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The deterministic nature of the fracture location in the dynamic tensile1

testing of steel sheets2

A. Vaz-Romero∗, J. A. Rodŕıguez-Mart́ınez, A. Arias3

Department of Continuum Mechanics and Structural Analysis. University Carlos III of Madrid. Avda. de la4

Universidad, 30. 28911 Leganés, Madrid, Spain5

Abstract6

This paper investigates the key mechanisms which determine the fracture location in the dynamic7

tensile testing of steel sheets. For that purpose we have conducted experiments and finite element8

simulations. Experiments have been performed using samples with six different gauge lengths,9

ranging from 20 mm to 140 mm, that have been tested within a wide spectrum of loading velocities,10

ranging from 1 m/s to 7.5 m/s. Three are the key outcomes derived from the tests: (1) for a given11

gauge length and applied velocity, the repeatability in the failure location is extremely high, (2)12

there is a strong interplay between applied velocity, gauge length and fracture location and (3)13

multiple, and largely regular, localization patterns have been observed in a significant number of14

the experiments performed using the samples with the shorter gauge lengths. Our experimental15

findings are explained using the finite element simulations. On the one hand, we have shown16

that variations in the applied velocity and the gauge length alter the processes of reflection and17

interaction of waves taking place in the sample during the test, which leads to the systematic18

motion of the plastic localization along the gauge (as experimentally observed). On the other19

hand, we have detected that the emergence of multiple localization patterns requires of short and20

equilibrated specimens with uniform stress and strain distributions along the gauge. We conclude21

that the experimental and numerical results presented in this paper show that, in absence of22

significant material and/or geometrical defects, the location of plastic strain localization in the23

dynamic tensile test is deterministic.24
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1. Introduction28

In the decade of the 40’s, the pioneering publications of Nadai and Manjoine [1], De Forest29

et al. [2], Clark [3], Parker and Ferguson [4] and Manjoine [5] represented a significant progress in30

the research of the dynamic tensile test. These works, motivated by the celebrated papers of Mann31

[6, 7], definitely showed that high velocity tests are essential to reveal the true dynamic properties32

of materials. It was recognized that the performance of some materials under dynamic loading is33

different from that observed under static conditions. For the first time, the effect of velocity on34

the capacity of metallic materials to absorb energy was demonstrated. Within this context, special35

mention requires the thorough experimental investigation conducted in the Guggenheim Aeronau-36

tical Laboratory of the California Institute of Technology (directed at that time by Theodore Von37

Kármán) with the aim of evaluating the impact endurance limit of different metals used in aircraft38

construction [8, 9, 10, 11]. Note that this extensive experimental research was directly driven by39

industrial concerns. In Beardsley and Coates [9] words ”with the current improvements in aircraft40

structural design methods, resulting in more efficient structures in which the material is worked at41

higher stresses, it is becoming increasingly more necessary to consider the effects of dynamic loading42

on the structure”.43

During the following years, with the continuous support of the aeronautical sector, the efforts44

were focused on developing a theoretical framework to explain the experimental findings. Thus,45

Clark and co-workers published a series of papers [12, 13, 14, 15] in which the theory of the46

elastic and plastic strain propagation developed by Von Kármán and others [16, 17, 18, 19, 20] was47

used to interpret in a rational manner the experimental data. A key outcome of these theoretical48

investigations was to show that the strain rate in impact tests varies from point to point along49

the specimen, and for a given point it is also dependent upon time [14]. This behaviour, which50

is accentuated as the impact velocity increases, was identified as the main problem of the tension51

impact test to study the influence of the rate of strain on the properties of metals.52

The following decades, especially after the development of the tension version of the Hopkinson-53

bar technique in the early 60’s [21], were very much focused on overcoming this drawback. The54

belief that the use of very short specimens minimizes the importance of the inertia loads and allows55

to neglect the intervention of strain propagation phenomena within the specimen became widely56

accepted [22, 23] and the dynamic stress-strain characteristics of different metallic materials were57
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published, see for instance the works of Nicholas [24, 25, 26]. On the other hand, the works of58

Lubliner [27] and Botte et al. [28, 29] strengthened the idea that the essential character of the59

tensile impact test is the non-uniformity in time and space of the state variables of the material.60

If long specimens are used the parameters which define the state of the material (stress, strain61

and particle velocity) assume different values in the different sections of the specimen, and they62

change with time. Botte et al. [28] explicitly stated that numerical analysis becomes indispensable63

to investigate the spatial-temporal variation of the field variables in detail.64

Thus, the advent of computational mechanics gave new impetus to the analysis and understand-65

ing of the impact tensile test [30, 31, 32]. The finite element method has been widely used over66

the last years in the design of tensile specimens suitable to extract the true dynamic properties of67

metallic materials [33, 34, 35]. Within this context, it has to be highlighted the work of Rusinek68

et al. [36] who reviewed the performance of six different specimen geometries loaded in impact ten-69

sion. Driven by the earlier work of Nemes and Eftis [31], Rusinek et al. [36] paid special attention70

to the interplay between necking inception, impact velocity and specimen geometry. They showed71

that, as soon as the impact velocity is such that the strain propagation effects become relevant,72

the necking moves away from the central point of the sample (where it locates under quasi-static73

conditions). This observation, which agrees with previous experimental results published by Wood74

[37], suggests that the necking inception in the dynamic tensile test is a deterministic process.75

Nevertheless, whether the nature of the necking location is deterministic or random is still a con-76

troversial issue, as can be seen from the number of recent publications dealing with this precise77

topic [38, 39, 40].78

With the aim of clarifying this controversial issue, in this investigation we have performed an79

extensive experimental and numerical campaign that reveals the deterministic character of the80

necking (and fracture) location in the dynamic tensile test. We have carried out dynamic tensile81

experiments using steel sheet specimens with six different gauge lengths (20 mm, 40 mm, 60 mm,82

80 mm, 100 mm and 140 mm) for seven impact velocities (1 m/s, 1.75 m/s, 2.5 m/s, 3.75 m/s,83

5 m/s, 6.25 m/s and 7.5 m/s). Similarly to the experiments reported by Wood [37], we have84

observed that the fracture location moves systematically from side to side of the sample with the85

variations in impact velocity and gauge length. Further, for each combination of gauge length and86

applied velocity several repeats are performed which show an extremely high repeatability in the87
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necking (and failure) location. A key, and very unusual, experimental finding of this work is the88

multiple, and largely regular, localization patterns that have been observed in a significant number89

of the shortest samples tested. We have explained all these experimental findings with finite element90

simulations performed in ABAQUS/Explicit [41]. Thus, in agreement with the experiments, the91

computations have shown that variations in the applied velocity and gauge length lead to the92

systematic motion of the plastic localization along the gauge. Further, our numerical calculations93

serve to prove that the emergence of multiple localization patterns is associated to equilibrated94

specimens with low slenderness ratios and hardly subjected to the influence of stress waves.95

2. Experimental setup and mechanical characterization96

2.1. Material and specimens97

The material of this study is annealed AISI 430 stainless steel. Its chemical composition is given98

in Table 1.99

Fe C Mn P S Si C Ni

Balance 0.12 max. 1.00 max. 0.04 max. 0.03 max. 1.00 max. 16.00 - 18.00 0.5 max.

Table 1: Chemical composition of the AISI 430 stainless steel (wt %) as taken from [42].

