric fourth-order tensor respectively.

∂X, ∂Y and ∂Z are functions of ∂Σtrial
h , ∂Σtrial

e and ∂J trial
3 -see Eqs.(B.4a, B.7, B.9) from

Appendix B. cof (Σ′) and ∂ (cofΣ′) are functions of Σ′trial and cof
(
Σ′ trial

)
-see Eqs.(42)

and Eq.(B.11). Taking into account these relations, and clearing ∂Σ′ from Eq.(52) we

have:

∂Σ′ = ∂Σ′trial + Ẽ1Σ
′trial + Ẽ2cof

(
Σ′ trial

)
+ Ẽ31+ F∂

(
cofΣ′trial

)
(53)

with Ẽ1, Ẽ2 and Ẽ3 of the form:

Ẽi = Ẽi1∂Σ
trial
h + Ẽi2∂Σ

trial
e + Ẽi3∂J

trial
3 (54)

being all coefficients Ẽij and F known.

Introducing the relation (see Appendix B):

∂∆εp = B̃11∂Σ
trial
h + B̃12∂Σ

trial
e + B̃13∂J

trial
3 (55)

and the identities:

∂Σtrial
h = K (1)T · ∂E (56)

∂Σtrial
e =

3

2Σtrial
e

(
Σ′ trial

)T · ∂Σ′ trial

∂J trial
3 =

(
cof

(
Σ′ trial

))T · ∂Σ′ trial

∂Σ′ trial = 2GI′ · ∂E

∂
(
cof

(
Σ′ trial

))
= M · ∂Σ′ trial
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where M is a 9x9 matrix of the form:

M =



0 Σtrial
33 Σtrial

22 0 0 −Σtrial
32 0 0 −Σtrial

23

Σtrial
33 0 Σtrial

11 0 −Σtrial
31 0 0 −Σtrial

13 0

Σtrial
22 Σtrial

11 0 −Σtrial
21 0 0 −Σtrial

12 0 0

0 0 −Σtrial
21 0 0 Σtrial

31 −Σtrial
33 Σtrial

23 0

0 −Σtrial
31 0 0 0 0 Σtrial

32 −Σtrial
22 Σtrial

21

−Σtrial
32 0 0 Σtrial

31 0 0 0 Σtrial
12 −Σtrial

11

0 0 −Σtrial
12 −Σtrial

33 Σtrial
32 0 0 0 Σtrial

13

0 −Σtrial
13 0 Σtrial

23 −Σtrial
22 Σtrial

12 0 0 0

−Σtrial
23 0 0 0 Σtrial

21 −Σtrial
11 Σtrial

13 0 0


(57)

into Eq. (51), the tangent modulus J can be written as:

J = K
(
1−KB̃11 + Ẽ31

)
1 · 1T +KẼ21 · cof

(
Σ′ trial

)
· 1 T +

+
3G

Σtrial
e

(
Ẽ12Σ

′ trial + Ẽ22cof
(
Σ′ trial

))
·
(
Σ′ trial

)T
+

+2G
(
Ẽ13Σ

′ trial + Ẽ23cof
(
Σ′ trial

))
· I′ · cof

(
Σ′ trial

)T
+ 2G (I′ + F ·M · I′) (58)

To define this operator is not required any matrix inversion. The described algorithm as

well as the corresponding tangent modulus has been implemented in the commercial finite

element code ABAQUS/Standard (Simulia, 2014) through the user subroutine UMAT.

6. Comparison between the voided J2 cell and the modified continuum GT cell

In order to analyse the accuracy of the proposed model, a selection of different loading

and initial void volume fractions for Weldox 960 material will be studied in this section. The

stress-strain and void volume fraction evolution within the deformation range 0 ≤ Ee ≤ Ec

have been compared for the two RVE cell model approaches using three different triaxiality

values (T = 1, 1.5, 2) and two Lode parameters (L = 0, 1) for the initial porosities f0=0.005

and f0=0.01. The case corresponding with L= −1 should not be analysed in the sense

that for this Lode value the modified GT model coincides with the classical GT model and

the behaviour of GT and J2 voided cell are essentially the same as far as the qi parameters

used for simulations were calibrated to minimize these differences.
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After a numerical iterative analysis, for the most critical stress and void volume fraction

situations found in this work (f ≤ 0.08), convexity is assured if 0 ≤ kΩ ≤ 0.0403.

Results for T= 1 and L= 0 are shown in Figs. 7 for f0 = 0.005 (a)-(b) and f0 = 0.01

(c)-(d) considering the J2 voided cell (dotted line) and the continuum GT Lode dependent

model cell. Figs. 7 (a) and (c) represent the evolution of the macroscopic effective stress Σe

normalized by the initial yield stress, σ0, as a function of the macroscopic effective strain

Ee, and Figs. 7 (b) and (d) exhibit the porosity evolution f with Ee. The results of the

simulations are plotted until reaching the coalescence deformation Ec.

