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Abstract

It has recently been reported that, in alloys exhibiting early dynamic recrystallization

(DRX), the onset of adiabatic shear bands (ASB) is primarily related to microstructural

transformations, instead of the commonly assumed thermal softening mechanism as shown

by Rittel et al. (2006, 2008) and Osovski et al. (2012b). Further, the dominant role of

microstructural softening in the necking process of dynamically stretching rods showing

DRX has been verified using linear stability analysis and finite element simulations by

Rodŕıguez-Mart́ınez et al. (2014). With the aim of extending this coupled methodology

to shear conditions, this paper presents an analytical solution to the related problem of

ASB in a material that undergoes both twinning and dynamic recrystallization. A spe-

cial prescription of the initial and loading conditions precludes wave propagation in the

specimen which retains nevertheless its inertia, allowing for a clear separation of material

versus structural effects on the localization process. A parametric study, performed on

the constants of the constitutive model, permits the identification of their relative role

in the onset of the dynamic instability. The main outcome of the analysis confirms the

strong destabilizing effect played by the development of DRX, consistently with the former

statement regarding ASB, and contributes to rationalize the observations of other authors.
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1. Introduction

The analysis of dynamic shear instabilities, such as adiabatic shear bands (ASB), is

of capital importance for the understanding of ductile failure of metals at high rates of

deformation. The interested reader can find a wealth of experimental evidence in Bai and

Dodd’s book (Bai and Dodd, 2012), and a summary of the analytical results in Wright’s

book (Wright, 2002). The development of adiabatic shear bands is assumed to occur in

three different stages: in the first step, the strain is homogeneous, and the strain hardening

of the material overcomes any kind of heterogeneity present in the material; in the second

step, after the maximum stress has been reached, a diffuse instability starts to develop

due to the presence of softening effects. The strain begins to be rather heterogeneous. In

the third stage, a strong instability is formed and deformation localizes in a narrow band

(Marchand and Duffy, 1998). For decades, the classical explanation of Zener and Hollomon

(1944) has been the prevailing assumption, which consists of the competition between strain

hardening and thermal softening. Accordingly, adiabatic shear bands generation, as a typ-

ical mechanical instability, has been extensively studied by many authors. This instability

can be triggered by both geometrical imperfections and the mechanical softening due to

heat generation (thermal softening). However, the recent work by Osovski et al. (2012b)

has challenged this assumption of a unique softening mechanism. These authors showed

experimentally that, in addition to the potential effect of thermal softening, microstruc-

tural evolutions, such as dynamic recrystallization DRX, may indeed cause local softening

and shear localization. Using a sort of “coarse-grained” finite element model, these au-

thors assessed the relative influence that microstructural changes, and thermal softening

may have on the shear band formation (Osovski et al., 2013). One of their main results

was that, even in the absence of noticeable thermal softening, microstructural softening

can be in itself a potent destabilizing mechanism.

Among the several analytical solutions for the dynamic shear localization problem, the

seminal work of Molinari and Clifton (1987) is among the first to propose a structured

approach to predict the onset and initial evolution of the instabilities. One should also

mention here the work of Rodŕıguez-Mart́ınez et al. (2014) who analyzed the onset of

dynamic tensile necking using a perturbation analysis, for a material that can undergo both
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thermal and microstructural softening. It is therefore interesting to re-analyze dynamic

shear localization, in the spirit of the above-mentioned authors, with the support of both

analytical and numerical simulations, to broaden the problem and its solution to the general

case of dynamic instabilities, thereby complementing the results for dynamic necking.

Therefore, the essence of this paper is an assessment of the onset of dynamic shear

instabilities, using the approach of Molinari and Clifton (1987) and Molinari (1997), with an

additional microstructural softening mechanism in accordance with the results of Osovski

et al. (2012b). The idea is to generalize our approach proposed for the dynamic necking

problem by adding the dynamic shear localization analysis. Consequently, we consider here

a rectangular 2D plane-strain solid, treated analytically as a 1D solid, subjected to dynamic

shear. The material can undergo both thermal and microstructural softening. From the

modeling point of view, and following Molinari and Clifton (1987) and Molinari (1997),

shear localization can be derived as the evolution of an initial perturbation. This problem

is addressed within a 1D linear stability analysis, where the uncontrolled growth of the

perturbation signals the onset of the shear instability. Next, the same problem is modelled

numerically by considering a layer of finite thickness subjected to constant velocities at the

boundaries, enforcing a shear loading configuration. Note that the problem is formulated

in a way that cancels wave propagation effects (Rodŕıguez-Mart́ınez et al., 2014; Zaera

et al., 2014), such as to emphasize purely material aspects of the problem.

The main outcome of the analysis confirms the strong destabilizing effect played by

the development of DRX in addition to thermal softening, in full accord with previous

experimental evidence. In that respect, the present analysis complements and adds more

generality to the problem of dynamic mechanical instabilities in strained solids.

The paper is organized as follows: the second section introduces briefly the 1D con-

stitutive model for the material considered (Ti6Al4V). The third and fourth sections are

devoted to present the linear stability methodology and the finite element modelling of

the dynamic simple shear problem, respectively, taking into account strain-rate sensitivity

and thermal effects, as well as microstructural transformations (twinning and DRX). The

salient features of the stability analysis and the main results obtained from it are presented

in sections 5 and 6 respectively, while in section 7 the results from the FEM analysis are
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summarized. Sections 8 includes a brief discussion of the results and the final conclusions

are given in section 9.

2. 1D constitutive model for Ti6Al4V alloy

The material is assumed to obey Huber-Mises plasticity. The model considers three

possible mechanisms responsible for the plastic flow: Slip, twinning and dynamic recrys-

tallization (DRX). Those three mechanisms are treated using a rule of mixture to describe

the mechanical behaviour of the material. In the undeformed configuration the material

is free of twins and DRX. Twinning is triggered by plastic deformation and complements

dislocation activity, thereby increasing the flow stress and strain hardening. Twinning is

assumed to stop once DRX starts, whose onset is determined by a threshold value of the

stored energy of cold work (Osovski et al., 2013). Dynamic recrystallization contributes to

the material strain softening. Strain rate and temperature sensitivities of the flow stress

are included in the material description. For the sake of brevity, only the main features of

the model are presented in this paper while further details can be found in Osovski et al.

(2013).

The thermo-viscoplastic flow law has the general form:

τy = Ψ(γp, γ̇p, T ) = h (γp) s (γ̇p) p (T ) (1)

where the functions h (γp), s (γ̇p) and p (T ) define the plastic strain γp, plastic strain

rate γ̇p and temperature T dependencies of the material.

• The function h (γp) is composed by three terms and reads as follows:

h (γp) = (1− fDRX) τ
0
y + fDRXτ

DRX
y + (1− fDRX − ftwins)

(
τt

(
1

χ

)
+ τd (γ

p)n
)

(2)

where fDRX and ftwins are the volume fractions of DRX and twins respectively. The

first yield stress term in the previous expression represents the initial yield stress of

the material –which is controlled by the slip phase– and it is defined by τ 0y . The
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second yield stress term is to be understood as the flow stress at which DRX first

appears (upon reaching the energetic threshold given by UDRX , see Eqs. (3)-(4)).