The AISI 430 is one of the most widely used ferritic stainless steels. It shows excellent stress100

corrosion cracking resistance and good resistance to pitting and crevice corrosion in chlorine environ-101

ments. Typical consumer product applications include automotive trim and molding and furnace102

combustion chambers. Industrial and commercial applications range from interior architectural103

applications to nitric acid plant equipment and oil refinery equipment [42].104

The material is supplied in plates of thickness h = 1 mm from which tensile specimens are105

machined. The specimens’ geometry and dimensions are shown in Fig. 1. The impacted side is the106

left side of the specimen in the figure (and therefore the clamped side is the right side). L0, L1, L2,107

L3, W and R denote respectively the overall length of the sample, the length of the grip section of108

the clamped side, the length of the gauge, the length of the grip section of the impacted side, the109

width of the gauge and the radius of the fillets. The specimens are machined by laser cutting with110

accuracy of ±0.1 mm. We distinguish between samples used in the quasi-static tests and samples111
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used in the dynamic tests. The quasi-static specimens, identical to those used in [43], have a gauge112

length of 20 mm. Note that the quasi-static tests are a requisite to characterize the mechanical113

response of the material rather than a specific goal of this investigation. The dynamic samples are114

machined with six different gauge lengths: type 1 with 20 mm, type 2 with 40 mm, type 3 with 60115

mm, type 4 with 80 mm, type 5 with 100 mm and type 6 with 140 mm. The dynamic tests are116

performed in order to uncover the interplay between specimen gauge length, the impact velocity117

and the fracture location, as further discussed in section 3. Whether it is a quasi-static or dynamic118

experiment, at least three repeats are conducted.119
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Figure 1: Geometry and dimensions of the specimens used in the static and dynamic experiments.

2.2. Quasi-static testing120

The quasi-static experiments at room temperature were conducted using a servo-hydraulic test-121

ing machine INSTRON 8516 100kN under displacement control. We tested specimens whose loading122

direction formed angles of 0◦ (parallel), 45◦ and 90◦ (perpendicular) with the rolling direction of the123

plate. The goal was to investigate whether the material displays anisotropy caused by the rolling of124

the plate. Experiments were conducted for three (initial) strain rates: ε̇0 = 10−3 s−1, ε̇0 = 10−2 s−1
125

and ε̇0 = 10−1 s−1. In all the experiments the axial strain in the specimen is calculated relying on126
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the cross-head displacement of the machine which has been corrected with knowledge of the elastic127

modulus of the material as described, for instance, in [44].128

Fig. 2 shows stress-strain curves obtained from specimens tested at 10−3 s−1, that have been cut129

following the three different orientations (0◦, 45◦, 90◦) investigated. It is shown that the orientation130

plays a minor role in the material behaviour since the three curves (practically) overlap. The yield131

stress and the strain hardening of the material are mild, and the onset of flow localization occurs132

for ∼ 0.2.133
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Figure 2: Experimental stress-strain curves for AISI 430 at T0 = 300 K and 10−3 s−1.

Similarly, we have observed that for 10−2 s−1 and 10−1 s−1 the orientation barely affects the134

stress-strain characteristics of the material. Relying on these observations we assume that the135

in-plane mechanical behaviour can be considered isotropic. From now on, all other experimental136

results we show are obtained from specimens cut parallel to the rolling direction.137

Additionally to quasi-static room temperature tests, we conducted experiments at elevated138

temperatures T0 = 375 K, T0 = 425 K and T0 = 475 K. A heating furnace SERVOSIS Split139

was installed on a servo-hydraulic testing machine INSTRON 8516 100kN. The experiments were140

conducted under displacement control. For all these tests, the (initial) strain rate was 10−2 s−1.141

Fig. 3 shows that the stress-strain characteristic is slightly shifted downwards as the testing tem-142

perature increases, revealing the temperature sensitivity of the material within the range of testing143

temperatures considered.144
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Figure 3: Experimental stress-strain curves for AISI 430 at 10−2 s−1 and three different testing temperatures T0 =
300 K, T0 = 375 K and T0 = 475 K.

2.3. Dynamic testing145

Dynamic tensile tests at room temperature are conducted using a high-speed testing machine146

Instron VHS within the range of impact velocities 1 m/s ≤ V0 ≤ 7.5 m/s. For the dynamic147

samples shown in Fig. 1, this set of impact velocities leads to a wide range of (initial) strain rates148

7.15 s−1 ≤ ε̇0 ≤ 375 s−1.149

The gripping system incorporated in the Instron VHS is the so-called Fast Jaw system. This150

system relies on two gripping faces being initially held apart by a pair of angled wedges. The151

actuator initially accelerates downwards with the specimen passing freely between the grips. At152

the desired location the wedges are knocked out by a set of adjustable rods. This action releases153

the force of four pretensioned bolts, so causing a set of grips to clamp onto the specimen surface,154

applying the high velocity loading. This explanation, and further details on the operation mode of155

the Instron VHS machine, can be found in the work of Battams [45].156

Note that the ringing period of the raw data registered from the machine is ∼ 157 µs. This157

value corresponds to an eigenfrequency of the piezoelectric load cell of ∼ 6.4 kHz, as further verified158

using the Welch’s Power Spectral Density estimation preimplemented in MATLAB. A band-pass159

Butterworth IIR Filter with a zero-phase forward and reverse procedure (to correct the associated160

delay of the signal) has been designed in MATLAB to filter the raw stress-strain curves. As161

further discussed by Rusinek et al. [33], this type of filtering process is usually applied to analyse162

the stress-strain characteristics obtained from dynamic tensile experiments performed using fast163
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servo-hydraulic machines.164

Fig. 4 shows stress-strain curves obtained for different loading rates using specimens with gauge165

length L2 = 20 mm. Dynamic (filtered) experimental curves for ε̇0 = 87.5 s−1 and ε̇0 = 250 s−1
166

are compared with the stress-strain characteristic obtained for ε̇0 = 10−3 s−1. The material shows167

significant strain rate sensitivity within the range of strain rates tested.168
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Figure 4: Experimental stress-strain curves for AISI 430 at T0 = 300 K and three different initial strain rates:
ε̇0 = 10−3 s−1, ε̇0 = 87.5 s−1 and ε̇0 = 250 s−1.

3. Analysis and results: experiments169

In this section we show selected dynamic experiments for different gauge lengths and impact170

velocities. The goal is to show an experimental verification of the deterministic character of the171

flow localization in the dynamic tensile test. The complete set of dynamic experiments that we172

have carried out is shown in Appendix A.173

Fig. 5 shows three post-mortem samples with gauge length L2 = 100 mm tested at V0 = 5 m/s.174

It has to be highlighted that, in the three repeats conducted of this test, we have obtained the same175

failure location. The specimen fails close to the clamped (opposite) side. According to Rodŕıguez-176

Mart́ınez et al. [46], the fact that the failure is located away from the middle of the gauge clearly177

indicates that the specimen is not in (complete) equilibrium during loading. As discussed in the178

introductory section, the lack of equilibrium in dynamic testing of long tensile samples was reported,179

for instance, by Lubliner [27] and Botte et al. [28, 29]. Moreover, note that plastic localization180

develops by the intersection of a pair of necking bands that, in agreement with the theoretical181
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and numerical predictions reported by Storen and Rice [47] and Zhang and Ravi-Chandar [48], are182

aligned with the directions of zero stretch rate. One of these two bands, the one which develops183

faster, leads to the final fracture of the specimen. Note that there is (relatively) little reduction184

of the samples-width within the area surrounding the failure location. The width-reduction of the185

samples is largely uniform along the gauge.186
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Figure 5: Three post-mortem samples with gauge length L2 = 100 mm tested at V0 = 5 m/s.

