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Contract-Based Programming on Modern C++

Bachelor Thesis

José Cabrero Holgueras

Abstract

Contract-based Programming or Design By Contract (DBC) is a discipline for system construction that

in recent years has postulated to be one of the most solid and reliable models for software creation. It

is well known that in the software industry the number of projects not being successfully developed is

huge. The main cause of the failure is that projects do not meet user expectations. In this context, Design

By Contract seems to emerge as a solution to decrease this failure rate. This philosophy provides a set

of mechanisms for the validation of part of the requirements specification.

In recent years, several programming languages started to implement DBC, either as part of the lan-

guage or an external library. The main programming languages that support contract-based program-

ming are Ada 2012, Spark, Eiffel, D, C# CodeContracts or Microsoft Source-Code Annotation Language

(Microsoft SAL). Traditionally, C++ has been a programming language focused on flexibility, perfor-

mance and efficiency. This has attracted many people to carry out projects using this programming

language. However, trends make programming languages change, and the interests of the industry

are leaning towards solid solutions. Those solutions shall include frameworks that are reliable. With

this same purpose, C++ has designed a specification for the implementation of Design By Contract in

the programming language. This new specification has been accepted by the ISO C++ committee to

be included in C++20. The specification includes several clauses that allow the user to write pre/post-

conditions on the code. This allows part of the requirement specification to be merged into the code,

enabling traceability between the phases of the software project.

The specification of a new feature in a programming language implies changes in how the language

is understood by a compiler. For the implementation of a new specification, several changes are required

at different levels. This document describes these changes. Additionally, it provides an overview of the

structure of a compiler, and a brief description of all the parts of the Clang C++ compiler.
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Programación basada en Contratos en el C++ moderno

Trabajo Fin de Grado

José Cabrero Holgueras

Resumen

La programación por contratos es una disciplina de construcción de sistemas que recientemente se ha

postulado como una de las más solidas y fiables para la creación de sistemas software. Se sabe que la

industria de desarrollo de software no está siendo exitosa debido en parte a la tasa de fallos que hay en

éstos. En este contexto, la programación por contratos emerge como una solución para reducir esta tasa

de fracaso en la industria. Esta tendencia de desarrollo provee a los usuarios con mecanismos para la

validación de los requisitos.

En los últimos años, varios lenguajes de programación han comenzado a implementar la programación

por contratos, bien como parte del lenguaje o como una biblioteca externa. Los principales lenguajes de

programación que a día de hoy soportan programación por contratos son Ada 2012, Spark, Eiffel, D, C#

CodeContracts or Microsoft Source-Code Annotation Language (Microsoft SAL). Tradicionalmente, C++

ha sido un lenguage de programación centrado en proveer al usuario con flexibilidad, rendimiento y

eficiencia. Estas características han atraido a muchos clientes de cara a utilizar este lenguaje de progra-

mación en proyectos. Sin embargo, las tendencías fuerzan cambios en los lenguajes de programación, y

los intereses de las empresas actualmente se están inclinando hacia soluciones robustas. Estas soluciones,

deben incluir marcos de trabajo que sean fiables. Con esto en mente, se ha diseñado una especificación

para la programación por contratos en el lenguaje de programación. Esta nueva especificación, ha sido

aceptada para por el Comite ISO C++ para ser incluida en C++20. Esta especificación provee al usuario

con varios mecanismos que permiten verificar condiciones en el código. Esto permite directamente en-

lazar la especificación de requisitos con la implementación de los mismos.

La especificación de una nueva característica dentro de un lenguaje de programación implica cambios

en como el lenguaje es entendido por un compilador. Para la implementación de estos nuevos requi-

sitos se requiere de realizar modificaciones en el compilador en distintos niveles de análisis. En este

proyecto, se describe un resumen de los cambios que son necesarios dentro de un compilador. Estos

cambios incluyen un resumen de la estructura del compilador, posteriormente se desglosa la estructura

del compilador de C++ Clang y por último se describen las modificaciones en cada una de las partes

involucradas.

Keywords: · Programación Basada en Contratos · Contratos · C++ · Clang · Compilador
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Chapter 1

Introduction

The first chapter exposes briefly what it is going to be treated along the document. In Section 1.1, a

little background on the question that is commented. In Section 1.2, the objectives of this document are

introduced. Finally, in Section 1.3 an overview of the document is established.

1.1 Background

The correctness of software has been a concern in recent years because of the high amount of software

projects failure. It has been found that the lack of a proper requirements phase is the main problem. In

this sense, many solutions have been explored around the idea of decreasing this failure rate. Specif-

ically, current solutions focus on the idea of understanding the requirements, from both the consumer

side, and the provider side. However, they fail to properly transfer the collected knowledge across all

the project phases.

To tackle with this issue, contract-based programming emerges as a strategy aimed at the creation of

highly reliable software systems. Design By Contract is built around the high-level idea of contract, i.e.

an agreement between two or more parties for doing something. It establishes rights and obligations that

both parties shall comply to during the project. These constraints, if broken by any of the involved par-

ties, may immediately cause the contract to be revoked. Based on the previous definition, requirements

of a software component may be specified as part of the source code and verified at compile-/run-time.

For this reason, the creation of certain structures that allow the verification of the code is something

desirable in a programming language. As a matter of fact, programming languages such as Ada, Spark

or C#, are increasingly starting to provide native support for Design By Contract. These structures state

the responsibilities within the code, and ensure the proper behaviour of software modules according

1
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to the requirements. This programming approach aims to merge parts of the specification, design and

testing into the implementation.

On the other hand, C++ is a well-known programming language usually targeted to high perfor-

mance applications. Modern C++ has been recognized by the industry as a great language for the

development of huge software projects, since it provides a higher abstraction level with respect to other

languages like C. Additionally, C++ focuses on efficiency and usability by relieving developers from

tasks that are usually error prone such as the memory management. In this project, we provide support

for contract-based programming in the Clang compiler.

1.2 Objectives

As stated before, this work aims at supporting Design by Contract in Modern C++. As part of this

objective, several secondary goals emerge:

∙ O1. Basic Functionality. The creation of a basic infrastructure that gives the programmer a set of

directives whose use implements DBC.

∙ O2. Advanced Functionality. A set of features that allows the programmer to use the tools for

further usages such as testing.

∙ O3. Efficiency. The implementation seeks not to increase a lot the execution time of a executable

without contract directives.

∙ O4. Efficiency of the compiler. The implementation aims to minimize the overhead that is created

on the compiler by implementing the new features over it.

1.3 Document Structure

For the sake of clarity, this document is divided into chapters which are briefly described in the following

list:

∙ Chapter 1, Introduction, introduces the motivation and main background this work. It also describes

its objectives and the document structure.

∙ Chapter 2, State of the Art, gives an overview on how other programming languages implement

Design By Contract and briefly evaluates the implementation in each of those.

∙ Chapter 3, Background, details what is a compiler, the compilation process and the main examples

of compilers.
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∙ Chapter 4, Analysis of the problem, introduces the general functionality that the project shall have.

It presents the requirements specification of the project with a breakdown into user requirements

and system requirements.

∙ Chapter 5, Design of the solution, introduces the basic structure of a compiler. Then it is used for the

development of the design within the solution.

∙ Chapter 6, Evaluation, starts by evaluating the functionality that was implemented. Then it ex-

plains some benchmarks that were created with the purpose of evaluating the efficiency of the

implementation. Finally, we provide some concluding remarks on the evaluation.

∙ Chapter 7, Project Plan, includes the overall scheduling of tasks and their deviations with respect

to the expected execution time. The methodology used for the project is described and specified in

this chapter.

∙ Chapter 8, Socio-economic Environment, shows the breakdown of all the costs derived of the execu-

tion of the project.

∙ Chapter 9, Legal Framework, introduces legislation and its applicability to this project. Finally, it

details the licence terms under which this work is distributed.

∙ Chapter 10, Conclusion, elaborates on the outcome of the project and its future work.

∙ Appendix A, Implementation, shows the implementation that was carried out to support Design By

Contract over the Clang C++ compiler.
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Chapter 2

State of the Art

In this chapter, we comment the state of the art, a summary of the different alternatives that allow the

usage of Contract-Based Programming in a native manner. First of all, in Section 2.1, we analyse Eiffel

the first programming language to offer an implementation of Contract-Based Programming. Later on,

in Section 2.2, an evaluation of Ada 2012 is carried out since it is one of the all-purpose language that

offers Design By Contract. In Section 2.3, we analyse the Spark programming language, which has

Design By Contract as a design principle. Later on, in Section 2.4 we review C# a programming with

great importance in recent years. Additionally, in Section 2.5, we analyse D , a programming language

which has its origins in C and C++, and provides new features with respect to C and C++. Finally,

Section 2.6, we carry out a small evaluation of the Design By Contract library Microsoft SAL.

2.1 Eiffel

In this section we expose what Eiffel is and its main characteristics. Later on in Section 2.1.1, we expose

the implementation of Design By Contract in Eiffel. Finally in Section 2.1.2, we make an evaluation of

the language.

Eiffel is the first programming language to explain from the aforementioned programming languages

for two main reasons. Firstly, because this language implements contract-based programming which

makes it interesting to investigate about before dealing with our project. But the fact that attracts the

attention is that the creator of this programming language is Bertrand Meyer. This is especially mean-

ingful since the creation of the contract-based programming technique is also attributed to him.

Firstly we will talk about The Eiffel Method, a method for software development which aimed to make

software development easier. The method is focused on some key really innovative ideas such as:

5
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∙ Design by Contract. “Defines a software system as a set of components that interact through

precisely specified contracts”[1]. Applying this philosophy as a design principle results in a system

which, for sure, will provide the functionality as it is needed. Nevertheless, it does not imply the

absence of errors. Contracts target the minimisation of bugs and the reliability of the code however

they might not ensure that all programming errors are found.

∙ Single-Product Model. Aims for a software life-cycle process which really complements each of the

phases with each other, resulting in giving a different view of the system with each of the views.

The Eiffel programming language process of creation followed The Eiffel Method. The programming

language was implemented as a tool to support the software creation through The Eiffel Method. There-

fore, it is important to remark that whenever we talk of Eiffel we are including both the software devel-

opment method and the programming language. However, from now on in this section, we refer to the

capabilities that this programming language provides but omitting the methodology.

Eiffel focused on improving what all its competitors offered. The approach was to create a language

in which developers could program much faster, without evident bugs and speeding up the process of

software development. The main competitors they found were C and C++, which, in the end, shared the

same consumer segment as Eiffel. The objective was to provide similar features than C or C++, avoiding

the low-level structure and the associated complexity that they imply to any programmer. The goals that

Eiffel tried to achieve on its design are the following:

∙ Reliability. The reliability as a software characteristic makes difficult to include bugs and program-

ming errors that lead to a more complex development and to an improper integration in a system.

The main mechanisms that Eiffel provides to ensure reliability are the following:

– Real Static Typing. The types are known at compile time. It eases programming since allows

a reader of the code to explicitly know what type is inside each variable. This approach is

the same followed by C++, C or Java. The alternative approach is dynamic typing, featured

in languages such as Python or Perl. This makes the type resolution a matter of the run-time

environment, and although it provides the language with more flexibility, it is not the best

approach for production applications.

– Assertions and Design By Contract. The programming language provides some mechanisms that

perform run-time checking. These mechanisms are a solid approach for solving programming

errors and guarantee the success of software projects.

– Automatic Garbage Collection. Unlike C and more or less C++ (not considering the new C++

mechanisms such as smart pointers), the memory is a huge concern in current systems. Actu-

ally, it is rare to find a program that does not require any dynamic memory mechanism, and
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freeing the memory is something to care about. Eiffel provides a unique alternative, a code

with a similar performance as C, but avoiding any memory problem that a user can find.

∙ Reusability. The software that is developed is used for purposes other than the one for which they

were originally generated. The following are some meaningful characteristic to support this:

– Abstract classes. These summarised versions of a class provide interface information and con-

tracts information. Through them, any programmer should be able to deduce its behaviour.

This also allows the implementation of a class in different manners, adapting them to the

necessities of the user on each specific case.

– Deprecated Code. Eiffel proposes a framework where there is a version control of libraries.

With it, features that are likely to be removed in a future version of the library are marked.

Whenever a user includes something marked in the code, he is warned to be using an older

version of the library or a feature likely to be removed.

∙ Extendibility. It permits features to be easily extended, and make them comprehensible so that

anyone needing to modify others implementation finds the least difficulties.

– Inheritance. It allows the elements to be reused and to apply them to the necessities of the

corresponding project by the re-implementation of certain methods. This characteristic is also

provided in other programming languages, but not directly in C (allows structures composi-

tion, though).

– Multiple Inheritance. Eiffel permits inheriting from multiple classes. This is something that not

many programming languages provide but that Eiffel actually does.

∙ Efficiency. It tries to enhance both the development process and the execution stage. Some charac-

teristics to improve it are:

– Small runtime engine. The runtime engine is small so that it doesn’t require much memory. In

addition to that, it is programmed in C making it low-level and very fast.

– Ice Melting Compilation. Provides a fast compilation method in which the object code is com-

piled in parts. When the programmer has to recompile the code, it only does it for the parts

that have been modified. This makes the compilation process faster and therefore the devel-

opment becomes faster.

2.1.1 Design By Contract in Eiffel

The most important features that Eiffel included was the Design By Contract implementation [2]. It

was something revolutionary that up to that point time had only been seen theoretically. But with its

implementation, a new paradigm for software creation was created. It provides three different statements
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that allow contracts specification. These statements are sections within classes, that allow the validation

of conditions. Those are:

∙ Requires. It is an expression for a precondition. Its behaviour is like an if statement that will be

evaluated just before starting the execution of the function. If any precondition is not met the

execution is stopped, what is all the preconditions shall be met for the execution of the function.

The client code is responsible for fulfilling all the preconditions.

∙ Ensures. It serves as an expression of postcondition. It behaves similarly to the precondition but

acts on the return values. It evaluates the result of a function and returns if and only if all the

postconditions are met. The postconditions are part of the responsibility of the provider. It means

that in case any of the postconditions is not met, the agreement is not being fulfilled by the provider.

∙ Class Invariants. A class invariant is a condition that is evaluated on a member of a class. It is a

check that is performed every time we modify a class member and it ensures that any modification

to that member is going to be proper and it is going to be performed according to some predefined

rules. As we evaluate in Section 2.1.2, this kind of conditions are not the most efficient.

2.1.2 Advantages and Disadvantages of Eiffel

In this section, we depict the main advantages and disadvantages that Eiffel supposes against other lan-

guages.

While researching for the elements of this programming language, everything seemed to be advan-

tages. This is contradictory since Eiffel does not appear among the most used programming languages.

And having such advantages it should be more used than some of the most used programming lan-

guages. If we search a bit, we can easily spot some of the biggest disadvantages that make this language

not used at all.

The main advantage that Eiffel supposes over C and C++ is memory management, which saves from

a lot of errors. In the end, it simplifies the programming to users. That causes that, in principle, people

should prefer to use it. Over other high-level programming languages, they do not have the performance

to compete with Eiffel.

Another advantage against C++ is the inclusion of class invariants. Class invariants permit a level

of restriction over the programming language that is not implemented in C++. However, the main rea-

son for that is performance. Class invariants usually imply a lot of checks and condition evaluations at

run-time, that not good in for the performance. It hides to the user a lot of checks that are making the



CHAPTER 2. STATE OF THE ART 9

performance worse.

If we look at disadvantages, the first of them is the price. Although the reference is open to ev-

erybody, the compiler that they provide comes associated to an Integrated Development Environment

(IDE) called Eiffel Studio which contains the only compiler for Eiffel that exists. Eiffel Studio is free for

academic use. As it is mentioned on its web page, it is very used for teaching as a first programming

language, because it provides a great basis on good programming practices. The main disadvantage

comes when it has to be used for commercial purposes. The licence for commercial use of Eiffel Studio

costs per computer from 7000e to 10000ewhich makes it a very costly alternative to be used in a project.

Among other disadvantages of this language, we can find the lack of overriding for functions and

operators. The overriding of functions is a mechanic that nowadays implement most programming lan-

guages because it allows a great simplification of the code. In addition to that, it doesn’t provide any bit

level semantics, which makes it unusable for certain applications that require to manipulate bitmaps and

require this level of precision. As a matter of fact, it does not provide any support for callback functions,

a feature that is more and more demanded and being implemented in modern programming languages.

Something that drew my attention was the critics against the support for advanced language features

and the shortage of libraries. This shortage of libraries is especially worrying because it does not allow

the creation of applications in different contexts.

In the end, C++ which is the language against which we are comparing now, C++ seems a much

better alternative. By the time at which Eiffel was launched, the memory management was very use-

ful, but at this point in time, the C++ Standard Template Library (STL) overcomes this situation. The

STL provides an efficient and standard implementation of the most common memory structures called

containers. It allows the programmer to use them instead of the classical structures such as arrays or

dynamic memory. In addition to that, those structures free the programmer from some tasks that they

needed to care about such as freeing the memory or allocating more. All of this functions are seamless

and invisible to the programmers. In fact, it adds a feature called smart pointers. These smart pointers

permit a user having a sole region of memory shared by many structures, and whenever this region is

not used anymore, it is automatically freed.

With relation to the overloading and callback functions, C++ provides both, the first by creating a

function with the same name, and the second with the creation of a lambda function, a function object or

a function pointer. Finally, the most important fact is that C++ is open-standard, and there are compilers

free and available for open and public use. And that is what makes a programming language really
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used, giving the possibility not only of learning it for free but for enterprises to use it for their projects

without a cost. As a little reflection, in a project with five programmers, assuming a salary of 50000e

annually, the total price of the licence of Eiffel Studio for five programmers would be the same as hiring

a sixth programmer.

Table 2.1 shows a summary of the main advantages and disadvantages of Eiffel that we depicted in

this section.

Feature C++ Eiffel

Contract support Current development X

Memory management Manual/Smart Pointers Automatic Garbage Collector
Pricing Free (with Free Compilers) Up to 10000e
Libraries Great Support Shortage of libraries
Overriding X 7

Bitmap support X 7

Callback functions X 7

Preconditions X X

Postconditions X X

Class invariants 7- Replaceable by assert X

Assertion X 7

Table 2.1: Comparison of C++ and Eiffel

2.2 Ada 2012

In this section we describe Ada programming language main characteristics. In Section 2.2.1 we describe

Design By Contract in Ada. Afterwards, in Section 2.2.2 we depict the main advantages and disadvan-

tages of the language.

Ada, named after Ada Lovelace1, is a programming language created by a French company under a

contract for the United States Department of Defence. Ada is mainly based on the Pascal programming

language [3, 4, 5]. Ada has held several versions of its programming language. Currently, the most

recent one is Ada 2012 and it is the version that this section is going to be centred on because it provides

Design By Contract implementation.

As some professionals argue, Ada is the most complete language that was ever created [6], that is

because Ada has a set of features which makes it suitable for any kind of system. Some features that

make this programming language powerful are:
1Ada Lovelace is considered to be the first person to write about the idea of a computer
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Structured Programming. It is a kind of programming that divides the code into several logical sections.

Those sections permit several benefits such as improving the readability of the code and improve-

ments to memory management. This feature increases modularization allowing logical sections to

be reused in multiple programs because they are relocated along different parts of the memory.

This would later evolve in what we know as the Object Oriented Programming paradigm [7].

Statically Typed. As it was already mentioned in Eiffel (Section 2.1), this type of languages resolve

the types at compile-time, meaning that no further check is performed at run-time(contrary to

dynamically typed).

Imperative. This type of programming specifies what a program must do by explicitly stating how

something must be done. The opposite to Imperative Programming is Declarative Programming

which specifies a what a program should perform without specifying the process on how it shall be

done[8, 9].

Wide-Spectrum. It is a programming paradigm which allows a programming language to be used both

as high-level and low-level. It applies progressive refinements to the high-level code in order for it

to be optimized as a low-level code[10].

Object Oriented Programming (OOP). It is a paradigm that allows users to generate objects which are

specific instances of classes. Classes determine which are the main characteristics that we will see

in an object, whereas objects are specific classes which determine specific individual instances of a

class. This specific paradigm favours reusability and flexibility.

High-level. A programming language of this kind favours comprehension of the code and it is closer

to natural language. This principle goes against the efficiency of the code because it is normally

thought that lower level programming languages allow a better level of detail, and are therefore

seem to be better in performance [11].

2.2.1 Design By Contract in Ada 2012

Reliability is one of the key design principles that Ada followed from its origin. With the aim of pursuing

the reliability, the contract-based design appears as a feature in Ada in the version published in 2012.

However, previous versions of Ada still provided certain mechanisms to be checked at run-time. Among

them we can highlight the following [12]:

∙ Type Conversion. It checks if the types among which the user was converting were the same or not,

and therefore determined whether they were completely compatible or not. This check is usually

performed at compile time.
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∙ Parameters passing. Ada allows specifying input and output parameters. This check verifies

whether the direction in which parameters are passed is correct or not.

∙ Range checks. This verifies whether the accessed position of an array is correct or is outside the

reserved space. This check is also followed by other programming languages such as Java. This

verification implies the execution of the program in most of the cases, therefore, it cannot be

performed at compile-time. This differs a lot from the memory model followed in C or even in

C++ where memory can be managed freely sometimes supposing problems.

∙ Sub-types with ranges. When we deal with a sub-type2 we are also checking the memory layout

and whether we are accessing forbidden positions. This check is mostly similar to the check of the

arrays and it is usually performed at run-time.

∙ Static coverage tests. These are some statements that are evaluated before compile-time.

These elements that we have described are some kind of contracts, that already many languages

implement without considering Design By Contract. What Ada started providing in its 2012 version as

some explicit clauses that allow establishing conditions on different elements of the code. The following

contract elements were provided and included in the language in the 2012 release:

∙ Preconditions and postconditions. They are enumerated conditions that are checked before exe-

cuting a function in the case of preconditions, and after the execution of the former in the case

of postconditions. These elements explicitly establish the rights and responsibilities of each of the

parties. They force the implementation to fulfil some sets of requirements and therefore they are a

fundamental part of software development.

∙ Type Invariants. They are equivalent to a class invariant. In Ada, everything is considered a

type. These predicates are specified over a private element. In this case, we have a statement

that is applied to a private field of our type, resulting in the verifiability of that field fulfilling the

pre-agreed conditions.

∙ Dynamic sub-type predicates are equivalent to class invariants applied to visible subtypes. Since

visible types are usually highly used then we will distinguish between static and dynamic. Accord-

ing to the Ada specification [13], we can enable a given dynamic subtype predicate and disable it

on demand.

∙ Static sub-type predicates. This type of predicate performs the same verification of a class invariant

but associated to a subtype. Ada restricts the conditions that can be evaluated on this type of

predicates. This enforces that the checks are not huge and take a lot of time. The specification

2In Ada every variable has a type, and when we deal with a sub-type is equivalent to dealing with a subclass
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of Ada establishes that the main difference between static and dynamic is that static sub-type

predicates are evaluated always and cannot be deactivated.

Figure 2-1 shows a small classification of how Ada type invariants are classified into subsets according

to the conditions that they allow to execute.

These elements allow us to generate complex subtypes such a type representing prime numbers,

something that would ensure the satisfaction of some conditions and would, in fact, increase the reusabil-

ity of certain components.

Type Invariants

Dynamic
Subtype

Predicates

Static Subtype
Predicates

Figure 2-1: Ada 2012 - Type Invariants Classification.

2.2.2 Advantages and Disadvantages of Ada 2012

This section describes the advantages and disadvantages found in Ada 2012.

At a first sight, Ada seems to be a more complete programming environment in what contracts

based programming regards. In relation to our implementation, Ada provides more alternatives that

allow static and dynamic checks or as in Eiffel the Class Invariants alternative.

First of all, the implementation is very confusing even within the reference, not being able at all times

to express which are the differences between one type of predicate and another.

With that regard, the C++ implementation has a more clever and simple solution in order to activate

and deactivate the contracts. It establishes certain levels of assertion, with which every contract is anno-

tated. Given the levels of assertion, we can establish when to activate each level of assertion. Although
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C++ allows more flexibility when establishing the assertion level, a bad programming practice may make

inadequately achieve a good performance, for example, making the code run a huge assertion in cases

where it is not necessary. On the other hand, Ada 2012 is less flexible, provides limitations on when to

use static subtype predicates which in the end improve the performance.

Actually, elder features that Ada implements are the most relevant with respect to what C++ provides.

Even though it is not the most efficient alternative, they try to avoid frequent programming errors.

Several relevant programming errors are the vector length check or the type range tests. The most

similar alternative that we have is the usage of the STL containers which perform these evaluations.

With regard to what are C++ general advantages and features, we can find several advantages. First

of all, we can observe the pricing. Although as language, Ada is a ”open standard“ language, the com-

piler, GNU NYU Ada Translator (GNAT), is only free for academic purposes and for Free/Libre and

Open Source Software (FLOSS) projects. For the rest of the cases, C++ supposes the great advantage of

not having to assume any cost for a compiler since there are free compilers. In particular, history agrees

on this point, because Ada was one of the most prominent languages. Nevertheless, the fact of being a

paid compiler did not permit users to start using and learning it. The price of the cheapest compilers

was over a 100$ per licence. In that situation, the communities looked for other languages, such as our

alternative (C++) where there are free compilers. The basis of having free compilers permits a commu-

nity to grow around a language, by learning it unitedly and participating in its development[14, 15].

What most people claim to be the biggest error of Ada was its main design principle, reliable and

solid programming. This assumed that a programmer is going to introduce errors. This idea was taken

to the extreme and developed into making the language so strict that it also became inflexible. As a

result, it prevented programmers from doing wrong things, but it also became hard to make things

right. From many programmers point of view that is its main flaw. It tried to be the most secure and

reliable language. It tried to overcome many programmers mistakes. But it ended up constraining the

programmer. In conclusion, Ada makes a programmer focus more writing syntactically correct code

rather than on the actual programming task.

Table 2.2 shows the comparison of the main characteristics with its advantages and flaws of C++ and

Ada 2012.
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Feature C++ Ada 2012

Philosophy Programer knows what he does Programmer commits errors

Commitment All-purpose All-purpose

Objective Efficiency Reliability

Pricing FLOSS Not Free

Preconditions X X

Postconditions X X

Assertion X 7

Type invariants 7- Equivalent to assert X

Static Subtype Predicates 7- Equivalent to assert X

Dynamic Subtype Predicates 7- Equivalent to assert X

Table 2.2: Comparison of C++ and Ada 2012

2.3 Spark

In this section we describe Spark. Specifically in Section 2.3.1 we describe the Design By Contract in

Spark. Finally in 2.3.2 we develop a summary of advantages and disadvantages of this programming

language.

This section introduces Spark, a language that was initially developed from Ada Core and has from

that point on been in a parallel line to the development of it. Spark focuses on the development of

highly reliable tools. As the main objective of the language has always been to provide a very solid

framework in which data integrity and reliability were always ensured, contract-based programming

was a feature that has always been included. The main objective when creating Spark was to elaborate a

set of instructions from the Ada full set of instructions that was non-ambiguous at any point. With that

Spark enables the formal verification of any code generated with that instruction set.

In contrast to Ada, that proposed an all-purpose programming language, Spark appears to be a

specific language for some specific and counted applications. It provides a similar approach as some

POSIX Profiles of the C programming language3 or Java different versions4.

3The C programming languages POSIX profiles, such as PSE50, PSE51, PSE52, PSE53, restrict the features available on the
language for embedded systems making them easily verifiable and certifiable. In addition to that, they allow the removal of
some features from the language that might not be necessary for a specific project and allow the development of a lightweight
application.

4Java, offers three different versions Enterprise, Standard or Micro Editions that provide either complete versions, general
purpose version or reduced versions respectively.
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Spark provides several important features, namely[16]:

Flexibility. It provides compatibility of a newly built software in Spark with legacy systems imple-

mented in Ada or in C. This feature permits switching old code to a new language without com-

promising the availability or previous functionality of the system. This feature is an incentive

intended to ease switching a project from a programming language into Spark with no compro-

mises at all.

Ease of Adoption. It tries to differentiate itself from other approaches by claiming to be one of the

most reliable languages. The utilisation of the contract-based programming allows it to be highly

verifiable and reliable, being applicable to industry sector where it is a basic requirement the need

of verification in the language.

Powerful Static Verification. With static verification we refer to the verification of the correctness code

at compile time. It means that all kinds of analysis are applied to the code to prove its correctness

without needing to execute it. In fact, it can prevent and ensure that no run-time errors will appear.

Spark implements the usage of a mechanism that allows partial pre-compilation. In addition,

Spark allows a mathematical verification of the code. It allows to mathematically prove that a code

elaborated with this language will not throw any exception. That is something critical and that not

many languages can provide.

Reduced Cost of Unit Testing. Unit testing is usually a job that programmers have to develop by them-

selves by making each and every one of the tests by hand or at least specifying the test cases. Unit

testing allows justifying the correct behaviour of a software. In the case of safety-critical software,

this cost supposes a great part of the budget of the process since, otherwise, it would not be trust-

worthy and could not be certified for certain applications. Spark Pro provides a framework which

is able to generate all the unit test suite. They justify that the tests are generated automatically if

some annotations are placed on the objects of the testing.

2.3.1 Design By Contract in Spark

This section describes the Design By Contract implementation that Spark provides. It is divided into

two main divisions before Ada 2012 and after it.

As we already mentioned in the Ada section, previous to Ada 2012 the support for Design by Con-

tract was not included. The strong links that Ada and Spark have did not affect this feature. Spark

required very powerful verification tools, therefore, it implemented from the very beginning of the De-

sign by Contract. Contracts previous of Spark previous to Ada 2012 were described as comments were

represented by the following structure “ --#”. Contracts in those versions fall into two categories:
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Core Annotations. They are related to data and information flow. They specify which should be the

flow of the program and how the relations of the program with global variables have to work[17]·

Proof Annotations. These are the formal annotations of Design By Contract with which we have dealt in

this document so far. They verify the compliance of the code to any document. They are normally

used for formal verification but they can be used for mathematical verification. The two main types

are preconditions and postconditions[17].