This is determined by the parameter τDRX
y = τy|U=UDRX

that has to be calculated

in the integration procedure for each loading case. The third yield stress term is an

isotropic strain hardening function where τt, τd and n are material constants and χ

is given by χ = 2ζ(1−ftwins)
ftwins

with ζ being a material parameter.

The evolution law for the twins volume fraction is as follows:

ftwins = g (γp) =

 1
N
[arctan (2πaγp − 2πd)− arctan (−2πd)] ; U < UDRX

f ∗
twins = ftwins|U=UDRX

; U > UDRX

(3)

where U is the stored energy of cold work (see Eq. (5)) and UDRX is the threshold

energy for the onset of the recrystallization process. Here, a, d and N are material

constants which describe the volume fraction of twins upon plastic strain.

The evolution law for the DRX volume fraction is defined by:

fDRX = w (U) =

 0; U < UDRX

1− exp
(
−kDRX

(
U−UDRX

UDRX

)nDRX
)
; U > UDRX

(4)

where kDRX and nDRX are material parameters which describe the volume fraction

of DRX upon plastic strain.

The stored energy is calculated by:

U = (1− fDRX − ftwins) (1− β)

∫ γp

0

τdγp (5)

where β is the Taylor-Quinney coefficient of the phase undergoing slip which is as-

sumed as constant.

• The function s (γ̇p) reads as follows:
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s (γ̇p) =

(
γ̇p

γ̇ref

)m

(6)

where γ̇ref is the reference strain rate and m is the strain rate sensitivity parameter.

• The function p (T ) reads as follows:

p (T ) = (1− α∆T ) (7)

where α is the temperature sensitivity parameter and ∆T = T − T0, being T the

current temperature and T0 the initial temperature.

The yield condition may be written as

Φ = σ̄ −
√
3Ψ (γp, γ̇p, T ) = 0 (8)

where σ̄ is the Huber-Mises equivalent stress.

The values of the material parameters corresponding to Ti6Al4V alloy are given in

Table 1.

Despite the simple formulation of this constitutive model, we claim that it allows to

explore the respective roles played by DRX and thermal softening on the inception of shear

bands, as further discussed in sections 6 and 7. Note that previous 1D constitutive model

can be extended to a 3D framework as described in Rodŕıguez-Mart́ınez et al. (2014).

3. Problem formulation and linear stability analysis

3.1. Governing equations

The problem addressed is based on the configuration reported by Molinari (1997). The

problem is modelled as that of a layer infinitely extended in the shear direction x and in

the out-of-plane direction z, with finite thickness 2b in the direction y (see Fig. 1). At the

upper and lower surfaces, constant velocities ±v0 are applied, parallel to the x direction. It
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Symbol Property and units Value

τ 0y Initial shear yield stress (MPa), Eq. (2) 288.67

τt Strain hardening parameter (mMPa), Eq. (2) 1.039× 10−3

ζ Average twin width (µm), Eq. (2) 2

τd Strain hardening parameter (MPa), Eq. (2) 124.130

n Strain hardening exponent, Eq. (2) 0.25

γ̇ref Reference strain rate (s−1), Eq. (6) 103

T0 Initial temperature (K), Eq. (7) 293

N Material parameter, Eq. (3) 7.4594

a Material parameter, Eq. (3) 5

d Material parameter, Eq. (3) 1

kDRX Material parameter, Eq. (4) 0.5

nDRX Material parameter, Eq. (4) 8.7

m∗ Reference strain rate sensitivity exponent 0.00539

α∗ Reference temperature sensitivity parameter (K−1) 10−4

U∗ Reference threshold energy for DRX formation (MJ/m3) 92

G Elastic shear modulus (GPa) 43.6

K Elastic bulk modulus (GPa) 116

β Taylor-Quinney coefficient, Eqs. (5) and (14) 0.6

k Thermal conductivity (W/mK), Eq. (14) 21.9

lh Transformation latent heat (MJ/m3), Eq.(14) 118

ρ Density (kg/m3), Eq. (9) 4500

c Specific heat (MJ/m3K), Eq. (14) 234

Table 1: Parameters related to shear yield stress, DRX and twins volume fractions, stiffness parameters,

and conventional material constants representative of titanium alloys. The values are taken from Rodŕıguez-

Mart́ınez et al. (2014) and adapted here to the shear configuration.
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is supposed that this loading condition is always satisfied, and therefore elastic unloading

is disregarded. The layer material is taken to be incompressible, of mass density ρ, with a

constitutive behaviour described by Eqs. (1-8).

The problem is formulated in a one-dimensional framework, the variables depending

solely upon the coordinate y and the time t. The velocity of a particle is parallel to the

shear direction x and is denoted by v. To be noted that the problem can be formulated,

indistinctly, in Eulerian or Lagrangian coordinates since both descriptions are coincident

for the specific configuration addressed.
�

�

�

���

���

�

��

��

Figure 1: Schematic representation of the geometry and loading conditions of the problem addressed.

Adapted from Molinari (1997).

Since large deformations are considered, elasticity can be neglected and γp = γ The

fundamental equations governing the loading process are presented below:

• Momentum balance:

ρ
∂v

∂t
=
∂τ

∂y
(9)

• Compatibility condition:

γ̇ =
∂v

∂y
(10)
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• Flow stress:

τy = Ψ(γ, γ̇, T ) (11)

where the strain γ is defined by

γ(t) =

∫ t

0

|γ̇(ς)|dς

• Twinning transformation law: from Eq. (3)

ftwins = g (γ) (12)

• DRX transformation law: from Eq. (4)

fDRX = w (U) (13)

• Conservation of energy: assuming no heat flow at the specimen’s boundaries and

neglecting the contribution of thermoelastic effects:

c
∂T

∂t
= βτ γ̇ + k

∂2T

∂y2
+
∂fDRX

∂t
lh (14)

where c, k and lh stand for the heat capacity per unit volume, the thermal conductiv-

ity and the latent heat per unit volume of transformed DRX due to the exothermic

character of the phase transformation (Zaera et al., 2013).

Considering the domain [−b, b], the equations (9-14) are to be solved under the following

initial conditions:
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v(y, 0) = γ̇0y (15)

σ(y, 0) = Ψ (0) = τ 0y

γ(y, 0) = 0

T (y, 0) = T0

ftwins(y, 0) = 0

fDRX(y, 0) = 0

and boundary conditions:

v(b, t) = −v(−b, t) = γ̇0b (16)

∂T (y, t)/∂y|y±b = 0

where γ̇0 ≡ γ̇ is constant and defines the value of the strain rate in the sample.

3.2. Linear perturbation analysis

Let S(y, t) = (v(y), τ(t), γ(t), T (t), ftwins(t), fDRX(t))
T be the fundamental time-dependent

solution, at time t, of the previous problem. S is obtained by integration of Eqs. (9-14)

satisfying the initial and boundary conditions previously listed.