The repeatability in the failure location of the dynamic samples is further illustrated in Fig. 6187

where we show three post-mortem samples with gauge length L2 = 140mm tested at V0 = 1.75m/s.188

The failure of the sample always occurs close to the middle of the gauge. This does not necessarily189

imply that the sample is in equilibrium, but it simply exposes that the failure location depends on190

the applied velocity and the gauge length, as further discussed in sections 3.1 and 3.2. In other191

words: (1) if the failure locus is located away from the middle of the gauge we know that the sample192

is not in equilibrium but (2) the fact that the failure locus is located in the middle of the gauge193

does not ensure that the sample is in equilibrium, see Rodŕıguez-Mart́ınez et al. [46] for details.194

Moreover, it has to be noted that, in comparison with the results shown in Fig. 5, now there is195

larger width-reduction of the gauge in the vicinity of the fracture point. The pair of localization196

bands are located inside a necked region in the {Y, Z} plane. The width-reduction is not uniform197

along the gauge. The aspect ratio of the specimen gauge seems to play a strong role in the failure198

location and in the failure pattern, as further discussed in forthcoming sections of this paper.199

To be noted that, as detailed in Appendix A, we have obtained very high repeatability in the200

failure location for all the gauge lengths explored and within the whole range of impact velocities201

tested. This indicates that, rather than being random, the position where the flow localization202
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Figure 6: Three post-mortem samples with gauge length L2 = 140 mm tested at V0 = 1.75 m/s.

occurs is deterministic. Exceptions occurred in few cases for which one of the three repeats pro-203

grammed showed different failure location than the other two. In these selected cases we decided to204

perform an additional test after which we always had three (of four) samples with the same failure205

location. This failure location was assumed to be the representative of such sample geometry and206

loading conditions. The fact that one of the tests is not providing the same fracture location than207

the other three is simply attributed to the inherent uncertainties surrounding experimentation.208

Our belief is that slight variations in (1) the pressure applied by the jaws to fix the samples during209

testing and/or (2) the actual velocity applied by the machine are responsible for the small scatter210

that we have registered in the fracture location.211

3.1. Influence of loading velocity on the location of flow localization212

In this section we analyse the influence of loading velocity on the fracture location. Fig. 7 shows213

seven samples with gauge length L2 = 60 mm tested at different velocities. For the smallest impact214

velocity that we have explored V0 = 1 m/s the failure location occurs close to the impacted side.215

Increasing the impact velocity changes the place where the failure occurs. Thus, for V0 = 1.75 m/s,216

V0 = 2.5 m/s, V0 = 3.75 m/s, V0 = 5 m/s and V0 = 6.25 m/s, we observe that the sample breaks217

near the clamped side. Finally, for the highest velocity tested V0 = 7.5 m/s the fracture location218

moves again to the impacted side. Note that such a strong interplay between impact velocity and219

failure location has been found for the largest sample gauge lengths investigated. These experi-220

mental results bear a definite resemblance to those recently reported by Osovski et al. [39], Rittel221

et al. [40] and Rotbaum et al. [49] using cylindrical samples, and confirm the numerical predictions222
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reported by Rusinek et al. [36] and Rodŕıguez-Mart́ınez et al. [50] using flat samples who claimed223

that the failure location in the dynamic tensile test is very much controlled by the impact velocity.224

Since the sample is initially at rest, the fact that the fracture location is controlled by the impact225

velocity means that the dynamic effects (stress waves and inertia) dictate the fracture location. We226

will further deepen into these experimental findings using the finite element calculations in section227

6.1.228 �
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Figure 7: Seven post-mortem samples with gauge length L2 = 60 mm tested at: (a) V0 = 1 m/s, (b) V0 = 1.75 m/s,
(c) V0 = 2.5 m/s, (d) V0 = 3.75 m/s, (e) V0 = 5 m/s, (f) V0 = 6.25 m/s, (g) V0 = 7.5 m/s.

3.2. Influence of specimen gauge length on the location of flow localization229

Relying on the experimental results shown above, we expect that the gauge length will play a230

role in the fracture location. For different gauge lengths the stress waves need different times to go231

over the entire gauge, which alters the processes of reflection and interaction of waves taking place232
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in the sample during the test. Further, we expect that the gauge length will affect the fracture233

pattern. Note that the gauge length determines the aspect ratio (slenderness) of the gauge which,234

on the basis of the results shown in Figs. 5 and 6, plays a role in the failure mode.235

Fig. 8 shows six specimens with different gauge lengths tested at V0 = 5 m/s. In the case236

of L2 = 20 mm the failure occurs in the middle of the gauge with negligible (localized) width-237

reduction near the fracture location. To be noted that, instead of having a single localization point238

which leads to fracture as in the specimens shown in Figs. 5, 6 and 7, there are traces of multiple239

localization bands all along the gauge. This key (and very uncommon) finding will be discussed in240

detail in the next section. By now, we just focus on the role played by gauge length in the fracture241

location. It is observed that for L2 = 40 mm the failure is no longer in the middle of the gauge but242

close to the impacted side, whereas for L2 = 60 mm, L2 = 80 mm and L2 = 100 mm the fracture is243

located near the clamped side. Surrounding the failure point, the thinning of the sample along the244

Y direction increases with the gauge length. Finally, for the greatest gauge length L2 = 140 mm245

the fracture location is located in the middle of the gauge. There is a significant reduction of the246

width of the gauge around the fracture point. The sample straining is not uniform along the gauge.247

A close relation between gauge length, failure location and failure pattern has been found for248

all the impact velocities tested, which confirms the control that dynamic effects (stress waves and249

inertia) have over the failure location and the failure mode of the sample. Further, we claim that the250

extensive experimental campaign that we have conducted in this investigation strengthens the idea251

that the failure location in the dynamic tensile test is deterministic. Instead of being controlled by252

random-type effects as intrinsic material defects, the failure location is governed to a large extent253

by dynamic phenomena.254

3.3. Multiple localization pattern255

Multiple, and largely regular, localization patterns have been observed in a significant number of256

the experiments performed using the samples with the shorter gauge lengths. Four of these samples257

are shown in Fig. 9. For L2 = 20 mm we have found multiple necking bands in ∼ 45% of the258

samples tested at velocities larger than V0 = 3.75 m/s. For L2 = 40 mm the multiple localization259

pattern is observed in ∼ 35% of the experiments. For L2 = 60 mm we only have observed multiple260

necking bands in two samples tested at V0 = 1.75 m/s and V0 = 5 m/s. For all the samples with261

L2 = 80 mm, L2 = 100 mm and L2 = 140 mm only a pair of necking bands are formed, these being262
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Figure 8: Six post-mortem samples with different gauge lengths tested at V0 = 5 m/s: (a) L2 = 20 mm, (b)
L2 = 40 mm, (c) L2 = 60 mm, (d) L2 = 80 mm, (e) L2 = 100 mm, (f) L2 = 140 mm.

responsible for the specimen fracture. It follows from previous results that short samples tested263

at high impact velocities are more prone to develop multiple localization bands. This behaviour264

may be explained based on the following premises: (1) the shortest samples (shortest aspect ratios265