With Ada 2012, Design by Contract was introduced as a new feature, and it allowed to introduce a

new set of features that allow further checks on the syntax of a program[18, 19, 20]. There are a few of

them which include several interesting features:

Subprogram Contracts. These contracts assertions are the main ones. They include several basic state-

ments (preconditions and postconditions) along with some more advanced elements that allow a

great control of the runtime environment.

∙ Preconditions. They ensure that the value of some element is correct before the procedure

starts. In Design By Contract, it is considered that the Preconditions compliance is a task of

the calling procedure.

∙ Postconditions. They are assertions which ensure that the value returned by a procedure

is inside the acceptable range specified in the contract. The implementation is in charge of

fulfilling them.

∙ Global Variables. When modifying this kind of variables in code, we have to take care of the

value since it might affect several procedures elsewhere. With regard to that, Spark provides

a mechanism for protecting the global variables in procedures from reading, writing or both

permissions. This allows deducing further information on how information is treated by only

reading the prototype.

∙ Information Flow. Some very useful elements that, establish dependencies among the ele-

ments in the function, giving further information to the compiler. This is something that

ensures that a variable of the program depends on several input variables.

Loop Invariants. They are assertions that ensure that a loop is being performed properly. It checks, e.g.

the whether the control variables of the loop are leaving the expected range of values, or whether

those same control variables are being incremented or decremented on each iteration.

Testing and Proof Contracts. Spark includes the ability to use several directives similar to preconditions,

postconditions and regular assertions that are only used in testing environments. They pursue a

better coverage of the tested software and the ability to include heavier proofs.
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2.3.2 Advantages and Disadvantages of Spark

This section describes the main advantages and disadvantages that Spark supposes against other alter-

natives.

As we have seen, Spark includes some very interesting features that might be very important for C++.

With regard to the function that preconditions, postconditions and assertions provide, it is pretty similar

to what our implementation provides. But it is interesting to analyze loop invariants, these elements

that might be saving some efforts from programmers task. There are two main concerns with regard

to these elements. The first whether they are interesting enough to be implemented in C++. And if

the implementation of the former would comply with the C++ philosophy to introduce features in the

language.

C++ provides an Assert Statement, which assesses a condition at a certain point of the code. The

loop invariants evaluation of the code can be beneficial since it is included near the loop statement. But

in the end it ends up being easily transformable to an assert statement and provided that C++ does not

implement a notation for ranges, it ends up not giving any advantage with respect to the usage of asserts.

With regard to whether the implementation follows the philosophy given to C++ contracts, the an-

swer is no. C++ philosophy in what respects to features included in the languages is always tending

to efficiency and giving the best performing applications. In that sense and although C++ contracts, a

priori, do not improve the efficiency of the code, they are pretty flexible allowing the programmer to

place them in order not to hurt performance. Loop invariants try to provide reliability, and reliability

and efficiency do not always cope properly. This means that assuming a check on each iteration of the

loop is not always assumable. Depending on the application, loops can suppose many iterations and

that means considering that the code of the contract is executed that many times.

With regard to testing and proof contracts, C++ offers an equivalence. In C++ there are several

assertion levels. Those assertion levels are included in the contract and the specification provides some

guidelines on which assertion level to use in each case. Compiling with a build level or another will

ensure that some contracts are checked or not. In the same way that Spark offers some directives that

will be executed only under a testing or a proof environment. In that manner, heavy proofs are only

included in testing versions whereas release versions do not include it.

Table 2.3 shows the comparison of C++ and Spark with respect to their features, advantages and

disadvantages in a summarized tab
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Feature C++ Spark

Philosophy Programer knows what he does Programmer commits errors

Commitment All-purpose High-reliable and secure systems

Objective Efficiency Reliability

Pricing FLOSS Not Free

Complete Features X 7

Preconditions X X

Postconditions X X

Assertion X 7

Global variable protection 7- Replaceable by assert X

Loop invariants 7- Replaceable by assert X

Information Flow Statements 7 X

Runtime Programming Checks 7 X

Table 2.3: Comparison of C++ and Spark

2.4 C# - CodeContracts

This section describes C# as programming language and its main characteristics. In Section 2.4.1 an

overview of the CodeContracts library is given. Finally in Section 2.4.2 we summarize the advantages

and disadvantages of the programming language.

C# is a programming language from the family of C-like programming languages. CodeContracts

is a library of C# which provides support for Design By Contract. It is a simple, object-oriented and

type-safe programming language. The main characteristics that make C# interesting are:

Component-Oriented. Similarly to the concept of OOP, this idea arises. It simplifies the way of con-

structing software creating components that perform a function. A difference usually between a

component and a class is that a component is a self-contained and self-describing package[21]. The

main difference is that a class can provide a functionality in relation with other classes and not be

self-contained whereas a component implies self-contention and the functionality included in it be-

ing completely independent of anything else present elsewhere. In fact, it determines a paradigm

called Component Object Model (COM) which provides tools for generating Components in many

other languages including C#. Furthermore, it allows the execution even remotely of a component
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and creating components in other programming languages.

Garbage Collection. It is an automatic mechanism that acts to free the memory whenever the program

reaches a point where some variable or region stops existing. This implies that we do not have

to care to free the memory however it creates a heavier runtime environment. As in Java, the

garbage collector avoids many programming errors. In addition to that, it is important to re-

mark that in order for the programming language to provide this service, it transforms objects in

array-like structures that as some programmers complain, makes difficult to care about memory

management. This transformation makes hard to guess in which region of memory a variable is

being allocated. Or when dealing with big applications, which is the memory region that has been

assigned to any of the elements.

Exception Handling. When an unexpected behaviour appears in the code, an exception is raised and

the user is able to act and manage that exception. It is contrary to the idea of returning error codes.

Unified Type System. Creates a unified type hierarchy in which all the types inherit from a common

type object. This allows generating a set of common operations that all types must support. All the

characteristics are inherited and can actually be user-defined if they are declared in the object type.

Versioning. This feature claims to solve problems that many programming languages have to deal with

when any of its components is updated to a newer version. At that point, some of the characteristics

that were offered are no longer available. This means that some of the objects might require a re-

implementation. For this purpose, C# offers the keywords virtual and override.

2.4.1 Design By Contract in C# - Code Contracts

We always have to relate to Code Contracts, when we address Contract Based Programming in C#. Code

Contracts is a library that composes part of the diagnostics engine of C# and enables the user to establish

contracts that are checked over some conditions. There are three kinds of contract directives offered in

C# [22]:

∙ Preconditions. Contract condition evaluated before executing a function. The user is in charge of

fulfilling the conditions in order for the function to execute correctly.

∙ Postconditions. Contract evaluated after the execution of a function. The responsibility of the

contract accomplishment is part of the software developer.

∙ Class Invariants. Conditions that are checked at the class member level. They ensure that the value

of any of the members is going to be fulfilling some conditions. This class invariants must be true

for all instances. We consider a class instance to be correct if all the class invariants are met.
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∙ Special Postconditions. Those special postconditions allow the user to act on old values of the

variables. It would permit a user the elaboration of a postcondition which evaluates how the

value has changed over the execution of a function. It also offers the user the alternative of putting

postconditions over the return value of a function and the pass-by-reference values that we transfer

to the function. It uses a special syntax which makes it very meaningful. It is important to remark

that special postconditions have limitations. This means that some of this syntax to refer to old

values and return values might not be interoperable.

The elements that C# provides are the same that other programming languages already provided to

this project. The interesting point of this language is the set of features that come associated with this

contract execution and its evaluation, namely:

Automatic Testing Tools. When developing the testing phase, contracts allow to remove meaningless

tests by comparing the preconditions and postconditions with the object of each of the unit tests.

This is a feature that enhances, especially in big projects the time spent in testing, something that

is very useful to integrate within other programming languages.

Static Verification. It is a feature that makes an analysis of the conditions of the code and even before

the execution it allows the user to know whether some contracts are failing or not. As we said it

only evaluates certain contracts that it is able to execute at a pre-compilation time such as implicit

contracts (contracts that the language already evaluates by default such as array boundaries or null

accesses) and explicit contracts (just in case that the evaluation is possible).

Dynamic Verification. Also known as runtime verification, it consists of checking the contracts while

the code is being executed. The classical way of doing this procedure was using if statements. With

this alternative, it allows a simpler syntax and more focused on the purpose of code verification.

Reference documentation. The preconditions, postconditions and class invariants are all used when

generating the documentation for the sake of completeness.

2.4.2 Advantages and Disadvantages of C# - Code Contracts

This section evaluates C# and its implementation of contracts. It evaluates the advantages and disadvan-

tages of using it.

When we have to evaluate C#, we find as in the case of Ada an all-purpose programming language.

But in contrast to all the counterparts, that we had with Ada, with C# we find that it is a very useful

language. In C# we find a huge community and a vast source of information. It has one of the best and

new-user-friendly documentation that we can find about a programming language. C# provides many

functionalities to perform anything that the user desires, without compromising the user freedom.
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With regard to contract-based programming, its framework is very complete, providing few but

very powerful functionalities. Something that is very interesting to see, is the automatic generation of

documentation from the contract that the users write. Another of the great advantages that the imple-

mentation that C# with respect to ours is the simplicity for the representation of the special postconditions.

Those include a specific syntax, that is better for the programmer and reader of the code.

It was already discussed the fact that class invariants are not the best performance-wise alternative

but it helps as a functionality for high-level languages. As a substitution for class invariants, the assertion

in our implementation is a great substitute which would remove certain checks from some functions.

Something that C# also provides is the ability to remove all the contracts from the code whenever

its needed by defining a preprocessor directive. However, this is better resolved in the C++ alternative

permitting the elimination of only part of the contracts.

[23] Finally, we remark the main counterpart is the fact that the CodeContracts library depends a lot on

the Windows platform. Among the complains that users have are also related to this. It is not that C#

is a bad programming language, it is that .NET, the platform that executes the C# code, slows the code

making it not comparable to native code. What C++ strives is looking to create implementations of a

code that could compile on several platforms, generating native code.

Table 2.4 shows the comparison of the characteristics of the C++ and C# with CodeContracts.

Feature C++ C# - Code Contracts

Commitment All-purpose All-purpose
Multi-platform X Multi-platform centered in Windows
Platform Native .NET
Preconditions X X

Postconditions X X

Assertion X 7

Class Invariants 7- Replaceable by assert X

Generation of Documentation 7 X

Table 2.4: Comparison of C++ and C# - Code Contracts

2.5 D Programming Language

This section describes an overview of the D programming language. Specifically Section 2.5.1 describes

how is Design By Contract implemented in D. Finally Section 2.5.2 describes the main advantages and

disadvantages of D.

The D programming language is an evolution of a C/C++ programming language with a syntax sim-
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ilar to Java. The origin of D is having an efficient programming language such as C or C++ but without

constraining the user on having to write low-level code[24, 25]. D has been used by many important

enterprises such as Netflix, Facebook or eBay for their projects since it provides a great alternative for an

easy-to-write and efficient programming language. D main characteristics are the following[24]:

Object Oriented Programming. It provides with an interface similar to the C/C++ syntax to create

classes that can encapsulate different attributes. The instances of a class generate an object. It also

implements operator overloading with which complex classes can be treated similarly to basic data

types.

Functional Programming. It gives a user the ability to work with functions in different ways. Functional

programming is a way of programming with functions at different points of the program. The D

programming language gives a user the possibility to use pure functions (the usual basic functions),

inmutable types and data structures (classes whose member functions do not modify the calling in-

stance but return a new instance of the modified object), lambda functions (functions that can be

declared within a context in order to be later on used with different names).

Productivity. The possibility to use modules in substitution of libraries is something that many pro-

gramming languages are trying to implement in newer versions. It also permits using generic

programming by means of templates.

Functions. D uses a similar concept to lambda functions which are the term of dynamic closures, which

permit the access to reference variables of other contexts within a called function. The in, out and

ref parameters are a kind of parameters that eliminate the necessity of using pointers since they

determine which is the usage that parameters are going to use in the functions.

Arrays. D arrays carry with them the dimensions of the array. In addition to that, strings have direct

support in the language and therefore we can create them as a separate object. This allows to

explicitly create an array of strings without the need of having to use char * types which are harder

to control for the programmer.

Ranges. It provides an interface to the user that allows him to specify sequences of values.

Resource Management. One of the most important points, it implements Resource Acquisition Is Ini-

tialization (RAII) so that user avoid finding null references. In addition to that it implements garbage

collection, custom memory management and low-level programming.

Performance. It is part of what we called down and dirty programming. It provides the possibility

of including explicitly written assembly language between the usual D code by using no special

directive.
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Reliability. D programming language provides an interface with which the user is able to create con-

tracts. This will be detailed in section 2.5.1.

Compatibility. Given that the C community is bigger, it gives access to the C functions by implementing

cross-compatibility with this two languages. This allows that D uses any C library.

Project Management. D brings us with the ability to generate multiple versions of a program with the

same text.

.

2.5.1 Design by Contract in D

In this section, we will detail the Design By Contract approach that D follows.

The Design by Contract approach in D is completely different from any other language. It is imple-

mented through a set of directives which are executed before and after the execution of the body of the

function. These directives enable execution of arbitrary code, thus being quite powerful. There are three

different kinds of directives that are applicable to functions:

∙ in. The in clause defines a context where the preconditions shall be placed. It permits the execution

of any code before the beginning of the function. Since preconditions are not supposed to modify

the behaviour of the function unless the parameters are wrong, it has no possibility of modifying

the arguments of the function.

∙ do. The do clause defines a context where the actual body of the function shall be placed.

∙ out (result). The out clause defines a expression for postcondition. It defines the context of the func-

tion that is executed previous to the return to the calling function. It receives as parameter result

which is a variable holding the result of the function. With that variable, we are able to evaluate

the correctness of the return value. This region is delimited to be used for contract postconditions

placement and should not modify the result that the function returns.

We have remarked the fact that the result of the code on the regions of in and out shall not modify

the actual function execution. The main argument supporting that is, that the release version might

not include those regions. In such case, any functionality included in those regions would be deleted,

resulting in an incomplete code.

With respect to class contracts, we can apply class invariants. Class invariants, as in other languages,

protect the validity of the members of a class. Class invariants are declared under the class body and

implemented under the clause invariants. As with the previous clauses, they can include any kind of
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Figure 2-2: D - Order of contracts execution

code related to inner members of a class.

In the case that any function modifies any of the members of a class, in order to speed up the ver-

ification of the fields, the validation of them is only executed at the beginning and at the end of the

functions that modify them. The strict order is first preconditions, then invariants are checked, later on,

the function body is executed, next, the invariants are validated again and finally, the postconditions are

executed.

Figure 2-2 shows the order in which contracts are executed in D programming language when a

function is executed.

Due to the nature of the implementation, no other keyword different than assert is included in the

language. This clause stops the execution of the program raising an exception in the case that the

condition under its brackets is not correct. The main reason not to include any other directive is that we

can put any statement within the in, out and invariant clause simplifying the implementation a lot[26].

Finally, we comment that as in other languages, D provides some implicit contracts built inside

the language. This is what we called implicit contracts in C#. Those kinds of contracts are related to

protecting the boundaries of arrays or protecting the transformation of types. As we see, this is a trend

that many programming languages tend to follow.
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2.5.2 Advantages and Disadvantages of D

In this section, we depict the advantages and disadvantages that the usage of D provides in a project.

When evaluating D as a programming language it seems like we are evaluating C++. That is because

of the similarity that both programming languages share. D shares many of the things that differentiate

C from C++ and it makes it very resembling. Among the main advantages that we find in D with respect

to C++, we find some elements that suppose a hop ahead of C++[27, 28].

Compile time execution is one of those features. C++ enables users to make compile-time execution

by means of the metaprogramming. Although the framework is very complete in C++, D provides a

much complex framework giving access to more advanced features. In addition to that, D provides a

simpler syntax for arrays management. It has a garbage collector that on the one hand, makes easier the

learning process for newcomers to the language. On the other hand, the garbage collector is as much as

possible avoided. Even experts in the use of this language try bypassing it. We already commented that

garbage collectors are not a good option since they end up wasting resources, and D’s garbage collector

is not an exception.

With regard to the contract implementation, it is controversial how some features are delivered to

the user. First of all, we take a look at having to use contexts to define the code of the preconditions

and postconditions. It permits creating an explicit process of validation of parameters before executing

a function. The execution of a code makes the condition and the purpose of preconditions and post-

conditions wider and does not close it into a specific requirement which is the purpose of Design By

Contract.

However, what is more contradictory, is the implementation of class invariants. They are used for the

validation of the members of a class. However, they are validated with a piece of code that surprisingly

is only executed at the beginning and at the end of functions. Although it is true that in this paradigm

the values of a function are usually modified inside the procedure, it is easy to depict cases where the

manual modification can lead to some error.

To conclude, we can say that D is a pretty good programming language for some public, however, its

design purpose is not clear at all. Firstly, because it claims to be a replacement of C and C++ because of

its performance, and then sacrifices efficiency by introducing a garbage collector or some checks in the

arrays. On the one hand, it gives the user many alternatives to protect itself from low-level code. On

the other hand, it ends up being an abstraction over C and C++, so anyone deepening enough in the

language will find necessary to use pointers and some other features that try to be restricted.

Table 2.5 shows a side by side comparison of C++ and D programming language summarising what
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we have commented.

Feature C++ D

Commitment All-purpose All-purpose
Design principle Efficiency Ease for programming / Efficiency
Domain Low-Level High-Level
Garbage Collector 7 X(Automatic and Manual)
Contract specification Clause Function Envelopment
Preconditions X X

Postconditions X X

Assert X X

Class Invariant 7- Replaceable by assert X

Table 2.5: Comparison of C++ and D

2.6 Microsoft Source-Code Annotation Language (Microsoft SAL)

In this section we will introduce Microsoft Source-Code Annotation Language (Microsoft SAL). Later on

in 2.6.1 we will comment the advantages and disadvantages of using Microsoft SAL.

Microsoft SAL, as its own name indicates is a notation language used to describe the parameters that

a function uses. Microsoft SAL is not a new programming language as any of the examples that we

were talking about before. Instead, it is an extension to the C++ programming language. Microsoft SAL

enables the compiler to automatically make checks on the code[29].

The code verification is done through the Visual Studio Framework. In order to speak about this,

I will make a little incise to illustrate some precedents about that. Even though C++ is considered a

multiplatform language because it is used in both Linux based and Windows operating systems, it is

not as interoperable as it might appear. The main reason for this lack of interoperability is actually

the Operating System. We have some common mechanisms in both OS, such as the STL (which is a

multi-platform implementation). But the wide majority of features differs from one to another. The OS

directory structure, the treatment of elements or the availability of libraries conditions the way in which

programmers develop according to the platform.

In this way, there are different libraries that are only available for the Windows release of C++. And

given that this programming language is extensively used in the Windows context, the company controls

how the implementation of it works. In this case, the usual way for developers in Windows to use C++

is with Visual Studio. It is an IDE which provides a complete environment for C++ development in
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Windows platforms. There are two versions of the IDE, the one we are interested in is only Windows

compatible because it is included within the full environment.

In fact, the two main purposes that Microsoft SAL[29] provides are the following:

∙ Automatic Code Validation. The annotations provide the analyzer with information that later on can

be used to guess whether those assumptions are being fulfilled or not.

∙ Improvement of User Readability. This annotations that are giving information to the compiler, are at

the same time giving information to the programmer. With this information, the programmer can

infer what are the things that can be done with the elements passed as parameters.

For example,lets assume that a programmer that is implementing the add function, that receives two

parameters a and b. Both parameters are annotated with _In_, which means that both are only input

and have to be treated as read-only. We would be making two assumptions, on the one hand, the code

analyzer would be checking whether there is any statement violating the condition and writing on any

of this two variables. Additionally, the programmer would be able to know if he is doing something

wrong and analyze the state of its function[30].

Microsoft Microsoft Source-Code Annotation Language is a static code analysis technique that is in-

cluded in C++ for Windows. We will now focus on what static analysis of code can provide us. On the

one hand, it is a powerful technique, which can discover errors even before having to compile the code.

On the other hand, the fact of not compiling it makes it inequivalent to runtime execution testing. The

information that annotations give to this compiler allow to infer many conditions. For example, given

that we are passing the length of an array to a function, the static analyzer would be able to analyze

whether at some point the code is going out of its bounds. In fact, since we are not dealing with the

same clauses than in other cases, the static analyzer is powerful enough to check the validity of each and

every condition that the user establishes. Anyways, as it is always said, the absence of errors does not

justify its proper behaviour[31].

2.6.1 Advantages and Disadvantages of Microsoft SAL

In this section we depict the main advantages and disadvantages of the implementation of Microsoft

SAL.

Microsoft SAL provides a completely different alternative than the contracts that we are used to

dealing with. It gives the user the ability to establish assumptions over the functions (behaviour and
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parameters), classes, structures that it is going to develop, and later on, the static analyzer and the pro-

grammer itself is able to validate those assumptions. Whether it is better or worse can only be specified

in each particular case. It is different and enables the user with a different set of tools.

It is important to remark at this point the differences between our implementation, and this one. This

implementation works properly to check the code for the available annotations, but it is by no means a

generic annotation language. It provides structures that allow validating a wide range of cases, but there

are some that the user would not be able to validate simply because of the need of execution. In case we

wanted to validate for example whether a computation is made correctly, this alternative would not be

useful.

In the same way, the implementation of the contracts lacks some conditions that can check at runtime.

For example, the ability to check the calling function without modifying largely the code. Nevertheless,

the runtime implementation always holds more flexibility since it permits a wider range of checks than

a static analysis execution. It is true that static analysis is the only possible way to know whether the

code will fail at some point, however, runtime analysis is valid for a wide majority of programs.

In fact, the Microsoft SAL implementation tries to fulfil some necessities C++ is missing. C++ does

not implement any boundary check on the arrays, however, Microsoft SAL enables a user to statically

check if for some reason is having an array out of bounds exception. Or the case of modifying a reference.

In such casuistic, the user would not know if the data with which he invoked the function has been

modified. With these kinds of annotations, he can be sure of what to expect of a function.

Another huge disadvantage of this framework is being Windows only. Although Windows is highly

present, it is a paid alternative, and we have to take it into account. Of course, contract-based program-

ming is for particulars, but it is more an approach for big enterprise projects rather than little ones. So

pricing has to be taken into consideration.

In conclusion to this section, depending on the characteristics of the project, we will have to deal with

different problems, depending on the characteristics, both frameworks could even be used at the same

time. However, the big controversial fact about this set is the fact of being Windows only and therefore

supposing a cost per licence.

Figure 2.6 shows the comparison between C++ Contracts and Microsoft SAL.
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Feature C++ Contracts Microsoft SAL

Flexibility X Limited Features
Number of clauses Few Many
Code Analysis Type Dynamic Static
Condition Specification X 7

IDE Dependent 7 X(Visual Studio)
Operating System Windows, Linux, Mac Windows
Orientation Compiler Oriented Code Analyzer

Table 2.6: Comparison of C++ and Microsoft SAL



Chapter 3

Background

In this chapter, a description of the main background needed to develop the project is described. In

Section 3.1, a background of the design of a compiler is given. Later on, in Section 3.3 a description of

what a generic compilation process is depicted. Then in Section 3.4, the GCC compiler is overviewed.

Then in Section 3.5 an detailed description is reviewed in Clang Compiler. Afterwards, in Section 3.6 a

comparison of GCC and Clang is performed evaluating them. Finally, in Section 3.7, different compilers

are

3.1 Reasons to Modify the Internals of a Compiler

This section discusses the benefits of implementing the proposal inside the compiler. These are:

∙ Introducing a new syntax is not possible unless it is correctly parsed by the compiler.

∙ Contracts might be perfectly taken into account in static code analysis.

∙ Class inheritance shall be taken into account.

∙ Efficiency is a must.

For all these reasons, a modification to the compiler internals is required.

3.2 Compiler Definition

In this section, we depict the concept of a compiler and its definition. Apart from that, we explain several

types of compilers.

A compiler is a tool that is used to transform from a language into another lan-

guage. It is usually conceived to transform a program from a high-level language

into machine code.

31
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We usually define machine code as the native code that an architecture is able to interpret to make

operations. It is usually assembler code even bytecode. Although the main objective of a compiler is to

make the translation, their job has become complex since the transformation requires some checks in the

meantime. A compiler evaluates the code looking in it for any kind of error, and trying to solve it.

Usually, we tend to deal with compilers for the creation of object code, however, compilers are not

limited to this field of action. The usage of compilers covers a huge different set of disciplines:

∙ When we deal with interpreted programming languages such as Python or Javascript, we are dealing

with interpreters which are a kind of compilers which analyze the code for its validity and later

on they execute it.

∙ Source-to-source compilers translate from one high-level language to another high-level language,

for example translating from Java to C.

∙ Cross-compilers are in charge of generating code for a different platform. For example, the Ar-

duino platform works this way. The platform is not powerful enough to compile its own code,

therefore we use a compiler in order to generate from a computer the code that then is sent to the

device by a serial port.

3.3 Compilation Process

In this section we describe the generic compilation process of a compiler and its subparts. Specifically in

Section 3.3.2, we detail the behaviour of the preprocessor. Later on, in Section 3.3.3, we break down the

lexer behaviour. In Section 3.3.4, we explain the compiler parsing process. Afterwards, in Section 3.3.5,

we overview the Semantic Analysis process. Next, in Section 3.3.6, we detail the code generation process.

Lastly, in Section 3.3.1, we break down the behaviour of the compiler driver. Finally, in Section 3.3.7 and

3.3.8, we review the functions of the Abstract Syntax Tree (AST) and the Symbols Table respectively.

According to what we previously said, we would define compilation as the action of compiling a

program, however, we will treat it as the process of transforming a high-level code into machine code.

Usually, when we speak of compilation there are two main parts, the front-end and the back-end. When

we speak of front-end, we usually refer to the part of the analysis of the code and generation of inter-

mediate code. We refer to intermediate code since we create an intermediate representation of the code

from which we are able to generate machine code for different architectures. After the generation of the

intermediate code, we usually perform some further optimizations over assembly code and perform the

transformation of the intermediate code to architecture specific code. The compilation refers to the ac-

tions carried out in the front-end and within the front-end, there is usually a subdivision of the formerly
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called analysis phase which covers the first three phases of the analysis.

We can distinguish 2 main types of compilers:

∙ One-pass compiler. In this kind of compiler, the code is analyzed by reading and going through it

one time. In this case, the compiler generates the machine code from the source code.

∙ Multi-pass compiler. In this kind of compiler, some intermediate representations of information

are created. In this way, we refine the representation of the language and we are able to perform

a proper analysis. According to experts, compilers tend to be safer if the analysis is done multi-

pass way. In fact, these intermediate representations permit the elaboration of further abstractions

which are more adequate for optimizations. For validation of the former, it is always easier to

validate smaller pieces that work together than a big compiler doing everything at once.

Figure 3-1: Generic Compiler Execution Flow

Figure 3-1 shows the generic flow of a compiler. The figure shows clearly what is considered the

front-end and the back-end. This scheme is going to be followed and described in following sections.

3.3.1 Driver

In this section, we describe the main functionality that the Driver provides in a compiler.

This element does not have much relation to the process of analysis of the code. However, we are not

only interested in the theoretical implementation of a compiler. We are also interested in the details that

usually a compiler programmer is interested in.

The driver is the first element of the compiler to be executed. It is in charge of making the execution

of each of the other elements of the compilation. All the compilation options are directed to it, and it is
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in charge of managing those depending on where they are targeted to. With that we can distinguish two

cases:

∙ If the compilation option is targeted to the Driver, it will be handled by the Driver and removed

from the list of options.

∙ On the other hand, we have other types of options which target other steps of the compilation.

Those options are managed by the driver and left in lists which will later on go to the corresponding

phases of the compilation.

Another of the responsibilities of the driver is to open the files to be compiled. Whenever we try to

compile something that does not exist in the file system, it is usually the driver who warns it.

Finally, the driver is able to use different toolchains. A toolchain is the set of actions to be carried out

in order to obtain a compiled code in a specific architecture. Depending on the Operating System, the

Driver identifies the proper toolchain and launches each of the elements of that toolchain.

After the execution of the Driver, the Preprocessor is executed over the files that we have just treated.

3.3.2 Preprocessor

This section describes the Preprocessor behaviour, it happens right after the execution of the Driver and

deals with the file it just opened.

This phase is not considered part of the compilation, it is a pre-compilation stage for the code. The

preprocessor is in charge of substituting elements in the code so that the compiler can understand them.

One of the elements that is under its responsibility is looking for preprocessor directives and trans-

forming them. More in the C world than in the C++ world, it is usual the usage of preprocessor

directives. For example, by means of the clause # define we are able to generate an easy substitution for a

value. What the compiler does with these elements is looking for them in the code and substitute them

by their equivalences. The result of this phase is a code with no equivalences.

In fact, the function that we are interested in preprocessor is the import of libraries. Libraries are

declared with the clause #include. When the preprocessor finds any of the clauses, it looks for the library

name in the include directory paths and pastes the code of the library directly in the place where the

#include clause is.
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The result of this phase is going to be the same as the source code but with all preprocessor directives

already substituted in the code so that the lexer can transform it.

3.3.3 Lexer

In this section, we describe the functions of the Lexer or Lexical Analyzer, which generates a transfor-

mation from the preprocessed file.

The lexer is also known as the lexical analyzer is a subsection of the compiler which is in charge of

creating subunits of code by reading the code. The lexer is in charge of reading the source code, and

with some information given in advance, it tries to create the different small units that we can, later on,

compare with the symbols in the grammar. Those basic units are usually called tokens. This constitutes

the first phase of the code analysis.

In the lexer, we usually have a table with equivalences. What the lexer does is picking characters, one

by one, and try comparing with any of the equivalences of the table. Whenever it finds an equivalence,

it creates a token of that type.

There is usually a token per reserved keyword in the language. In addition to that, we create a spe-

cial token for each different operator. Finally, what remains unclassified are usually variable names and

constants. The variable names are usually assigned identifiers and the constants are usually stored with

its same name.

Though we are creating an abstraction over the language, usually, we are not interested in losing

detail from the code so we still store the string of code that gave the result to this token. We usually try

to keep the information that later on can be useful for any diagnosis engine or the compilation.

To perform the lexer process, we usually take into account either a grammar which includes all the

types of tokens or regular expressions. The grammar allows us to differentiate each type of token and

the characters.