At time t = t1, at which the fundamental solution reaches the value S1(y, t1) =

(v1(y), τ1, γ1, T1, ftwins1, fDRX1)
T , consider a small perturbation of this solution δS(y, t)t1 ,

with |δS(y, t)t1 | ≪ |S1(y, t1)|, given by

δS(y, t)t1 = δS1e
iξyeη(t−t1) (17)

where δS1 = (δv, δτ, δγ, δT, δftwins, δfDRX)
T is the perturbation amplitude, ξ the wavenum-

ber and η the growth rate of the perturbation at time t1. The perturbation becomes un-

stable when Re(η) > 0. According to Rodŕıguez-Mart́ınez et al. (2013) the perturbation

growth rate η+ is assumed to represent the onset of localization, the very first stages at

which the local plastic flow deviates from the background value.
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By substituting Eq. (17) into Eqs. (9-14) and retaining only first-order terms, the

following linearized equations are obtained:

• Momentum balance:

ρηδv − iξδτ = 0 (18)

• Compatibility condition:

iξδv − ηδγ = 0 (19)

Concerning the value of the stored energy of cold work, there are two possible scenarios,

depending on the perturbation time:

1. The perturbation time t1 is such that U < UDRX

• Flow stress:

δτ − (H + Sη)δγ − PδT −Rδftwins = 0 (20)

• Twinning transformation law:

δftwins −Gδγ = 0 (21)

• DRX transformation law:

δfDRX = 0 (22)

• Conservation of energy:

(cη + kξ2)δT − βγ̇1δτ − βτ1ηδγ = 0 (23)
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2. The perturbation time t1 is such that U > UDRX

• Flow stress:

δτ − (H + Sη)δγ − PδT −QδfDRX = 0 (24)

• Twinning transformation law:

δftwins = 0 (25)

• DRX transformation law:

δfDRX −WδU = 0 (26)

where δU is obtained linearising Eq. (5) as follows

δU = −(1− β)EsδfDRX + (1− fDRX1 − ftwins1) (1− β)τ1δγ (27)

• Conservation of energy:

(cη + kξ2)δT − βγ̇1δτ − βτ1ηδγ + lhηδfDRX = 0 (28)

In Eqs. (18-28) the following definitions have been used

H =
∂Ψ

∂γ

∣∣∣∣
t1

; P =
∂Ψ

∂T

∣∣∣∣
t1

; S =
∂Ψ

∂γ̇

∣∣∣∣
t1

; Q =
∂Ψ

∂w

∣∣∣∣
t1

; R =
∂Ψ

∂g

∣∣∣∣
t1

G =
∂g

∂γ

∣∣∣∣
t1

; W =
∂w

∂U

∣∣∣∣
t1

; Es =

∫ γ1

0

τdγ
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A non-trivial solution for δS1 is obtained only if the determinant of the systems of linear

algebraic equations (18-23) or (18-19) and (24-28) is equal to zero. Using the following

dimensionless variables and constants

η̄ =
η

γ̇1
; ξ̄ = bξ ; ψ(γ, T ) =

Ψ(γ, T )

τ 0y

Ī =

√
τ 0y

ρb2γ̇21
; ψ1 =

τ1(t1)

τ 0y
; l̄h = lh

1

τ 0y

H̃ = H
1

τ 0y
; P̃ = P

T0
τ 0y

Q̃ = Q
1

τ 0y
; R̃ = R

1

τ 0y
; G̃ = G ; W̃ =W

(1− fDRX1 − ftwins1) (1− β) τ1
W (1− β)Es + 1

c̃ = c
T0
τ 0y

; k̃ = k
T0

τ 0y γ̇1b
2

The resulting condition is found to be a cubic equation in η̄

B3η̄
3 +B2η̄

2 +B1η̄ +B0 = 0 (29)

where the coefficients Bi are given by the following expressions:

B3 = c̃ (30)

B2 = −P̃ β + k̃ξ̄2 + c̃S̃Ī2ξ̄2 (31)

with B1 and B0 depending on the perturbation time, namely:
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1. The perturbation time t1 is such that U < UDRX

B1 = Ī2ξ̄2(k̃S̃ξ̄2 + c̃H̃ + c̃G̃R̃ + βP̃ψ1) (32)

B0 = k̃Ī2ξ̄4(H̃ + G̃R̃) (33)

2. The perturbation time t1 is such that U > UDRX

B1 = Ī2ξ̄2(k̃S̃ξ̄2 + c̃H̃ + c̃G̃Q̃+ βP̃ψ1 − W̃ l̄hP̃ ) (34)

B0 = k̃Ī2ξ̄4(H̃ + W̃ Q̃) (35)

Eq. (29) gives, for a certain value of the time at perturbation t1, the real value of η̄

as a function of the dimensionless wavenumber ξ̄. It has to be recalled that the requisite

for unstable growth of δS1 is given by the condition Re (η̄) > 0. Eq. (29) has three roots

in η̄, one real and two complex conjugates. Only the one having the greater positive real

part has to be considered for the analysis of the dimensionless perturbation growth rate

η̄+. Moreover, imposing the condition for maximum perturbation growth ∂η̄+/∂ξ̄ = 0, the

critical wavenumber ξ̄c and the critical perturbation growth η̄+c are determined numerically.

It is important to note here that the stability analysis does not allow for calculation

of the strain for which the shear band initiates (critical shear strain). However, it allows

identifying the dependence of the critical shear strain with material behaviour. Based on

previous works of the authors (Vadillo et al., 2012; Rodŕıguez-Mart́ınez et al., 2013; Zaera

et al., 2014), we claim that the critical shear strain correlates with the critical perturbation

growth as it will be further shown in this paper.

4. Finite element modelling of dynamic simple shear

This section describes the features of the finite element model developed to simulate

dynamic simple shear. The numerical analyses are carried out using the commercial finite
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element code ABAQUS/Explicit (Simulia, 2012). Accordingly to the stability analysis, the

problem consists of a 2b wide layer extended in shear direction x (see Fig. 2). Plane strain

is assumed. Due to the skew-symmetry of the problem with respect to the x-axis, only the

y > 0 half of the specimen is analysed (see Fig. 2). The prescribed boundary conditions

can be formulated as vx(x, b, t) = −γ̇b, vx(x, 0, t) = 0 and vy(x, 0, t) = vy(x, b, t) = 0. In

order to avoid the propagation of waves along the layer, caused by the application of these

boundary conditions in a solid initially at rest, specific initial conditions consistent with

the boundary conditions are imposed (see Zaera et al. (2014) for detailed explanation of

these initial conditions).

vx(x, y, 0) = −γ̇y (36)