L2/W in Fig. 1) are the most equilibrated during testing [22, 29], develop the most uniform strain266

distribution along the gauge and do not show (localized) width-reduction near the fracture point;267

(2) increasing impact velocity boosts the role played by inertia in the material response [51, 52].268

These two ideas are developed below:269

1. A tensile sample with constant cross section tested under perfect mechanical equilibrium shall270

develop uniform strain distribution along the gauge (i.e. constant width-reduction along the271

gauge) leading to regular and symmetric localization and failure patterns (in the absence of272

significant material defects). In the absence of perfect equilibrium, the specimen is susceptible273

to show variability in the strain field along the gauge (i.e. variable width-reduction along the274

gauge) leading to irregular and unsymmetrical localization and failure patterns. On these275

basis, it is reasonable to assume that a specimen tested under conditions close to equilibrium276

is more likely to develop regular and symmetric localization and failure patterns than a277
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sample tested under loading conditions which are far from mechanical equilibrium, as further278

discussed in section 6.3.279

On the one hand, these arguments explain that almost all the specimens that we have tested280

under (quasi)static loading, and therefore under loading conditions very close to mechanical281

equilibrium, failed in the middle of the sample, i.e. they have shown a symmetric failure282

pattern. On the other hand, these arguments also explain that most of the shortest samples283

(shortest aspect ratio L2/W ) tested under dynamic loading show symmetric localization and284

failure patterns. Note that in these samples (1) the localization pattern is repetitive and285

largely symmetric with the respect to the longitudinal and transversal axes of the specimens286

and (2) the samples fail in (approximately) the middle of the gauge.287

2. An equilibrated tensile specimen tested under dynamic loading is prone to develop multiple288

localization points. This behaviour is frequently observed in the radial expansion of axially289

symmetric structures like rings [53, 54], tubes [55, 56] and hemispheres [57]. The symmetry of290

these structures nearly eliminates the effects of wave propagation before the onset of plastic291

localization, the specimen being tested under loading conditions close to equilibrium. All292

these experimental works reported that the number of localization points increases with the293

loading velocity. This experimental finding has been explained by several authors [58, 59] who294

claimed that inertia, via strain rate, is the main responsible for the development of multiple295

localization patterns in samples tested under dynamic loading. These arguments explain that296

we have observed multiple necking bands mostly in those samples that we have tested at the297

higher strain rates.298

4. Constitutive model299

The main hypothesis of the constitutive model used to describe the thermoviscoplastic behaviour300

of the AISI 430 steel centers on the standard principles of Huber-Mises plasticity: additive decom-301

position of the rate of deformation tensor, isotropic hardening, associated flow rule and plastic302

power equivalence303

σ∇ = C : de = C :
(
d− dp − dθ

)
(1)
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Figure 9: Four post-mortem samples with different gauge lengths tested at different velocities. Multiple localization
bands are observed in all of them. (a) L2 = 20 mm and V0 = 3.75 m/s, (b) L2 = 20 mm and V0 = 6.25 m/s, (c)
L2 = 20 mm and V0 = 7.5 m/s and (d) L2 = 40 mm V0 = 2.5 m/s.

Ψ = σ̄ − σY = 0 (2)

dp =
∂Ψ

∂σ
˙̄εp =

3s

2σ̄
˙̄εp (3)

where σ∇ is an objective derivative of the Cauchy stress tensor, d, de, dp and dθ are the total,304

elastic, plastic and thermal rate of deformation tensors respectively, C is the Hooke tensor for305

isotropic elasticity (defined by Young modulus E and Poisson ratio ν), Ψ the yield function, σ̄ the306

equivalent stress, σY is the yield stress, s the deviatoric stress tensor and ˙̄εp is the equivalent plastic307

strain rate.308

The yield stress is given as a function of the equivalent plastic strain ε̄p, the equivalent plastic309

strain rate ˙̄εp and the temperature T through the following power-type relation310

σY = A+B (ε̄p)n
(

˙̄εp

˙̄εref

)m(
T

Tref

)−µ

(4)
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The identification of the yield stress parameters is conducted by a numerical regression based on311

experimental data obtained (only) with the samples of gauge length 20 mm at different strain rates312

and temperatures. Relying on finite element calculations, we have checked that these specimens313

reach equilibrium during the experiments. This result agrees with previous observations reported314

by Rusinek et al. [36] and Klepaczko [60]. Conventional material constants, elastic parameters and315

parameters related to the yield stress for AISI 430 steel are given in Table 2.316

Symbol Property and units Value

ρo Initial density (kg/m3) 7740
Cp Specific heat (J/kgK), Eq. (5) 460
k Thermal conductivity (W/mK), Eq. (5) 26.1
α Thermal expansion coefficient (K−1), Eq. (5) 0.00001

E Young modulus (GPa) 200
ν Poisson ratio 0.33

A Initial yield stress (MPa), Eq. (4) 175.67
B Work hardening modulus (MPa), Eq. (4) 530.13
n Work hardening exponent, Eq. (4) 0.167
˙̄εref Reference strain rate (s−1), Eq. (4) 0.01
m Strain rate sensitivity exponent, Eq. (4) 0.0118
Tref Reference temperature (K), Eq. (4) 300
µ Temperature sensitivity exponent, Eq. (4) 0.51

β Taylor-Quinney coefficient, Eq. (5) 0.9

Table 2: Conventional material constants, elastic parameters and parameters related to the yield stress for AISI 430
steel.

No doubt, more sophisticated constitutive descriptions could be used to model the material317

behaviour (see e.g. [61, 62]). Nevertheless we claim that the simple modelling presented here is318

sufficient to develop reliable numerical computations to uncover the key issues which control the319

deterministic character of plastic flow localization in the dynamic tensile test.320

5. Finite element model321

This section describes the features of the 3D finite element models developed to simulate plastic322

strain localization in AISI 430 steel sheets subjected to dynamic tension. The numerical analyses323

are carried out using the finite element code ABAQUS/Explicit [41]. To be noted that the goal324

of the numerical calculations is not to mimic the experimental tests but to provide new insights325

into the role played by dynamic effects (inertia and wave disturbances) and boundary conditions326
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in the deterministic character of the plastic flow localization. For that purpose is enough to use327

simple geometrical models which solely consider the gauge of the sample, as further demonstrated328

in section 6. This greatly simplifies the interpretation of the finite element results and reduces329

the computational cost. Thus, our problem setting is a strip with thickness h = 1 mm, width330

W = 10 mm (unless otherwise stated, see section 6.3) and six different lengths L2, according to the331

six gauge lengths used in the dynamic samples described in Fig. 1. On these geometrical basis, two332

different types of finite element models are developed. The idea is that the comparison between333

the results obtained with these two models which are described below will allow to explore the334

respective influence of dynamic effects and boundary conditions on flow localization. Note that335

{x, y, z} denotes the Eulerian coordinate system while {X,Y, Z} refers to the Lagrangian.336

• Model A: No-field configuration. The solid is initially at rest. The loading conditions337

are VZ(X,Y, L2, t) = V0 = ε̇0L2 and VZ(X,Y, 0, t) = 0 (see the Lagrangian coordinate system338

defined in the figure). Application of these loading conditions leads to the propagation of339

stress waves along the sample [63, 64], precluding –full/complete– mechanical equilibrium.340

Within model A we distinguish 2 configurations:341

– Model A-1. No additional constraints are imposed to the displacements of the nodes342

of the model. This configuration is representative of a typical experimental test.343