Lexers in some high-level languages have to fight a problem when finding the tokens and that is am-

biguity. In C or C++ we tend to use some operators in a non-distinctive way. We use operators differently

depending on the utility, for example, multiplication and pointer access use the * operator. The problem

is usually ambiguous to the lexer for certain strings. The problem relies on the fact that we introduce a

chain that might be interpreted in many different ways and depending on the context it means different

things. One of the examples of this chain is (X)*Y. This chain without further information could be

interpreted in different ways, such as the multiplication of two variables (X * Y)or the dereference of a
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pointer ((X)(*Y))[32].

The most widespread solution is to implement some contextual information feedback from the Se-

mantic Analyzer to this section. In this way, we are able to analyze which is the context of the token and

solve it. Another solution is the possibility of lexing multiple times the file in case that the parser finds

inconclusive the search in this way. However, one of the most well-known alternatives is the carried out

by the Clang Compiler where it uses its own library and its own knowledge to be able to deduce which

is the kind of token it is dealing with[33].

After this section, a sequence of tokens has been generated from the source file. This sequence of

tokens needs to be processed to check whether it matches the grammar. This process is done by the

Parser.

3.3.4 Parser

In this section, we talk about the parser. The parser is in charge of verifying that the code is compliant

to the grammar.

We usually call Parser to the Syntax Analyzer of the grammar and constitutes the second phase of

the code analysis. Oppositely to the idea that we have of the compiler as a pipeline, it is far from that

conception. It usually goes back and forth trying to find structures that fit the grammar that in principle

was defined and governing the behaviour of the compiler. Compilers tend to be Parser-Driven in the

sense that it is the parser who demands things to other components of the compiler.

The parser asks the lexer for tokens. It uses those tokens to, in the order that they were received, to

compare them with the grammar. The grammar specifies the order of tokens that are admissible for the

programming language. However, there are multiple ways in which a grammar can be analyzed. We

can distinguish two main classes of parsers:

∙ Top-down. This kind of parser goes from the axiom making derivations over all the productions in

order to match a production rule. This is usually implemented in a form of Recursive Descent Parser.

A recursive descent parser suffers from backtracking. Although recursivity is not something good

at all it is difficult to find implementations of compilers not using this. A top-down recursive descent

parser is constructed from a tree from the input which is read from left to right until it generates a

terminal symbol that matches. If it does not find it, it backtracks and tries with other derivation.

There is a kind of Recursive Descent Parsers called Predictive Parser which generates all possible

derivations and in that way, it avoids having to backtrack.

∙ Bottom-up. This is a kind of parser that evaluates from the result tokens and tries to fulfil the
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grammar from the leaf nodes up to the root. If it is able to reach the root node from the leaf nodes

it means that the sentence is correct and accepted by the grammar.

As we have seen what both of this types of parsers do is analyzing an input and trying to reach

the output from it. In case that for some reason it is not able to find a production that satisfies the

input in the grammar, then the compiler warns an error. If a sentence does not match a production, it

does not strictly mean that it is not correct, as we have seen there might be several productions from a

non-terminal symbol.

In case that we want to add something to the language which does not follow the syntax supported

by the grammar, then changes should be made to the production rules of the grammar.

Once we end this phase, we are sure that the sentences that we have are syntactically correct. How-

ever, some statements might not be correctly placed in some context. In the following section, we

describe the Semantic Analyzer which is in charge of analyzing the context information of the code.

3.3.5 Semantic Analyzer

In this section, we describe the Semantic Analyzer. The Semantic Analyzer is in charge of validating the

context information of the code.

The semantic analyzer has a wide functionality. It constitutes the third and last phase of code analysis.

It takes the context information and evaluates the sentences checking if they are correctly placed in the

code. It might happen that we are dealing with an expression that is correct from the point of view of the

grammar, however, the expression is not properly placed in the programming language. For example,

placing an executable statement outside a function in C or C++. Among the main functionalities that it

has we can see the following:

∙ Type checking. We have already talked for long about the type checking. It is a process which

consists of evaluating everything related to a type. The semantic analyzer evaluates if the assigna-

tion of variables and values are being properly done. It tests whether a type is being operated with

an incompatible type.

∙ Type compatibility. It compares expressions and checks assignations in case that is made from

different types checking that both are equivalent.

∙ Polimorphism checking. It evaluates whether an instance of a class is correctly taking the form

that it should. It goes one step ahead of type compatibility, it is done with inherited classes when

we want to give a subclass the aspect of a superclass. It is not always compatible since it depends

on whether the members that it holds inside have the same size as the superclass.
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These are some of the most important characteristics that it checks for, however, it does not stand

there. Semantic analyzer does among other things the following: type coincidence, declaration of vari-

ables, reserved identifiers usage, multiple variable declarations within the same scope, out-of-scope

variable access or parameters type coincidence[34, 35].

At the end of this section, the code is already correct. With this code, the Code Generator is able to

create the intermediate representation.

3.3.6 Code Generator

In this section we describe the Code Generator, whose main functionality is to generate the intermediate

code.

The Code Generator is in charge of transforming to intermediate code, however, this would limit the

ability of the compiler to generate code for multiple architectures. That is why the code generates an

intermediate representation. It is usually assembler-like code that keeps all the information that might

be needed for the back-end to generate machine specific code. Apart from that one of the main ad-

vantages of intermediate-code is that it is designed to make optimizations easier. In fact, if everybody

is able to optimize the intermediate-code the results are better for every architecture and not just one [36].

Summarizing this phase, it picks any of the sentences that have been proven to be correct and gen-

erates the equivalent sentence in intermediate code. The compiler has some predefined structures that

allow the conversion from a high-level code sentence into intermediate-code statements.

But the sentences are not picked directly from the code. They are picked from the Abstract Syntax

Tree (AST), which is an intermediate structure that the front-end generates and the Code Generator uses

to carry his function. The AST is described in next section.

3.3.7 Abstract Syntax Tree (AST)

In this section we describe the concept of Abstract Syntax Tree (AST) which is a fundamental structure

of the compilation process.

The Abstract Syntax Tree (AST) is a tree that holds the structure of the program by means of nodes.

Each node holds the information of the code and the characteristics of it. It is present everywhere since

almost any component could theoretically extract information from it. However it is normally is man-

aged by the parser, from there the concept of a parser-driven compiler.
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The creation of it is done in the parser. The order of action of the compiler tends to be the following:

1. When the parser needs, it asks the lexer for a token and the lexer provides the parser with a token.

2. The parser verifies the token with the grammar.

3. Once the compiler is able to match a sentence with the grammar, it invokes the semantic analyzer

to check for the correctness of the statement.

4. If everything goes fine, the semantic analyzer has a successful analysis and the parser generates

the corresponding nodes.

5. Then, the parser is in charge of adding those nodes to the tree below the corresponding parent

node.

Each node of the ASTholds enough information from the source so that when it is needed it can be

retrieved and so that we are not losing detail when any transformation to it is performed.

With this in mind, we do not have to be generating code as we receive sentences, we just store it

temporarily in the AST and later on whenever we need it, we can extract information of it. Actually, the

fact of it having the shape of a tree allows extracting context information by looking at the parent and

child nodes. Given all that, the process of code generation just imposes the read of the AST in a certain

order and generating the information in it.

3.3.8 Symbols Table

In this section, we describe the Symbols Table which is a fundamental structure of the compilation pro-

cess.

Whenever we deal with variables, we can get a common error “Variable ’x’ is not declared in this

scope”. This error is mainly due to the symbol table. It is a structure which stores all the information

regarding the variables, objects that we create in our program.

It stores all kinds of information inside to be able to follow variables during its lifetime. Some of

the information that it stores is the scope where variables exist, its access restrictions (for private class

members), the type of a variable, the line where they were declared (in case that someone wants to use

a variable before it was created), etc...

In fact, the symbols table includes some clever mechanisms to follow the redeclarations of types that

we can create on the classes and structures. Whenever a new type is created it stores information on that
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type and links it to the types it already knows. In the beginning, it links it to basic data types such as

int, char, float or double, however, once the language starts to be richer, the symbols table recognizes all

those types.

3.4 GNU Compiler Collection (GCC)

In this section, we describe an overview of GNU Compiler Collection (GCC), which is one of the most

extended compilers.

GCC is the default compiler that GNU Operating System use. This compiler is intended to work with

C, C++, Objective-C, Objective-C++, Fortran, Java, Ada and Go along with many of the internal libraries im-

plementation of those languages such as libstdc++. In this case, we are interested in the working for the

C++ language since it is the language that we are dealing with in our project. In the first versions of the

compiler, GCC was implemented as a Look-Ahead LR Parser (LALR) for some front-ends but recently it

has switched all its front-ends to be a Recursive-Descent Parser. The intermediate code is only generated

in some cases where it is needed, in the rest of the cases, the machine code is generated from the AST.

GCC is usually divided in 2 phases, front-end and back-end. The first phase is the front-end which

provides a specific parser for each language. The front-end of each language generates the AST. The AST

is already a standard representation from which GCC is already able to generate a specific architecture

code.

However, in some cases, GCC generates a intermediate code representation in two different languages

named GENERIC and GIMPLE [37]. In the origins of GCC, instead of using these modern representa-

tions, a more basic language was used, called Register Transfer Table (RTL). This alternative was later

replaced because it supposed an advantage in terms of low-level optimizations. That is mainly because

Register Transfer Table had some disadvantages such as the inability to deal with structures and arrays

and the early introduction of the stack limits. GENERIC is a language-independent representation used

for intermediate code. This language is generally used for the representation of functions in trees. GIM-

PLE is another language-independent representation that is a subset of GENERIC. Its purpose is related

to code optimization since GIMPLE retains the structure of the parse trees, lexical scopes and control

structures [37].

With regard to the back-end, it is in charge of generating machine code and usually calls the linker if

an executable is the desired objective. Since the front-ends are dependent on the specific language, we
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need a specific front-end for each language. However, GCC has only one back-end since the front-ends

generate a common specific representation.

GCC is probably the most well-known compiler for C. It usually comes preinstalled with most Linux

distributions (distros). GCC is mostly programmed in C and C++. As many people argue it is a complex

task to modify it since it requires a deep knowledge of it. In addition, there are few documents on

how its internals work. This added to the complexity of modifying a compiler makes it a not so proper

alternative for the inclusion of new features.

3.5 Clang

In this section we describe Clang, the main alternative to GCC in what C/C++ language free compilers

respect. Specifically, in Section 3.5.1, we describe LLVM, the intermediate language representation over

which Clang is built. Later on, in Section 3.5.2 we describe the internals of Clang.

Clang is another of the great alternatives which is present nowadays for compiling C and C++. The

Clang project aims to provide a front-end for C, C++ Objective-C, Objective-C++, OpenCL C and others.

As we already know, the front-end is usually a part which is in charge of generating the intermediate

representation which in this case is in IR. Whereas the back-end, LLVM, would be the part in charge of

generating the executable.

Although the usual alternative and default option for many Operating System distributions is to use

GCC, there is one well-known operating system that uses Clang, that is Mac OS. Clang interest has

grown in recent times from many well-known enterprises such as Google, Apple or Microsoft. Those

enterprises have gained a lot of interest over this compiler and LLVM because of the modularity, its

relative ease of use and the possibility of implementing new tools thanks to its interface.

As in GCC, Clang provides an implementation of the C++ Standard Library. The C++ Standard Li-

brary is just a specification in which the ISO C++ committee establishes the guidelines and features that

it should guarantee. Since Clang design principles vary from the implementation offered by GCC, they

implemented a different version of the C++ Standard Library.
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3.5.1 Low Level Virtual Machine (LLVM)

In this section we are describing Low Level Virtual Machine (LLVM), which is a intermediate language

that the Clang compiler uses.

LLVM is a project born to develop a low-level compiler which optimized the alternatives that were

present. Its objective was to create a language were optimizations were able to be carried out indepen-

dently from the source and also independently on the output machine.

The project includes a programming language called Intermediate Representation (IR). This program-

ming language is a low-level assembly-like representation which holds a lot of the information from the

original programming language. It ends up being a very complete assembler code. The ability to retain

all that information allows that later on the transformation of the code into machine code is done in a

consistent way and without losing the detail that was expressed in the code.

In fact, it has another huge advantage. Usually building the own compiler for each programming

language, would mean that we have to build the front-end and the back-end. The problem of the back-

end is having to implement all possible transformations of the chosen intermediate code representation

into a machine code representation. In case a compiler for only desktop computers was developed, this

would imply at least supporting Intel and AMD processors with amd64. This would mean having to

re-implement all the transformations of our intermediate code into only one machine code language but

taking into account the differences of implementation of both manufacturers. And even in that case, we

would be leaving out a set of processors that are more than present nowadays such as ARM, MIPS or

PowerPC.

LLVM provides with a tool that everyone can use for its programming language. It eases the imple-

mentation of a programming language in a compiler allowing anyone to have its programming language

used in many platforms. This means that we would have just to implement a front-end transforming to

IR, and we would be obtaining all the optimizations and the ability to transform to a wide variety of

platforms independently from the source programming language.

3.5.2 Clang Internals

In this section we describe the Clang Internals, that is, the different modules that comprise it[38]. In

Section 3.5.2 we describe the Clang Driver. Later on, in Section 3.5.2 we give an overview of which are

Clang analysis phase. Followingly, in Section 3.5.2 we describe the Clang Preprocessor. Then, in Section

3.5.2, we analyze the lexer implementation in Clang. Next, in Section 3.5.2 we show the function of



CHAPTER 3. BACKGROUND 43

Clang Parser. Afterwards, in Section 3.5.2 we describe the Semantic Analysis in Clang compiler. Then,

in Section 3.5.2 we look at the concept of AST and the concept of visitor. Finally in Section 3.5.2 we look

at the code generation.

Driver

In this section, we describe the Clang Driver module.

As in a normal compiler, the first element to appear in the scene is the Driver. In Clang is the

main process launched and it is there for the remaining of the execution. The Driver is in charge of

parsing the arguments and it also extracts platform-specific characteristics for the compilation. The

platform information is extracted for it to, later on, be able to choose a toolchain. A toolchain is the

set of guidelines that the execution suffers in order for it to adapt to the different platforms where the

compiler is available. For example, we could be setting up the compilation to affect differently depending

on whether we are on a Windows on a Unix computer. Now we detail the steps that are carried out in

Clang during the Driver execution. From the information extracted from the Clang webpage the steps

followed by the Clang Driver [39] are the following:

1. Argument Parse. It takes all the arguments and parses them into specific objects so that the

compiler analysis can treat them with ease. These arguments are later on passed to the specific

toolchain. The Driver chooses depending on the argument whether to pass it or not to the next

phase. In addition, this serves to transform the attributes for the specific toolchain something that

is equally done in GCC.

2. Compilation Construction . The compiler creates a compilation from the input arguments line.

From the files obtained at first in the compilation line, it establishes which are the necessary actions

to carry on with each of them. The set of actions is usually a set of steps followed by a compiler in

order to compile a source file.

3. Tool and Filename Selection. This step is one of the most complex of the Driver selection. From

the list of actions to be carried out, the compiler infers which tools are going to be performing each

action. Once everything is done, the Driver loads the different toolchains to use the different tools

that they need. A normal execution might require Tools from different toolchains.

4. Tool Specific Argument Translation . Once we know which are the different arguments that are

needed for each of the phases and the Tools that we are going to use, the arguments are passed to

each of the tools. The main reason for doing this in this step is that each tool is independent and

generates input and output. Thus, the arguments affect only specific tools.
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5. Execution of the actions. When we know all the steps, to be carried out the different execution

pipelines are executed for the different files.

Analysis Phase

In this section, we overview the analysis phase of the Clang compiler.

With all the previous knowledge in mind, we can now start talking about the analysis phase of

the compiler. The analysis phase takes several steps and involves several classes that we are going

to try to handle in a straight way. Although the compiler pipeline usually starts by the Lexer, Clang

works differently and all start with the Parser. The process in which Clang does the compilation is the

following:

1. Parser. Clang compilation process starts with the creation of a Parser. We already commented that

it is very common to have “parser-driven” compilers. Clang creates the Parser. The Parser is in

charge of generating the different modules needed for the compilation. The parser main function

is to generate the AST.

2. Basic Compiler Phases Generation. Before starting the Parser, a Sema object is initialized. In

Clang the Semantic Analyzer is usually called Sema. In Clang, Sema validates the nodes that are

later on inserted in the AST with the information that the code provides. Next, a Preprocessor is

created. Although we have talked of Preprocessor outside the analysis phase, in Clang it is taken

and considered inside the compilation. The Preprocessors main function is to translate the input

file substituting all directives and including all libraries that are necessary. The important fact

about the Preprocessor is that holds the Lexer inside. When we are tokenizing the file, it is the

preprocessor who holds the Lexer object inside.

3. Parse and Code Generation. Once we have all the elements needed, the compiler analyzes the

code by top-level declarations. A top-level declaration is any declaration that we can find global in

the code. The simplest example of a top-level declaration is a global variable. The compiler parses

each of the top-level declarations generating the AST and once it is ready, the Code Generator

generates the code the corresponding node. This is done for all the top-level declarations that it

finds.

4. Final Generation. When compiling, we are not always able to generate the code for some elements

the first time we go over it. Those symbols are delayed and are generated at the end of the

compilation and once everything else has been parsed. That is because the compiler needed some

information that when parsing the first time was not possible to find. This phase is executed once

all the code has been parsed.
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5. Code Generation. At the same time as we were parsing the Code Generator, CodeGen in Clang,

we were generating an intermediate representation in Intermediate Representation (IR). This inter-

mediate representation can be transformed into machine code.

Figure 3-2 shows the Clang compiler execution flow with the modifications that it has from a usual

compiler.

Figure 3-2: Clang + LLVM Compiler Execution Flow

Preprocessor

In this section, we describe the Clang Preprocessor.

The Preprocessor is the main class representing the management of files up to the beginning of its

analysis. Clang uses an abstraction layer for files which is similar to any usual file system. It creates

different file objects and identifiers which allow to open and treat each of the files involved in the compi-

lation process in a specific way. The object used to identify the files is usually the FileID object. However,

the preprocessor creates an abstraction through the SourceManager object so that whatever uses this file

does not have to deal with the specific characteristics of the object.

The Preprocessor class is also in charge of creating the Lexer in Clang. The Lexer class is contained

inside the Preprocessor class and it is the Preprocessor class who governs the Lexer by initializing its

execution.

After the execution of the Preprocessor, the Lexer is analyzed.

Lexer

In this section, we break down the main functionality that is present in the Clang Lexer process.

The Lexer class is in charge of performing the Lexical Analysis of the source code. The Lexical Anal-

ysis consists of the transformation of the different characters into meaningful sequences. It is performed
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by the class TokenLexer that picks character by character trying to match each of the identifiable sequences

of characters. Once we are able to match one sequence it creates a Token object. As it was described in

section 3.3.3, the Clang compiler features a special Lexer which takes into account the context informa-

tion in the creation of the Tokens. This avoids having to deal with information flows from Sema to this

part. The Token object implements several methods which make it able for us to compare with following

tokens and the type of the token. This type of the Token allows us to compare it with the grammar.

Since the Lexer in Clang is kind of mixed with the preprocessing of files, both are carried out at the

same time, but by changing the parsing mode. In case that the compiler finds a # symbol, it will switch

the mode to ParsingPreprocessorMode. In this mode, the reading of the file changes and takes into account

different parameters such as the End Of File (EOF) being switched to End Of Directive (EOD). Another

of the modes is ParsingFilename which is used when we find a #include directive. This allows that we

perform at the same time the Lexing and Preprocessing of a file.

Parser

In this section, we analyze the Parser and its main functionality.

The Parser class is one of the fundamental classes in the compiler. It is in charge of verifying the

grammar. It is done by successive condition evaluations whenever a Token is received. It contains the

recursive-descent parser.

Although the responsibility is reduced to checking the grammar, the Parser controls the rest of the

execution.

The Parser task is closely related to Sema actions. Actually, most of the analysis is performed by

these two classes. If we look at it from the code perspective, the Lexer is just in charge of generating

tokens that it finds in the code. This creation of tokens, unless some evident errors, will not validate the

code. Instead, the main task comes from the side of the Parser and Sema.

Sema is described in the following section.

Sema

In this section, we describe Sema, the class in charge of performing the Semantic Analysis of Clang.

The Semantic Analysis is a crucial step in the process of compilation of Clang. It has two main tasks,

first, it is the generation of an AST node from the information received both from the Token and the

Parser. With that information, Sema is able to instantiate nodes with very different characteristics.
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The first phase is the validation of the different pieces that Sema receives from the Parser and Lexer.

The Sema verification implies whether the node is correctly placed within the context. This information

is usually further information that the grammar cannot verify, for example, whether the attributes are

associated to correct types of functions or if the values of each of the fields are correctly placed.

After having performed all the checks, the Sema generates an instance of the node being analyzed

and returns it to the Parser so that it adds it to the AST.

C

Abstract Syntax Tree (AST) and Visitors

In this section we describe two important concepts. First of all, what is the Abstract Syntax Tree (AST)

and secondly what is a AST Visitor.

In Clang, one of the most interesting structures is the AST. It is programmed to hold all the infor-

mation from the source code. This is of a huge importance when we relate it to the generation of code.

Storing all the information in the node permits us later using this information to accurately generate

anything.

One concept to take into account at this point is the concept of Translation Unit Declaration. It is a

AST node is important that is the root node of a compilation. The Translation Unit Declaration Node is

created at the beginning of compilation and from it are appended to the rest of the nodes. This concept

is important to take into account when we deal with the code generation because, as we will observe in

section 3.5.2, is performed in two steps.

Another concept to take into account is the concept of Top Level Declarations. Any Top Level Dec-

laration is a declaration whose parent node is the Translation Unit Declaration. Again this is important

because of the compilation steps. The compilation takes first into account the Top Level Declaration and

in the last step takes into account the Translation Unit Declaration.

Before deepening into the task that CodeGen provides, we need to mention the term visitors. What

has made Clang a well-known compiler is its ability to make tools over the interface that it provides.

Visitors are a great example of this. Visitors give the programmer the capacity of generating a tool to

make an analysis of the code very easily. They provide an interface through which we can traverse a

generated AST for any code and perform local operations on nodes of our interest.

In fact, this tool allows an easy modification of the code. With this technology, we would be able

to easily create a cross-compiler by transforming the structure of any node to the destination language.
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This tool is a generalization of what in fact Clang does inside it within the CodeGen functionality.

A visitor is a special kind of metaprogrammed element. It works by specifying functions for each

kind of the statements. For the vast majority of them we might not be interested in visiting them and

for them, an empty implementation inherited from the parent class. However, we can override those

implementations to visit and execute custom code for the nodes we need.

CodeGen

In this section, we describe the process carried out by the Code Generator in Clang.

If we recap the concept of visitors, is because a visitor is an abstraction of what CodeGen is. CodeGen

is a complex implementation of a visitor. CodeGen is called in two ways:

1. Top Level Declaration. The Parser and Sema are in charge of generating each of the Top Level

Declarations. Once each of them is generated, CodeGen generates the IR code for everything that

is able to do. This means that for example the instantiations of template functions of C++ might

not be translated directly at that point since no usage might have been registered yet.

2. Translation Unit Declaration. Once every of the compilation elements have ended, and the Parser

and Sema have already processed all the code, the emission of the elements that could not be gen-

erated previously is done. In this step, CodeGen generates the instantiations of template function

or delayed generation elements.

The functionality of the CodeGen is performed in a similar way as a visitor that recursively visits all

nodes, then checks for validity of the node and in case that it considers it proper generates the equivalent

LLVM code.

The CodeGen module contains all the implementation of the different translations from a node to the

IR code.

3.6 GCC vs Clang

In this section, we describe the main advantages and disadvantages of using each of the compilers de-

scribed before.

With this, we already have a little background on what compilers do. Although this is a more or less

detailed explanation, it reaches no more than the tip of an iceberg of what a compiler is.
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With these two compilers, we have to choose for the implementation of the new features. In this

section, we will observe the advantages that one supposes against the other and we will take a look at

some performance evaluations taken over both compilers.

At a first sight, we can observe that our explanation of Clang is much wider and deep than GCC.

The main reason for that is the documentation. By far, Clang provides a much more complete documen-

tation than GCC. The documentation of GCC compiler is very poor. When we were trying to look for

information and documentation on the internals the only things that we reached is a page where you

find a general description of some functions that might or might not be useful for your development.

This, in fact, makes development a huge obstacle. Compilers are not especially little and simple pieces

of engineering. Clang compiler code contains around 2.5 million lines of code. This means that looking

inside it not one of the easiest tasks. If we consider that in our design we have to modify the compiler,

the learning curve without documentation increases a lot with GCC.

This does not imply that Clang has a good documentation. Clang documentation is almost auto-

generated by Doxygen. Doxygen is a documentation software that uses annotations that are made on

the code to generate automatically the documentation of the compiler. This is a great alternative for the

beginning, however, it does only provide information on all the things that want to be hidden such as

private class members. For example, if we want to make a constant function, we have to dive into the code

and look for the implementation. This is because the implementation of that is done in certain functions

that are not public and hidden to the user. Those functions are performing a private function, and since

the user is not supposed to know that, it is almost impossible to get to that point without touching the

real code.

Either way, if we compare the documentation of both, it is a clear win on the Clang side since the

documentation is well-organized and allows the implementation of features in an easy manner. Some-

thing that at first-glance GCC did not provide.

In [40], a list of the advantages of using one compiler or another is shown. Among the main relevant

features of using GCC against Clang we find the following:

∙ Nested functions. Grammars usually enclose strange behaviours that we can use, however, we

are not usually able to predict. In this case, the behaviour that we are describing is the ability to

declare a function within another function. This is not permitted in Clang whereas in GCC it is

allowed. This problem in the case of C++ is easily solvable because of functional programming. It

is not the same in the case of C where there is not an equivalent. But that is something to choose

depending on the implementation and in our case that we are dealing with C++ is not a problem.
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∙ Source Languages. Clang acts as front-end for several languages. Even though Clang supports a

wide variety of them, GCC supports more. We are interested in C++ support in this project so that

does not affect us.

∙ Target Architectures. GCC supports more target architectures than Clang. That is mainly due to

the fact of using LLVM underneath and that is what limits the target architectures. In our case we

are not interested in the back-end but in the implementation of the functionality in the front-end just

working in the main platforms. And with LLVM is more than enough.

With respect to the advantages that the usage of Clang supposes against the usage of GCC we have

the following:

∙ Understandability. We already commented that Clang is much more documented and under-

standable than GCC. It provides a clear interface to create new tools.

∙ API design. Clang has been designed to provide its services as an API. When we look at the

internals each of the modules seems to be self-contained and provide a functionality to others.

This allows the integration of it with other tools.

∙ GCC design decisions. GCC has been designed to be a compiler and that is what it is. It does not

aim to provide an interface, therefore, using it is not always as easy as it could be.

∙ GCC code simplification. When we have the AST, we still have the full information of the source

code and we are able to generate the initial information. However, GCC simplifies the information

once refinements are done.

∙ Clang AST serialization. A file can be generated containing the AST. This allows us to later use it

in other tools. We can generate a file that another program receives and uses for code analysis.

∙ Clang efficiency and memory consumption. Clang is more efficient and consumes fewer resources

than GCC.

∙ Clang diagnostics. GCC lacks of a meaningful system of diagnostics. Clang provides a better

diagnostic which allows the programmer to find easier the errors.

∙ Clang is licensed under BSD licence. This type of licence permits the user to use the system and

embed it in another functionality. This license permits any company to use Clang in commercial

projects. This is not only good for the programmer but for everyone. It will allow the expansion of

Clang in different projects and its usage will make it better and in all terms.

∙ LLVM elements. It shares some elements with LLVM since it is part of the back-end. This allows

having more tools for the analysis of the code. The support and the way of optimizing code are

shared with LLVM, and that makes the code analysis better.
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∙ Clang and C++. The support that Clang has over C++ is much better and complete than the one it

GCC has.

∙ Language Extensions. Clang provides many tools to extend language understanding. It provides

tools for thread safety checking and some extended vector types.

Now we take a look at a performance evaluation for the compilers. Those measurements establish a

bias in which we are able to differentiate between both compilers in an objective way. We use as mea-

surements compilation times, considering the time that it takes to compile an executable file. And the

execution and performance of the compiled code.

First, we have to differentiate between compilation times. There are different studies and perfor-

mance tests that we have observed, note [41, 42, 43, 44]. In [42], the efficiency of the compilation with

different optimization flags is evaluated. Both Clang and GCC are included in this test. The results are

good on the Clang side. We see that in terms of flags -02 and -03 Clang spends much less time than GCC.

This means that the compilation times are much better in Clang according to this study.

In fact, as it is developed in [41, 43], which is related to one of the newest versions of Clang, the

performance seems to be improving a lot. In newer versions of Clang, performance is getting similar

results in the tests for compile time. In this sense, and from what we have observed all through the

articles, Clang seems to be a better alternative if what we seek is optimizing compilation times.

However, we are strictly talking about compilation times and Clang. If we consider linking the ex-

ecutable also in our test, something that in Clang is related to LLVM, times seems to change. As it is

developed in [44], most of the LLVM-based compilers lose mainly because of it. However, the data from

this study was taken and analysed carefully. The study did not seem to be objective at all since the

versions of the programs compiled differed a lot in time. This is probably what mainly provoked this

result. In fact, we have to remember the fact that benchmarks sometimes do not represent real programs.

This means that we might not be evaluating the real efficiency of the compiler.

With regard to the execution times, again it depends a lot. In [41], we were dealing with early versions

of LLVM and Clang. This meant that the performance difference between the two is very noticeable and

in favour of GCC. During the past few years, the differences have relaxed, and in [43] where we make

the same benchmarks with the newest versions of both compilers we obtain that Clang is getting really

close if as efficient. Although GCC does better in benchmarks, Clang is not getting far behind. It means

that it is getting as a better and better alternative for development. In fact, results for big benchmarks

where one of the two loses does not result in a huge difference. This means that choosing one or the
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other is not a big deal and only the experience of compiling the program with one of the two can result

in a better or worse result.