Likewise, in order to avoid the abrupt jump in the stress field caused by application of

the boundary conditions, the material flow has been initialized in the whole domain with

a value of τ equal to the initial yield stress of the material. If neither the velocity nor the

stress field were initialized, for sufficiently high velocities the generated wave could induce

by itself plastic localization (Needleman, 1991; Xue et al., 2008). Regarding initial thermal

conditions, T0 is set to 293K in all cases. As in Molinari and Clifton (1987), the shear band

formation is triggered (driven) in the finite element simulations by introducing a sinusoidal

spatial imperfection. To that aim, a rectangular domain 0 ≤ X ≤ LA, 0 ≤ Y ≤ b is

mapped into that defining the undeformed mesh, according to the expressions

x = X − LA − LB

4

(
cos

(
π
Y

b

)
+ 1

)(
2X

LA

− 1

)
y = Y

(37)

The ratio LA/LB defines the amplitude of the imperfection, to which we will refer

as ∆ (%), Fig. 2. Dimensions of the finite element model are based on the (typical)

slot of the Shear-Compression Specimen (SCS) (Vural et al., 2011). The SCS specimen,

originally developed by Rittel et al. (2002a,b), was specifically devised to attain large

strains within a wide range of strain rates and it has been shown particularly suitable
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for the investigation of dynamic shear localization in different ductile materials (Dorogoy

and Rittel, 2005, 2006). We take LA = 11.94 mm, b = 0.508 mm and ∆ = 2 % unless

otherwise noted. The latter will be taken as the reference imperfection amplitude and,

from this point on, will be denoted by ∆∗. The effect of the imperfection amplitude in

the shear band formation is detailed in Appendix A. The bar is meshed using a total of

9400 four-node thermally coupled plain strain reduced integration elements (CPE4RT in

ABAQUS notation), 470 elements in the x direction and 20 elements along the y direction.

According to the considerations reported by Zukas and Scheffer (2000), the aspect ratio of

the elements was kept close to 1:1 (∼ 0.0254 × 0.0254 mm2). A mesh convergence study

was performed, and the time evolution of different critical output variables, namely stress,

strain and shear band inception, were compared against a measure of mesh density until

the results converged satisfactorily (details are given in Appendix A).
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The set of constitutive equations describing the material behaviour presented in section

2 are implemented in the finite element code through a user subroutine following the

integration scheme developed by Zaera and Fernández-Sáez (2006).

5. Salient features of the stability analysis

In this section the main features of the stability analysis are presented and discussed.

Unless otherwise noted the material parameters are taken from Table 1. Fig. 3(a) shows the

effect of selected material parameters in the curve η̄+−ξ̄. The loading rate is γ̇ = 10000 s−1.

This will be considered as the reference loading rate in all the analyses, and it will be

denoted by γ̇∗. This value lies within the range of strain rates attained in dynamic shear

tests devised to analyse shear localization (Klepaczko, 2005). In Fig. 3(a) the results

obtained using the reference configuration (parameters listed in Table. 1) are compared

with those calculated by setting, alternatively, m = 0, α = 0 and k = 0. We observe

that for the reference configuration the curve shows a maximum which determines the

critical perturbation growth rate η̄+c and the dominant wavenumber ξ̄c. As pointed out

by Molinari (1997), the existence of a dominant mode results from the competition of

different stabilizing effects. Inertia damps the growth of long wavelength modes, while

thermal effects and viscosity restrains the growth of small wavelength modes. If m = 0,

the perturbation growth rate monotonically (and rapidly) increases with ξ̄. If α = 0 or

k = 0 the grow rate of the perturbation reaches a horizontal asymptote with increasing

ξ̄. Following Zaera et al. (2014) and Rodŕıguez-Mart́ınez et al. (2014), throughout this

work we will systematically consider η̄+c as an indicator of the material stability. The

greater the critical perturbation growth, the more unstable the material is. Therefore,

the greater the critical perturbation growth, the smaller the strain corresponding to shear

localization shall be. This procedure will allow to asses the influence that selected loading

and material parameters have in the formation of shear bands. By the same token, the

dominant wavenumber allows to determine the characteristic distance between sites where

shear localization occurs in problems where multiple shear bands are nucleated (Nesterenko

et al., 1989; Nesterenko and Bondar, 1994; Lovinger et al., 2011). Nevertheless, in this paper

we will not consider formation of multiple shear bands and the reader is referred to the
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seminal paper by Molinari (1997) where an extensive analysis on the collective behaviour

and spacing of shear bands is developed.

In Fig. 3(b) the effect of the strain at perturbation γ1 (strain corresponding to the

time at perturbation t1) in the curve η̄+ − ξ̄ is shown. We take γ̇ = γ̇∗ and UDRX = U∗.

Similarly to Molinari (1997), we show that the critical value η̄+c first increases with γ1,

finds a maximum and then decreases for larger values of the strain at perturbation. It

must be noted that this behaviour is specific of dynamic shearing. For instance, if dynamic

tensile loading of bars is considered we observe that the critical perturbation growth is an

increasing function of the strain at perturbation (Zaera et al., 2014; Rodŕıguez-Mart́ınez

et al., 2014). This analysis on the interplay between η̄+c and γ1 could be also conducted in

terms of ξ̄c and γ1, for which the reader is again referred to Molinari (1997).

6. Stability analysis results

In this section we present the results obtained from the stability analysis. Namely, we

systematically investigate the influence of strain rate (section 6.1), strain rate sensitivity

(section 6.2), thermal softening (section 6.3) and dynamic recrystallization (section 6.4)

in shear localization. Unless otherwise noted, the reference material parameters listed in

Table 1 are taken.

6.1. Influence of strain rate

Fig. 4 shows the critical perturbation growth rate η̄+c versus the strain at perturbation

γ1 for different loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗ and γ̇ = γ̇∗. The curve η̄+c − γ1 hardly

depends on the strain rate. The loss of stability of the material starts at γ1 ≈ 1.4. Larger

values of γ1 lead to increasing η̄+c up to a maximum in the curve η̄+c − γ1 is attained (as

discussed in Fig. 3) for γ1 ≈ 1.9. Larger values of γ1 lead to a slow decrease of η̄+c . There is

just a small influence of the strain rate in the curve η̄+c −γ1. As the strain rate decreases the

loss of material stability is slightly delayed and the maximum critical perturbation growth

is slightly increased. However, these differences are, for all purposes, negligible. Therefore,

the stability analysis predicts no influence of the loading rate on the critical perturbation

growth. This suggests that, for this specific material behaviour, the loading rate may have
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Figure 3: Stability analysis results. Perturbation growth rate η̄+ versus wavenumber ξ̄ for γ̇ = γ̇∗.

(a) Influence of selected material parameters. (b) Influence of the strain at perturbation.
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no effect on the ductility of the material in dynamic shearing. This issue will be further

discussed in section 7.1 and Appendix B.
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Figure 4: Stability analysis results. Critical perturbation growth rate η̄+c versus strain at per-

turbation γ1 for different loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗ and γ̇ = γ̇∗ (reference loading

rate).