– Model A-2. The nodes of the workpiece located at the surfaces {X,±W
2 , Z} have344

identical displacement along the Y axis during the calculation. Using Hencky strain345

as our strain measure, and relying on the incompressibility of the plastic flow, we set346

uY (X,±W/2, Z, t) = ∓W
2

(
1√

ε̇0t+1
− 1

)
. This configuration tries to emulate an infinitely347

long sample along the Y axis.348

Note that, due to the symmetry of the model, only the {X > 0, Y > 0} quarter of the349

specimen has been analysed (see Fig. 10).350

• Model B: Field configuration. The initial condition corresponds to an equilibrium config-351

uration which virtually prevents the generation of stress waves during the loading process. We352

say virtually because, due to the discretization of the workpiece and the explicit integration353

scheme used by the FE code, slight disturbances in the field variables are generated during354

the simulations. These little perturbations are required to trigger plastic flow localization as355
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shown by Rusinek and Zaera [65]. Nevertheless, we claim that in comparison with the no-field356

condition, now the role played by the stress waves in the sample’s response is significantly357

reduced [46, 59]. The loading conditions are VZ(X,Y,±L2
2 , t) = ±V0

2 = ±ε̇0
L2
2 (see the La-358

grangian coordinate system defined in the figure). The initial equilibrium state is obtained359

by initializing the velocity, stress, strain and displacement fields in the sample. The initial360

conditions in velocity, formulated based on Zaera et al. [59], are VX(X,Y, Z, 0) = −νε̇0X,361

VY (X,Y, Z, 0) = −νε̇0Y and VZ(X,Y, Z, 0) = ε̇0Z. The initial conditions in stress are362

σX(X,Y, Z, 0) = 0, σY (X,Y, Z, 0) = 0 and σZ(X,Y, Z, 0) = ρ0Cε̇0
L2
2 , where C =

√
E/ρ0363

is the longitudinal elastic wave speed. Note that this procedure for initializing the stress364

field has to be limited to the cases for which ρ0Cε̇0
L2
2 < A, where it has to be recalled365

that A in Eq. (4) defines the initial yield stress of the material. Previous expression im-366

plies that the maximum loading velocity V0 that can be investigated using this procedure367

is 8.92 m/s. With the knowledge of the initial stress field, and relying on the Hooke’s law,368

we calculate the initial strains as ϵX(X,Y, Z, 0) = −νρ0Cε̇0L2

2E , ϵY (X,Y, Z, 0) = −νρ0Cε̇0L2

2E369

and ϵZ(X,Y, Z, 0) = ρ0Cε̇0L2

2E . Using Hencky strain we calculate the initial displacements370

as uX(X,Y, Z, 0) = −X
2

(
exp−

νρ0Cε̇0L2
2E −1

)
, uY (X,Y, Z, 0) = −Y

2

(
exp−

νρ0Cε̇0L2
2E −1

)
and371

uZ(X,Y, Z, 0) = Z
(
exp

ρ0Cε̇0L2
2E −1

)
. It is worth mentioning that this initialization method-372

ology is an original contribution of this paper since it significantly improves the procedure373

proposed by Rodŕıguez-Mart́ınez et al. [46], where only the velocity along the loading direc-374

tion was initialized in the so-called field configuration. As for model A, we also distinguish 2375

configurations for model B:376

– Model B-1. No additional constraints are imposed to the displacements of the nodes377

of the model.378

– Model B-2. The displacement of the nodes located at the surfaces {X,±W/2, Z}379

is prescribed as uY (X,±W/2, Z, t) = ∓W
2

(
exp−

νρ0Cε̇0L2
2E + 1√

ε̇0t+1
− 2

)
. The first term380

inside the parenthesis refers to the displacement due to the initialization of the field381

variables while the send term corresponds to the time dependent displacement calculated382

based on the incompressibility of the plastic flow, as previously described for model A-2.383

Note that, due to the symmetry of the model, only the {X > 0, Y > 0, Z > 0} eight of the384
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specimen has been analysed (see Fig. 10).385

386

Models A-2 and B-2 will serve to explain the role played by boundary conditions in the post-387

uniform elongation of the sample and, specifically, in the failure pattern. Further, the fact that the388

boundary condition uY (X,±W/2, Z, t) imposed to the models A-2 and B-2 emulates an infinitely389

long sample in the Y axis will serve to highlight the influence of the sample slenderness on the390

formation of multiple localization patterns.391

Moreover, we have considered a fully coupled thermo-mechanical framework in which, assuming392

no heat flow at the workpiece boundaries, the relationship between the spatial-temporal variation393

of the temperature T and the dissipative and thermoelastic heat generation rates is as follows394

k∇2T − ρCpṪ = −βσ : dp + α (3λ+ 2µ)T0d
e : 1 (5)

where k is the thermal conductivity, ρ is the current material density, Cp is the specific heat,395

β is the Taylor-Quinney coefficient and α is the thermal expansion coefficient. Moreover λ and µ396

are the Lamé constants, and T0 is the initial temperature that has been set to 300 K in all cases.397

Note that de : 1 is the trace of the elastic rate of deformation tensor.398

399

The finite element models are meshed using eight node coupled displacement-temperature solid400

elements, with reduced integration and hourglass control (C3D8RT ). The elements have an initial401

aspect ratio 1 : 2 : 1 with dimensions 0.166 × 0.333 × 0.166 mm3 for all the models that we have402

built. We have checked that, with the increase of plastic deformation in the workpiece, the shape of403

the elements evolves, approaching an aspect ratio closer to 1 : 1 : 1 at the time of flow localization.404

According to Zukas and Scheffer [66], such an element shape is optimal for describing dynamic events405

like high rate flow localization. Further, a mesh convergence study has been performed, and the406

time evolution of different critical output variables, namely stress, strain and necking inception,407

were compared against a measure of mesh density until the results converged satisfactorily (see408

Appendix B for details). Note that, in our modelling, viscosity, inertia and thermal conductivity409

act as potent regularization factors that help to the well-possessedness of the problem at hand410
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[67, 68]. We hold that this minimizes the spurious influence of the mesh in the solution of the411

boundary value problem.412

413

The set of constitutive equations describing the material behaviour presented in section 4 are414

implemented in the finite element code through a user subroutine following the procedure developed415

by Zaera and Fernández-Sáez [69]. For integration of the set of constitutive equations in a finite416

deformation framework, incremental objectivity is achieved by rewriting them in a corotational417

configuration [70, 71], defined in ABAQUS/Explicit by the polar rotation tensor. The stress is418

updated with the radial return algorithm419

σn+1 = σtrial
n+1 − 3G∆ε̄p

sn+1

σ̄n+1
(6)

where G is the elastic shear modulus and σtrial
n+1 is the trial stress is defined by420

σtrial
n+1 = σn +C : ∆ε (7)

According to the properties of radial return, the equivalent stress may be updated with the following421

equation422

σ̄n+1 = σ̄trial
n+1 − 3G∆ε̄p (8)

and the yield condition Eq. (2) which, coupled to Eq. (4), permits to obtain the equivalent plastic423

strain increment ∆ε̄p.424

6. Analysis and results: finite element simulations425

Next, the experimental findings reported in section 3 are further explained relying on the results426

obtained from the finite element simulations.427
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Figure 10: 3D finite element models. Mesh, dimensions, boundary conditions and loading conditions of models A
and B.
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6.1. Influence of loading velocity on the location of flow localization428