3.7 Other Compilers

In this section, we take a look at other minor compilers that are available. These compilers were not

chosen mainly because their public is limited or they are paid. Implementing something in a compiler

with a wider public range makes our feature available in an easier manner to all that people. In fact

and although differences are not big, using something that people is familiar with is better if we want to

adapt our product to a bigger public.

PGI C++ Compiler (PGC) is a C++ compiler that is developed by Nvidia and supports many features

related to hardware acceleration such as OpenMP and OpenACC. OpenACC which is a way of program-

ming Nvidia Tesla Graphical Processing Unit (GPU)s. This compiler has two versions, a community

version which is free and a paid version which is said to be professional. It seeks to find and develop

a compiler which optimizes information to be delivered to multicore systems and High-Performance

Computer (HPC). This system has the purpose of allowing to create a single code for heterogeneous

applications both HPC and GPU.

Intel C++ Compiler (IntelC++) and AMD Optimizing C/C++ Compiler (AOCC) are two compilers

with the same purpose and made by different companies. Intel C++ Compiler (IntelC++) is a compiler

created by Intel Corporation whose aim is providing a optimization specific for Intel processors. It is

optimized for the latest C++ features and OpenMP standard. In the case of AMD Optimizing C/C++

Compiler (AOCC), it is compiler made by AMD for C and C++ which include improvements in code

generations so that it creates a optimal code. AOCC uses the LLVM library on its implementation.

As we can see, the rest of compilers that are compared in this section, do not have a general purpose

as GCC or Clang. They are specific for certain platforms and generate better results in one or another.

Appart from that, it is very likely that due to the aim of optimizing, dealing with the source code of

these compilers was not as easy as it is with GCC or Clang. Either way, it is important to mention the

existence of compilers of this kind.



Chapter 4

Analysis of the problem

This chapter provides a definition of which are the project objectives. In section 4.1 an overview of how

the user shall be able to act and the features to be implemented is given. In section 4.2 the main con-

straints when developing the system are depicted. A description of the prototype of a user that will use

the system is given in 4.3. In section 4.4 it is described the environment where the project is expected to

work. Finally in section 4.5 the user requirements are written down.

Within the second part of the chapter, the system requirement specification is carried out. The first

step of the system requirement specification is to develop the use case specification the main actions

that a user can carry out(section 4.6. Right after that, in section 4.7 an overview of the system technical

details are given. Finally in section 4.8 the system requirements are depicted. As a final section, the

requirement traceability matrices are shown.

4.1 General Capabilities

This project aims to develop several features to support Design By Contract (DBC) in C++. It consists

on the implementation of several new keywords that are usually known in DBC. Those are expects for

preconditions, assert for assertions and ensures for postconditions. This new keywords will have the

following syntax:

∙ [[assert assertion-level: condition]] for assertions.

∙ [[expects assertion-level: condition]] for preconditions.

∙ [[ensures assertion-level return-variable: condition]] for postconditions.

This new clauses will be applied to different facets of the code. Assertions will be associated to a

executable section of code and preconditions and postconditions will be associated with the function dec-

53



54 Contract-Based Programming on Modern C++

laration or definition. This contracts will evaluate the condition. In case that the condition is evaluated

to be true, nothing will happen. For example, if we say [[ assert: x > 0 ]] and x = 1 then, the assertion

will be evaluated as correct and the code execution will not be modified. In the opposite case if x = -

1, then the assertion will not be correct and the implementation would provoke an exceptional behaviour.

We are interested in the fact of implementing them as keywords so that the programmer cannot in-

fluence what the contract behaviour is. Something that could be viable in case that the implementation

was performed with macros.

On a second phase of the project, some advanced features were implemented. As we have seen, the

contracts imply a processing time overhead. This is not assumable for a release version. However, it is

a good idea for the verification of the functionality and might be used for alpha and beta versions. The

inclusion of assertion levels allows, by means of a mechanism, to activate and deactivate the different

contracts. This avoids having the overhead on the release version and permits having verification on

pre-release versions. The assertion level is a keyword of the set of axiom, always, default and audit. The

assertion level is compared with the build level in order to see which contracts to generate. The build

level values are off, default and audit. The following comparison determines which attributes are generated

each time:

∙ With the build level set to off only always contracts are generated.

∙ With the build level set to default, always and default contracts are generated.

∙ With the build level set to audit, always, default and audit contracts are generated.

∙ Axiom assertion level never generates code.

In the same manner, the system is supposed to abort when the evaluation of a conditions fails.

However depending on the case, the user might want to continue the execution, for this purpose, a con-

tinuation flag is implemented which allows the continuation even if the application fails with a contract.

Finally, as last meaningful feature, the function executed when the evaluation of a condition is false

will be by default the interruption of the program. However, the possibility for the user to have further

control and define the violation handler is also given. A user can define the function that it is executed

whenever a contract fails. The implementation shall also give a mechanism to provide the name with a

violation handler.
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4.2 General Constraints

In this section, a general overview of the constraints that are found when having to deal with the imple-

mentation of the code is given.

One of the first restrictions that we find is related to the positioning of the contract clauses that will

be present. Both preconditions and postconditions will be associated with a function header, however, the

assertions have to be placed in an executable piece of code. With that assumption in mind, C++ functional

programming implementation shall interact properly with the contract specification. That implies that

we have to define the behaviour with lambda functions, function pointers or generic programming. Apart

from that, with regard to the specification of a custom handler, the user shall not be able to execute this

custom handler as a normal function. That means that the implementation shall take care that the user

is not doing anything against the integrity of the program.

4.3 User characteristics

In this section, we are going to explain which are the characteristics of a potential user of the system

to be developed. In order for a proper development of the requirements, it is very important to take

into account the user. If the system is adequate for users necessities, they will find it familiar and use it

whenever they have to solve this problem. Otherwise, if we do not identify properly the potential users,

the system will not be adequate for their necessities.

This project is not a high-level project aiming to make easy the life of normal people. Two main

groups are the target of this project. Firstly, C++ developers which want to improve the quality of their

projects. For them, contracts not only suppose the assurance of reliability, but their usage can help them

finding programming errors, and therefore speed up the development. Secondly, enterprises. The fact

of having tools to ensure that what the user asked in a project is properly implemented is an appealing

feature for the usage of the language in future projects.

Either way, any C++ programmer can use the contracts since they should not suppose any difficulty.

They are easily placeable and checked automatically by the compiler. In addition to that, no additional

compilation options are needed for the basic functionality (without build level, aborting and without a

custom handler).
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4.4 User Operational Environment

In this section, we have to take a look at the environment where the software is going to be deployed. In

fact, for the correct adaption of the system to the requirements, this step has to be carefully developed.

The operational environment is any computer where a compiler can be run. This means medium-end

and low-end computers have to allow the execution of the implementation.

To develop this phase, we have to go one step ahead and think about the implementation of the

system. For many of the features that the system is going to include, we have to modify the grammar

of the programming language. That means, that for the features to work a simple implementation is not

enough. We have to modify the internals of the compiler and that means what it will, later on, interpret

the compiler.

With that in mind, we have to make sure that the modifications that we make to the compiler are

similar to all the processes that the compiler does for the rest of implementation. In that way, we can

know that the implementation has to work on any system where the compiler chosen for its implemen-

tation does.

4.5 User Requirements

In this section, we are going to develop the User Requirements (UR) of the problem that we have devel-

oped. This implementation is based on a paper released by the ISO C++ committee and every require-

ment has been extracted from it[45]. The main objective that we want to fulfil with the UR section is the

creation of a high-level abstraction of what the problem is. The step of elicitation of the requirements

is crucial for a proper project development. That is why in this section we are developing this set of

requirements. The UR phase is carried out right after having an interview with the client. In our case,

the first elicitation of the requirements was carried out from the following paper [46]. With both papers

the elicitation of requirements is carried out.

Since the description must not include a lot of detail, UR are going to make an overview of the

features that want to be implemented. The User Requirements will be divided into two main categories:

Capability requirements. Those refer to the functions and operations required by the user from the

system. They refer to what the user needs to solve a problem and fulfil a goal.

Constraint requirements. These requirements refer to how the software shall be built and operate.

These are the user constraints when trying to solve a problem.
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For the description of the requirements, we are going to use tables. In each of the tables, some

relevant fields are going to be present in order to establish some common features that are present.

Among those features we have the following:

∙ UR-XX-YY. This will represent the user requirement identifier. The identifier is composed by:

– XX. It is the kind of requirement that we are dealing with, it can be either CA if its User

Capability Requirement or CO in case it is a User Constraint Requirement.

– YY. It is the numeric identifier of the requirement, it will start in 1 and go increasing by one.

It is unique for each kind of requirement, so an identifier can be repeated only for different

requirement categories.

As an example, we could have UR-CA-10 representing the 10th user capability requirement.

∙ Definition. This field is a little text with the description of the requirement. An example of it could

be: The user shall be able to generate tables in LaTEXformat.

∙ Necessity It establishes the importance within the project that the requirement has. It can have

three values either Essential, Desirable or Non-Essential.

∙ Priority. This field establishes which is the order in which features are meant to be implemented.

There are three different values this field can hold High (if the feature is very needed), Medium (if

the priority is related to high priority and is not that important) or Low (if the feature is not that

important in the order or is similar to an extra feature).

∙ Stability. This feature represents the likelihood of it to be modified or has changed from the

original requirement. It can hold two possible values within it Stable (if it is not likely to be

changed) or Unstable(if it is likely to be changed).

∙ Verifiability. This feature establishes how verifiable are the requirements. That is the ease of the

implementation to justify that this requirement has been successfully implemented. It can have

three different values depending on the difficulty that its verification has to suppose, High(if it is

easy to be verified), Medium (if it is not that easy to be verified) or Low(if it is difficult to be verified).

∙ Status. This represents the step of the requirements lifecycle in which the requirement is. The

different steps that we have are Proposed, Verified, Validated, Rejected or Suspended.
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UR-XX-YY

Necessity: Essential | Non-essential

Priority: Low | Medium | High

Stability: Stable | Unstable

Verifiability: Low | Medium | High

Status: Proposed | Verified | Validated | Rejected | Suspended

Definition: Requirement description and explanation

Table 4.1: User Requirements Template Table

4.5.1 Capability Requirements

UR-CA-01

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to place an assert contract on the code.

Table 4.2: User Capability Requirement UR-CA-01

UR-CA-02

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to place an expects contract on the code.

Table 4.3: User Capability Requirement UR-CA-02
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UR-CA-03

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to place an ensures contract on the code.

Table 4.4: User Capability Requirement UR-CA-03

UR-CA-04

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall not be affected by an affirmative condition evaluation.

Table 4.5: User Capability Requirement UR-CA-04

UR-CA-05

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: A user shall be prompted with a violation handler execution in case that the condi-

tion is negatively evaluated.

Table 4.6: User Capability Requirement UR-CA-05
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UR-CA-06

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall specify a condition for each contract clause.

Table 4.7: User Capability Requirement UR-CA-06

UR-CA-07

Necessity: Essential

Priority: Medium

Stability: Unstable

Verifiability: High

Status: High

Definition: The user shall omit or repeat the contract when specifying the definition of a previ-

ous function declaration.

Table 4.8: User Capability Requirement UR-CA-07

UR-CA-08

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to abort in case of a violation handler execution.

Table 4.9: User Capability Requirement UR-CA-08
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UR-CA-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to continue the execution in case of a violation handler exe-

cution.

Table 4.10: User Capability Requirement UR-CA-09

UR-CA-10

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to specify an assertion level on the contract clause.

Table 4.11: User Capability Requirement UR-CA-10

UR-CA-11

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to place an assertion level which will be always evaluated.

Table 4.12: User Capability Requirement UR-CA-11
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UR-CA-12

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to place an assertion level which will never be evaluated.

Table 4.13: User Capability Requirement UR-CA-12

UR-CA-13

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to determine the build level.

Table 4.14: User Capability Requirement UR-CA-13

UR-CA-14

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: High

Definition: The assertion level shall be taken into account with respect to the build level.

Table 4.15: User Capability Requirement UR-CA-14
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UR-CA-15

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall be able to determine the violation handler.

Table 4.16: User Capability Requirement UR-CA-15

UR-CA-16

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: High

Definition: The user shall have information about the violation of the code.

Table 4.17: User Capability Requirement UR-CA-16

4.5.2 Constraint Requirements

UR-CO-01

Necessity: definition.

Priority: Essential

Stability: High

Verifiability: Stable

Status: High

Definition: The user shall place the expects clause in the function declaration

Table 4.18: User Constraint Requirement UR-CO-01
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UR-CO-02

Necessity: definition.

Priority: Essential

Stability: High

Verifiability: Stable

Status: High

Definition: The user shall place the ensures clause in the function declaration

Table 4.19: User Constraint Requirement UR-CO-02

UR-CO-03

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The user shall place the assert contract in a executable section.

Table 4.20: User Constraint Requirement UR-CO-03

UR-CO-04

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The condition of the ensures clause shall be related to the return value.

Table 4.21: User Constraint Requirement UR-CO-04
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UR-CO-05

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The user will not be able to access the structure values by runtime means.

Table 4.22: User Constraint Requirement UR-CO-05

UR-CO-06

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The default policy for continuation mode shall be aborting the execution.

Table 4.23: User Constraint Requirement UR-CO-06

UR-CO-07

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The default policy for build level shall be default.

Table 4.24: User Constraint Requirement UR-CO-07
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UR-CO-08

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: Validated

Definition: The user shall not be able to directly invoke the violation handler.

Table 4.25: User Constraint Requirement UR-CO-08

UR-CO-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The functionality shall work on with C++ Programming Language features.

Table 4.26: User Constraint Requirement UR-CO-09

4.6 Use Cases

This section defines the use cases that are extracted from the user requirements. The use cases are a

formalization of what the user must be able to do and are requisites to be able to extract the system

requirements. The use case diagram represents which are the capabilities that in general, a user has

when using a system.

A use case is defined by the following fields:

∙ UC-XX. It defined the identifier of the use case. The XX will define the identifier number of the

use case and it is unique for each Use Case.

∙ Name. The name is a brief description of what the use case will imply.

∙ Actor. It determines who is in charge of performing the action. In this case, the actor is always

going to be the user.
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Figure 4-1: Design By Contract Use Case Diagram

∙ Preconditions. It determines the conditions under which the use case ensures that the functionality

will be carried out correctly.

∙ Postconditions. It determines the characteristics that can be always verified after the execution of

the functionality.

∙ Description. It establishes what how the use case needs to carry out the actions and what it shall

allow the user to do.
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UC-XX

Name: Name
Actor: User | Administrator
Preconditions: The conditions that have to be fulfilled for the proper execution.
Postconditions: The conditions that will be fulfilled after the execution.
Description: The expansion of the use case

Table 4.27: Use Case Template Table

UC-01

Name: Placing an assert attribute with the syntax [[assert assertion-level: condition]].
Actor: User
Preconditions: ∙ The syntax shall be respected according to the use case.

∙ The assertion shall be placed within an executable section of code.

∙ The assertion shall have a condition that is possible to be transformed to a boolean

expression.

Postconditions: ∙ The system shall have evaluated the condition correctly and abort in case that the

condition is evaluated to false

Description: The user places in an executable section of the code an assert attribute. This attribute

is compiled into a binary. When it is executed the code evaluates the condition

placed on the contract. In case it is false the system aborts.

Table 4.28: Use Case UC-01
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UC-02

Name: Placing an expects attribute with the syntax [[expects assertion-level: condition]].
Actor: User
Preconditions: ∙ The syntax shall be respected according to the use case.

∙ The assertion shall be associated to the function type.

∙ The assertion shall have a condition that is possible to be transformed to a boolean

expression.

Postconditions: ∙ The system shall have evaluated the condition correctly and abort in case that the

condition is evaluated to false

Description: The user places in an executable section of the code an assert attribute. This attribute

is compiled into a binary. When it is executed the code evaluates the condition

placed on the contract. In case it is false the system aborts.

Table 4.29: Use Case UC-02

UC-03

Name: Placing an ensures attribute with the syntax

[[ensures return-value assertion-level: condition]].
Actor: User
Preconditions: ∙ The syntax shall be respected according to the use case.

∙ The assertion shall be associated to the function type.

∙ The assertion shall have a condition that is possible to be transformed to a boolean

expression.

∙ The return variable shall be able to be compared to the value that is created.

Postconditions: ∙ The system shall have evaluated the condition correctly and abort in case that the

condition is evaluated to false

Description: The condition placed on the contract is evaluated by the system and in case that it

is false, the system aborts.

Table 4.30: Use Case UC-03
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UC-04

Name: Compile with -enable-continue-after-violation flag.
Actor: User
Preconditions: ∙ The flag shall follow the syntax -enable-continue-after-violation

Postconditions: ∙ No postconditions.

Description: The evaluation of a condition to false does not cause the program to abort.

Table 4.31: Use Case UC-04

UC-05

Name: Compile with -build-level flag.
Actor: User
Preconditions: ∙ The build level shall be either off, default or audit.

∙ The flag shall follow the syntax -build-level

Postconditions: ∙ The system shall have generated always contracts if build level is off.

∙ The system shall have generated the always and default contract if build level is

default.

∙ The system shall have generated the always, defaul and audit contracts if build

level is audit.

Description: The condition placed on the contract is evaluated if and only if the comparison of

the build level and the assertion level determines that it is necessary to generate it.

Table 4.32: Use Case UC-05

UC-06

Name: Compile with -contract-violation-handler flag.
Actor: User
Preconditions: ∙ A function with that name shall be existing in the code.

Postconditions: ∙ Any violation of a condition will result in the execution of that function.

Description: When a condition fails, the contract violation handler established with the flag is

executed.

Table 4.33: Use Case UC-06
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4.7 Function and Purpose

In this section, we will detail the behaviour that the system will have. We will emphasise the technical

details of the implementation. This is an intermediate step between the User Requirements Specification

and the System Requirements phase. It allows us to extract all the details in a developed description that

later on will be transformed into a specification which will serve as an input for the design phase.

The implementation of the contracts is going to be developed by means of new attributes in the

language. Attributes are usually associated with any kind of statement in the code. They are introduced

in relation to any statement where they induce the compiler to act differently on them. There are different

types of attributes depending on the origin that they have. Depending on this, they usually have different

syntaxes. For example, two of the main providers of attributes in C++ are the C++ Standard and the GNU

Compiler Collection (GCC). Both have different syntaxes and provide different directives that modify the

behaviour either of the result of the compilation or the functions that the compiler will perform during

its execution. Their usage is something that is very extended in some contexts because they give a lot

of information and allow the compiler to avoid unnecessary computations. In addition to that, they

allow for some high-performance features such as inlining that is not performed in other situations. The

system will have to recognize three different syntaxes for the new attributes, one for each of the different

possibilities of the elements:

∙ Assertion. For the assertion, the supported syntax is going to be [[ assert assertion-level : condition ]].

This expression has to be associated to a null statement. Associating the expression to a null statement

permits the clause of it being associated only with an executable section of code.

∙ Preconditions. For the preconditions we used this syntax [[ expects assertion-level : condition ]]. This

expression has to be associated to a function type. It is important to differentiate the function type

from the function return type itself because the association is kept in different structures. This

causes that associating an attribute to the function type will modify how the function will be treated

during the compilation. In this way, we would be able to find any modification done to the function

by explicitly finding the changes to the structure that represents it. For example, modifying the

type of the function would include inlining. This is a technique which omits the function call and

substitutes it by the code in its body.

∙ Postconditions. For the postconditions, a syntax like [[ ensures assertion-level ret-variable : condition ]]

is going to be used. In this syntax another special member is included which is return-value. This

is an identifier, which is bound to the return value of the function. It serves as an identifier, for

a variable that will be later on created or initialized. Indeed it is used just to identify the return

value, in case that the user wants to use it in the condition. But the important point is that we need

the return values since the postconditions are always related to that value.
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Now a description of the common values will be detailed. The first common value is the condition.

The condition evaluation can result in two different behaviours. In case that the condition is true, then

the program has to do no further execution. On the opposite case, if the condition is evaluated to be false,

the program has to execute the violation handler. The condition is usually evaluated at runtime, however,

as the second part of this project, the compiler should be modified to allow the compile-time evaluation

of the conditions.

There is an element that we did not take into account in the previous syntax and that is the assertion-

level. This assertion level will be used to activate and deactivate conditions. This field can have several

values axiom, always, default, audit or no value. Their functionality is highly related to another feature the

build level, so we will first comment it so that it remains clear. The build level is a limitation that the

user imposes on the code, to limit the number of attributes that will be transformed into real condition

evaluations. It has again certain limited values, off, default and audit, and its value is given to the compiler

before its execution. With regard to putting no value in the assertion-level field, the specification forces

it to be assumed to be default, so from this point on we will assume that putting nothing is the same as

default. When we have the build level set to off, we will only take into account contracts marked with the

assertion level always. When the build level is turned to default, only attributes marked as default or always

are taken into account. Finally, if we set the build level to audit, attributes with always, default or audit will

be taken into account. Always attributes are always evaluated, no matter which build-level is used. On

the other hand, axiom attributes are never evaluated, no matter what the build-level is.

As one of the last main features, some modifications had to be done to the violation handler. The vio-

lation handler is what is executed right after a condition evaluated to false. Usually, the violation handler

that will be used will be the default of the system. This handler, however, can be customized in some

ways. First of all, the violation handler can be defined by the user. This will be done by a compilation

flag. With it, the user will be able to determine the name of the compilation handler. Apart from that,

the user will be able to choose whether to abort after a contract violation or to activate a continuation

mode in which it will not halt the execution. The main purpose of that mode is allowing the user to see

whether the system is robust and can continue working even if some elements of it fail. In order to do

this, another compiler flag will be implemented.

With this in mind, we have to take into account functional programming. This kind of programming is

related to for example lambda functions. In this case, the implementation excludes the usage of contracts

over lambda functions. The main reason for it is that behind it, the hidden type is not a function but

a functor, an object with the parenthesis operator overridden so that it executes the function that the user

decides. Since that is the case, we have to modify a lot the implementation to affect directly the operator
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instead of the object created and that is not worthy at all since the implementation of contracts on this

kind of functions would not cope a lot with the ideas of Design By Contract. For this reason, lambda

functions and functors are excluded from Design By Contract.

4.8 System Requirements

In this section, we are going to explain the System Requirements. This specification is going to be

detailed and accurate. Each of the requirements in this phase is designed to be specific, measurable,

achievable, realistic and time-bound (SMART). The correctness of this section is crucial for the later de-

velopment of the project, in which we will depend on this section for the development of it. In addition

to that, it has been demonstrated that a proper requirements specification phase reduces substantially

the failure in projects, the cost of the whole project and decreases the cost on the rest of the phases.

In this section, the requirements will be divided into two categories:

Functional requirements. A functional requirement specifies what a process must accomplish, what the

system shall do.

Non-Functional requirements. It specifies how software shall be done.

For the description of the requirements, we are going to use tables. In each of the tables, some relevant

fields are going to be present in order to establish some common features. Among those features we

have the following:

∙ SR-XX-YY. This will represent the system requirement identifier. The identifier is composed by:

– XX. It is the kind of requirement that we are dealing with, it can be either FR if its System

Functional Requirement or NFR in case it is a System Non-Functional Requirement.

– YY. It is the numeric identifier of the requirement, it will start in 1 and go increasing by one.

It is unique for each kind of requirement, so an identifier can be repeated only for different

requirement categories.

As an example, we could have UR-CA-10 representing the 10th user capability requirement.

∙ Origin. This field specifies the identifier of the user requirement that originated this system re-

quirement. A requirement can have several origins.

∙ Definition. This field is a little text with the description of the requirement. An example of it could

be: The user shall be able to generate tables in LaTEXformat.

∙ Necessity It establishes the importance within the project that they have. It can have three values

either Essential, Desirable or Non-Essential.
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∙ Priority. This field establishes which is the order in which features are meant to be implemented.

There are three different values this field can hold High (if the feature is very needed), Medium (if

the priority is related to high priority and is not that important) or Low (if the feature is not that

important in the order or is similar to an extra feature).

∙ Stability. This feature represents the likelihood of a requirement to be modified or to be changed

from the original requirement text. It can hold two possible values within it Stable (if it is not likely

to be changed) or Unstable(if it is likely to be changed).

∙ Verifiability. This feature establishes how verifiable requirements are. That is the ease of the

implementation to justify that this requirement has been successfully implemented. It can have

three different values depending on the difficulty that its verification has to suppose, High(if it is

easy to be verified), Medium (if it is not that easy to be verified) or Low if it is difficult to be verified.

∙ Status. This represents the step of the requirements lifecycle we are. The different steps that we

have are Proposed, Verified, Validated, Rejected or Suspended.

SR-XX-YY

Origin: UR-XX-YY

Necessity: Essential | Non-essential

Priority: Low | Medium | High

Stability: Stable | Unstable

Verifiability: Low | Medium | High

Status: Proposed | Verified | Validated | Rejected | Suspended

Definition: Requirement description and explanation

Table 4.34: System Requirements Template Table
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4.8.1 Functional Requirements

SR-FR-01

Origin: UR-CA-01 UR-CA-06

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall recognize the assert contract syntax

[[assert assertion-level: condition]]

Table 4.35: System Functional Requirement SR-FR-01

SR-FR-02

Origin: UR-CA-02 UR-CA-06

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall recognize the expects contract

syntax.[[expects assertion-level: condition]]

Table 4.36: System Functional Requirement SR-FR-02
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SR-FR-03

Origin: UR-CA-03 UR-CA-06

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall recognize the ensures contract

syntax.[[ensures modifier identifier: conditional-expression]]

Table 4.37: System Functional Requirement SR-FR-03

SR-FR-04

Origin: UR-CA-01 UR-CA-02 UR-CA-03 UR-CA-06

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall transform a contract into code for its evaluation.

Table 4.38: System Functional Requirement SR-FR-04

SR-FR-05

Origin: UR-CA-04

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall execute a violation handler if the condition evaluation turns to be

true.

Table 4.39: System Functional Requirement SR-FR-05
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SR-FR-06

Origin: UR-CA-05

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall execute no additional code if the condition evaluation is false.

Table 4.40: System Functional Requirement SR-FR-06

SR-FR-07

Origin: UR-CO-01

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall verify that the expects clause is associated to the function type.

Table 4.41: System Functional Requirement SR-FR-07

SR-FR-08

Origin: UR-CO-02

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall verify that the ensures clause is associated to the function type.

Table 4.42: System Functional Requirement SR-FR-08
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SR-FR-09

Origin: UR-CO-03

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall verify that the assert clause is associated to a null statement.

Table 4.43: System Functional Requirement SR-FR-09

SR-FR-10

Origin: UR-CA-10

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall generate a structure in which it will hold the assertion level for

each contract clause

Table 4.44: System Functional Requirement SR-FR-10

SR-FR-11

Origin: UR-CA-07

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall verify that the contracts are either repeated or omitted in the

definition of the function with respect to the declaration.

Table 4.45: System Functional Requirement SR-FR-11
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SR-FR-12

Origin: UR-CA-10

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall recognize 4 assertion levels: axiom, always, default and audit.

Table 4.46: System Functional Requirement SR-FR-12

SR-FR-13

Origin: UR-CA-12

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall never evaluate axiom contracts.

Table 4.47: System Functional Requirement SR-FR-13

SR-FR-14

Origin: UR-CA-11

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall always evaluate always contracts.

Table 4.48: System Functional Requirement SR-FR-14
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SR-FR-15

Origin: UR-CA-13

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide a mechanism for the user to choose the build level.

Table 4.49: System Functional Requirement SR-FR-15

SR-FR-16

Origin: UR-CA-13

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall recognize 3 build levels: off, default and audit

Table 4.50: System Functional Requirement SR-FR-16

SR-FR-17

Origin: UR-CA-14

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall compare the build level with the assertion before the evaluation of

the condition.

Table 4.51: System Functional Requirement SR-FR-17
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SR-FR-18

Origin: UR-CA-14

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall evaluate always contracts if build level is off.

Table 4.52: System Functional Requirement SR-FR-18

SR-FR-19

Origin: UR-CA-14

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall evaluate always and default contracts if the build level is default.

Table 4.53: System Functional Requirement SR-FR-19

SR-FR-20

Origin: UR-CO-05

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall allow the evaluation of direct values.

Table 4.54: System Functional Requirement SR-FR-20
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SR-FR-21

Origin: UR-CA-14

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall evaluate always, default and audit contracts if the build level is

audit.

Table 4.55: System Functional Requirement SR-FR-21

SR-FR-22

Origin: UR-CA-15 UR-CA-08 UR-CA-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide a a mechanism for the user to choose the continuation

mode.

Table 4.56: System Functional Requirement SR-FR-22

SR-FR-23

Origin: UR-CA-16

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide information on the contract violation by means of a con-

tract violation structure

Table 4.57: System Functional Requirement SR-FR-23
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SR-FR-24

Origin: UR-CA-16

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide information of the line number

Table 4.58: System Functional Requirement SR-FR-24

SR-FR-25

Origin: UR-CA-16

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide information on the file name where the contract violation

occurred

Table 4.59: System Functional Requirement SR-FR-25

SR-FR-26

Origin: UR-CA-16

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide the function name where the violation occurred

Table 4.60: System Functional Requirement SR-FR-26
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SR-FR-27

Origin: UR-CA-16

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide the a comment on the violation ocurred.

Table 4.61: System Functional Requirement SR-FR-27

SR-FR-28

Origin: UR-CA-16

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide the assertion level that ocurred.

Table 4.62: System Functional Requirement SR-FR-28

SR-FR-29

Origin: UR-CA-15

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide a mechanism for the user to choose a custom violation

handler.

Table 4.63: System Functional Requirement SR-FR-29
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SR-FR-30

Origin: UR-CO-08

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall protect the code from the execution of the violation handler.

Table 4.64: System Functional Requirement SR-FR-30

SR-FR-31

Origin: UR-CO-01 UR-CO-02

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall warn the user when using lambda functions

Table 4.65: System Functional Requirement SR-FR-31

SR-FR-32

Origin: UR-CO-01 UR-CO-02

Necessity: Essential

Priority: Low

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall warn the user when using function pointers.