Fig. 5 shows that the curve η̄+ − ξ̄ is affected by the strain rate despite the critical

perturbation growth rate η̄+c is not. In this graph we illustrate the perturbation growth

rate η̄+ versus the wavenumber ξ̄ for different loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗ and

γ̇ = γ̇∗. The strain at perturbation is γ1 = 1.8. The reference material parameters are

taken, Table 1. It is observed that increasing γ̇ has a damping effect on long wavelength

modes. This leads to increasing values of the dominant wavenumber as the loading rate

increases, although the critical perturbation growth rate remains largely constant.

6.2. Influence of strain rate sensitivity

Fig. 6 shows the critical perturbation growth rate η̄+c versus the strain at perturbation

γ1 for different values of the strain rate sensitivity exponent: m = 0.25m∗, m = 0.5m∗,

m = m∗ (reference value) and m = 2m∗. We have that the loss of stability starts for

γ1 ≈ 1.4, irrespective of the value of the strain rate sensitivity parameter. Then, the critical

perturbation growth rate increases with γ1, until it reaches a maximum for γ1 ≈ 1.9. Larger

values of the strain at perturbation lead to a smooth decrease in η̄+c . Moreover, we note
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Figure 5: Stability analysis results. Perturbation growth rate η̄+ versus wavenumber ξ̄ for different

loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗ and γ̇ = γ̇∗ (reference loading rate). The strain at

perturbation is γ1 = 1.8.

that increasing m causes a large decrease in η̄+c . In agreement with Molinari and Clifton

(1987) and Molinari (1997), the viscosity is expected to stabilize the material behaviour

and delay shear localization. This point will be further discussed in section 7.2.

6.3. Influence of thermal softening

Fig. 7 shows the critical perturbation growth rate η̄+c versus the strain at perturbation

γ1 for different values of the temperature sensitivity parameter: α = 0, α = α∗ (reference

value), α = 4α∗ and α = 8α∗. We observe that the value of α affects largely the η̄+c − γ1

curves. Increasing thermal softening reduces the value of strain for which the material

becomes unstable, and increases the perturbation growth rate. In other words, thermal

softening boosts shear localization (Molinari and Clifton, 1987; Molinari, 1997). Note that,

if we take α = 8α∗, the perturbation starts to grow before the material develops dynamic

recrystallization (see Fig. 7). This is not the case if we take α = 4α∗, α = α∗ or α = 0. For

these temperature sensitivity parameters, instability is only attained once DRX starts to

develop. This result illustrates the competition between these two destabilizing mechan-

ics. On the one hand, dynamic recrystallization leads to strain softening which promotes

localization. On the other hand, temperature sensitivity leads to thermal softening which
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Figure 6: Stability analysis results. Critical perturbation growth rate η̄+c versus strain at pertur-

bation γ1 for different values of the strain rate sensitivity exponent: m = 0.25m∗, m = 0.5m∗,

m = m∗ (reference value) and m = 2m∗. The reference loading rate γ̇ = γ̇∗ is considered.

favours localization as well. Depending on their respective contribution, the dominant

destabilizing mechanism responsible for the shear localization can alternate from one to

the other. In any case, they are complementary factors which trigger localization. This

key issue will be matter of discussion in forthcoming sections of the paper.

6.4. Influence of dynamic recrystallization

In Fig. 8 we illustrate the critical perturbation growth rate η̄+c versus the strain at

perturbation γ1 for different values of the threshold energy for DRX formation: UDRX =

0.125U∗, UDRX = 0.25U∗, UDRX = 0.5U∗, UDRX = U∗ (reference value) and UDRX =

1.25U∗. We observe that decreasing the threshold energy for DRX formation causes a

drastic reduction in the value of γ1 at which the material becomes unstable and, at the

same time, a large increase in the critical perturbation growth rate. It is therefore expected

that materials prone to develop dynamic recrystallization will be subjected to early shear

localization. This behaviour was pointed out by Rittel et al. (2006) and Osovski et al.

(2012b) in a series of dynamic experiments recently published.

Altogether, the results presented in this section devoted to the linear stability analysis

point to the following key issues:
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reference loading rate γ̇ = γ̇∗ is considered.
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• Strain rate barely affects the critical perturbation growth rate. This suggests a

small (negligible) influence of the loading rate in the shear localization strain for the

material analysed in this paper.

• Strain rate sensitivity substantially decreases the critical perturbation growth rate.

It is expected that a material with large rate sensitivity shall experience delay and

slowdown of shear localization.

• Thermal softening boosts the critical perturbation growth rate. Increasing material

temperature sensitivity shall anticipate and speed up shear localization.

• Dynamic recrystallization enhances the critical perturbation growth rate. The per-

turbation analysis predicts that DRX development may have a role in triggering shear

localization, competing with the thermal softening as the main responsible for the

formation of shear bands.

Next, these key outcomes of the linear stability analysis are complemented with the

finite element results.

7. Finite element results

We proceed according to the scheme developed in section 6, investigating sequentially

the roles that strain rate (section 7.1), strain rate sensitivity (section 7.2), thermal softening

(section 7.3) and dynamic recrystallization (section 7.4) all have in shear localization. As in

previous section, unless otherwise noted, the reference material parameters listed in Table

1 are taken. The imperfection amplitude ∆∗ is considered.

7.1. Influence of strain rate

Fig. 9 shows the average strain in side B (γ̄B) versus average strain in side A (γ̄A)

for different loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗, γ̇ = 0.5γ̇∗, γ̇ = γ̇∗ and γ̇ = 2γ̇∗. For

the comparison, the strains in sides A and B have been averaged over their corresponding

lengths (LA and LB). This approach, which is regularly applied in the interpretation of

experimental data, is required since for large deformations the strains along sides A and
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B may not be fully uniform. On the other hand, the average strains can provide reliable

measurements which are representative of the problem addressed. Following Molinari and

Clifton (1987), the strain at which localization occurs, also called critical shear strain

and denoted by γc, is taken as the strain for which the curve γ̄B − γ̄A exhibits a vertical

asymptote. In the sequel, the localization strain corresponding to the reference material

parameters, loading rate and imperfection amplitude will be denoted by γ∗c .

Fig. 9 reveals that the loading rate has a negligible influence on the γ̄B−γ̄A curves. This

is in full agreement with the predictions of the stability analysis, the critical localization

strain γc does not depend on the applied strain rate (the critical perturbation growth rate

hardly depends on the applied strain rate in Fig. 4). This behaviour is distinctive of the

specific material description considered here since, in the general case, the strain rate leads

to material stabilization as reported by Molinari (1985) and further shown in Appendix

B.

Moreover, we note that the experimental results reported by several authors (see for ex-

ample the works by Klepaczko (1998, 2005)) reveal a drastic decrease in shear ductility once

a threshold in applied velocity is exceeded (of the order of several tens of meters per second

in mild steels). This drop in the shear failure strain of the material is defined by Klepaczko

(1998, 2005) as the Critical Impact Velocity (CIV). Localization of plastic deformation in

adiabatic conditions superimposed to wave effects decrease the plastic wave speed until

it reaches zero and the CIV occurs (Klepaczko, 2005). In our numerical calculations, we

initialize the velocity and stress fields to be in agreement with the initial conditions applied

in the stability analysis (see section 4). This procedure precludes waves disturbances and

therefore attainment of the critical impact velocity. It can be noted that the CIV and the

corresponding drop in ductility are structural (wave related) effects, whereas the constant

(strain rate independent) ductility shown in Fig. 9 is a material (constitutive) effect.