The fitting parameters kΩ for the modified GT model simulations are kΩ= 0.0, (which

retrieves the classical GT model), 0.01, 0.03 and 0.04. The q1 and q2 parameters are the

interpolated values obtained from Eq.(22) for T = 1.

Quantitative differences in the prediction of material ductile behaviour are observed for

the modified GT model when different kΩ values are used in the simulations. For kΩ = 0.0

the modified GT model behaves underestimating the stress-strain curve of the voided J2

cell and overpredicting the void volume fraction evolution. The opposite tendency (over-

predicting stress strain behaviour and underestimating porosity growth rate) is observed

when kΩ is equal to 0.04. Then, with a proper choice of the kΩ parameter, it is possible to

match the stress-strain and void growth rate curves of a GT-Lode dependent material to

those predicted by the voided cell analysis. In this case kΩ = 0.03 is the value that better

fits the behaviour of the material.

Figs. 8 present analogous results for f0 = 0.005 and f0 = 0.01 prescribing in this case

T = 1 and L = 1. The curves show that the proposed model, with a proper selection of

kΩ (kΩ = 0.03) agrees very well with that obtained from the voided cell analysis for both

void volume fraction and stress-strain response.

Similarly, in Figs.(9) and (10), where T = 2, L = 0 (Figs.9 (a)-(d)) and L = 1 (Figs.

10 (a)-(d)), the kΩ parameter that more accurately predict the stress-strain relations and

void volume fraction evolution of the J2 voided cell is kΩ = 0.03 for L = 0 and a kΩ value

within the range (0.01, 0.03) for L = 1 for both initial porosities f0 = 0.005 and f0 = 0.01.

The cases with triaxility T = 1.5 and L = 0 and L = 1 lead to similar results.

A final remark is that the proposed new approach and the calibrated (q1mod, q2mod) val-
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ues improve the Gurson model but it is still imperfect. It is obvious that further numerical

studies and comparisons with experimental results are necessary to further verify/calibrate

the proposed modification of the Gurson model.
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Figure 7: Σe versus Ee and f versus Ee for f0 = 0.005 (a, b) and f0 = 0.01 (c, d). T = 1, L = 0.

7. Concluding remarks

The salient feature of the present paper is the proposition of an improved GT model that

accounts for the triaxiality and Lode effects through q1 and q2. We also present the finite

element implementation of the modified GT model using return mapping method (Euler-

backward integration technique) and the formulation of the consistent tangent modulus.

An extension of the computational cell model employed by Xia and Shih (1995 a,b, 1996)

has been developed to prescribe both macroscopic triaxiality and Lode parameter, and sev-

eral numerical simulations are presented for Weldox 960 steel with different initial porosities

and for distinct prescribed T and L values. The q1 and q2 classical GT parameters have

been calibrated for L =−1 and extended to other possible Lode parameters values. The

convexity of the proposed yield modified Gurson locus is assured. The obtained results
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Figure 8: Σe versus Ee and f versus Ee for f0 = 0.005 (a, b) and f0 = 0.01 (c, d). T = 1, L = 1.
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Figure 9: Σe versus Ee and f versus Ee for f0 = 0.005 (a, b) and f0 = 0.01 (c, d). T = 2, L = 0.
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Figure 10: Σe versus Ee and f versus Ee for f0 = 0.005 (a, b) and f0 = 0.01 (c, d). T = 2, L = 1.

show good agreement between the two cell models (the voided J2 and the proposed con-

tinuum damage model cells) for the triaxialities and Lode parameters tested (T =1, 1.5, 2

and L = 0, 1).

At high triaxialities, the proposed modified GT model permits to extend predictions to

any Lode parameter and expands its applicability in order to have better agreement with

the J2 finite element analyses with a unitary voided cell.
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Appendix A.

• Operating Σ
′trial : Σ

′trial from Eq. (38) considering the identities given in Eq.(37)

and Eqs.(43), it follows:

(
Σtrial

e

)2
= (Σe + 3G∆εq)

2 + (2G∆εΩ)
2

(
27

2Σ2
e

− 3 · 812

8

J2
3

Σ8
e

)
· 3
2

(A.1)

• Taking into account the relation Σ′ : cof (Σ′ ) = 3J3 , Eqs (40) and (42) allows J trial
3

to be written as function of the stress measures J3 and Σe as:

J trial
3 = J3 X

3 + Y 3

(
J2
3 − 2

729
Σ6

e

)
+

2

27
X2 Y Σ4

e +
J3 Σ

2
e X Y 2

3
(A.2)

being X, Y , Z and J3:

X = 1 +
3G

Σe

∆εq −
243 G J3

2Σ5
e

∆εΩ; Y =
27G

Σ3
e

∆εΩ; Z =
Σ2

e Y

9
; J3 =

2Σ3
e

27
(Ω + 1)

Appendix B.