Table 4.66: System Functional Requirement SR-FR-32
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SR-FR-33

Origin: UR-CO-04

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall ensure that the conditional expression does not access the member

that should not be accessed by the caller function

Table 4.67: System Functional Requirement SR-FR-33

SR-FR-34

Origin: UR-CA-01 UR-CA-02 UR-CA-03

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall provide the functionality for conditions including a template vari-

able.

Table 4.68: System Functional Requirement SR-FR-34

SR-FR-35

Origin: UR-CO-04

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall warn if a parameter is modified within a function and its used

within a postcondition.

Table 4.69: System Functional Requirement SR-FR-35
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SR-FR-36

Origin: UR-CO-07

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall use the default level of assertion in case that it is not specified.

Table 4.70: System Functional Requirement SR-FR-36

SR-FR-37

Origin: UR-CO-06

Necessity: Essential

Priority: Medium

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall abort on a contract violation if nothing is specified.

Table 4.71: System Functional Requirement SR-FR-37

4.8.2 Non-Functional Requirements

SR-NFR-01

Origin: UR-CO-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The implementation shall work properly with C++ 17.

Table 4.72: System Non-Functional Requirement SR-NFR-01
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SR-NFR-02

Origin: UR-CO-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall be implemented in Clang Compiler

Table 4.73: System Non-Functional Requirement SR-NFR-02

SR-NFR-03

Origin: UR-CO-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The system shall be compliant with LLVM

Table 4.74: System Non-Functional Requirement SR-NFR-03

SR-NFR-04

Origin: UR-CO-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The developed code shall be interoperable between different platforms (Windows,

MacOS and Linux).

Table 4.75: System Non-Functional Requirement SR-NFR-04
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SR-NFR-05

Origin: UR-CA-13

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The mechanism that the user will use to provide the build level shall be a compila-

tion flag.

Table 4.76: System Non-Functional Requirement SR-NFR-05

SR-NFR-06

Origin: UR-CA-08 UR-CA-09

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The mechanism to specify the continuation mode shall be a compilation flag.

Table 4.77: System Non-Functional Requirement SR-NFR-06

SR-NFR-07

Origin: UR-CA-15

Necessity: Essential

Priority: High

Stability: Stable

Verifiability: High

Status: Validated

Definition: The mechanism to specify the user defined handler shall be a compilation flag.

Table 4.78: System Non-Functional Requirement SR-NFR-07
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UC-05 X X X X X X X
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Table 4.79: Traceability Matrix User Requirements to Use Cases
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SR-F-01 X X
SR-F-02 X X
SR-F-03 X X
SR-F-04 X X X X
SR-F-05 X
SR-F-06 X
SR-F-07 X
SR-F-08 X
SR-F-09 X
SR-F-10 X
SR-F-11 X
SR-F-12 X
SR-F-13 X
SR-F-14 X
SR-F-15 X
SR-F-16 X
SR-F-17 X
SR-F-18 X
SR-F-19 X
SR-F-20 X
SR-F-21 X
SR-F-22 X X X

Table 4.80: Traceability Matrix SR-FR-01 to SR-FR-22
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SR-F-23 X
SR-F-24 X
SR-F-25 X
SR-F-26 X
SR-F-27 X
SR-F-28 X
SR-F-29 X
SR-F-30 X
SR-F-31 X X
SR-F-32 X X
SR-F-33 X
SR-F-34 X X X
SR-F-35 X
SR-F-36 X
SR-F-37 X
SR-NF-01 X
SR-NF-02 X
SR-NF-03 X
SR-NF-03
SR-NF-04 X
SR-NF-05 X X
SR-NF-06 X

Table 4.81: Traceability Matrix SR-FR-23 to SR-NFR-06



Chapter 5

Design of the solution

In this chapter, we describe the design of the project that departs from the implementation developed

by Javier López Gómez. In this work, we tackle with the different compilation flags and the custom

contract violation handler. Therefore, in this section, we introduce modification needed to introduce the

functionality aimed in this project. In order to better understand the contributions of this work, in the

following, we describe the basis of this project.

In section 5.1 we evaluate the alternatives for the development of the project. In section 5.2 we

overview a breakdown of the compilation process. In section 5.3, we describe the design of the solution

for the project.

5.1 Compiler Selection: Discussion of Alternatives

In this section, we evaluate the different compilers available for the development of the project. As it

was mentioned in Chapter 3, we need to decide which is the most suitable compiler for the purposes of

the project. In order to select the compiler, we have taken in to account the following aspects:

∙ Documentation. Finding documentation about GCC was not an easy task, and for the proper devel-

opment of the project, it is important to find support especially from the documentation. Solving

a problem is a much more complex task in case that no documentation is available. In fact due to

the small community of people that deals with compilers, finding information on people bumping

into similar problems is very difficult. In this part Clang is a better option.

∙ Modularity. A basic design principle of Clang is making it pretty modular. This characteristic is

something that tends to make easier the development of any project.

∙ Adoption. GCC is a more widespread compiler. Having a more used compiler makes easier to reach

a lot of public.
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∙ Licence. Clang and LLVM are released with a licence that is much lighter in the obligations that the

programmer has. Furthermore, it gives the programmer more rights and freedom over the code

that they are writing.

∙ C++ support. We are very interested in having a good implementation of the C++ standard because

it shall provide mechanisms to design the newer ones. The implementation of the C++ standard is

more advanced and has a better implementation in Clang.

With all that in mind, due to its better documentation, the modularity that it provides, the freedom

of the licence and the C++ support, we decide to use Clang for the basis of the project.

5.2 Overview of the Original Clang Design

In this section, a breakdown of the processes and the modules that compose a compiler is done by means

of diagrams. The compiler architecture and design process do not follow the usual architectural design

of a normal software product. The reason behind is that the newly implemented element implies rela-

tions to many components of the compiler, and it causes that what is a sole and simple functionality has

to be fragmented into several modules which interact between them.

Specifically in Section 5.2.1, we give an overview of the component design of Clang compiler. After-

wards, in Section 5.2.2, we depict the interactions between the different system components.

5.2.1 Architectural Design

In this section, we describe the architectural design of the project. The architectural design is the de-

scription of the different components that configure the system.

The different modules that are identified in this description are:

∙ Driver. The first element of the compiler to be launched. The module is in charge of performing

the analysis of the arguments that are received.

∙ Parser. The central module of the compiler. Its function is generating the AST.

∙ Preprocessor. It is in charge of managing the source file and to give it to the Lexer.

∙ Lexer. It tokenizes the file and provides it as they are requested to it.

∙ Sema. Its responsibility is generating each of the nodes of the AST.

∙ CodeGen. The aim of this module is generating intermediate code from the representation of the

code.
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∙ AST. This class is in charge of managing the attachment of nodes in a hierarchy.

∙ Symbols Table. It is a module to which other modules can appeal to obtain information on existing

symbols.

Figure 5-1 represents the breakdown in components of Clang compiler main modules. The most

important module of this component diagram is the Parser since it is the common point. It is the

one in charge of controlling the compilation process following Parser-Driven Compilation. There are

some additional modules in charge of giving different services such as the Preprocessor, the Lexical

Analysis (Lexer), the Syntax Analysis (Parser) and the Semantic Analysis (Sema). The Driver and the

Code Generator(CodeGen) are modules that act independently of the Parser. In addition to that, two

additional modules are comprised of the design which are the Symbols Table and the Abstract Syntax

Tree (AST). The interfaces are named by the with a key Provider - Consumer. The Consumer is the part

of the relationship which makes use of the functionality, and the Provider is the relationship part which

implements the functionality.

5.2.2 Functional Design

In this section, we describe the design of the process from an interaction point of view. We describe

dynamically which are the interactions that are carried out in the project.

Algorithm 5.1 represents the Clang compilation process. The process has three main phases. The first

phase is the Driver analysis of the compilation arguments. Those compilation arguments are processed

and are used during the different phases of the compilation. After finishing the execution of the Driver,

a Parser instance is created. The Parser instance generates all the modules it needs for the proper compi-

lation of the code. Afterwards, the compilation process is performed. The sequence of acquiring a token,

processing the token according to the grammar and adding it to the AST is repeated until the Abstract

Syntax Tree (AST) is completely built. The third and last phase is the Code Generator (CodeGen) which

uses the AST nodes to generate the intermediate code. This process is done iteratively with each of the

subparts of the AST.

Figure 5-2 represents the interactions of the different components during the compilation process.

It represents how each of the elements develops their own tasks. We can also depict the three phases

that were described previously. The first phase consists on the analysis of arguments that the Driver

performs. The Parser is the central part of the code and its main task is the construction of the AST.

It is in charge of calling the rest of the modules for the compilation and it uses different calls to obtain

elements from the other modules of the compiler. The final phase is the Code Generation done with

each of the top-level declarations of the AST.
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Algorithm 5.1 Clang Compilation Process

1: Driver := CreateDriver()

2: Driver.process_compile_options()

3: Parser := Driver.CreateParser()

4: Preprocessor := Parser.CreatePreprocessor()

5: Preprocessor.process_file(File)

6: Lexer := Preprocessor.CreateLexer()

7: Sema:= Parser.CreateSema()

8: AST := Parser.CreateAST()

9: while (There are more tokens) do

10: Token := Lexer.token_request()

11: Statement := Parser.create_stmt(Token)

12: Statement := Parser.verify_stmt_with_grammar(Statement)

13: ASTNode := Sema.verify_sema(Statement)

14: AST.attach_node(ASTNode)

15: end while

16: CodeGen.code_gen_top_level_decl()

17: while (There are more Top Level Declarations) do

18: TopLevelDeclaration := Parser.get_top_level_decl()

19: CodeGen.generate_code(TopLevelDeclaration)

20: end while

21: Return BinaryFile



C
H

A
PT

ER
5.D

esign
of

the
solution

97

Figure 5-1: Clang Component Diagram
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5.3 Proposed Clang Design

This section describes the modifications in the design reviewed in Section 5.2 for the inclusion of the

features in requirement specification. Specifically, Section 5.3.1 explains which are the different modules

included in the compiler for the development of the functionality. Apart from that, Section 5.3.2 explains

the new interactions and relations included.

5.3.1 Architectural Design

This section defines the new modules that are necessary for the design of the functionality. The new

modules are the following:

∙ Driver. This module receives a slight modification to support the argument parsing of the new

compilation flags.

∙ Contract Parsing Module. This new module is used for the parsing of the new syntax for the at-

tributes.

∙ Contract Semantic Analysis Module. This new module used for the semantic analysis of the new

attributes.

∙ Contract Code Generator Module. It is used for the generation of code associated with a contract

expression.

Figure 5-3 shows the connections between the new modules with the system. The modules coloured

in blue are the modules that did not receive any modification. Modules coloured in purple are modules

that received a modification. Modules coloured in yellow are newly included modules. We can observe

that the Driver is the only module which was modified. Additionally, the three newly included modules

are depicted. The Contract Parsing Module has relation exclusively with the Parser. The Contract Se-

mantic Analysis module has an exclusive relationship with the Semantic Analysis module. The Contract

Code Generator module has a relation with the Code Generator module.

5.3.2 Functional Design

In this section, we are describing the different interactions and relations of the new modules. We depict

the different actions to be carried out by each of this modules.

The main tasks that each of the modules has to produce for the generation of a complete system

functionality are:

∙ Driver. Since the main functionality of the Driver is to process compilation arguments, the new

responsibility of the module is providing the processing of the new flags. The flags to be processed

are the build level flag, the continuation mode flag and the custom violation handler flag.
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∙ Contract Parsing Module. This module is designed to cooperate with the Parser. The functionality

to be provided is to parse the new syntax of the contracts.

∙ Contract Semantic Analysis Module. This module interacts with Sema (Semantic Analysis module).

The functionality that it provides is the semantic analysis of the new contracts.

∙ Contract Code Generation Module. This module is intended to relate with the Code Generation

Module. It shall translate a contract in the code intermediate code that represents the action that

wants to be performed.

Algorithm 5.2 represents in pseudo-code the modified compilation process with the addition of new

features. The red marked parts are the newly introduced functionalities. Within this parts, we can spec-

ify four blocks. The first block consists of the calls that are performed in the modified Driver module.

The second call represents the functionality associated with parsing the attributes. The third call repre-

sents the modifications to the Semantic Analysis. And the fourth block represents the calls related to the

Code Generation of the contracts.

Figure 5-4 represents the order of the interactions in which the new modules act in the compilation.

With respect to the Figure 5-2, we can observe the addition of the three new modules and the changes to

one. We can observe that the functionality related to the Driver includes the flag argument processing.

The Contract Syntax Module acts on the syntax analysis of the code together with the Parser. The

Contract Semantic Analysis Module complements the functionality of the Semantic Analysis for the

generation of the contracts AST Nodes. Finally, the Contract Code Generation Module complements the

functionality of the Code Generation module adding the contracts intermediate code generation and the

combination with the compilation flags.
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Algorithm 5.2 Proposed Compilation Process

1: Driver := CreateDriver()

2: Driver.process_compile_options()

3: Driver.process_violation_handler()

4: Driver.process_build_level_flag()

5: Driver.process_continuation_flag()

6: Parser := Driver.CreateParser()

7: Preprocessor := Parser.CreatePreprocessor()

8: Preprocessor.process_file(File)

9: Lexer := Preprocessor.CreateLexer()

10: Sema:= Parser.CreateSema()

11: AST := Parser.CreateAST()

12: while (There are more tokens) do

13: Token := Lexer.token_request()

14: Statement := Parser.create_stmt(Token)

15: Statement := Parser.verify_stmt_with_grammar(Statement)

16: ContractParsingModule.parse_contract_attribute()

17: Sema.verify_sema(Statement)

18: ASTNode := ContractSemanticModule.generate_contract_node()

19: AST.attach_node(ASTNode)

20: end while

21: CodeGen.code_gen_top_level_decl()

22: while (There are more Top Level Declarations) do

23: TopLevelDeclaration := Parser.get_top_level_decl()

24: CodeGen.generate_code(TopLevelDeclaration)

25: if (ContractCodeGeneratorModule.compare_build_level_and_assertion_level()) then

26: ContractCodeGeneratorModule.generate_if_stmt()

27: ContractCodeGeneratorModule.generate_call_to_custom_handler()

28: if (ContractCodeGeneratorModule.evaluate_continuation_flag()) then

29: ContractCodeGeneratorModule.generate_abort_call()

30: end if

31: end if

32: end while

33: Return BinaryFile
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Figure 5-4: Proposed Design Component Diagram



104 Contract-Based Programming on Modern C++

5.4 Detailed Design of the Solution

In this section, we present the detail design of the project. In the detailed design, we describe which are

the specific changes that need to be performed and how they have been designed performed. Specifically,

in Section 5.4.1, we detail the flags that need to be introduced for the user to control the compiler.

Afterwards, in Section 5.4.2, the specific design of the basic functionality of the contracts is broken down

into the different modules that have been specified. Finally, Section 5.4.3 represents the modifications on

the modules to allow the execution of a custom violation handler.

5.4.1 Compiler Flags

This section describes the changes performed to the Driver module so that it supports the new compila-

tion flags.

In order to give support to some of the interactions of the user with the compiler, we need to support

certain compilation flags. A flag is a specific mechanism of communication between the user interface

and the modules. The compiler internally stores the different flags introduced so that any of the modules

that make use of it, is able to access it and verify the value associated to it (in case it has it). For this

communication, the following compilation flags have been introduced:

∙ Build Level. The build level flag is used for the activation or deactivation of contracts according

to their assertion levels. In what respects to the Driver module, it has to ensure that the syntax

followed is either --build-level=<level> or -build-level=<level> where level is either off, default or audit.

∙ Continuation Mode. This flag is used to avoid the program execution to abort in case that there is a

contract violation. This means that to abort on a violation the flag shall not be present. The Driver

module shall verify the syntax to be either --enable-continue-after-violation or -enable-continue-after-

violation.

∙ Custom Violation Handler. This flag defines the name of the function that the user wants to use

as violation handler. The Driver shall ensure that the syntax followed is either --contract-violation-

handler=<function> or -contract-violation-handler=<function> where function shall be the function

name of the violation handler.

5.4.2 Basic Functionality

In this section we describe the main functionality included in the different modules in order to support

a basic functionality of the contract specification.
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Firstly, we recap the basic functionality that the modules shall comprise. The basis of the specification

is the generation of a set of new statements that are called contracts. These contracts evaluate a condition.

In case that the evaluation of condition is true, the execution of the program is not affected. However, if

the evaluation of the condition is false, a violation is raised. There are three different keywords supported

in the specification assert, expects and ensures.

∙ The assert contracts are placed on a executable region of the code (associated to a null statement).

The condition of an assert is evaluated when the contract it is reached by the program flow.

∙ The expects contract is associated to the function type. The condition subject can be an accessible1

pre-existing variable or a function attribute. The expects condition is evaluated before the execution

of the function.

∙ The ensures contract is associated to the function type. The condition subject can be an accessible1

pre-existing variable or a function argument but it is meant to be related to the future return value.

The ensures contract clause permits pre-defining a name to identify the return value and operate

with it. The condition is evaluated after the execution of the function.

Each of this contract have a different syntaxes. The assert syntax is [[assert assertion-level: condition]].

The expects syntax is [[expects assertion-level: condition]]. Finally the ensures syntax that must be fulfilled

is [[ensures assertion-level return-value: condition]].

The assertion level present in the syntax is used to activate and deactivate the evaluation of contracts

when compiling. The assertion level is compared with the value given in the build level flag and this

comparison determines whether a contract is evaluated or not.

From this point, this section describes the changes that needed to include the different modules in order

to allow the functionality explained.

Contract Parsing Module

In this section, we describe the design of the Contract Parsing Module. The Contract Parsing Module

shall implement changes to the grammar in order to support the new syntax.

Listing 5.1 shows the changes to the grammar for the support of contracts. Terminal symbols are

differentiated by being surrounded with single quotation marks. The rest of symbols are considered

non-terminal. Each of the different lines of a production represents the alternatives of a production from

a non-terminal. It implies the change of one production rule and the addition of two new rules. The

modified rule is the attribute non-terminal rule. This rule permits the non-terminal to transform into

1We determine to be accessible to any variable that could be accessed within the body of the function to which the contract is
associated.
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a C++ attribute or a C++ attribute list. The modification consists of adding the transformation of the

non-terminal into a contract attribute specifier. The contract attribute specifier non-terminal expansions

are the supported syntaxes for each of the attributes ( assert, expects and ensures ). With regard to the

last rule, it formalizes the transformations of the contract-level non-terminal into the different accepted

values ( axiom, always, default and audit ).

Listing 5.1: Grammar Changes

1 attribute:

2 attribute-token

3 attribute-argument-clause[opt]

4 contract-attribute-specifier

5 contract-attribute-specifier:

6 ’[’’[’ ’expects’ contract-level[opt] ’:’ conditional-expression ’]’’]’

7 ’[’’[’ ’ensures’ contract-level[opt] identifier[opt] ’:’ conditional-expression ’]’’]’

8 ’[’’[’ ’assert’ contract-level[opt] ’:’ conditional-expression ’]’’]’

9 contract-level:

10 ’axiom’

11 ’default’

12 ’audit’

13 ’always’

Contract Semantic Analysis Module

This section describes the design of the Contract Semantic Analysis Module. This module shall evaluate

semantically the placement of the attribute and it is in charge of generating the attribute from the parts

obtained. Among the responsibilities that the Semantic Analysis module we distinguish:

∙ Validate association. The contract shall be placed with a null statement in the case of assert and

associated to a function declaration in case of expects and ensures.

∙ Validate condition. The Semantic Analysis Module validates that the introduced condition is con-

textually convertible to a boolean. This means that once the condition can be evaluated with the

information at that point to true or false.

∙ Validate the arguments. The Contract Semantic Analysis Module shall validate that the number of

arguments associated with a contract is at most the expected in the syntax.

∙ Create the AST Node. The Contract Semantic Analysis Module shall be responsible for creating the

AST Node of the Contract if the data matches the expected
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Algorithm 5.3 presents the pseudo-code of the verifications described for a contract. It validates all the

conditions that a new attribute shall have and in case that all the verifications are passed correct, a new

AST Node is created.

Algorithm 5.3 Proposed Semantic Analysis

1: if (Contract has expected number of attributes) then

2: if (Condition is contextually convertible to boolean) then

3: if (Contract is associated to correct statement) then

4: ASTNode := generate_ast_node_for_contract()

5: Return ASTNode

6: end if

7: end if

8: end if

Contract Code Generation Module

This section evaluates the design of the Contract Code Generation Module. The responsibility of this

module is to transform the contract AST Node into intermediate code. The transformation shall be done

so that the evaluation works as it is specified in the requirements. The responsibilities of this module

are:

∙ Evaluate the code generation. The Contract Code Generation module shall evaluate whether the

contract intermediate code has to be generated or not. The evaluation is done by comparing the

build level and the assertion level of each contract.

∙ Generate a contract validation. The contract code shall be transformed into an if statement where the

condition is the negated contract condition.

∙ Generate the call to abort. The module shall evaluate the value of the continuation flag that was

depicted in 5.4.1 and generate an execution interruption in case the flag is not present.

Listing 5.2: assert attribute code

1 ...

2 [[assert: x > 0]];

3 ...

Listing 5.3: assert attribute equivalence

1 ...

2 if (!(x > 0)){

3 violation_handler();

4 stop_execution();

5 }

6 ...

Listings 5.2 and 5.3 represents the equivalence in code of what an assert attribute provokes in the

code. As it is depicted the condition is negated and the body of the if statement has two consequences,
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the execution of a violation handler and the abort of the execution.

Algorithm 5.4 presents the behaviour that the Contract Code Generation Module. It represents the

actions that shall carry out when dealing with the AST Node of a contract. We can observe the compari-

son of the assertion level with the build level flag and the verification of the continuation mode. We can

also see the negation of the contract condition and the generation of the if statement with that condition.

Algorithm 5.4 Proposed Code Generation

1: if (BuildLevel > AssertionLevel) then

2: Condition := NegateCondition(Contract_Condition)

3: ThenStatement := generate_contract_violation_handler();

4: if (Continuation Flag is not present) then

5: CallToAbort := generate_call_to_abort()

6: ThenStatement += CallToAbort()

7: end if

8: IfStatement := generate_if_statement(Condition, ThenStatement);

9: EmitStatement(IfStatement)

10: end if

Finally we are depicting the breakdown of the functionality for expects and ensures. In the case of

assert transforming it to an if statement is possible because of its placement in an executable region of

code. However in the case of the expects and ensures it shall be modified. A transformation shall be done

from the original function which is annotated with contracts to a function which performs the verifica-

tions and is not annotated with contracts.

Listings 5.4 and 5.5 represent the transformation that is performed to a code with expects and ensures

contracts. The first change is that the function is added the suffix “_unchecked”. A new function is

created which evaluates the preconditions, then executes the unchecked function and then checks the

post condition.
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Listing 5.4: expects and ensures code

1 int square(int x)

2 [[expects: x > 0]]

3 [[ensures ret: ret == x * x]]

4 {

5 return x * x;

6 }

7 int main(int argc, char* argv[]){

8 int x = square(10);

9 return 0;

10 }

Listing 5.5: expects and ensures equivalence

1 int square_unchecked(int x)

2 [[expects: x > 0]]

3 [[ensures ret: ret == x * x]]

4 __attribute__((always_inline)) //Inline

5 {

6 return x * x;

7 }

8 //New function

9 int square(int x)

10 {

11 //Preconditions evaluation

12 if(!(x > 0)){ std::terminate();}

13 //Function execution

14 int ret = square(x);

15 //Postconditions evaluation

16 if(!(ret == x * x)){ std::terminate();}

17 return ret;

18 }

19 int main(int argc, char* argv[]){

20 //Modified function call

21 int x = square(10);

22 return 0;

23 }

5.4.3 Violation Handler

In this section, it is presented how the user is able to introduce custom violation handlers. The introduc-

tion of custom violation handlers belongs to the Contract Code Generation Module responsibilities. This

functionality permits the execution of a custom handler when a violation is raised. For this functionality,

we need the name of the function that the user passed with the compilation flag in Section 5.4.1. The

steps that are needed for the execution of a custom violation handler are:

∙ Finding the function declaration. The Contract Code Generation Module needs to find the symbol of

the custom violation handler in the symbols table. This functionality is also needed to be generated.

∙ Generate contract violation information. The information of the file, line, condition and comment of
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the violation is extracted and stored within the instance of an object automatically generated.

∙ Generate the function call. The module shall generate a function call to the function declaration

found. The information on the contract violation is passed as a parameter.

Algorithm 5.5 shows the pseudo-code of the different interactions that are needed for the generation

of the custom violation handler. In a first step, the extraction of a function call is done from the symbols

table. Then, the violation information is extracted. Finally, the call to the violation handler is generated

and executed.

Algorithm 5.5 Proposed Violation Handler Generation

1: ViolationHandler := SymbolsTable.find_function_call(FunctionName)

2: ViolationInformation := extract_violation_information()

3: ViolationHandlerCall := generate_call_to_handler(ViolationHandler, ViolationInformation)



Chapter 6

Evaluation

This chapter presents the evaluation of the proposed C++ contract implementation. Specifically, Sec-

tion 6.1 demonstrates the correctness of the implementation. Afterwards, Section 6.2 shows the perfor-

mance evaluation of the proposed implementation of C++ contracts.

6.1 Conformance Tests

In this section, we evaluate the correctness of the proposed C++ contract implementation. Specifically, we

check the accomplishment of the requirement specification through a set of tests. To do so, we leverage

lit[47], a tool part of the LLVM infrastructure that allows to automatise the execution of the test suite.

Additionally, this tool is able to evaluate the correct execution of the test.

To evaluate the correctness of the proposal, we classify the tests into two main groups:

1. Compiler Tests. These lit-based tests have been designed to identify common programming errors,

such as the wrong placement of elements in the code or syntax errors. Additionally, these tests

cover all of the contract statements and assertion levels.

2. Behaviour Tests. These tests evaluate the run-time behaviour of the generated binary, i.e. the

program aborts its execution if a contract is violated.

6.1.1 Compiler Behaviour Tests

This section describes the different Compiler Behaviour Tests that have been developed and the main

focus that this tests target.

These tests evaluate the correctness of the compiler when having to analyze a statement in C++.

These tests evaluate the following actions:

111
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∙ The correct placement of the attribute in a normal code sentence. In the case of assert, it shall be

done associated to a null statement and in the case of expects and associated to the function type.

∙ The wrong placement and association of the attribute in a normal code sentence.

∙ The automatic cast to a boolean expression.

∙ The usage of the attributes within C++ Method Declarations which are treated differently than

Function Declarations.

∙ The wrong usage of a non-existing assertion level.

These tests are performed for each of the contract clauses, assert, expects and ensures and for each

assertion level of the former. In the special case of expects and ensures some tests evaluate special cases

that the C++ syntax allowed. Those tests regard the following aspects:

∙ The application of contracts to lambda functions or functors that shall not be permitted.

∙ The inheritance of attributes (by now is not supported).

6.1.2 Executable Behaviour Tests

This section describes the Executable Behaviour Tests. These tests evaluate the expected actions of an

executable compiled with the contracts. These tests are exception-based-test that are made thanks to the

custom contract violation handler functionality.

These set of tests are performed in batteries of 60 unitary tests. A battery is performed for each of

the build levels (off, default and audit) and no build level. Each battery of test includes testing on the

following features:

∙ The evaluation of the condition is checked both in an affirmative case (no violation expected) and

in a negative case (violation expected).

∙ All the assertion levels (axiom, always, default and audit) are checked.

∙ The continuation flag is evaluated since the test work without aborting.

∙ The build level flag is evaluated for each of the levels.

∙ The custom violation handler is checked since it is a fundamental element.

∙ The tests annotations cover both functions and class methods.

∙ The tests are performed with normal variables.



CHAPTER 6. Evaluation 113

∙ The tests are performed with templatized variables. Templatized variables are differently treated in

compilers. Templates are covered in three ways template class, template function and templatized

member of a templatized class.

6.1.3 Test Suite

In this section we give a description of the testing that is performed over each of the requirements that

were depicted in previous section. This tables are very big since explaining each of the tests would

imply a lot of time. We have to remind that this tables are executed for the specific contract that they

are associated to, but they are executed for all the build levels that are possible. The fields of each of the

tests are the following:

∙ UT-XX. This represents the test identifier, where XX is the number of the test.

∙ Name. This field is a short description of what the test does.

∙ Requirements Covered. It defines the list of the requirements that are verified with this tests.

∙ Result. This field represents the result of executing the tests over the implementation. It can have

two results, either X Validated in case the test is passed or 7 Not Validated in case the test is not

passed.

∙ Description. This field describes what are the characteristics that are evaluated over the text with

regard to the requirements evaluated.

Tables 6.2, 6.3, 6.4, 6.5, 6.6 and 6.7 represent the different tests that were developed for this function-

ality.

Tables 6.8 and 6.9 show the tests that verify each of the requirements. The important point on this

matrices is that no requirement is left unchecked. Since the functionality usually depends on several

features, multiple tests might be verifying the proper behaviour of a requirement.

UT-XX

Name: Test Name

Requirements Covered: SR-FR-XX

Result: X Validated 7 Not Validated

Description: Test Description

Table 6.1: Test Template Table
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UT-01

Name: Compiler Behaviour Test - assert
Requirements Covered: SR-FR-01, SR-FR-04, SR-FR-09, SR-FR-10, SR-FR-12, SR-FR-13, SR-FR-14, SR-FR-20,

SR-FR-36
Result: X Validated
Description: In this test we evaluate the compiler identifying common errors in the placement of

assert contract such as:

∙ Using a the proper syntax.

∙ The code transformation into a condition.

∙ The code association to a null statement.

∙ The code supplying four assertion levels.

∙ The generation of axiom contracts.

∙ The generation of always contracts.

∙ The evaluation of direct values.

∙ The use of default assertion level.

Table 6.2: Unit Test-01
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UT-02

Name: Compiler Behaviour Test - expects
Requirements Covered: SR-FR-02, SR-FR-04, SR-FR-07, SR-FR-10, SR-FR-11, SR-FR-12, SR-FR-13, SR-FR-14,

SR-FR-20, SR-FR-31, SR-FR-32, SR-FR-33, SR-FR-35, SR-FR-36
Result: X Validated
Description: In this test we evaluate the compiler identifying common errors in the placement of

expects contract such as:

∙ Using a proper syntax.