Fig. 9 also shows that at low strains the plastic flow is (quasi)homogeneous in the sample

and that γ̄B ≈ γ̄A. The (quasi)homogeneous state of stresses and strains is maintained until

γ̄A ∼ 0.41. Larger values of γ̄A lead to the a stable heterogeneity in the strains field. Larger

strains are found in side B than in side A, but the plastic flow is not yet fully localized.

Complete localization occurs for γ̄A ∼ 0.72. Then, the strains on side A do not further
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increase and the plastic flow concentrates in a narrow band close to side B. This can be

referred to as full or strong localization.
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Figure 9: Finite element results. Average strain in side B (γ̄B) versus average strain in side A

(γ̄A) for different loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗, γ̇ = 0.5γ̇∗, γ̇ = γ̇∗ and γ̇ = 2γ̇∗.

These different steps that were identified during the loading process are illustrated in

Fig. 10, where contours of equivalent plastic strain ε̄p for different loading times are shown.

In Fig. 10(a) we have γ̄A = 0.27 which (see Fig. 9) corresponds to a (quasi)homogeneous

strain field. Fig. 10(b) corresponds to γ̄A = 0.51 for which the strain field shows an stable

heterogeneity (see Fig. 9). The onset of localization is illustrated in Fig. 10(c) where one

can observe the incipient formation of a shear band on side B. Fig. 10(d) corresponds to

γ̄A = 0.72 and the plastic strain is already fully localized leading to the propagation of

the shear band along side B. Within the localized region, we find temperatures ranging

between 450 K and 600 K. The computations predict a finite width of the shear band

which is, to a large extent, controlled by the element size (see Zukas and Scheffer (2000)).

It is not within the goals of this work to discuss the influence of the mesh on the width

of shear bands calculated by the finite element method. This issue has been carefully

analysed for example by Bonnet-Lebouvier et al. (2002). In this paper we are exclusively

interested in the initiation of the shear band, and more specifically by the strain which

corresponds to its initiation. After carrying out a mesh convergence analysis (details are

given in Appendix A), this value of strain γc has been found to be largely independent of
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the discretization.
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7.2. Influence of strain rate sensitivity

The average strain in side B (γ̄B) versus average strain in side A (γ̄A) is shown in Fig.

11 for different values of the strain rate sensitivity exponent: m = 0.25m∗, m = 0.5m∗,

m = m∗ and m = 2m∗. During the stage of (quasi)homogeneous deformation the curve

γ̄B − γ̄A is not affected by the strain rate sensitivity. This ceases at the onset of the phase

of stable heterogeneity, when the curves shown in Fig. 11 are no longer superimposed.

The heterogeneity in the strains field is more noticeable as the rate sensitivity exponent

decreases, i.e. the gradient of strain from side A to B is more pronounced as m decreases.

Consequently, decreasing material rate sensitivity favours shear localization.
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Figure 11: Finite element results. Average strain in side B (γ̄B) versus average strain in side A

(γ̄A) for different values of the strain rate sensitivity exponent: m = 0.25m∗, m = 0.5m∗, m = m∗

(reference value) and m = 2m∗. The reference loading rate γ̇ = γ̇∗ is considered.

This behaviour is further illustrated in Fig. 12 showing the normalized critical shear

strain γc/γ
∗
c versus the normalized strain rate sensitivity exponent m/m∗. The stabilizing

effect of strain rate sensitivity which leads to a substantial increase in γc/γ
∗
c with m/m∗ is

noticeable. Namely, going from γc/γ
∗
c ≈ 0.89 in the case of m/m∗ = 0.25, to γc/γ

∗
c ≈ 1.17

in the case of m/m∗ = 2. The stabilizing role of strain rate sensitivity revealed by the

computations is in excellent agreement with the results of the perturbation analysis showing

a decrease in the critical perturbation growth rate as the material rate sensitivity increases

(Fig. 6).
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Figure 12: Finite element results. Normalized critical shear strain γc/γ
∗
c versus normalized strain

rate sensitivity exponent m/m∗. The reference loading rate γ̇ = γ̇∗ is considered.

7.3. Influence of thermal softening

The average strain in side B (γ̄B) versus average strain in side A (γ̄A) is shown in Fig.

13 for different values of the temperature sensitivity parameter: α = 0, α = α∗ (reference

value), α = 4α∗ and α = 8α∗.

All the γ̄B − γ̄A curves lie together during the process of (quasi)homogeneous deforma-

tion. Thermal softening plays a role during the stage of stable heterogeneity. It is shown

that increasing the temperature sensitivity parameter promotes shear localization. On the

other hand, it has to be noted that thermal effects are not indispensable to attain local-

ization. In the limiting case where α = 0, the calculation still predicts the inception of the

shear band. In the absence of thermal softening, the source of material destabilization is

the strain softening caused by dynamic recrystallization. Setting α = 0 provides an idea

about the major role that development of DRX may have in the shear localization. There

results are consistent with the results extracted from the stability analysis. We showed

in Fig. 7 the destabilizing role of the thermal effects represented by the increase of the

critical perturbation growth rate as we increased α. Likewise, in the same graph it was

shown that the material may reach instability in absence of thermal effects.

Fig. 14 shows the normalized critical shear strain γc/γ
∗
c versus the normalized temper-

ature sensitivity parameter α/α∗. A non-linear concave-up decrease in γc/γ
∗
c corresponds
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Figure 13: Finite element results. Average strain in side B (γ̄B) versus average strain in side

A (γ̄A) for different values of the temperature sensitivity parameter: α = 0, α = α∗ (reference

value), α = 4α∗ and α = 8α∗. The loading rate is γ̇ = γ̇∗.

to an increase in the normalized temperature sensitivity of the material α/α∗. Namely,

γc/γ
∗
c ≈ 1.08 for the athermal material and γc/γ

∗
c ≈ 0.69 in the case of α/α∗ = 8.

Taking into account the results of our previous work (Rodŕıguez-Mart́ınez et al., 2014),

it seems that thermal softening plays a more determinant role in the inception of shear

bands than in the formation of necks. This may be because, unlike necking, the shear bands

can be considered as material instabilities, therefore requiring the operation of a softening

mechanism. These softening mechanisms, whether of a thermal or microstructural nature

(DRX, see section 7.4), are the main mechanisms that control shear band formation.

7.4. Influence of dynamic recrystallization

Fig. 15 illustrates the average strain in side B (γ̄B) versus average strain in side A

(γ̄A) for different values of the threshold energy for DRX formation: UDRX = 0.125U∗,

UDRX = 0.25U∗, UDRX = 0.5U∗, UDRX = U∗ and UDRX = 1.25U∗.