In order to obtain further insights into the interplay between the impact velocity and the429

location of flow localization, we rely on finite element simulations conducted using the model A-1.430

As described in section 5, within the models built in this paper, the A-1 is the most similar to a431

typical experimental arrangement in terms of initial, loading and boundary conditions. Fig. 11432

shows contours of equivalent plastic strain ε̄p in the Lagrangian configuration (undeformed shape)433

for L2 = 60 mm and various loading velocities. The range of loading velocities analysed in the434

calculations is wider than the range covered by the experiments in order to reveal, to the full extent,435

how the point of localization varies sequentially from side to side of the sample with the increase436

of the loading velocity. Note that, irrespective of the impact velocity, the plastic strain localization437

takes the form of a pair of necking bands that follow the directions of zero stretch rate, as shown438

in the experimental results reported in section 3.439

In the case of V0 = 0.125 m/s, the smallest velocity explored, the localization of plastic defor-440

mation is located at the clamped end. The increase in applied velocity moves the localization point441

towards the impacted side, where it remains until reaching V0 = 7.5 m/s. Then, plastic localization442

occurs near the clamped end. For V0 = 10 m/s the localization point is back to the impacted side443

while for V0 = 15 m/s it takes place, again, near the clamped end. Such a systematic motion of the444

localization point along the sample continues taking place if we keep increasing the applied speed,445

until the critical impact velocity (CIV) is attained for V0 ≈ 80 m/s. When the CIV is reached the446

applied velocity is such that it generates a plastic wave which induces (instantaneous) flow local-447

ization [63]. Thus, for velocities above the CIV the localization of plastic deformation inevitably448

occurs (instantaneously) at the impacted side, as shown by Klepaczko [72] and Rusinek et al. [36].449

Note that such a strong influence of the impact velocity on the location of flow localization has450

been found for all the gauge lengths investigated, the so-called types 1-6 in Fig. 10.451

It is important to realize that the specific locations of flow localization predicted by the nu-452

merical calculations do not agree with their experimental counterparts shown in Fig. 7. While we453

highlight the qualitative agreement between numerical calculations and experiments, we acknowl-454

edge the lack of quantitative agreement. Besides the simplified geometry that we have analysed,455

we think that there are some other factors, that can hardly be overcome, responsible for this dis-456

agreement (quantitative, but not qualitative, disagreement). For instance, there are uncertainties457
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intrinsic to the experimental setup related to the loading condition (the actual applied velocity is458

surely not a perfect step-function) and the boundary conditions (the system used to attach the459

sample does not ensures a perfect embedding). We hold that these uncertainties make virtually460

impossible to build a finite element model to mimic the experiments with the accuracy required461

to predict the specific location of flow localization. Moreover, while in the experiments the stress462

waves may be transmitted to the machine through the jaws, we do not consider this scenario in463

our modelling. Nevertheless, we hold that our (simple) calculations are in qualitative agreement464

with the experiments and show the interplay between the fracture location and the loading velocity.465

Further, these calculations provide an additional proof of the deterministic character of location of466

plastic strain localization in the dynamic tensile test.467
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Figure 11: Finite element results. Model A-1. Contours of equivalent plastic strain ε̄p in the Lagrangian configuration
(undeformed shape) for L2 = 60 mm and various impact velocities. (a) V0 = 0.125 m/s, (b) V0 = 2.5 m/s, (c)
V0 = 7.5 m/s, (d) V0 = 10 m/s and (e) V0 = 15 m/s.
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6.2. Influence of specimen gauge length on the location of flow localization468

This section aims at further deepen into the relationship between the sample gauge length and469

the location of flow localization that was revealed in section 3.2. For that purpose we rely on finite470

element simulations conducted using the model A-1. Fig. 12 illustrates contours of equivalent471

plastic strain ε̄p in the Lagrangian configuration (undeformed shape) for V0 = 5 m/s and various472

gauge lengths. Note that, irrespective of the sample length, the plastic strain localization takes the473

form of a pair of necking bands.474

In the case of L2 = 20 mm, the shortest gauge length explored, the localization of plastic475

deformation is located roughly at the center of the sample. The increase of the gauge length affects476

the location of flow localization which occurs at the impacted end for L2 = 40 mm, L2 = 60 mm477

and L2 = 80 mm. For L2 = 100 mm two localization points are detected. The main one (the478

most developed) takes place at the impacted end, while the secondary one appears at the clamped479

site. For L2 = 140 mm a single localization point appears at the clamped site. Such a systematic480

motion of the localization point along the sample continues taking place if we keep increasing481

the sample gauge length. Note that such a strong influence of the gauge length on the location482

of flow localization has been found for all the applied velocities investigated within the range483

0.125 m/s . V0 . 80 m/s (below the CIV).484

Moreover, it has to be highlighted that the case L2 = 100 mm shown in Fig. 12 is a transient485

state, halfway between the localization patterns of L2 = 80 mm and L2 = 140 mm. As such, it486

reveals the nature of the role played by the sample length in the location of flow localization. We487

recall here that the gauge length determines the time required by the elastic strains to travel over488

the whole gauge and, as such, it controls the processes of reflection and interaction of stress waves489

which dictates the locations where the build up of plastic deformation occurs. These results shall490

be understood as an additional proof of the deterministic character of the flow localization in the491

dynamic tensile test.492

It is a fact that, because of a number of reasons already discussed in previous section, our493

calculations do not predict the specific location of flow localization observed in the experiments494

(qualitative agreement, quantitative disagreement), see Fig. 8. Nevertheless, we hold that they495

help to provide a proper interpretation of our experimental findings and contribute to reveal the key496

mechanisms which reside behind the interplay between the gauge length and the fracture location.497
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6.3. Multiple localization pattern498

In this section we aim at uncovering the role played by the initial conditions, the boundary499

conditions and the sample slenderness on the formation of multiple localization patterns. The way500

in which these factors either favour or preclude the emergence of multiple necking bands has been501

hardly investigated in the literature [73], thus we intend to give some indications about it here.502

Fig. 13 shows contours of equivalent strain rate in Eulerian (deformed shape) configuration503

for V0 = 5 m/s and L2 = 20 mm. The results for model A-1 are depicted in Fig. 13(a) while504

the results of model B-1 are illustrated in Fig. 13(b). We have determined the localization strain505

ε̄pl in the calculations following the procedure reported elsewhere [63, 74]. The localization strain506

is assumed as given by the condition
dε̄p

dt
= 0, where ε̄p is measured within the unloading zone507

which surrounds the localized region. The localization strain obtained for model A-1 is ε̄pl ≈ 0.25508

while for model B-1 is ε̄pl ≈ 0.34. The retardation of flow localization registered for model B-509

1 is caused by the initialization of the field variables (see section 5) which minimizes the stress510

propagation phenomena, boosting mechanical equilibrium and delaying plastic localization [59].511

This observation agrees with the theoretical and numerical results presented by different authors512