∙ The code transformation into a condition.

∙ The code association to a function type.

∙ The code supplying four assertion levels.

∙ The generation of axiom contracts.

∙ The generation of always contracts.

∙ The generation for different build levels.

∙ The evaluation of direct values.

∙ The warning in the usage on lambda functions.

∙ The warning on the usage on function pointers.

∙ The access to forbidden variables.

∙ The use of default assertion level.

Table 6.3: Test-02
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UT-03

Name: Compiler Behaviour Test - ensures
Requirements Covered: SR-FR-02, SR-FR-04, SR-FR-08, SR-FR-10, SR-FR-11, SR-FR-12, SR-FR-13, SR-FR-14,

SR-FR-20, SR-FR-31, SR-FR-32, SR-FR-33, SR-FR-35, SR-FR-36
Result: X Validated
Description: In this test we evaluate the compiler identifying common errors in the placement of

ensures contract such as:

∙ Using a proper syntax.

∙ The code transformation into a condition.

∙ The code association to a function type.

∙ The code supplying four assertion levels.

∙ The generation of axiom contracts.

∙ The generation of always contracts.

∙ The generation for different build levels.

∙ The evaluation of direct values.

∙ The warning in the usage on lambda functions.

∙ The warning on the usage on function pointers.

∙ The access to forbidden variables.

∙ The use of default assertion level.

Table 6.4: Test-03
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UT-04

Name: Executable Behaviour Test - assert
Requirements Covered: SR-FR-01, SR-FR-04, SR-FR-05, SR-FR-06, SR-FR-10, SR-FR-12, SR-FR-13, SR-FR-14,

SR-FR-15, SR-FR-16, SR-FR-17, SR-FR-18, SR-FR-19, SR-FR-20, SR-FR-21, SR-FR-22,

SR-FR-23, SR-FR-24, SR-FR-25, SR-FR-26, SR-FR-27, SR-FR-28, SR-FR-29, SR-FR-30,

SR-FR-31, SR-FR-34, SR-FR-36, SR-FR-37
Result: X Validated
Description: In this test we evaluate the compiler performing the proper behaviour of an exe-

cutable with assert contract verifying the following conditions:

∙ Using a proper syntax for assert.

∙ The code transformation into a condition.

∙ The code aborting if condition is not fulfilled.

∙ The code continuing if condition is fulfilled.

∙ The code supplying four assertion levels.

∙ The generation of axiom contracts.

∙ The generation of always contracts.

∙ The generation for different build levels and its support.

∙ The execution of contracts according to the build level.

∙ The evaluation of direct values.

∙ The usage of the continuation flag to provide support to the test suite.

∙ The information of the violation is given to the user.

∙ The ability to generate a custom contract violation handler.

∙ The warning in the usage on lambda functions.

∙ The warning on the usage on function pointers.

∙ The access to forbidden variables.

∙ The use of default assertion level.

∙ The usage of templates variables of any kind.

∙ The generation of a default handler.

Table 6.5: Unit Test-04
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UT-05

Name: Executable Behaviour Test - expects
Requirements Covered: SR-FR-02, SR-FR-04, SR-FR-05, SR-FR-06, SR-FR-10, SR-FR-12, SR-FR-13, SR-FR-14,

SR-FR-15, SR-FR-16, SR-FR-17, SR-FR-18, SR-FR-19, SR-FR-20, SR-FR-21, SR-FR-22,

SR-FR-23, SR-FR-24, SR-FR-25, SR-FR-26, SR-FR-27, SR-FR-28, SR-FR-29, SR-FR-30,

SR-FR-31, SR-FR-34, SR-FR-36, SR-FR-37
Result: X Validated
Description: In this test we evaluate the compiler performing the proper behaviour of an exe-

cutable with expects contract verifying the following conditions:

∙ Using a proper syntax for expects.

∙ The code transformation into a condition.

∙ The code aborting if condition is not fulfilled.

∙ The code continuing if condition is fulfilled.

∙ The code supplying four assertion levels.

∙ The generation of axiom contracts.

∙ The generation of always contracts.

∙ The generation for different build levels and its support.

∙ The execution of contracts according to the build level.

∙ The evaluation of direct values.

∙ The usage of the continuation flag to provide support to the test suite.

∙ The information of the violation is given to the user.

∙ The ability to generate a custom contract violation handler.

∙ The warning in the usage on lambda functions.

∙ The warning on the usage on function pointers.

∙ The access to forbidden variables.

∙ The use of default assertion level.

∙ The usage of templates variables of any kind.

∙ The generation of a default handler.

Table 6.6: Test-05
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UT-06

Name: Executable Behaviour Test - ensures
Requirements Covered: SR-FR-02, SR-FR-04, SR-FR-05, SR-FR-06, SR-FR-10, SR-FR-12, SR-FR-13, SR-FR-14,

SR-FR-15, SR-FR-16, SR-FR-17, SR-FR-18, SR-FR-19, SR-FR-20, SR-FR-21, SR-FR-22,

SR-FR-23, SR-FR-24, SR-FR-25, SR-FR-26, SR-FR-27, SR-FR-28, SR-FR-29, SR-FR-30,

SR-FR-31, SR-FR-34, SR-FR-36, SR-FR-37
Result: X Validated
Description: In this test we evaluate the compiler performing the proper behaviour of an exe-

cutable with ensures contract verifying the following conditions:

∙ Using a proper syntax for ensures.

∙ The code transformation into a condition.

∙ The code aborting if condition is not fulfilled.

∙ The code continuing if condition is fulfilled.

∙ The code supplying four assertion levels.

∙ The generation of axiom contracts.

∙ The generation of always contracts.

∙ The generation for different build levels and its support.

∙ The execution of contracts according to the build level.

∙ The evaluation of direct values.

∙ The usage of the continuation flag to provide support to the test suite.

∙ The information of the violation is given to the user.

∙ The ability to generate a custom contract violation handler.

∙ The warning in the usage on lambda functions.

∙ The warning on the usage on function pointers.

∙ The access to forbidden variables.

∙ The use of default assertion level.

∙ The usage of templates variables of any kind.

∙ The generation of a default handler.

Table 6.7: Test-06
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SR-F-01 X X X X X X X X X
SR-F-02 X X X X X X X X X
SR-F-03 X X X X X X X X X
SR-F-04 X X X X X X X X X X X X X X X X X X X X X X X X X X X
SR-F-05 X X X X X X X X X X X X
SR-F-06 X X X X X X X X X X X X
SR-F-07 X X X X X
SR-F-08 X X X X X
SR-F-09 X X X X X
SR-F-10 X X X X X X X X X X X X X X X X X X X X X X X X X X X
SR-F-11 X X X X X X X X X X
SR-F-12 X X X X X X X X X X X X X X X X X X X X X X X X X X X
SR-F-13 X X X X X X X X X X X X X X X
SR-F-14 X X X X X X X X X X X X X X X
SR-F-15 X X X X X X X X X X X X
SR-F-16 X X X X X X X X X X X X
SR-F-17 X X X X X X X X X X X X
SR-F-18 X X X

Table 6.8: Traceability Matrix Software Requirements (SR-FR-01 to SR-FR-18) to Tests
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SR-F-19 X X X
SR-F-20 X X X X X X X X X X X X X X X X X X X X X X X X X X X
SR-F-21 X X X
SR-F-22 X X X X X X X X X X X X
SR-F-23 X X X X X X X X X X X X
SR-F-24 X X X X X X X X X X X X
SR-F-25 X X X X X X X X X X X X
SR-F-26 X X X X X X X X X X X X
SR-F-27 X X X X X X X X X X X X
SR-F-28 X X X X X X X X X X X X
SR-F-29 X X X X X X X X X X X X
SR-F-30 X X X X X X X X X X X X
SR-F-31 X X X X X X X X X X
SR-F-32 X X X X X X X X X X
SR-F-33 X X X X X X X X X X
SR-F-34 X X X X X X X X X X X X
SR-F-35 X X X X X X X X X X
SR-F-36 X X X X X X X X X X X X X X X
SR-F-37 X X X X X X X X X X X X

Table 6.9: Traceability Matrix Software Requirements (SR-FR-19 to SR-FR-37) to Tests
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6.2 Performance Tests

This section defines the use case that has been developed for proving the performance and validity of

the implementation. These tests provide an overview of what is going to be the impact on performance.

Specifically, in Section 6.2.1 we describe the objective of the use case. Later on, in Section 6.2.2 we

describe how modifications to an existing library were performed. In Section 6.2.4 we describe the

device where the tests have been performed. Afterwards, in Section 6.2.3 we define the different tests

that are performed in the benchmark. Finally in 6.2.5, we explain the results that we have obtained from

executing this benchmark.

6.2.1 Overview

In this section an overview of the process followed to evaluate the implementation with a benchmark is

depicted.

The objective is to make an evaluation of the impact on performance. For this purpose, a use case is

designed. It consists of the modification of the STL basic_string and its annotation with contracts. The

class basic_string was modified by means of an automatic script that was also developed as a part of this

evaluation. The script substituted assertions in GNU notation to the new C++ notation. Then a total of

6 test benchmarks are developed in which the strings from the library are intensively used. These test

benchmarks are used for the performance evaluation.

It is important to remark that in order to imitate the behaviour that the STL basic_string, the violation

handler specified for this tests will be set to std::terminate and no custom handler will be assesed.

This is because a custom handler can include any code the user decides to introduce. However the

relative impact of its usage can be evaluated on further work.

6.2.2 Modification of basic_string

In this section, we detail which were the steps that were carried out for the modification of the basic_string

class in an automated way. The modification was done by means of an automatic script in Perl program-

ming language. Perl is a programming language which is mainly used for text parsing and modification.

It provides a lot of tools to perform changes easily on files and different elements. For this reasons is

why we chose Perl for this modifications.

The script analyzes a source code file. It iterates over all the lines of the code trying to find any of the

assertions. When it finds one matching the regular expression, the line is modified to change the syntax

to the new one. For that first, the condition is extracted from the GNU assertion and then it is introduced

into a template of an assert or expects clause. In case that the assertion needs to be transformed to a
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expects clause backtracking is performed to place it where it corresponds. This is caused because all

GNU assertions are equivalent to assert but we are interested in testing all.

At the end of this section, we already have two versions of basic_string, the annotated version and

the original version. With these libraries, we perform the benchmark in next section.

6.2.3 Test Benchmark

In this section, we describe the set of benchmarks used for the performance evaluation of the proposed

C++ contracts implementation. As stated in the previous section, we modified the basic_string class

of the STL library. Since the std::basic_string is the underlying template class of std::string, we

propose a set of six tests that perform intensive string manipulation:

Benchmark 1 generates a vector of n random strings of a length which may vary between 1 and n.

This vector is the main work unit. The vector of strings is ordered according to the bubble sort

algorithm. Right after that they the vector is again randomly ordered. Next the vector is ordered

by inverse size. Finally the strings of the vector are reordered again randomly. This process of

ordering, disordering, ordering, disordering is repeated 100 times times for each n. With regard to

the value of n, it goes from 100 to 6000 with a increment of 100 each time.

Benchmark 2 generates a random string of length n. It accesses random positions of the string swapping

their values to randomize more the strings. This whole process is repeated 10000 times for each n.

The size of the string goes increasing from 100 to 6000 with increments of 100.

Benchmark 3 generates a vector of n random strings of a length n. This vector is the main work unit.

The vector is ordered alphabetically according to the bubble sort algorithm. Then the vector gets its

positions randomized. Later on it is ordered inverse alphabetically. Finally the vector is random-

ized again. This process is repeated 100 times for each n for n going from 100 to 6000 in intervals

of 100.

Benchmark 4 generates a vector of n random strings of length n. This strings are translated to lower

case and then to upper case. This whole process is repeated 100 times for each n for values of n

starting at 100 and growing by increments of 100 up to 6000.

Benchmark 5 generates a vector of random strings of length n. The strings will be reformated to order

the characters of those strings alphabetically. This process will be done for each of the strings of

the vector. The process is repeated for values of n starting at 100 going up to 6000 in intervals of

100.
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Benchmark 6 is in charge of performing a substring substitution. A random string of size n2 * 10 will be

generated, and the operation of finding the substring “abc” and substitute it by “def”. It iterates

for values of n from 100 to 6000 in intervals of 100.

6.2.4 Benchmarking Environment

In this section we describe the benchmarking environment that was used for the evaluation of the tests.

This includes both the description of hardware and software used for the tests.

With regard to the hardware a node from the Tucan Cluster that the ARCOS (Computer Structure

and Architecture Group) was used for this experiment. A cluster is a set of computing nodes which

are coordinated from a front-end node through which tasks can be launched to all of them. For this

benchmark we only used a node. This node accounted with an Intel(R) Xeon(R) CPU E5-2630 v3 processor

with 8 cores running at 2.4GHz each, 378 GB of RAM.

With regard to the software, the node was running Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0-79-generic

x86_64). The version of the Clang compiler used is version 6.0.0. The compiler with which the source

code of Clang was compiled was GCC 7.2.0.

6.2.5 Evaluation

In this section, we evaluate the results that were obtained. The results correspond to the execution of the

programs both with and without the basic_string library. We will be comparing the versions compiled

with the optimization flags -O2 and -O3 since are the versions that are used in release versions. In

addition, not using any of this optimization flags would always result in the contracts version since it

would imply the verification of more conditions than not using it.
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Figure 6-1: Benchmark 1: Time comparison of Contracts and No Contracts -O2.
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Figure 6-2: Benchmark 1: Time comparison of Contracts and No Contracts -O3.

Figure 6-1 shows the time in seconds of the execution with contracts and without contracts for the op-

timization flag -O2. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. Hence,

the graph does not provide a lot of information since it is very tied in both executions. The only observ-
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able thing is that one line or another remains on top or below depending on the specific test case.

Figure 6-2 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O3. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. Hence,

the graph does not provide a lot of information since it is very tied in both executions. The only observ-

able thing is that one line or another remains on top or below depending on the specific test case.

Figure 6-3 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O2. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to

the whole execution. The blue cross represents that the contracts were better in that case and they

supposed an improvement. A red cross represents a case where the contracts were worse in time and

supposed a delay. In this case, we observe that for lower values of the string size, contracts are an

advantage in performance, whereas for larger string sizes the no contracts alternative get better results.

The improvement in performance reaches an average of 2% for this version.
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Figure 6-3: Benchmark 1: Relative Impact in Performance of Contracts vs No Contracts -O2.
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Figure 6-4: Benchmark 1: Relative Impact in Performance of Contracts vs No Contracts -O3.

Figure 6-4 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O3. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where the contracts were worse in time and supposed

a delay. In this case, we observe that for lower values of the string size, contracts tend to suppose an

improvement around 1% of the time, whereas for larger string sizes the improvement reaches 3-4%.
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Figure 6-5 represents the number of tests going to each side per optimization flag -O2 and -O3. The

x axis represents the optimization flag that is used and the y axis the number of tests that go in favour of

each alternative. The blue column represents the number of tests where contracts are better and the red

column the number of tests where contracts are worse. In this case, we can specifically see that contracts

seem to be a better alternative for both compilation flags supposing roughly a difference of 10 test in

which results are better.
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Figure 6-6: Benchmark 2: Time comparison of Contracts and No Contracts -O2
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Figure 6-7: Benchmark 2: Time comparison of Contracts and No Contracts -O3

Figure 6-6 shows the time in seconds of the execution with contracts and without contracts for the op-

timization flag -O2. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. Hence,

the graph clearly shows an advantage of the contracts alternative with respect to the no contracts alter-

native, supposing a rough advantage of around 400 milliseconds in all executions.

Figure 6-7 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O3. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. Thus,

the graph shows a clear advantage of the implementation with contracts. The difference between the

two alternatives is smaller, however, it is still around 200 milliseconds.

Figure 6-8 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O2. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where the contracts were worse in time and supposed

a delay. We can observe that the improvement in these tests supposes roughly a 7% of improvement,

which implies a clear advantage on the side of contracts.
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Figure 6-8: Benchmark 2: Relative Impact in Performance of Contracts vs No Contracts -O2
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Figure 6-9: Benchmark 2: Relative Impact in Performance of Contracts vs No Contracts -O3
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Figure 6-10: Benchmark 2: Distribution of tests with better times -O3

Figure 6-9 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O3. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where contracts version was worse in time and supposed

a delay. The advantage in relative performance of the implementation with contracts is around 2.75%.

Again, it is a great improvement, although the difference with respect to the non-annotated version is

smaller.

Figure 6-10 represents the amount of tests going to each side per optimization flag -O2 and -O3. The

x axis represents the optimization flag that is used and the y axis the number of tests that go in favour of

each alternative. The blue column represents the number of tests where contracts are better and the red

column the number of tests where contracts are worse. We clearly observe that the contracts are better

in all cases.

Benchmark 3

Figure 6-11 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O2. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. The

graph grows exponentially in both cases, however, differences are light and difficult to perceive.
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Figure 6-12 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O3. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. This

graph shows little differences between the two alternatives. In the higher string sizes, we can observe

that both lines cross among them more times. However, differences are difficult to depict.
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Figure 6-11: Benchmark 3: Time comparison of Contracts and No Contracts -O2
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Figure 6-13 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O2. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to

the whole execution. The blue cross represents that the contracts were better in that case and they

supposed an improvement. A red cross represents a case where the contracts were worse in time and

supposed a delay. In this case, the differences are very small and neither of the alternatives seems to

provide advantages. In addition to that, we can observe that the difference in execution time is around

1% improvement for both.

Figure 6-14 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O3. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to

the whole execution. The blue cross represents that the contracts where better in that case and they

supposed an improvement. A red cross represents a case where contracts version was worse in time and

supposed a delay. This figure shows that there are more blue crosses than red ones but all of them have

homogeneously distributed around an improvement of 1-5%.
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Figure 6-14: Benchmark 3: Relative Impact in Performance of Contracts vs No Contracts -O3
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Figure 6-15: Benchmark 3: Distribution of tests with better times -O3

Figure 6-15 represents the number of tests going to each side per optimization flag -O2 and -O3. The

x axis represents the optimization flag that is used and the y axis the number of tests that go in favour of

each alternative. As it was depicted by previous graphs, the -O2 optimization flag does not seem to be

enough to get an improvement. However, when we switch to -O3 flag, the number of tests which work

better with contracts is higher than the number of tests that works with no contracts.
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Figure 6-16: Benchmark 4: Time comparison of Contracts and No Contracts -O2
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Figure 6-17: Benchmark 4: Time comparison of Contracts and No Contracts -O3

Figure 6-16 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O2. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. The

graph grows exponentially and at the same time in both cases. Consequently, we cannot appreciate any
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differences.

Figure 6-17 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O3. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. This

graph shows little differences between the two alternatives. In the higher string sizes, we can observe

that the blue line is underneath. However, differences are difficult to depict.

Figure 6-18 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O2. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to

the whole execution. The blue cross represents that the contracts were better in that case and they

supposed an improvement. A red cross represents a case where the contracts were worse in time and

supposed a delay. In this case, the differences are very small however the usage of contracts seems to

affect performance in less than 1%, which is minimal.
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Figure 6-19: Benchmark 4: Relative Impact in Performance of Contracts vs No Contracts -O3

Figure 6-19 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O3. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where contracts version was worse in time and supposed

a delay. In this graph, we can identify a clear advantage of the usage of contracts with around a 1% of

improvement.
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Figure 6-20 represents the number of tests going to each side per optimization flag -O2 and -O3. The

x axis represents the optimization flag that is used and the y axis the number of tests that go in favour of

each alternative. As it was depicted by previous graphs, the -O2 optimization flag does not seem to be

enough to get an improvement. However, when we switch to -O3 flag, the number of tests which work

better with contracts is much higher and worthy for the implementation.
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Figure 6-21: Benchmark 5: Time comparison of Contracts and No Contracts -O2
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Figure 6-22: Benchmark 5: Time comparison of Contracts and No Contracts -O3
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Figure 6-21 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O2. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. We can

clearly see that the times of the contract version are underneath the red line, meaning we are getting

better times.

Figure 6-22 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O3. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line is the time that the contract version took to execute the

tests and the red line represents the time of the version which did not use contracts. In this graph, we

can clearly observe that the blue line is under the red line. This means that we have better times for the

modified version.

Figure 6-23 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O2. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where the contracts were worse in time and supposed

a delay. We can observe that the percentage of improvement is on the side of contracts. The relative

impact on performance is around 10% which is a great improvement.
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Figure 6-23: Benchmark 5: Relative Impact in Performance of Contracts vs No Contracts -O2
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Figure 6-24: Benchmark 5: Relative Impact in Performance of Contracts vs No Contracts -O3

Figure 6-24 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O3. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where contracts version was worse in time and supposed

a delay. This graph shows a very dispersed representation of the improvement in favour of the contracts

version. It varies from values close to 4% up to improvements of 14%. Nevertheless, even the smallest

improvement implies something good.
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Figure 6-25: Benchmark 5: Distribution of tests with better times -O3

Figure 6-25 represents the number of tests going to each side per optimization flag -O2 and -O3. The

x axis represents the optimization flag that is used and the y axis the number of tests that go in favour of

each alternative. We can clearly depict that the usage of contracts in both optimization flags supposes an

improvement to performance. This is a clear proof that using contracts improves the coding efficiency.
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Figure 6-26: Benchmark 6: Time comparison of Contracts and No Contracts -O2
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Figure 6-27: Benchmark 6: Time comparison of Contracts and No Contracts -O3

Figure 6-26 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O2. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. The

graph grows exponentially and at the same time in both cases. Consequently, we cannot appreciate any

differences.

Figure 6-27 shows the time in seconds of the execution with contracts and without contracts for the

optimization flag -O3. The x axis represents the string size in characters and the y axis the time that the

evaluation took for that string size. The blue line represents the time that the contract version took to

execute the tests and the red line represents the time of the version which did not use contracts. In this

graph, we can clearly observe that the blue line is under the red line. This means that we have better

times for the modified version.

Figure 6-28 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O2. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to

the whole execution. The blue cross represents that the contracts were better in that case and they

supposed an improvement. A red cross represents a case where the contracts were worse in time and

supposed a delay. In this case, the differences are very small however the usage of contracts seems to

affect performance in less than 1%, which is minimal.
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Figure 6-28: Benchmark 6: Relative Impact in Performance of Contracts vs No Contracts -O2
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Figure 6-29: Benchmark 6: Relative Impact in Performance of Contracts vs No Contracts -O3

Figure 6-29 represents the relative time impact that the overhead of any of the alternatives supposed

to the whole execution for flag -O3. The x axis represents the string size in characters. The y axis details

the percentage of the overall time that the difference in the execution of the benchmark supposed to the

whole execution. The blue cross represents that the contracts were better in that case and they supposed

an improvement. A red cross represents a case where contracts version was worse in time and supposed

a delay. In this case, we can observe a clear improvement of the performance of about 3.5% with almost

all test being better.
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Figure 6-30: Benchmark 6: Distribution of tests with better times -O3

Figure 6-30 represents the number of tests going to each side per optimization flag -O2 and -O3. The

x axis represents the optimization flag that is used and the y axis the number of tests that go in favour of

each alternative. As it was depicted by previous graphs, the -O2 optimization flag does not seem to be

enough to get an improvement. However, the -O3 flag shows a clear improvement in performance.

6.2.6 Conclusions on Performance

Before starting the development of this section, the hypothesis that we had was that contracts would

induce no improvement but some overhead. Actually, an optimistic thought was observing that the

performance was not being affected at all. This was the a priori thought that we were managing before

performing any tests. This reasoning was backed-up by the fact that we were introducing some branch

instructions in the code. This directly implied that we were creating overhead and this might imply a

direct reduction of performance. But after seeing the results, all these thoughts changed since it seemed

that contracts, in fact, were positive to the executables.

Even though, we can observe some cases where the performance of C++ contracts is not performing

better than the usage of the not modified basic_string class, the relative decrease of performance de-

creases only by less than 1%. On the other hand, the cases where contracts are better is the improvement

reaches in some cases the 15%. According to the number of tests that go in favour of using C++ contracts,

the possibility of dealing with a case in which contracts are better is around 70%.

The only reason that can explain this, is the existence of an optimizer in the compiler. The code is
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read and the optimizer changes code automatically so that it is more efficient. In fact, the optimizer

that Clang compiler provides is pretty good in this sense. The optimizer builds a branch graph and

traverses all the possibilities, assuming conditions already traversed to be true. With that in mind, it is

able to detect that a branch is not feasible, and therefore, it traduces the code to remove that branch.

This removal of branches and expressions that are not feasible have two direct improvements, first, the

size of the executable, and second the performance.

That is the main idea that supports this improvement in performance. Contracts are providing extra

information that without them would not be used. This extra information is good for the optimizer,

which uses it to remove branches. Since this code has changed to provide more information with the

new implementation of basic_string, the improvements in performance are due to the assumptions that

these new conditions allow the optimizer to make.

The information that optimizer is probably dealing with, is the usage of std::terminate which

induces the compiler to know that if that code is reached, there is no way of continuing through that

branch and allows the elimination of that possible branch.

That is why, after looking at all these graphs, we can say that the information that contracts provide

to the optimizer improves the code performance in a significant factor. The reason behind this improve-

ment is the existence of a branch optimizer. With these affirmations, we conclude that giving information

to the optimizer in some way, for example, by introducing contracts that are not translated to code but

just taken into account by the optimizer, would definitely improve performance in the code.

This, as a conclusion, favours the usage of DBC, since it not only is used to give reliability and

correctness to the code but also as a tool to improve the performance. The code is significantly better

if we can help the compiler to guess which is the expected result of some branches. The more useful

information we can give a compiler, the better the resulting executable will be.





Chapter 7

Project Plan

In this section, a description of the project plan will be carried out. Initially, in Section 7.2, an evaluation

of different methodologies will be carried out justifying which is the chosen one. In Section 7.3, an

overview of how the methodology was implemented for the duration of the project will be reviewed.

This chapter aims to outline the steps that must be carried out for the completion of the project on time.

7.1 Justification of Methodology

In this section, we discuss which methodology to use for the project.

As it was mentioned in chapter 5, the software development process followed on the modification of

a compiler is not the usual software development process. The main reason behind it is that the modifi-

cation of a compiler cannot be done in a very modular way since interfaces are multiple and take all into

account is complex. It directly implies the modification of the compiler and inclusion of new features

within the already existing modules. Apart from that, the project is joined to a standardized proposal.

This aims for the implementation of a standard that has already been defined and whose requirements

will not change over time.

From that three different methodologies will be compared and analyzed namely Waterfall, Spiral and

Prototyping. The Waterfall methodology refers to the sequential execution of all the software develop-

ment phases one after the another. It is considered a traditional and usually rigid approach for systems

development. This methodology would fit our project since the requirements and design are not going

to evolve over time. However, the main disadvantage of using this methodology in this project remains

on testing phase. The creation of a project within an already existing software implies the validation of

each development so that the whole system does not break apart. And testing the whole system at once

147
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would imply a more difficult resolution of bugs since they should be hardly targetable.

Spiral methodology is a great alternative for usual software projects since it allows the creation of the

project step by step. It is a more costly alternative since it implies doing each phase multiple times but

it allows a successful development of the project. Nevertheless, this methodology does not fit well the

project. Repeating the requirement or the design phase is not going to provide anything to the project

since they are all known from the beginning of the project.

The prototyping alternative is more centred on repeating phases several times by implementing a

little functionality and evaluating it with the client to improve it. However, the requirements are already

set and we want to test the functionality many times.

For the reasons explored above the chosen methodology is Incremental Build Model. This method-

ology aims to reduce the requirements and design phase and it is more centred on the implementation

and evaluation of it. It combines the initial phase of Waterfall, where requirements and design are elab-

orated one after the other, and the last phase of Prototyping, where new elements are built over a basic

functionality. The process would imply the creation of a first prototype with a reduced functionality of

the final and evaluate it. And over it build the rest of the functionalities. In this project, the followed

approach is similar to this methodology. The basic functionality was developed and tested with the basic

contracts. Once it was fully functional, newer features such as the compilation flags and the contract

violation handler were built over it.

7.2 Methodology

In this section, an overview of the proposed methodology is depicted.

The methodology chosen to carry out this project is Incremental Build Model. In this methodology,

the requirement set is divided into several incremental builds. In this way, the requirements are devel-

oped in a more manageable way all the steps. In the incremental model, the system is built by pieces

but ensuring that each piece is complete once each of them is finished. In the case of this project the

Incremental Build Model will be applied in the following way:

1. Requirement Phase. All the requirements were extracted from the specification that was spread

among many papers to come up with a uniform base to be developed.

2. Division of Tasks. The requirements were divided into several build projects. A first build with

the basic functionality was created and from it, three more builds were created. One including the
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build level, another including the contract violation handler and another including the support for

templates.

3. Development. The functionality of each of this builds is designed for each of the specific require-

ments of this phase. When the functionality has been implemented, a testing phase is carried

out to test that the specific requirements of this build are properly implemented. This was done

specifically for each of the builds and in a general way, at the end of the project.

Figure 7-1 shows the overview of the Incremental Development Software methodology lifecycle.

Figure 7-1: Incremental Software Development Lifecycle

The main advantages that this software development model provides us is that generates software

fast and speeds up the software lifecycle. It also gives feedback to the consumer since it can be giving

small builds when they are being ready. But the most important fact is that it allows testing by batches

that make debugging easier.

7.3 Subdivision of Tasks

In this section, it is detailed how the task division of the project is carried out.

The main objective of this section is to detail how the project time was divided for the conclusion of

the former according to specified. As it was detailed in the implementation section. The project and the

learning curve of a compiler are hard, therefore there are three main sections on the project. During the

first phase of the project, the basic functionality implementation was carried out. During this phase, the

work consisted of the proper learning of the compiler and the implementation of the basic functionality.

During the second phase, a new flag was included. The last section is deeper and more difficult and

required a bigger amount of time since it was more complex. During the last weeks of the project, the
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task was devoted to creating a test interface which ensured the proper functionality of the elements

together with some benchmarks that allowed the evaluation of the project.