The γ̄B − γ̄A curves obtained for the different values of UDRX investigated only lie

together during the very first stages of the loading process. The curve corresponding

to UDRX = 0.125U∗ (this is the smallest threshold energy for dynamic recrystallization

that we have considered) deviates very soon from the condition γ̄A = γ̄B, developing full
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Figure 14: Finite element results. Normalized critical shear strain γc/γ
∗
c versus normalized tem-

perature sensitivity parameter α/α∗. The reference loading rate γ̇ = γ̇∗ is considered.

localization for γc ≈ 0.15. Similar behaviour is observed in the case of UDRX = 0.25U∗

(this is the second smallest value considered) for which complete localization occurs at

γc ≈ 0.30. To be noted that for these two values of UDRX the sample passes directly from

the loading stage named before as (quasi)homogeneous (the curve lies in the condition

γ̄A = γ̄B) to the full localization stage (the curve γ̄B − γ̄A finds a vertical asymptote). It

does not undergo the loading stage referred to as stable heterogeneity in previous sections

of the paper (stable deviation from the γ̄A = γ̄B condition). This stage only appears with

increasing values of UDRX , which delay the shear band inception. For UDRX = 0.5U∗,

UDRX = U∗ and UDRX = 1.25U∗ we observe late flow localization. In these cases, the

sample firstly undergoes the phase of (quasi)homogeneous deformation, followed by the

stage of stable heterogeneity and, ultimately, by the inception the shear band.

Fig. 16 shows contours of volume fraction of DRX (fDRX) for different values of the

threshold energy for DRX formation: (a) UDRX = 0.125U∗, (b) UDRX = 0.25U∗, (c)

UDRX = 0.5U∗, (d) UDRX = U∗ (reference value) and (d) UDRX = 1.25U∗. In each case the

loading time corresponds to the time of full localization. In the cases of UDRX = 0.125U∗

and UDRX = 0.25U∗ dynamic recrystallization has developed in the specimen which favours

early plastic localization. By contrast, if we consider UDRX = 0.5U∗, UDRX = U∗ or

UDRX = 1.25U∗ dynamic recrystallization is only detected in a narrow band close to side
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Figure 15: Finite element results. Average strain in side B (γ̄B) versus average strain in side A

(γ̄A) for different values of the threshold energy for DRX formation: UDRX = 0.125U∗, UDRX =

0.25U∗, UDRX = 0.5U∗, UDRX = U∗ (reference value) and UDRX = 1.25U∗. The reference

loading rate γ̇ = γ̇∗ is taken.

B, in the plane where the shear band is incepted.



35

��
��
��
��
��
�
�
�
�
��	
�

�
��
�
��
��
��
��
��
�
	
�

�
�
�
�
���
��

�
�
�
���
�	

�

	

�
�

�

�
�

�
�
�
��
�
�
�
�
�

�

� � � � � � � � � � � �

�

�

��
��
��
��	

�
���
��
�	
��
���
�
��
�	
��
��
��
���
�
�
��
��
�
��

� �

�
�

�
�
�
��
�
�
�
�

�

�
��
��
��
��	

�
���
��
�	
��
���
�
��
�	
��
��
��
���
�
�
��
��
�
��

� �

�
�

�
�
�
��
�
�
�

�

�
��
��
��
��	

�
���
��
�	
��
���
�
��
�	
��
��
��
���
�
�
��
��
�
��

�
�

�
�

�
�
�
�
�

�

�
��
��
��
��	

�
���
��
�	
��
���
�
��
�	
��
��
��
���
�
�
��
��
��
��

�

�
�

�
�
�
��
�
�
�
�

�

�
��
��
��
��	

�
���
��
�	
��
���
�
��
�	
��
��
��
���
�
�
��
��
��
��

�

� �

�
��
��
��
�	

�
�
��
��
�
�
��

� �

�
�

��
�
��
�
�

��
�
��
�
�

�
�
�
�
��
�
�

�
�


�
��
��
��
��
�
�
�
�	
��
�
��
�
�
�
�

�
�
�
�
��
�
�

�
�
	
��
	
�
��
��
	
��
��
�
�
�
�

�	
��
�	
�
�
�
��
�
	
��
�

�

�
�
�
�
��
�
�

�
�
	
��
	
�
��
��
	
��
��
�
�
�
�

�	
��
�	
�
�
�
��
�
	
��
�

�

�
�
�
�
��
�
�

�
�


�
��
��
��
��
�
�
�
�	
��
�
��
�
�
�
�

�
�
�
�
��
�
�

�
�
	
��
	
�
��
��
	
��
��
�
�
�
�

�	
��
�	
�
�
�
��
�
	
��
�

�

�

��

��
��

��
��

��
��

��
��

F
ig
u
re

1
6:

F
in
it
e
el
em

en
t
re
su
lt
s.

T
h
e
re
fe
re
n
ce

lo
ad

in
g
ra
te

is
ta
k
en

γ̇
=

γ̇
∗ .

C
on

to
u
rs

o
f
v
o
lu
m
e
fr
a
ct
io
n
o
f
D
R
X

(f
D
R
X
)
fo
r
d
iff
er
en
t

va
lu
es

of
th
e
fo
r
d
iff
er
en
t
va
lu
es

of
th
e
th
re
sh
ol
d
en
er
gy

fo
r
D
R
X
fo
rm

at
io
n
:
(a
)
U
D
R
X

=
0
.1
2
5
U

∗ ,
(b
)
U
D
R
X

=
0
.2
5
U

∗ ,
(c
)
U
D
R
X

=
0
.5
U

∗ ,

(d
)
U
D
R
X

=
U

∗
(r
ef
er
en
ce

va
lu
e)

an
d
(d
)
U
D
R
X

=
1
.2
5U

∗ .
In

ea
ch

ca
se

th
e
lo
ad

in
g
ti
m
e
co
rr
es
p
o
n
d
s
to

th
e
ti
m
e
o
f
sh
ea
r
lo
ca
li
za
ti
o
n
.



36

Altogether, the numerical computations reveal the strong destabilizing role played by

the dynamic recrystallization. This is further illustrated in Fig. 17 where the normal-

ized critical shear strain γc/γ
∗
c versus the normalized threshold energy for DRX forma-

tion UDRX/U
∗ is shown. A non-linear concave-down increase in γc/γ

∗
c with UDRX/U

∗

is reported. Namely, going from γc/γ
∗
c ≈ 0.21 for UDRX/0.125U

∗ to γc/γ
∗
c ≈ 1.1 for

UDRX/1.25U
∗. Note that lowering the ratio UDRX/U

∗ below ∼ 0.5 causes a dramatic de-

crease in the strain corresponding to the shear band inception. These observations are in

perfect agreement with the results obtained from the stability analysis (see Fig. 8) which

showed a strong increase of the critical perturbation growth rate, specially for the smaller

ratios of UDRX/U
∗ investigated (the black curve in Fig. 8 stands above the rest).
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Figure 17: Finite element results. Normalized critical shear strain γc/γ
∗
c versus normalized thresh-

old energy for DRX formation UDRX/U∗. The reference loading rate γ̇ = γ̇∗ is considered.