[75, 73] who showed that the stress waves disturbances represent a limiting factor for the material513

ductility.514

Note that in Fig. 13 we show the deformed shape in order to have a clear perception of the515

straining of the samples during the process of plastic localization. Thus, we point out that the516

development of the pair of localization bands is accompanied by a substantial reduction of the517

width of the sample near the localization area. As shown in Fig. 8, such kind of localization518

pattern with a single pair of bands inside a necked region (local width reduction) is representative519

of the largest samples tested. However, it does not find correlation with the experimental failure520

pattern observed for V0 = 5 m/s and L2 = 20 mm, for which multiple localization bands and little521

width reduction near the fracture location were observed (see Fig. 8). This mismatch between the522

numerical calculation and the experimental counterpart is mostly attributed to the simplicity of our523

finite element model which only takes into account the gauge of the sample. In the experimental524

sample, the fillets and the gripping sections increase the momentum of inertia of the cross section525

(along the Y direction). We assume that this opposes to the local width reduction near the failure526

point, enhancing the formation of multiple necking bands. This statement is confirmed with Fig. 14,527
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where we show contours of equivalent strain rate for model A-2 in Fig. 14(a) and model B-2 in Fig.528

14(b). As for Fig. 13, the loading velocity is V0 = 5 m/s and the sample length is L2 = 20 mm.529

The Eulerian (deformed shape) configuration is depicted. The localization strain corresponding530

to model A-2 is ε̄pl ≈ 0.85 while for model B-2 the specimen never reaches the condition of full531

localization. Thus, we have:532

• Because of the difference in the initial conditions, model A-2 shows lower ductility than model533

B-2.534

• Because of the difference in the boundary conditions, model A-2 shows larger ductility than535

model A-1 and model B-2 shows larger ductility than model B-1.536

Since the effect of the initial conditions in the material ductility was already discussed above,537

we analyse here the role played by the boundary conditions. It has to be recalled that, as described538

in section 5, the boundary conditions applied to models A-2 and B-2 are such that all the nodes539

located at the surfaces {X,±W
2 , Y } have identical displacement along the Y axis during the calcu-540

lation (thus impeding the local width reduction of the sample). The application of such boundary541

conditions, which try to emulate an infinite plate along the Y direction (see section 5), delays flow542

localization and promotes the emergence of multiple localization bands. These results suggest that:543

• If the metallic sheet has a large slenderness L2/W such that it mostly behaves like a rod544

then: (1) flow localization is promoted and (2) a single pair of necking bands contained in545

the {X,Z} plane are formed inside a necked region contained in the {Y, Z} plane.546

• If the metallic sheet shows a short slenderness L2/W such that it mostly behaves like a plate547

then: (1) flow localization is delayed and (2) multiple necking bands contained in the {X,Z}548

plane are formed.549

In order to deepen into the previous two observations, we carry out additional numerical calcu-550

lations for models A-1 and A-2 in which different values of W have been explored: 2 mm, 10 mm551

(reference width as shown in Fig. 10), 30 mm, 40 mm, 80 mm, 140 mm, 280 mm, 560 mm552

and 600 mm. In order to maintain the longitudinal inertial resistance to motion of the specimen553

we have used for all the computations the same applied velocity V0 = 5 m/s and sample length554

L2 = 20 mm. Recall that for model A-1 the surfaces {X,±W
2 , Z} are free of constrains (in such555
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Figure 13: Finite element results. Contours of equivalent strain rate ˙̄εp in Eulerian (deformed shape) configuration
for V0 = 5 m/s and L2 = 20 mm. (a) Model A-1, loading time t = 1.45 · 10−3 s. (b) Model B-1, loading time
t = 1.95 · 10−3 s.
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Figure 14: Finite element results. Contours of equivalent strain rate ˙̄εp in Eulerian (deformed shape) configuration
for V0 = 5 m/s and L2 = 20 mm. (a) Model A-2, loading time t = 6.30 · 10−3 s. (b) Model B-2, loading time
t = 6.30 · 10−3 s.
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a sense this configuration is representative of an experimental test) whereas for model A-2 all the556

nodes of the surfaces {X,±W
2 , Z} undergo the same displacement along the Y direction. Fig. 15557

shows the localization strain ε̄pl versus the sample slenderness L2/W .558

• Model A-1: there is a significant increase of the localization strain with the decrease of559

sample slenderness within the greatest values of L2/W considered. Nevertheless, the rise of560

ε̄pl becomes gradually reduced as L2/W decreases, such that within the range L2/W < 0.1561

the localization strain tends asymptotically to ∼ 0.39. We have observed that the localization562

pattern evolves from a single pair of bands inside a necked region for large values of L2/W563

to multiple necking bands for short values of L2/W . This interplay between the specimen564

slenderness and the failure pattern finds good correlation (qualitative agreement) with the565

experimental trends shown in Fig. 8.566

Note that irrespective of the ratio L2/W the sample is subjected to uniaxial tension during567

the process of homogeneous deformation. It is only after the perturbation of the fundamental568

solution, within the post-uniform deformation regime (after the diffuse localization and prior569

to the full localization [52, 76, 77]), when samples with different aspect ratios L2/W may570

behave in a different manner due to the development of stress gradients along the Y direction.571

• Model A-2: the localization strain tends to infinity for the greatest values of L2/W studied.572

The imposed boundary condition in the sample-surfaces {X,±W
2 , Z} does not allow to develop573

a necked region contained in the {Y,Z} plane (the natural localization pattern of the samples574

that mostly behave like a rod, see Fig. 13) and the specimen ductility virtually tends to575

infinity. Finite values of the localization strain are found for L2/W < 2. For this range of576

the ratio L2/W the localization strain decreases non-linearly with the decrease of the sample577

slenderness. This drop becomes gradually mitigated as L2/W decreases, such that within the578

range L2/W < 0.1 the localization strain tends asymptotically to ∼ 0.39.579

Within the range 0.1 < L2/W < 2 flow localization is reached but, in comparison with the580

model A-1, the process requires the investment of a greater amount of external work. The581

sample undergoes localization but, due to the imposed boundary conditions, without following582

the natural pattern of the specimen. For L2/W < 0.1 the imposed boundary conditions do583

not affect the localization process, thus models A-1 and A-2 provide very similar localization584
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strain and failure pattern. Then, the samples with aspect ratio L2/W < 0.1 can be considered,585

for all purposes, as infinite plates. This is further illustrated in Fig. 16 where, for models586

A-1 and A-2, we show contours of equivalent plastic strain ε̄p in the Eulerian configuration587

(deformed shape) for L2 = 20 mm and W = 280 mm (L2/W = 0.0714). We observe that the588

failure pattern is now characterized, irrespective of the model selected (either A-1 or A-2),589

by the emergence of multiple necking bands contained in the {X,Z} plane.590

The finite element calculations presented in this section explain the experimental observations591

previously reported in section 3.3, and illustrate the effect that the specimen slenderness and the592

boundary conditions have on the emergence of multiple localization patterns.593
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Figure 15: Finite element results. Models A-1 and A-2. Localization strain ε̄pl versus sample slenderness
L2/W .