The project was developed in 42 weeks of work starting the 1st of September of 2017 and ending on

12th of June of 2018 with a total of 9 months of work. The project plan has taken into account holidays

since part of the work has been developed in spare time. The Gantt diagram in Figure 7-2 shows the

planned development of the project whereas Figure 7-3 represents the final depiction of time. Finally,

Figure 7.1 depicts the starting and end times.
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Figure 7-2: Gantt Chart Expected Time Expenditure



152
C

ontract-Based
Program

m
ing

on
M

odern
C

++

2017 2018

September October November December January February March April May June

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Project Planning

Planning

Documentation

User Requirements

System Requirements

Design

Basic Contracts Functionality

TableGen Attribute Generation

Semantic Analysis of the Attribute

Code Generation

Parser Modifications

Advanced Contract Functionality - Build Level

Driver Implementation

Compiler Flag Treatment

Toolchain Flag Implementation

Advanced Contract Functionality - Contract Violation

Continuation Mode Flag

Custom Violation Handler Flag

Library Inclusion in Compiler

Code Generation of Function Call

Code Generation of Object Instance

Evaluation

Compliance Tests with Lit
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Figure 7-3: Gantt Chart Actual Time Expenditure
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Phase Expected Start Expected End Actual Start Actual End

Project Planning

Planning 2017-09-01 2017-09-08 2017-09-01 2017-09-08

Documentation

User Requirements 2017-09-11 2017-09-18 2017-09-11 2017-09-18

System Requirements 2017-09-19 2017-09-29 2017-09-19 2017-09-29

Design 2017-10-02 2017-10-10 2017-10-02 2017-10-10

Basic Contract Functionality

TableGen Attribute Generation 2017-10-11 2017-10-18 2017-10-11 2017-10-18

Semantic Analysis of the Attribute 2017-10-19 2017-10-27 2017-10-19 2017-10-26

Code Generation 2017-10-30 2017-11-10 2017-10-27 2017-11-03

Parser Modifications 2017-11-11 2017-11-20 2017-11-06 2017-11-13

Advanced Contract Functionality - Build Level

Driver Implementation 2017-11-21 2017-11-24 2017-11-14 2017-11-24

Compiler Flag Treatment 2017-11-27 2017-12-21 2017-11-27 2017-12-04

Toolchain Flag Implementation 2017-12-22 2018-01-22 2017-12-05 2017-12-22

Advanced Contract Functionality - Contract Violation

Continuation Mode Flag 2018-01-23 2018-02-02 2018-01-10 2018-01-17

Custom Violation Handler Flag 2018-01-23 2018-02-02 2018-01-10 2018-01-17

Library Inclusion in Compiler 2018-02-05 2018-03-01 2018-01-18 2018-02-01

Code Generation of Function Call 2018-03-02 2018-03-22 2018-02-02 2018-02-16

Code Generation of Object Instance 2018-03-23 2018-04-20 2018-02-19 2018-03-05

Evaluation

Compliance Tests with Lit 2018-04-23 2018-05-04 2018-03-06 2018-03-15

Performance Tests 2018-05-07 2018-05-25 2018-03-16 2018-04-01

Documentation

Implementation Documentation 2018-05-25 2018-06-12 2018-04-02 2018-04-16

Table 7.1: Gantt Diagram Dates Comparison
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Chapter 8

Socio-economic Environment

This chapter aims for the analysis of the project budget. This chapter is divided into two sections. In

section 8.1 a breakdown of the costs that this project has accounted for is detailed. In section 8.2, a

description of the possible socio-economic impact of this project is depicted.

8.1 Project Budget

In this section we depict the breakdown of the different costs that the project accounted for. In Section

8.1.1, the human resources cost is depicted. In Section 8.1.2, the total cost of the equipment is overviewed.

In Section 8.1.3, we consider the cost of the software licences that we used. In Section 8.1.4, the cost of

consumables is reviewed. Afterwards, in Section 8.1.5, the travel resources are depicted. Later on, in

Section 8.1.6, other special resources are computed. Finally, Section 8.1.7 the computation of all resources

is depicted.

For this section, a total of 10 months of work will be assumed starting in September 2017 until May

2018 both included. A total of 22 labour days are considered per month and a work of 4 hours per day

is also considered. Figure 8.1 represents the breakdown of the days and hours worked.

Total Project Time

Months 10 months

Days 220 days

Hours per day 4 hours per day

Total project hours: 880 hours

Table 8.1: Total time considered
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8.1.1 Human Resources

In this section the cost of human resources is described.

The cost of human resources is obtained from the 2018 Spanish Government official site [48]. It takes

into account the average salary for a technical engineer. We take into account the average salary between

the maximum salary and the minimum salary considered in [48].Figure 8.2 represents the breakdown of

the human resources costs.

Human Resources

Role Analyst Designer Programmer Tester

Hours 44 hours 44 hours 616 hours 176 hours

Maximum salary/hour 21.31e 21.40e 21.28e 21.32e

Minimum salary/hour 6.58e 6.81e 5.64e 5.85e

Base/hour 13.95e 14.06e 13.48e 13.58e

Total: 11,920.69e

Table 8.2: Human Resources Costs

8.1.2 Equipment Resources

In this section the cost of the equipment used is described

For this section the amortization period of the equipment is considered. The amortization is calcu-

lated over the time expected to generate a benefit that covers the expenses of any equipment. As we

already said it is calcualated over a period of 10 months. It follows the following formula:

Cost =
TotalPrice

AmortizationTime
* UsageTime (8.1)

Figure 8.3 represents the detailed description of the equipment costs.

Equipment Costs

Equipment Total price per unit Cost per month (Amortization) Cost (10 months)

Personal Computer 600.00e 10.00e/month 100.00e

Tucan Cluster Node 5,000.00e 83.33e/month 833.33e

Total: 933.33e

Table 8.3: Equipment Costs
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8.1.3 Software Resources

In this section, we compute the cost of software resources.

As in the previous section the cost of the software acquired and used is considered. It is also depicted

the prices of the different free licences used.Figure 8.4 represents the breakdown of the software licences

costs.

Software Resources

Software Licence price Amortization Costs(10 months)

Ubuntu 16.04 Desktop Edition 0.00e 0.00e

Visual Paradigm Community Edition 15.0 0.00e 0.00e

Microsoft Office Student Licence 150.00e 2.50e

GitLab Community Edition 10.1.4 0.00e 0.00e

GNUPlot 0.00e 0.00e

ShareLatex Community Edition 0.00e 0.00e

Total: 2.50e

Table 8.4: Software Costs

8.1.4 Consumables Costs

In this section the price of the office material is considered. Figure 8.5 represents the total cost fo the

consumables.

Consumables

Consumable Price per unit Total Cost

Pens 2.00e 20.00e

Paper 0.05e 5.00e

Folders 1.50e 4.50e

Printer Toner - 20.00e

Total: 49.50e

Table 8.5: Consumables Costs

8.1.5 Travel Expenses

This section computes the cost of moving from home to the working place during the period of the work.

Figure 8.6 represents the overview of the transportation costs.
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Transportation Expenses

Item Monthly Price Total

Madrid Transport Card 20.00e 200.00e

Total: 200.00e

Table 8.6: Transportation Costs

8.1.6 Other Costs

This section computes the cost of using a facility or any equipment that is left such as the electricity,

maintenance or building degradation costs. It is considered to be 20% of the total cost of the project.

Figure 8.7 represents the breakdown of other costs.

Other Expenses

Concept Cost

Indirect Costs 2,625.70e

Total: 2,614.27e

Table 8.7: Other Costs

8.1.7 Total Cost

In this section, it is considered the total cost before taxes and the total cost applying the taxes applicable

in Spain which is 21% of the total cost. In the end the total cost of the project for the contraction of

the engineer and all the equipment and material needed sums up to a total of 18,979.59e. Figure 8.8

represents the breakdown of the total cost of the project.
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Total Costs

Concept Cost

Human Resources 11,927.51e

Equipment Resources 933.33e

Software Resources 2.50e

Consumable Costs 49.50e

Transportation Expenses 200.00e

Indirect Costs 2,625.70e

Margin of Benefit (15%) 1,969.27e

Total before taxes: 17,723.51e

Taxes (21%) 3,723.87e

Total with taxes: 21,445.45e

Table 8.8: Total Costs

8.2 Socioeconomic Impact

In this section, we will try to identify the target market and analyze the impact that this project might

have both economically and socially. This project has a huge factor that makes it reach a wide variety

of targets and that makes it very useful. Traditionally, C++ has been a language where users could act

freely and do almost everything they wanted dealing directly with the internals of the computer. This

implies a direct impact on efficiency and performance. And that has been the target audience that C++

has reached over years. This means that this project will already have a target audience on Software

projects that already use C++. This implementation can be used from that point on so that it gives the

new modules and implementations over the existing functionality correctness and reliability. Besides,

we have software projects that are about to start and in whose design phase performance and efficiency

are requirements. This means that those project will also be able to find an advantage of using C++ as

the programming language for their project.

However, as we said traditionally, C++ has been a synonym of efficiency and performance. With

the inclusion of Design By Contract, C++ will immediately start implying reliability and correctness in

addition to those other features. This means that it is expanding the target audience that it initially had.

It is clearly a case of horizontal expansion, with a product that is trying to fulfil the needs of a group of

users that might already have a solution, but that with the appearance of C++ might find a competitive

advantage and switch to it.
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With that in mind, we can clearly say that the target market is Software projects where the need is

either performance, efficiency, reliability or correctness. And that is a huge advantage that Design By

Contract includes a programming language. With regard to the economic impact that this social impact

might have, it will directly imply more investment in C++ programming language as a technology. En-

terprises whose projects are based directly in C++ will favour investment in projects that are built over

C++ and will imply benefits from enterprises of this kind.

In the end, it is a programming alternative that gives a lot of benefits and the way in which it

is implemented allows the programming language not to be affected in the performance or efficiency

terms. In fact, the availability of the custom violation handler will directly imply the availability to

implement certain callback functions that can be used for either an IDS, further analysis of the code or

direct interaction with the Operating System. Finally, a hidden advantage of using Design By Contract

is that it will ease programming since it allows the location of errors and unexpected behaviours since

the violations give information on the issue that has happened.
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Legal Framework

In this section 9.1 an evaluation of the applicability of the current legislation for the protection informa-

tion systems will be carried out. Among the main applicable legislation we can find the LOPD and the

recently applied GDPR. Later on, in section 9.2 we will be depicting the licences with which the project

will be distributed.

9.1 Applicable Legislation

The legislation of information systems is nowadays applied to the protection of personal data. Personal

data is any kind of data that can be used to identify an individual. Everyone should have the right to

manage its personal data, however, anyone wishes. Otherwise, it will make society more controllable

and could target attacks against an individual. In this section, we will start by depicting the Organic Law

for Data Protection (LOPD) since it is a more complete law and we will end up evaluating the General

Data Protection Regulation (GDPR).

9.1.1 Organic Law For Data Protection (LOPD)

An organic law is a legal order that derives straight from the Constitution and that will help the applica-

tion of the Constitution. The Spanish Constitution guarantees to any citizen the right to the Honor, the

Personal and Family Privacy, the Self Image, the inviolability of the home and the secrecy of commu-

nications. This implies that the law will limit the use of information technology to ensure any of these

rights. In general, there are several concepts to be taken into account in LOPD:

∙ Personal Data. Personal data is any information able of identifying uniquely a person. It can be of

any type such as name, DNI, religion, etc...

∙ File. It is named to any structured container which contains personal data.
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∙ Data Controller. It is the responsibility for keeping the data file safe according to the measures

that are determined by the law. It is also responsible for the usage under the conditions that were

exposed to the owner of the data.

∙ Data Processor. It is an entity that processes the data on behalf of the data controller. It is usually

a third party that uses the data from a data controller in order to provide some service. The data

processor does have to keep the data under the same conditions as the data controller.

When we speak of the LOPD, we usually take into account the rights that anyone which delivers any

personal data has. Those are the ARCO rights that come from:

∙ Right to Access. The ability to access the personal data that is being kept.

∙ Right of Rectification. The ability to change any data that is being kept.

∙ Right of Cancellation. The ability to eliminate the possession of those data from a third party.

∙ Right of Oposition. The negation to a party to the store the personal data.

In addition to these basic rights, the LOPD regulates what data should be extracted. It establishes that

it should be the data shall be adequate, relevant and non-excessive. It rules the obligation of informing

of the purpose of the collection of data whenever the data discloser claims it. In addition to that, it rules

the obligation informing of the recollection of data and that data cannot be obtained without explicit

permission of the discloser.

In its last part, it establishes the security measures that shall be established over data. It classifies

data among several levels depending on the sensibility of the content. There are three different levels

of security basic, intermediate and high. The higher the category, the more security measures are taken

over it.

With regard to the applicability of the LOPD to our project, we can say that it does not apply. Ac-

cording to LOPD, we would be data processors, if we had to deal with any kind of data. However, this

data is at no point stored in our program. This means that we are in no moment storing sensitive data

and the data depends on it to be written in a source file. This means that the security measures shall be

applied to that file and are outside our responsibility.
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9.1.2 General Data Protection Regulation (GDPR)

The General Data Protection Regulation (GDPR) is the new law that has been established at European

level for the data protection. These rules cover the different aspects of how any subject has to deal with

data protection. Especially in Spain, it is ruled by the Spanish Association for Data Protection (AEPD).

The GDPR establishes the following [49]:

∙ Any entity holding data from a public shall notify the corresponding authority (AEPD) of the

possession of that data.

∙ As in the LOPD, the GDPR establishes three different classifications+ depending on the sensibility

of data Risk Factor 1 (LOPD Basic), Risk Factor 2 (LOPD Intermediate) and Risk Factor 3 (LOPD

High). These levels have different obligations in what data protection refers.

∙ The need for the explicit and unequivocal consent of the data discloser. This affirmative consent is

understood if and only if the discloser agrees, in any other case, it is considered disagreement.

∙ The conditions under which the transfer of data can be done to third parties. This concession

of services can be done under specific conditions and usually under the agreement of the data

discloser.

∙ The data discloser has the right to access the data, to rectify the data, to suppress the data, to oppose

on the obtention of data, the limitation of the treatment and the portability of data. It is similar to

the ARCO rights in LOPD.

As in the case of the LOPD we are not dealing at any point with personal data directly and a compiler

is not intended to deal with identifiable data. In addition to that, it is not storing at any point the personal

data of any of the user that is why this legislation does not apply to this project.

9.2 Licences

Clang is distributed under a University of Illinois/NCSA Open Source License1. This licence leaves the

program free of use for anyone that wants to contribute to it. It ensures that the changes and contribu-

tions will remain attached to the person that creates them and that the changes to the licences of any

contributor have to be approved by him.

Clang and LLVM are intended to be kept open-source. The University of Illinois/NCSA Open Source

License establishes mainly the following principles:

∙ Anyone is free to distribute LLVM and to use it freely.

1https://opensource.org/licenses/UoI-NCSA.php

https://opensource.org/licenses/UoI-NCSA.php
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∙ The copyright that the program includes in the source code must be retained.

∙ The binaries that are produced from any of this products shall also retain the legal notice.

∙ The name of LLVM or Clang cannot be used to promote any LLVM-derived or Clang-derived

product.

∙ The licence does not provide the warranty on the functioning of any of the products.

The intention is that the product of this project2 is also delivered under the same licence as a Free/Li-

bre and Open Source Software (FLOSS) project so that anyone can access these contents and so that they

can be freely used. As in the case of the NCSA Open Source Licence, any redistribution of this project

must retain in the copyright the authors, the institution where they were created as well as the link to

the author’s page.

2http://llvm.org/docs/DeveloperPolicy.html#license

http://llvm.org/docs/DeveloperPolicy.html#license


Chapter 10

Conclusion

This chapter concludes the document and enumerates future works. Section 10.1 gives an overview of

the objectives that were achieved as part of this work. Section 10.2 includes some personal remarks, such

as the main problems found during the project development. Finally, in Section 10.3, we elaborate on

future works.

10.1 Project Retrospective

In this section, we analyze the achievement degree of the objectives described in Chapter 1. The main

objective of our proposal was to develop a complete and native implementation of Design By Contract

in C++. From that main objective, the following four secondary objectives were extracted:

1. O1. Basic Functionality, i.e. implement a set of directives that worked similarly to what other

programming languages provide. As discussed earlier in this document, the Clang compiler was

modified to include all the required functionality. Its behaviour is validated in Section 6.1.

2. O2. Advanced Functionality. We provide an advanced functionality that allow developers to

activate and deactivate the compilation of contracts or the inclusion of features such as the custom

contract violation handler.

3. O3. Efficiency. We have implemented the basic and advanced functionality without incurring in

significant overheads on the application execution time. As demonstrated during the evaluation,

the performance achieved using the proposed C++ contract implementation equals or even in-

creases to that obtained by an equivalent implementation using assert statements. This is probably

due to the fact that contracts give additional information to the optimizer.

4. O4. Efficiency of the compiler. That is, the compilation time shall not be significantly affected

by the contract code generation. Because Clang was written focusing on performance, we tried to
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reuse Clang code whenever possible.

10.2 Personal Conclusions

This section includes some personal remarks worth mentioning. It is important to note that it describes

the personal view of the author.

This project is probably one of the most difficult tasks that I had to deal with during the bachelors

degree. The author had no prior knowledge on compilers at the time this project started. The author

barely understood C++ and had never dealt with such an amount of code. This made the inherently

steep learning curve of a compiler even worse.

Also, in order to modify a compiler, a good understanding of the small details of the programming

language is needed. The fact that Clang/LLVM is around 2 million lines of code is added to the difficulty

and forced the author to make an extra effort. A list of common problems that were found follows:

∙ Added code interfering with any of the existing tasks of the compiler.

∙ The control flow is hard to guess.

∙ New code causes the compiler to fail for no apparent reason.

After the completion of this work, the author managed to build strategies to deal with huge code-

bases. The effort is worth the acquired knowledge.

10.3 Future Work

In this section we describe future work that may be accomplished on top of this project.

∙ Contract inheritance, i.e. make a subclass inherit contract specified as part of the superclass, was

one of the features that were not finally implemented. It is, nevertheless, useful in OOP to be able

to write common pre/post-conditions at the highest level in the class hierarchy.

∙ Also, it would be interesting to analyze the impact that a custom violation handler has to the size

of the binary and its execution time.

∙ Finally, contracts may be useful to interfere in the optimization phase of the compiler. We proved

that using contracts may, depending on the user code, improve performance. As a matter of fact,

the optimizer may be forced to assume that expressions that are part of contracts are always true,

even if no code is being generated. As a consequence, it should further improve execution times

for most cases.
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Implementation

In this section, we will be dealing with the implementation of the functionality within the Clang com-

piler. The learning process of a compiler is not easy and has an exponential curve. So it is very difficult

to start doing things from scratch without previous background. This project is therefore divided into

two phases of development.

During this implementation, the changes that were necessary to be made to the compiler are de-

scribed.

A.1 Practical Background on Clang

The first step of the implementation was to download the source code of Clang. This was done through

their webpage and by means of the Subversion system, it was downloaded. The steps are available in

[50]. Following this steps, we ended up having a running copy of Clang with its source code. However,

Clang needs of LLVM and many other elements behind to make it work. The only step that we changed

from the installation guide was the path of the build directory which was placed within the tree struc-

ture as it is usually done with source code programs.

Now we mention some of the most important directories to take into account when dealing with

Clang compiler. These directories are be employed during the implementation phase and are important

to be taken into account. We assume that the root path (/) is where Clang is downloaded. /tools/clang/

is the root of Clang tree structure. Clang is placed as a tool that works over LLVM, therefore we

need to place it here. In this directory, we can find a tree structure where we find all the code that

makes Clang run. /tools/clang/include/ is the directory where we can find all the header files of Clang.

They are usually classified by categories and permit to observe a high-level interface of what the code
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finally is. Apart from that it sometimes includes implementations of different functions in case that the

implementation is very short. Finally, it includes .td files, which are TableGen files. /tools/clang/lib/

is the directory where we find the implementation of Clang. In this directories is where the main

implementation will be written. /tools/clang/test/ is the directory that is used in the evaluation section

for the implementation of the unit tests.

A.2 First Phase

In this section, we describe the first phase of the implementation. During the first phase of the imple-

mentation, the basic building blocks of the specification had to be developed. It was needed to create a

basic set of functions on which the later implementation could be supported. Implementing something

in a compiler requires to change the way of thinking.

The first element to be implemented was the assert attribute. If we remember from the requirements

section 4.8.1, we needed to follow the following syntax for attributes [[assert assertion-level: condition]]. If

we look at this syntax, it reminds a lot of the C++ attribute syntax [[attribute]]. An attribute is a specifier

that is applied over any statement of the code and whose purpose is to give further information than

the available on the sentence of the code. With that in mind, the first intention was to develop this as

an attribute. In fact, from the requirements phase, we already had the clue that it had to be done this

way since they had to be applied to the specific type of statements and the only way to check that was

associating them directly to that.

With that in mind, we had to find where attributes were generated and how they were known by the

system. This process is done automatically by a program called TableGen which is a program included

within the LLVM infrastructure. The program is able to generate the implementation of the class from

a file including the definition of some attributes of the class. The definition of the elements follows

a specific syntax that simplifies the implementation avoiding having to include specific details. When

building the compiler, it will create from it the different classes and implementation of those. Under-

standing how it worked was difficult since no previous knowledge of the compiler was attained. Once

it is understood that the code is not generated in a usual class, the process was to define an entry in the

TableGen file. TableGen files use the extension .td and are huge lists of definitions of classes and their

code omitting a huge part of it.

Since no previous knowledge of how attributes were assumed, we had to look at what attributes did

and to their fields. Those fields are the ones in charge of specifying what is the behaviour that they will

attain. The first process consisted of investigating whether any attribute already existed with a similar
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functionality in Clang. In such case, we could even be reusing some of its functionality. While analyz-

ing the full list of attributes in [51], we realised there was an attribute which performed a very similar

function to the assert attribute that we were desiring. In this case the attribute is called diagnose_if. It

holds a condition, a message and optionally a warning level. This attribute works at compile-time and

evaluates the condition. In case that is false, it will warn the user. For that, the condition must be evalu-

able at compile-time. However, there are two main differences between this attribute and ours. The first

is that it is a GNU attribute. GNU attributes are the syntax that GCC attributes follow and affect usually

this type of compiler. Since Clang aims to be interoperable, it also supports this syntax. The syntax

used is __attribute__((diagnose_if(a >= 0, “a is not bigger than 0”, “warning”))). The second main difference

apart from the syntax is the compile-time evaluation. We are interested in this fact, however, we are also

interested in the fact of evaluating the condition at runtime in case that it is not possible at compile-time.

This implies that modifications had to be made to the attribute, first, because we needed to change

the syntax to be the C++ syntax, and later on to support the runtime evaluation of the condition. Then

we had to look for the implementation of the diagnose_if attribute in order to analyze how it received the

arguments and how they were later on used for the implementation. If we look at the code below, we

can observe most of the characteristics of the attribute and see how it is generated by the reception of its

arguments. The diagnose_if attribute can be found in the directory /tools/clang/include/clang/Basic/Attr.td.

This is important to be remarked because even finding the generation of this is not as trivial and easy as

it might seem. The most important ones are the following three:

∙ Spellings. It determines which is the keyword that is going to identify the attribute. Apart from

that, it includes the set of attributes within which it is included. In the case of diagnose_if, it is

included in the GNU set. This implies that we have to switch it to start belonging to C++.

∙ Subjects. They determine which is going to be the nodes that are able to be affected by the

attribute. In the case of the diagnose_if, we see that mainly we see functions are what affects it.

Other than that, we see Objective-C nodes that are not of our interest. This means that our attribute

should be affecting only null statements.

∙ Args. The args is the set of arguments that our attribute receives. In this case, we can easily

identify an expression a string argument and an enum argument. The expression is going to be the

condition of the attribute, the string argument is going to be the message and the enum is going to

have either the value of “warning” or “error” in case that it fails to be marked in either of this two

ways.

Figure A.1 shows the diagnose_if code in Attr.td.

Listing A.1: Diagnose_if attribute definition in Attr.td
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1 def DiagnoseIf : InheritableAttr {

2 //The spelling determines which is the keyword identifying the attribute

3 let Spellings = [GNU<"diagnose_if">];

4 //The subjects establish which nodes this can be associated to functions and methods.

5 let Subjects = SubjectList<[Function, ObjCMethod, ObjCProperty]>;

6 //The arguments that our code is going to receive.

7 let Args = [ExprArgument<"Cond">, StringArgument<"Message">,

8 EnumArgument<"DiagnosticType",

9 "DiagnosticType",

10 ["error", "warning"],

11 ["DT_Error", "DT_Warning"]>,

12 BoolArgument<"ArgDependent", 0, /*fake*/ 1>,

13 NamedArgument<"Parent", 0, /*fake*/ 1>];

14 let DuplicatesAllowedWhileMerging = 1;

15 let LateParsed = 1;

16 let AdditionalMembers = [{

17 bool isError() const { return diagnosticType == DT_Error; }

18 bool isWarning() const { return diagnosticType == DT_Warning; }

19 }];

20 let TemplateDependent = 1;

21 let Documentation = [DiagnoseIfDocs];

22 }

With that in mind, we can already try to define our new attribute. The attribute that is defined is

going to be called assert. We only want it to receive two arguments, the condition and the assertion

level, being this last one optional. With regard to the subject, it has to be associated to a null state-

ment however since this check is usually performed in Sema it can be left apart and will be checked

later on. With regard to the syntax that is going to hold is not going to be the final one that we

want. That is not a responsibility of this section. The syntax that is going to admit is going to be

[[assert(assertion-level, condition)]], but we will deal with this in a later step. The resulting

attribute is going to be of this shape:

Listing A.2: Assert attribute definition in Attr.td

1 def Assert : StmtAttr {

2 //The spelling is according to what is specified.

3 let Spellings = [CXX11<"", "assert", 201603>];

4 //The set of arguments, the order is important.
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5 let Args = [IdentifierArgument<"Level">,

6 ExprArgument<"Cond">];

7 let Documentation = [Undocumented];

8 }

Figure A.2 represents the syntax of the new attribute.

It is important to remark the order that it is accepting. If it does not take this order, the attribute will

be accepted later when we modify the syntax an incorrect order, and in this case, it is important for the

further evaluation of the changes in the grammar.

A.2.1 Sema Modifications

In this section we describe the changes in the Semantic Analysis Since making the changes in the gram-

mar is one of the most difficult changes, we are going to leave it for the end, and we are going to first

assume the syntax is the correct one. If we recap from what we proposed in the explanation, the Sema

component in Clang receives the pieces from the attribute in order for it to be able to analyze it. With

this pieces, it is able to create the node of the specific element that is needed. In what is applied to our

case, the Sema code shall verify that the pieces that form our attribute are correct. Then it will have to

create a node for the AST and return it.

For the evaluation of the attribute, we perform several steps. First, it has to take a look at the

condition and shall evaluate whether what we are putting is convertible to a boolean or a condition.

Many elements are convertible to conditions in C++, either way, there are certain expressions which are

difficult to evaluate, or even not possible to evaluate, such as null. Regarding the statement, we have

to consider that the attribute is associated with a null statement, all this can be checked with Sema since

its functions receive this evaluation. The evaluation of the attributes in Sema is done hierarchically.

There is a bigger function which is calling all the evaluations and the evaluations are later divided by

categories. In this case, since our attribute is associated with a statement, we need to use the function

ProcessStmtAttribute. This function receives as parameters a statement (Stmt), the attribute list, which

is the set of arguments that a compiler receives, Sema which is a bigger object which contains the state

of the program and allows us to obtain its functions, and the range (SourceRange) where the attribute is.

The following code can be found in /tools/clang/lib/Sema/SemaStmtAttr.cpp.

Listing A.3: Assert attribute node generation in SemaStmtAttr.cpp

1 static Attr *handleAssertAttr(Sema &S, Stmt *St, const AttributeList &A,

2 SourceRange Range) {
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3 //Evaluating if we are getting the desired number of attributes or not

4 if (A.getNumArgs() < 2) {

5 S.Diag(A.getLoc(), diag::err_attribute_too_few_arguments) << A.getName() << 2;

6 return nullptr;

7 }

8 //We contextually convert the expression to a bool to evaluate if it is a correct condition

9 Expr *E = A.getArgAsExpr(1);

10 if (!E->isTypeDependent()) {

11 ExprResult Converted = S.PerformContextuallyConvertToBool(E);

12 if (Converted.isInvalid())

13 return nullptr;

14 //If everything is correct we get the correct condition as an expression

15 E = Converted.get();

16 }

17 //At this point the attribute is created with the parameters received.

18 AssertAttr Attr(A.getRange(), S.Context, A.getArgAsIdent(0)->Ident, E,

19 A.getAttributeSpellingListIndex());

20 //We evaluate whether the statement to which it is associated is a NullStmt

21 if (!isa<NullStmt>(St)) {

22 S.Diag(A.getRange().getBegin(), diag::err_fallthrough_attr_wrong_target)

23 << Attr.getSpelling() << St->getLocStart();

24 return nullptr;

25 }

26 // If this is spelled as the standard C++1z attribute, but not in C++1z, warn

27 // about using it as an extension.

28 if (!S.getLangOpts().CPlusPlus1z && A.isCXX11Attribute() &&

29 !A.getScopeName())

30 S.Diag(A.getLoc(), diag::ext_cxx17_attr) << A.getName();

31

32 return ::new (S.Context) auto(Attr);

33 }

If we take a look at the code in Listing A.3, we can observe that we are performing the check of

the different conditions that we said before. The main difficulty is finding the element that you need

in order to perform the transformation of the elements. As we can see, at the end of this method the

newly created node is returned. It is done through the ASTContext, a class that is going to deal with
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the different elements of the AST. This class has a memory allocator, that is why all the elements are

created this way since it allows that we are later able to free this memory without leaving an unoc-

cupied memory. It is a pretty interesting implementation since it hides all the memory management

task so that anyone implementing anything new has only to care about generating the new node and

allocating it in the ASTContext. It is important to remark that ASTContext is one of the core classes

that we are dealing with repeated times during this implementation. Another important class is Sema

which is the core of the Semantic Analysis, it is probably one of the most powerful classes in Clang since

it provides mechanisms for almost anything. However, Sema is only present in this phase of the analysis.