Overall, the results elaborated from the numerical computations corroborate the pre-

dictions obtained from the linear perturbation analysis:

• It is confirmed that, in absence of waves disturbances, the loading rate barely affects

the shear ductility for the material investigated in this paper.

• It is ratified the stabilizing role played by the strain rate sensitivity which homoge-

nizes the field of strains in the sample and delays shear band inception.
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• On the one hand it is clearly shown that thermal softening favours the inception of

the shear band. On the other hand it is shown that flow localization can be triggered

in absence of thermal effects whenever another softening mechanism as dynamic

recrystallization is present.

• The results show the strong destabilizing effect played by the development of dy-

namic recrystallization, that seems to be the main responsible for shear localization

in materials showing this type of microstructural evolution.

8. Discussion and conclusions

In this work, we have presented an analysis of the inception of dynamic shear insta-

bilities (adiabatic shear bands) for a shear-loaded solid. Two approaches were used here,

namely a 1D analytical study and a 2D numerical one. This research lies within the the-

oretical framework developed in the works of Molinari and Clifton (1987) and Molinari

(1997), in which the growth of small perturbations is used to investigate the stability of

the material. It should also be noted that the methodology developed here follows the ap-

proach used in our recent work on dynamic necking instability (Rodŕıguez-Mart́ınez et al.,

2014), adapted to the specific shear problem at hand. However, while the latter was not

supported by experimental evidence, the present work is fully motivated by the experi-

mental observations of Osovski and Rittel (2012) and Osovski et al. (2012a,b). In other

words, the general stability issue under dynamic shear was studied, with the new aspect

of including a potent destabilizing factor, namely microstructural evolutions, i.e. dynamic

recrystallization, as observed by Osovski et al. (2013). From a purely mechanical stand-

point, microstructural evolutions can be regarded as one more destabilizing factor, so that

one would expect it to complement the effects of the well-considered thermal softening.

However, from a physical standpoint, it should be emphasized that microstructural soften-

ing is, in itself, a sufficiently central factor so that it can destabilize the material behavior,

without the need to resort to thermal softening. It can therefore be said that the current

work extends in a sense the previous classical analyses of dynamic shear localization of

Molinari and Clifton (1987) and Molinari (1997), together with the addition of a numerical

part and the consideration of additional destabilizing factors related to the microstructure.
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The extension consists, therefore, in the fact that the full set of relevant physical factors is

now examined and allowed to compete regarding the onset of the dynamic shear instabil-

ity, whereas until now, thermal softening was the sole factor that was investigated. A first

observation is that the numerical results which are closer to experimental reality, albeit not

including wave propagation effects, are fully compatible with the simplified 1D analytical

approach. Another important result, which fully matches the experimental observations

(Osovski and Rittel, 2012; Osovski et al., 2012a), is that microstructural softening is, in

itself, sufficient to trigger the dynamic shear instability formation. As expected, strain-

rate sensitivity plays a stabilizing role in the studied problem. Altogether, the results of

the present study, dedicated to shear, bear a definite resemblance to those obtained for

the dynamic tensile instability. As such, not only does the present study, motivated by

physical observations, extend previous analytical studies, but it can be concluded that by

its similarity to the necking problem, it confers a wider generality to the generic problem

of mechanical instabilities in dynamically strained solids.

Thus, the following general conclusions can be drawn from the present study:

• The stability analysis regarding the onset of shear instabilities is extended by con-

sidering microstructural-related softening.

• When microstructural effect is taken into account in addition to thermal softening,

it is found that the former is a potent destabilizing effect in itself, in full accord with

previous experimental evidence.

• The results of the present stability analysis, which addresses shear, show a definite

resemblance to those of the dynamic necking problem.

• As such, the present analysis complements and adds generality to the generic problem

of dynamic mechanical instabilities in strained solids.
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Appendix A. Numerical sensitivity analysis

Fig. A.18 shows the normalized critical shear strain γc/γ
∗
c versus the normalized im-

perfection amplitude ∆/∆∗. The threshold energy for DRX formation is UDRX = 0.25U∗.

The strong effect played by the imperfection amplitude in the shear localization strain is

observed. A non-linear concave-up decrease in γc/γ
∗
c with ∆/∆∗ is reported. Ultimately

we have that γc/γ
∗
c → ∞ if ∆/∆∗ → 0 and γc/γ

∗
c → 0 if ∆/∆∗ → ∞. In this regard,

we have to note that Molinari and Clifton (1987) already reported similar results obtained

from numerical simulations of the shear localization problem.
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Figure A.18: Finite element results. Normalized critical shear strain γc/γ
∗
c versus normalized

imperfection amplitude ∆/∆∗. The threshold energy for DRX formation is UDRX = 0.25U∗.

The reference loading rate γ̇ = γ̇∗ is considered.

Fig. A.19 shows the average strain in side B (γ̄B) versus the average strain in side A (γ̄A)

for different mesh densities: 20× 470 elements, 30× 705 elements and 40× 940 elements.

The threshold energy for DRX formation is UDRX = 0.25U∗. We observe the overlapping of

the γ̄B− γ̄A curves obtained for the three meshes investigated in Fig. A.19. The differences

in the critical shear strain are negligible. Therefore, in order to have the smallest possible
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computational time, the coarser mesh was used in all the numerical simulations shown in

this paper.
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Figure A.19: Finite element results. Average strain in side B (γ̄B) versus average strain in side

A (γ̄A) for different mesh densities: 20 × 470 elements (reference mesh), 30 × 705 elements and

40 × 940 elements. The threshold energy for DRX formation is UDRX = 0.25U∗. The loading

rate is γ̇ = γ̇∗.

Appendix B. Inertia sensitivity analysis

In order to investigate the effect that, exclusively inertia (via strain rate), has on

the critical shear strain we rely on the elastic perfectly-plastic material such that τy =

288.67 MPa. Isothermal conditions are considered. Fig. B.20 shows the average strain in

side B (γ̄B) versus the average strain in side A (γ̄A) for different loading rates: γ̇ = 0.01γ̇∗,

γ̇ = 0.1γ̇∗, γ̇ = 0.5γ̇∗ and γ̇ = γ̇∗. The absence of strain hardening, strain rate hardening

and temperature softening in the material constitutive equations necessarily implies that

the increasing value of the critical shear strain with loading rate is due to inertia effects

(strain rate). The intrinsic effect of loading rate is to delay shear band formation as shown

by Molinari (1985). The results shown in section 6.1 where the value of γc was largely inde-

pendent of the strain rate applied are specific of the material behaviour there considered.

In that case the stabilizing effect of inertia seems to be balanced by the destabilizing effects

of temperature and DRX formation, which are favoured as the loading rate increases.
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Figure B.20: Finite element results. Average strain in side B (γ̄B) versus the average strain in side

A (γ̄A) for different loading rates: γ̇ = 0.01γ̇∗, γ̇ = 0.1γ̇∗, γ̇ = 0.5γ̇∗ and γ̇ = γ̇∗. The material

yield stress is τy = 288.67 MPa.
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