• Deriving Eqs. (48a-b), ∂Σh and ∂Σe have the form.

∂Σh = ∂Σtrial
h −K∂∆εp; (B.1)

∂Σe = A11∂Σ
trial
e + A12∂∆εq + A13∂∆εΩ + A14∂Ω; Aij coefficients known

and the values ∂∆εp, ∂∆εq and ∂∆εΩ obtained from the five implicit constitutive

equations given in Eqs.(47) and the relations obtained in Eqs.(B.1):

∂∆εp = B11∂Σ
trial
h +B12∂Σ

trial
e +B13∂Ω (B.2)

∂∆εq = B21∂Σ
trial
h +B22∂Σ

trial
e +B23∂Ω

∂∆εΩ = B31∂Σ
trial
h +B32∂Σ

trial
e +B33∂Ω; Bij coefficients known

• From the derivation of Eq. (48.c):

3 (Ω + 1)X2∂X +X3∂Ω +
(
2 (Ω + 1)2 − 1

) (Y Σe)
2

9
∂(Y Σe) + 4

(Y Σe)
3

27
(Ω + 1) ∂Ω +

+2X (Y Σe) +X2∂(Y Σe) +
(Y Σe)

2

3
(Ω + 1) ∂X +

2X (Ω + 1)

3
(Y Σe) ∂ (Y Σe) +

+
X (Y Σe)

2

3
∂Ω =

27

2Σ3
e

∂J trial
3 − 81J trial

3

2Σ4
e

∂Σe (B.3)
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being ∂X and ∂ (Y Σe) the derivades of X and (Y Σe) from Eqs. (45):

∂X = 3G
∂∆εq
Σe

− 9G (Ω + 1)

Σ2
e

∂∆εΩ − 9G∆εΩ
Σ2

e

∂Ω +

(
18G (Ω + 1)∆εΩ

Σ3
e

− 3G
∆εq
Σ2

e

)
∂Σe

∂ (Y Σe) =
−54G∆εΩ

Σ3
e

∂Σe +
27G

Σ2
e

∂∆εΩ (B.4)

∂Ω can be written after operating in Eqs. (B.3, B.1b, B.4) as:

∂Ω = B41∂∆εq +B42∂∆εΩ +B43∂Σ
trial
e +B44∂J

trial
3 (B.5)

or in a similar manner, considering the relation given in Eqs. (B.2b, B.2c):

∂Ω = B̃41∂Σ
trial
h + B̃42∂Σ

trial
e + B̃43∂J

trial
3 (B.6)

that allows ∂∆εp, ∂∆εq and ∂∆εΩ to be written as:

∂∆εp = B̃11∂Σ
trial
h + B̃12∂Σ

trial
e + B̃13∂J

trial
3 (B.7)

∂∆εq = B̃21∂Σ
trial
h + B̃22∂Σ

trial
e + B̃23∂J

trial
3

∂∆εΩ = B̃31∂Σ
trial
h + B̃32∂Σ

trial
e + B̃33∂J

trial
3 B̃ij values known

• Deriving the relation given in Eq. (42):

(2X∂X − Y ∂Z − Z∂Y )cof
(
Σ′)+ (X2 − Y Z)∂

(
cofΣ′) = (B.8)

∂
(
cofΣ

′trial
)
−
(
2Z∂X + 2X∂Z + 2Y J3∂Y + Y 2∂J3

)
Σ′ −

(
2XZ + Y 2J3

)
∂Σ′ +

+(Y J3∂X +XJ3∂Y +XY ∂J3 + 4Z∂Z)1

with ∂X given in Eq. (B.4a), and ∂Y and ∂Z obtained from Eqs. (A.3) and with

the form:

∂Y =
27G

Σ3
e

∂∆εΩ − 81G

Σ4
e

∂Σe; ∂Z =
Σ2

e

9
∂Y +

2Y Σe

9
∂Σe (B.9)

and ∂J3 as:

∂J3 =
6Σ2

e (Ω + 1)

27
∂Σe +

2Σ3
e

27
∂Ω (B.10)

it is possible to obtain, considering Eqs. (B.1a, B.4a, B.6, B.7, B.8, B.9, B.10):

∂ (cofΣ′) = C̃1∂
(
cofΣ

′trial
)
+ C̃2∂Σ

′ + D̃1Σ
′ + D̃2cof (Σ

′) + D̃31 (B.11)

being D̃1, D̃2 and D̃3 of the form: D̃i = D̃i1∂Σ
trial
h + D̃i2∂Σ

trial
e + D̃i3∂J

trial
3

with C̃1, C̃2 and all D̃ij coefficients known.
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