Note that, while our simple geometrical models neglect the influences of the shoulders of the594

specimen as well as possible wave transmissions and reflections from/to the machine in the location595

of flow localization, they capture the essential features of the interplay between fracture location,596

loading velocity and sample size observed in the experiments.597

7. Summary and conclusions598

In this paper we have investigated whether the nature of the fracture location in the dynamic599

tensile testing of metallic sheets is deterministic or random. For that purpose we have carried600

out experiments and finite element simulations. The results have revealed some key mechanisms601
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Figure 16: Finite element results. Contours of equivalent plastic strain ε̄p in the Eulerian configuration (deformed
shape) for L2 = 20 mm and W = 280 mm, i.e. L2/W = 0.0714. Applied velocity V0 = 5 m/s, loading time
t = 1.95 · 10−3 s. (a) Model A-1. (b) Model A-2.
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which play a dominant role in the development of flow localization and subsequent fracture of the602

specimen.603

• Experiments: we have conducted a comprehensive experimental campaign in which a large604

number of specimens with different gauge lengths ranging from 20 mm to 140 mm have605

been tested at velocities varying from 1 m/s to 7.5 m/s. For each combination of gauge-606

length/applied-velocity we have carried out several repeats which have revealed an extremely607

high repeatability in the fracture location. This is a key experimental finding of this paper608

which shows that the fracture location is not random but deterministic.609

Moreover, we claim that the deterministic character of the fracture location is directly con-610

nected with the intervention of dynamic effects (stress waves and inertia) during the test. We611

further investigate this statement paying specific attention to the role played by the applied612

velocity and the gauge length, since these factors control to a large extent the processes of613

reflection and interaction of waves taking place in the sample during the test. For different614

impact velocities we have different magnitudes of the stress waves induced in the specimen,615

while for different gauge lengths the stress waves need different times to go over the gauge.616

Thus, we claim that the systematic motion from side to side of the sample that shows the617

fracture location with the variations in impact velocity and gauge length is an additional618

proof of the deterministic character of the strain localization process.619

Nevertheless, it is not only the failure location which depends on the applied velocity and the620

gauge length, but the failure pattern also does. While short samples tested at high velocities621

are prone to develop multiple and highly regular localization bands, large samples tested at622

low velocities use to develop a single pair of bands inside a necked region. We conclude that623

the emergence of multiple localization bands is favoured in those samples with low slenderness624

for which the strain field along the gauge is kept highly uniform during the loading process.625

• Finite element simulations: previous experimental findings have been further explained using626

numerical calculations. For that purpose, to consider a simple geometrical model which627

solely accounts for the gauge of the sample has proven to be sufficient. Different initial628

and boundary conditions have been used, leading to four distinctive numerical configurations629

named in section 5 as models A-1, A-2, B-1 and B-2.630
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Model A-1, for which the initial and boundary conditions are representative of a typical631

experimental test, has been used to check the interplay between the location of plastic strain632

localization, the applied velocity and the gauge length. In qualitative agreement with the633

experiments, the computations predict that the location of plastic localization changes with634

variations in the impact velocity and the slenderness of the sample. This reinforces the idea635

that stress waves and inertia are main factors which control flow localization.636

Moreover, the confrontation of the results obtained from models A-1, A-2, B-1 and B-2 allowed637

to point out two key issues. The first one refers to the increased ductility registered in the638

calculations for which the field variables (velocity, stress, strain and displacement) have been639

initialized. In agreement with different works available in the literature, we have shown that640

the stress waves, under specific loading conditions, may represent a limiting factor for the641

sample ductility. The second key issue refers to the role played by the boundary conditions642

in the specimen ductility and localization pattern. We have shown that the application of643

boundary conditions representative of an infinite plate (infinite width) to a sheet with finite644

width may lead to a substantial increase of the sample ductility and a strong modification645

of the localization pattern which (always) takes the form of multiple necking bands. From646

previous statement we have derived two relevant conclusions: (1) if the metallic sheet has a647

large slenderness such that it mostly behaves like a rod then flow localization is promoted and648

a single pair of necking bands contained inside a necked region are formed, (2) if the metallic649

sheet shows a short slenderness such that it mostly behaves like a plate then flow localization650

is delayed and multiple necking bands are formed. Note that previous conclusions (1) and651

(2) agree with our experimental findings.652

All in all, in this paper we have emphasized the deterministic character of the fracture location653

in the dynamic tensile test. Moreover, the combination of an extensive experimental work with654

detailed numerical calculations has brought some insights into the key factors which control flow655

localization and fracture in dynamically loaded metallic sheets. Special attention has to be paid656

to the fact that the specimen ductility, far from being a material property, is highly dependent on657

the sample size, the initial conditions and the boundary conditions.658
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Appendix A. Complete set of dynamic experiments664

In Table A.3 we show the complete set of dynamic experiments, providing the fracture location665

in each case.666

Fracture location

Velocity (m/s) Specimen L2 = 20 mm L2 = 40 mm L2 = 60 mm L2 = 80 mm L2 = 100 mm L2 = 140 mm

1

1 Centre Impact Impact Impact Clamped Clamped
2 Centre Impact Impact Clamped Clamped Clamped
3 Centre Impact Impact Clamped Clamped Clamped
4 N/A N/A N/A Clamped N/A N/A

1,75

1 Centre Impact Clamped Impact Impact Centre
2 Centre Impact Clamped Impact Impact Centre
3 Centre Clamped Clamped Impact Impact Centre
4 N/A Impact N/A N/A N/A N/A

2,5

1 Centre Impact Impact Impact Clamped Centre
2 Centre Impact Clamped Clamped Clamped Centre
3 Centre Impact Clamped Clamped Clamped Centre
4 Centre N/A Clamped Clamped N/A N/A

3,75

1 Centre Impact Clamped Clamped Impact Clamped
2 Centre Impact Clamped Centre Impact Impact
3 Centre Impact Clamped Clamped Impact Clamped
4 N/A N/A Clamped Clamped N/A Clamped

5

1 Centre Impact Clamped Clamped Clamped Centre
2 Centre Impact Clamped Clamped Clamped Clamped
3 Centre Impact Clamped Clamped Clamped Centre
4 N/A N/A N/A N/A N/A Centre

6,25

1 Centre Impact Clamped Clamped Impact Clamped
2 Centre Impact Clamped Clamped Clamped Clamped
3 Centre Impact Clamped Clamped Impact Clamped
4 Centre N/A N/A N/A Impact N/A

7,5

1 Centre Impact Impact Clamped Impact Clamped
2 Centre Impact Impact Clamped Clamped Clamped
3 Centre Impact Impact Clamped Clamped Clamped
4 N/A N/A N/A N/A Clamped N/A

Table A.3: Complete set of dynamic experiments. For each test we indicate the fracture location.

Appendix B. Mesh sensitivity analysis667

In order to check the mesh independence of our numerical calculations we have carried out668

computations using three different mesh densities:669
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• Mesh 1: the elements dimensions are 0.166× 0.333× 0.166 mm3 (reference configuration).670

• Mesh 2: the elements dimensions are 0.125× 0.250× 0.125 mm3.671

• Mesh 3: the elements dimensions are 0.100× 0.200× 0.100 mm3.672

Fig. B.17. shows finite elements results obtained using these three mesh densities for the673

model A-1, the loading velocity V0 = 5 m/s and the gauge length L2 = 20 mm. We illustrate the674

equivalent plastic strain ε̄p versus the normalized specimen coordinate Z̄ =
z

L2
for the loading time675

t = 1.45 · 10−3 s. The excursions of strain represent the necking bands. The results corresponding676

to the three different mesh densities practically overlap to each other, which confirms that our677

computations are largely insensitive to the mesh size. Therefore, in order to have the smallest678

computational time, the coarser mesh (Mesh 1) was used in all the numerical simulations shown in679

this paper.680
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[39] Osovski S, Rittel D, Rodŕıguez-Mart́ınez JA, Zaera R. Dynamic tensile necking: Influence of763

specimen geometry and boundary conditions. Mechanics of Materials 2013;62:1–13.764
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