Once we have dealt with the generation of the node, we test whether the node is being properly

generated. For this purpose, we use a tool that Clang provides and allows the user to print the AST that

a code is generating. Since we are already generating code for this kind of statement, we should be able

to see how the node is generated. The following image represents the subsection of the AST related to

the assert attribute. Figure A-1 shows the generation of the node in the AST.

Figure A-1: Assert Attribute AST Generation for [[assert: num > 0]]

A.2.2 Code Gen Modification

If we remember from what we commented on the explanation, once the node in the AST is generated, we

just need to implement the code generation that we want it to be equivalent to. This implementation is

then part of the CodeGen implementation. In CodeGen there are several alternatives on how we can act

with a node. Usually when we want to implement a complex behaviour, we have to deal with creating

our new generic LLVM code and make its generation. However, if the behaviour can be represented with

the abstraction that the AST provides that is not necessary and although it is also complex to represent

the code by means of objects, we can use it to generate just small parts of the AST. In our case, the code

that we want to implement the pseudo-code that we want to implement for any of the contracts is the

following:
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Listing A.4: Assert attribute code

1 ...

2 [[assert: x > 0]];

3 ...

Listing A.5: Assert attribute equivalence

1 ...

2 if (!(x > 0)){

3 //std::terminate() == abort()

4 std::terminate();

5 }

6 ...

The important points to take into account at this point is the behaviour. As we see in Figure A.4

and Figure A.5, we need to perform a function call to std::terminate, which interrupts the execution

of the code. In C++ it the usual way of interrupting the execution is by means of std::terminate() but

it is equivalent to the C expression abort(). And we will have to switch the direction of the condition,

meaning that if we need to perform this call to abort when the condition is not fulfilled.

All this code is implemented in CodeGen. As in the rest of the elements, CodeGen is divided into

several archives depending on the element that it deals with. In the case of the assert, we are dealing

with the generation of a statement, and what we have to modify is that whenever we deal with an as-

sert statement, it is substituted by the code on the right side of Figure A.5. The way of doing this is

by creating a new function in CGStmt.cpp which is the code file that is in charge of dealing with the

statements. What we have to modify is the generation of AttributedStmt nodes. When we try to generate

something related to that, we have to check if the attribute that is associated is an assert attribute. This is

implemented, however, we have to add an entry to a list of checks that is verified when we deal with an

attribute of this type.

In Listing A.6,we are operating with the expression contained in the code. The expression needs to

be extracted from its container which is the attribute, and once it is extracted, we negate it by applying

the unary operator not (!) and then we are going to build an if statement. For the if statement, we already

have the condition, the only thing that we have to modify is the then statement. For this first version, it is

going to be just the std::terminate call. To do so, we create a function that later on will be generalized.

This function searches over the symbols table for a declaration with that name and that type. Once it

finds it we will generate a call expression to that function declaration. That is all done within the function

GetRuntimeFunctionDecl. This function will be modified in a newer version of the code to be generalized

for any behaviour. With that in mind, we will already have the unary operator and the call expression

which is what we need to generate the if statement. Once the if statement is generated, we already have a

function to generate the code equivalent to an if statement. This code will be generated at an equivalent

point as the assert attribute. Meaning that by putting the attribute we will already be generating this
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behaviour that we desired. This code can be found in /tools/clang/lib/CodeGen/CGStmt.cpp

Listing A.6: Assert attribute code generation

1 void CodeGenFunction::EmitAssertAttr(const AssertAttr *_Attr,

2 SourceLocation Loc) {

3 //We extract the Call Expression to abort

4 CallExpr *CE = SynthesizeCallToFunctionDecl(&getContext(),

5 const_cast<FunctionDecl *>(CGM.GetRuntimeFunctionDecl(getContext(),

6 "terminate")), {});

7 //We extract the condition into an expression

8 ParenExpr *PE = new (getContext()) ParenExpr(

9 SourceLocation(), SourceLocation(), _Attr->getCond());

10 UnaryOperator *UO = new (getContext()) UnaryOperator(

11 PE, UO_LNot, PE->getType(), VK_RValue, OK_Ordinary,

12 SourceLocation());

13 //Generating the IfStmt

14 auto _S = new (getContext()) IfStmt(getContext(),

15 Loc, false, nullptr, nullptr, UO, CE);

16 //Emitting the IfStmt

17 EmitIfStmt(*_S);

18 }

A.2.3 Parser Modifications

Once we reach this point, the functionality of the assert attribute is almost fulfilled, we are already

creating an attribute that is able to evaluate the condition. But we still need to perform some changes

on the code, to adopt the syntax that we desired. What we need now is to deal with the grammar that

we desire in order to evaluate what is the syntax to be admitted. To do so, we have to reach the point of

the parser where the attributes are analyzed and permit that the attributes that we chose are used with

a different syntax. This code can be found in /tools/clang/lib/Parse/ParseDeclCXX.cpp

Listing A.7: Assert attribute parser code

1 unsigned Parser::ParseContractAttrArgs(IdentifierInfo *AttrName, SourceLocation AttrNameLoc,

2 ParsedAttributes &Attrs, SourceLocation *EndLoc) {

3 AttributeList::Kind AttrKind =

4 AttributeList::getKind(AttrName, nullptr, AttributeList::AS_CXX11);

5 ArgsVector ArgExprs;
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6 ExprResult ArgExpr(static_cast<Expr*>(nullptr));

7 if (!Ident_axiom) {

8 Ident_axiom = PP.getIdentifierInfo("axiom");

9 Ident_default = PP.getIdentifierInfo("default");

10 Ident_audit = PP.getIdentifierInfo("audit");

11 Ident_always = PP.getIdentifierInfo("always");

12 }

13 IdentifierInfo *II1 = Ident_default;

14 SourceLocation Loc1;

15 if (Tok.isOneOf(tok::identifier, tok::kw_default)) {

16 II1 = Tok.getIdentifierInfo();

17 Loc1 = ConsumeToken();

18 }

19 if (ExpectAndConsume(tok::colon))

20 goto out;

21 ArgExpr = Actions.CorrectDelayedTyposInExpr(ParseExpression());

22 if (ArgExpr.isInvalid() || !Tok.is(tok::r_square)) {

23 Diag(Tok.getLocation(), diag::err_expected) << tok::r_square;

24 goto out;

25 }

26 ArgExprs.push_back(IdentifierLoc::create(Actions.Context, Loc1, II1));

27 ArgExprs.push_back(ArgExpr.get());

28 Attrs.addNew(AttrName, SourceRange(AttrNameLoc, Tok.getLocation()), nullptr, SourceLocation(),

29 ArgExprs.data(), ArgExprs.size(), AttributeList::AS_CXX11);

30 if (EndLoc) *EndLoc = Tok.getLocation();

31 out:

32 SkipUntil(tok::r_square, StopAtSemi | StopBeforeMatch);

33 return static_cast<unsigned>(ArgExprs.size());

34 }

Before Listing A.7, a little fragment of code is executed. This fragment of code is going to receive the

first two square brackets of the attribute and it is going to discard them since they are of no use. Right

after that, the program is going to identify the attribute with its name, this name will be an identifier

as a variable or function name and will be stored in the symbols table although as a generic identifier.

This identifier name is what we receive in this function. We use the identifier to extract the attribute kind.

The attribute kind is generated automatically from the TableGen that we mentioned previously. This
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is important since we are going to verify that our contract, in fact, is an assert attribute. Otherwise, we

would be dealing and return since we are not dealing with a correct expression.

Once we verify it, we are able to go for the next element in the specification. This element is the

assertion-level. We did not deal with its implementation yet, but with regard to the parsing, it is impor-

tant to take it into account because it will be later used for the generation of contracts. If we recap, there

were 4 possible assertion levels axiom, always, default and audit. These assertion levels determine which

are the contracts that are activated at each point. This forces that our field has one of the four values. For

that, we extract the identifiers from the symbols table and cache it in the parser so that they do not have

to be extracted each time we deal with them. Then we are going to deal with other of the requirements

which is that the default assertion level if none was specified, shall be default. For that purpose, we

generate a variable which is going to hold the identifier for the attribute. This identifier is going to have

by default, the default assertion level. Then the function isOneOf() allows the extraction of the identifier

Token in case it is of this kind. In such case, we extract it and assign it to the identifier variable. In any

other case, the default value will remain. Then, we go for the next element in the structure, the colon.

We look for it and otherwise interrupt the execution.

Finally, after the colon, we just have the condition. For this purpose, a function provided by the

parser is used. This function is ParseExpression and returns an expression from the tokens that it will

analyze. Since we can have mistakes in the expression because the user can commit them, we use the

function isInvalid to evaluate it. Finally, we check whether we are in a right side square bracket. If that is

the case it means we have correctly parsed an expression and then we are able to generate the arguments

of the Attribute and push them back. Those arguments will be pushed into the attributes list that we

mentioned in the Semantic Analyzer part. With that in mind, we already have the possibility of using

this new syntax. In fact, the inclusion of this new function excludes from now on the old syntax of an

attribute ([[attribute(arg1, arg2)]]) for the contracts making a difference between the concept of contract

and attribute.

A.3 Second phase

In this section, we are going to deal with the advanced implementation of the project. This advanced

implementation deals with further functionality related to contracts.

A.3.1 Expects and Ensures

At the end of the first phase, the assert attribute was already developed. However, there were still con-

tracts to be developed. However, the development of those was more difficult than it would seem. The
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evaluation of the assert attribute could be just the substitution of it by an if statement, however, there were

still some major changes that needed to be made for the evaluation of the contracts that were assigned

to the function type as it was in the specification.

In order to solve this problem of the assignation to the function type, the solution found was the

creation of two versions of the function for the argument check. Before talking more about this, we are

going to explain a technique which is going to be used in this section. This technique is inlining. In C

and C++, there are arguments that support inlining. Inlining consists of substituting a call to a function

by the code inside it. This has several results, on the one hand, it improves efficiency since it implies

neither movements of data nor branch instructions, on the other hand, it increases noticeably the size of

the code. For the application of this technique in our problem, only the side effects of this were taken

into account.

The implementation consisted of the creation of an unchecked version of a function. The unchecked

version of the function performed inside it first the checks of the contracts and then a call to the main

function was performed. The great thing about this is that the calls to the version with the contracts

were substituted by this function meaning that all end up working at the points they are needed. It has a

lot of advantages for the user. The first is the reduction of the size of the executable. Another alternative

would have been performing all the checks of the preconditions on the first line of the function, and all

the checks of the postconditions before any return call. This, of course, would have ended up generating

a bigger amount of code. In fact, it loses no performance with respect to the original functions because

the original function is marked as inline. This means that the body of the function will be substituted on

its calls, which will be just one. What is more, since all these changes are performed artificially, and the

calls to the original function are substituted, the original function is not used, and at the end is removed

leaving the executable with only one version of the function, which is the function with contracts.



APPENDIX A. Implementation 179

Listing A.8: expects and ensures code

1 void square(int x)

2 [[expects: x > 0]]

3 [[ensures ret: ret == x * x]]

4 {

5 return x * x;

6 }

7 int main(int argc, char* argv[]){

8 int x = square(10);

9 return 0;

10 }

Listing A.9: expects and ensures equivalence

1 int square_unchecked(int x)

2 [[expects: x > 0]]

3 [[ensures ret: ret == x * x]]

4 __attribute__((always_inline)) //Inline

5 {

6 return x * x;

7 }

8 //New unchecked function

9 int square(int x)

10 {

11 //Preconditions evaluation

12 if(!(x > 0)){ std::terminate();}

13 //Function execution

14 int ret = square(x);

15 //Postconditions evaluation

16 if(!(ret == x * x)){ std::terminate();}

17 return ret;

18 }

19 int main(int argc, char* argv[]){

20 //Modified function call

21 int x = square_unchecked(10);

22 return 0;

23 }

Figure A.8 shows how this idea provided a solution both efficient and at the same time good for the

implementation of preconditions and postconditions. The code that had to be developed for this phase

included the following changes:

∙ Variable Creation for ensures. The ensures contract implied that we needed a variable to link

the return value. This variable was declared thanks to the support that C and C++ have for

declaring functions. It is called the Kernighan and Ritchie (K&R) style. In this style, some variables

are declared in the function declaration. With this mechanism when the identifier is parsed, an

identifier is created in the symbols table. This involved later problems regarding the resolution of

template variables. Because of the generation of the prototype dependent variable.

∙ Attr.td and TableGen. The new attributes required a new entry in the TableGen as usual, however,
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both required to include new fields, since in functions we can have a separate declaration and

definition of it. In order to solve that a new field had to be implemented and since it was not

available, the TableGen generation of classes had to be modified.

∙ Parser. The parser required a more complex implementation since, in the case of the ensures, we

had the possibility of adding the return variable. This implied that a common representation of the

variable had to be taken into account and even at that point, the possibility of choosing different

names was possible. In fact, this also had to include code for a possible delayed generation in case

it is used with generic programming.

∙ Sema. In the case of Sema, the new attributes, expects and ensures, had to be related to the a

declaration instead of an statement. This causes the implementation to be present in SemaDeclAttr.cpp

instead. The checks performed in this section were pretty similar to the ones made in the case of

assert with the difference that we check that it is associated to a function declaration (a FunctionDecl

object).

In the following sections, we will be dealing with several features that were implemented in order to

complete the features that we have in the contract’s specification.

A.3.2 Build Level

One of the first elements we had to deal with was the implementation of the build level. If we recap

from the specification, the build level is a flag that had to be implemented in order to deactivate and

activate contracts as the user desired. There are three main build levels: off, default and audit. Before the

generation of the code verification, the build level is compared to the assertion level and depending on

both the validation is generated or not. First of all, we have to take into account that axiom contracts

are annotations. They are present in the source code to give the programmer information. That means

that they never generate code. With regard to always contracts, they are always verified, no matter what

the build level is. For the remaining two assertion levels it depends on the build level. With the default

build level, always and default assertion level attributes are taken into account. With the audit build level,

always, default and audit assertion level attributes are taken into account. Figure A-2

For the implementation of the functionality, there were two parts missing. First of all, we needed to

establish a mechanism for the user to specify the build level. Then we have to implement how the code

is going to behave depending on the build level. The first part is the most difficult one. It is a process

which is easily repeatable but that the first time that it has to be done requires a lot of patience since no

result was found. I have to note that the information of how the Driver was working was unknown until

the moment in which this document was written. While I was trying to develop the functionality it was

like a blind search since nothing seem to be able to help me find the solution.
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Figure A-2: Assertion Levels vs Build Levels

The implementation of a compilation flag is a similar process to the attribute implementation. Flags

are placed in some directories where we are later able to generate some information about them. The

first step to carry out is the inclusion of the new flag with its syntax so that the compiler recognizes

it. There are several lists in Clang where attributes can be placed and where they will, later on, be

treated by similarly as TableGen files for the generation of the compilation options list. The list in

which we are interested in firstly is the list that the Driver receives. Placing our argument in any other

list would not make the user able to introduce it as a compilation option since the compiler would

not recognise it. The list that we are interested in is Options.td. This list follows a specific format of

attributes that is needed to follow in order to include a new element. In our case we are interested in

supporting two syntaxes –build-level=<build_level> and -build-level=<build_level>. This code can be found

in /tools/clang/include/clang/Driver/Options.td.
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Listing A.10: –build-level flag inclusion in Driver

1 def build_level_EQ : Joined<["-", "--"], "build-level=">,

2 Flags<[CC1Option, CC1AsOption, CoreOption]>,

3 HelpText<"Build level for this translation unit">,

4 Values<"off,default,audit">;

Followingly, we will explain what the code means. Firstly it identifies the attribute. The name given

before to the attribute is not trivial. It has to coincide with the name later on given in the syntax and

it does allow only certain syntaxes. In this case the “_” is translated later on to “-” and the “_EQ” is

translated to “=”. The clause Joined is used to express that we are going to give more than one syntax.

The Flags clause is used to classify the option within the different options of the system. In this case,

CC1 refers to the compiler tool. There are flags which are destined for different other purposes. How-

ever, as far as our implementation has reached, choosing different values for this field does not alter the

behaviour. Its functionality is only classification of the different compilation flags. Finally, we determine

a help text which serves as documentation for this flag, and the possible values that it takes, which are

the ones mentioned before, off, default and audit. All these fields affect the Driver, meaning that are useful

for the Driver in terms of generating representative error reports for the user. However, with just this,

the flag is just recognized in the system and no behaviour is produced.

By this point, this flag is only persistent in the Clang Driver, this means that after that, if the flag

was not preserved somehow, the flag was going to be lost. As we already mentioned, each Clang tools

and even subcomponents has its own flags. These flags are expressed by means of different .def files. In

our case, the decision to be made was to choose to keep the flag either in CodeGenOptions.def, which is

destined for options affecting the generation of code or in LangOptions.def which is destined to hold the

language options. In this case our option is going to affect whether the code for a contract is generated

or not, however, we are a lot more interested in holding it inside the LangOptions since it grants it to be

visible to the whole compiler in case that we need to perform any further modification to the flag. The

file LangOptions.def can be found in tools/clang/include/clang/Basic/LangOptions.def. The code included is

the following:

Listing A.11: build level flag in Lang Options

1 VALUE_LANGOPT(BuildLevel, 2, 1, "C++ contracts build level")///build-level=off,default,audit

The first field is the name that is going to be given to the variable in the code. The second field

determines the number of bits that are needed. In our case since we have 3 possible values, we need at

least 2 bits. The third field represents the default value. In this the representation given to those values

is 0 for off build level , 1 for default build level and 2 for audit build level. This representation is created
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and followed in the implementation. In this case, that is why the third value is 1 because, as it is said in

the specification, the default build level in case that the user does not specify it is going to be default.

Taking that into account, we have to find how the information is moved from the first list of compi-

lation flags to the second of LangOptions. However, and it is here where we found our main problem.

The list from which we were trying to move the arguments from was not the Driver flag list. This meant

that there was a hidden interaction between both actions that was in charge of moving the arguments.

Realising that this was the problem was not trivial at that point. Neither was finding where the elements

were translated. We found that the Driver gives it control to the specific Toolchain and it is in charge of

determining which arguments are passed to each of the things. The main reason to follow this approach

is to be similar to what GCC does. The file where the files can be moved from the Driver to the CC1

argument list is Clang.cpp, which is a generic file expressing the toolchain of the compiler. This file can

be found in /tools/clang/Driver/Toolchains/Clang.cpp. The changes that were performed in this file were the

following:

Listing A.12: Argument Management in Clang Toolchain

1 void Clang::ConstructJob(Compilation &C, const JobAction &JA,

2 const InputInfo &Output, const InputInfoList &Inputs,

3 const ArgList &Args, const char *LinkingOutput) const {

4 const Driver &D = getToolChain().getDriver();

5 const Driver &D = getToolChain().getDriver();

6 ArgStringList CmdArgs; //Arguments that are passed to the job

7 ...

8 if (Arg *A = Args.getLastArg(options::OPT_build_level_EQ))

9 A->render(Args, CmdArgs);

10 ...

11 getToolChain().addClangWarningOptions(CmdArgs);

12 ...

13 }

The code in Figure A.12 takes the argument from the Driver Flag List checking if it is present or

not. If it is present, it moves it from the Driver list to the Compiler Option List. Finally, the compiler

arguments are moved to the next place.

After some search following the flow of the program, we found that in the front-end library was where

most of the information traversed from the list compiler argument list to the language options. Specif-

ically, it was performed in the CompilerInvocation.cpp. In that point arguments received by the compiler
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were processed and moved specifically to each of the places. At this point in the implementation, we

have to relate things as we said we would do it. We are going to store in the language options the bit

corresponding to the build level that we received. The code that is going to perform this translation is:

Listing A.13: Build Level handling in CompilerInvocation.cpp

1 static void ParseLangArgs(LangOptions &Opts, ArgList &Args, InputKind IK,

2 const TargetOptions &TargetOpts,

3 PreprocessorOptions &PPOpts,

4 DiagnosticsEngine &Diags) {

5 ...

6 // Handle -build-level= option.

7 if (Arg *A = Args.getLastArg(OPT_build_level_EQ)) {

8 unsigned Val = llvm::StringSwitch<unsigned>(A->getValue())

9 .Case("off", 0)

10 .Case("default", 1)

11 .Case("audit", 2)

12 .Default(~0U);

13 if (Val == ~0U)

14 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << A->getValue();

15 else

16 Opts.BuildLevel = Val;

17 }

18 ...

With the code in A.13, we put the value inside the BuildLevel attribute included in the LangOptions

file. That means that the comparison among the build levels is already possible. In this code, a templa-

tized class is used. This class is StringSwitch, which performs a switch with strings, something that is

not usually offered with the classical C++ switch. In the case that we are putting an invalid value, we

are going to launch an error with the diagnostics engine.

With that in mind, the only thing, that we need to evaluate is whether the code has to be generated

in the CodeGen section. For this purpose, a identification is generated for each assertion level. The

identifications assigned are 0 for always, 1 for default, 2 for audit and 4 for axiom. We will only be

generating the code in case that the assertion level is smaller or equal to the build level. This will enforce

the always level to always be generated and taken into account. And the axiom level as it is always bigger

than the build level is never going to be generated. This code is generated together with the code that

was in charge of generating the code in /tools/clang/lib/CodeGen/CGStmt.cpp.
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Listing A.14: CodeGen Assert Emission with Build Level

1 void CodeGenFunction::EmitAssertAttr(const AssertAttr *_Attr,

2 SourceLocation Loc) {

3 unsigned Level = llvm::StringSwitch<unsigned>(_Attr->getLevel()->getName())

4 .Case("always", 0) // Assert is emitted even if -build-level=off

5 .Case("default", 1)

6 .Case("audit", 2)

7 .Default(~0U);

8 //If Level > BuildLevel we stop execution.

9 if (CGM.getLangOpts().BuildLevel < Level)

10 return;

11 //We extract the Call Expression to abort

12 CallExpr *CE = SynthesizeCallToFunctionDecl(&getContext(),

13 const_cast<FunctionDecl *>(CGM.GetRuntimeFunctionDecl(getContext(),

14 "terminate")), {});

15 //We extract the condition into an expression

16 ParenExpr *PE = new (getContext()) ParenExpr(

17 SourceLocation(), SourceLocation(), _Attr->getCond());

18 UnaryOperator *UO = new (getContext()) UnaryOperator(

19 PE, UO_LNot, PE->getType(), VK_RValue, OK_Ordinary,

20 SourceLocation());

21 //Generating the IfStmt

22 auto _S = new (getContext()) IfStmt(getContext(),

23 Loc, false, nullptr, nullptr, UO, CE);

24 //Emitting the IfStmt

25 EmitIfStmt(*_S);

26 }

Figure A.14 shows the new version of the Code Generation with the build level. With that in mind,

everything regarding the assertion levels and build levels would be implemented and the functionality

provided.

A.3.3 Contract Violation Handler Generation

In this section, we explain how the functionality of the custom violation handler was developed. When

a contract is not fulfilled, a violation handler is executed. The violation handler is a function that by

default will do nothing and at the end will abort by executing std::terminate(). However, it exists
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the possibility that the user defines its own defined contract violation handlers. Those handlers will be

defined by the user and will determine which is the behaviour that the program has once the violation

happens. In our case, the violation carries out some consequences. The violation handler receives

by parameter an object which holds all the data about the violation. The object that is created, is

represented in the Figure A.15. This is a high-level interface that represents the public attributes, if for

our implementation we need anything different, we can consider changing the private attributes.

Listing A.15: Contract Violation Object

1 namespace std {

2 class contract_violation {

3 public:

4 int line_number() const noexcept;

5 const char * file_name() const noexcept;

6 const char * function_name() const noexcept;

7 const char * comment() const noexcept;

8 const char * contract_violation() const noexcept;

9 };

10 }

In order to solve the generation, we had to first be generating a call to this function handler that

is a function that the user provided and then passing as a compilation flag. The first step consisted

of generating a function that could be executed, for that we needed to find first the declaration. Later

on, we would make generate the call expression to that function declaration. What we received from

the user was a function name. This means that we needed to be able to generate a call to a function

with just that name. This was the first objective, for that we created a function that searched among all

the identifiers and returned as an element corresponding to the type and with the same name. A first

approach to this function was obtained from the function GetRuntimeFunctionDecl. This function was

specifically created for FunctionDecl objects. However, as it will be proposed later, the approach was

generalized in a clever implementation to show a generic behaviour and finding any kind of object. The

generation of the call was made by another function, SynthesizeCallToFunctionDecl. This function was

able to create a function call (CallExpr) from the function declaration. With a CallExpr, CodeGen is going

to generate the equivalent IR of a function call. The code for that is divided into two parts. We are going

first on the basics of GetRuntimeFuncitionDecl:

Listing A.16: Obtaining Function Declaration from Name

1 const FunctionDecl *

2 CodeGenModule::GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {

3 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
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4 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);

5

6 IdentifierInfo &CII = C.Idents.get(Name);

7 for (const auto &Result : DC->lookup(&CII))

8 if (const auto FD = dyn_cast<FunctionDecl>(Result))

9 return FD;

10

11 if (!C.getLangOpts().CPlusPlus)

12 return nullptr;

13

14 // Demangle the premangled name from getTerminateFn()

15 IdentifierInfo &CXXII =

16 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")

17 ? C.Idents.get("terminate")

18 : C.Idents.get(Name);

19

20 for (const auto &N : {"__cxxabiv1", "std"}) {

21 IdentifierInfo &NS = C.Idents.get(N);

22 for (const auto &Result : DC->lookup(&NS)) {

23 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);

24 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))

25 for (const auto &Result : LSD->lookup(&NS))

26 if ((ND = dyn_cast<NamespaceDecl>(Result)))

27 break;

28

29 if (ND)

30 for (const auto &Result : ND->lookup(&CXXII))

31 if (const auto *FD = dyn_cast<FunctionDecl>(Result))

32 return FD;

33 }

34 }

35 return nullptr;

36 }

What this code in Figure A.16 does is, first assuming that we are going to look up for an identifier

that has a type. It will look for the identifier name in the ASTContext identifiers table (symbols table) to
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look whether it is there or not. If it finds it with that name, it means we were right and it returns the cast

to the function declaration. In any other case, it might happen that we are in C++ mode. In C++, a pro-

cess is performed to functions so that artificial calls cannot be created easily. This process is called name

mangling. It consists of adding certain characters at the beginning of the function. With that in mind,

what we will do is trying to find the proper arguments for that function. Another option that might be

happening is that we are looking for a function within a namespace. Namespaces are a mechanism that

C++ provides and that allows the declaration of functions with the same name in different namespaces.

For that purpose, the namespace identifier is also considered together with the function name. In this

step, the function will be looking inside each namespace for the function name. If it is found there it will

be returned, otherwise, the function will return a nullptr which is something invalid.

Listing A.17: Synthesizing Call Expression from Function Declaration

1 CallExpr *CodeGenModule::SynthesizeCallToFunctionDecl(ASTContext *Context,

2 FunctionDecl *FD, ArrayRef<Expr *> Args,

3 SourceLocation Loc) {

4 //Type of what we are searching.

5 QualType _Type = FD->getType();

6 //Get Function Type of the Function Declaration

7 const FunctionType *FT = _Type->getAs<FunctionType>();

8 //Call Expression that we are going to generate

9 CallExpr *CE;

10 //We pick this branch if we are in a C++ Class Member Method

11 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {

12 CXXThisExpr *TE = new (Context) CXXThisExpr(Loc, MD->getThisType(*Context),

13 false);

14 MemberExpr *ME = new (Context) MemberExpr(TE, true, Loc, FD,

15 FD->getNameInfo(), _Type,

16 VK_RValue, OK_Ordinary);

17 CE = new (Context) CXXMemberCallExpr(*Context, ME, Args,

18 FT->getCallResultType(*Context),

19 VK_RValue, Loc);

20 } else { //We pick this branch if we are not dealing with C++.

21 DeclRefExpr *DRE = new (Context) DeclRefExpr(FD, false, _Type,

22 VK_LValue, SourceLocation());

23 QualType pToFunc = Context->getPointerType(_Type);

24 ImplicitCastExpr *ICE =
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25 ImplicitCastExpr::Create(*Context, pToFunc, CK_FunctionToPointerDecay,

26 DRE, nullptr, VK_RValue);

27 CE = new (Context) CallExpr(*Context, ICE, Args,

28 FT->getCallResultType(*Context),

29 VK_RValue, Loc);

30 }

31 return CE;

32 }

With regard to this second function represented in Listing A.17, it generates a CallExpr object from

a function declaration. In Clang class hierarchy, FunctionDecl objects are in the upper hierarchy and

cover CXXMethodDecl and the rest of functions. This implies that we have to differentiate that. In this

case, what the function does is creating and extracting from the function the different features that are

necessary to create a CallExpr. It verifies differently whether it is a C++ method (CXXMethodDecl) or a

normal function declaration (FunctionDecl). Finally, if everything goes fine, it returns the CallExpr, which

will be translated to that.

However, the functionality does not end here. We needed to pass some arguments to that function.

And related to that, several decisions had to be made. The first decision regards the fact of having

to include the header file with #include <contract>. As a first approach, the idea was to modify the

compiler so that the Preprocessor took automatically this file and generated it if we found any contract.

However, after a lot of time trying to replicate the behaviour and forcing the Preprocessor to parse that

file, the approach was discarded. The main problem underlying was that CodeGen generates the code by

TopLevelDeclarations, and we were not able to generate the implementation of the code. What we need

to do is artificially generating an object of the class contract_violation that we already showed, filling the

different fields, and passing it as a parameter. First, let us take a look at what is the new equivalence in

the code of a contract violation.
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Listing A.18: assert attribute code

1 #include <contract>

2 int main(int argc, char* argv[]){

3 int x = -1;

4 //This will execute the handler.

5 [[assert: x > 0]];

6 return 0;

7 }

Listing A.19: assert attribute equivalence

1

2 void contract_violation_handler

3 (contract_violation &v) const{

4 //Do whatever we want.

5 }

6

7 int main(){

8 int x = -1;

9 if (!(x > 0)){

10 //We initialize a contract violation

11 // with the information of the file.

12 contract_violation v{4, "main",

13 "test.cpp",

14 "x > 0",

15 "default"};

16 //We pass the object as argument.

17 contract_violation_handler(v);

18 //We invoke to std::terminate to abort.

19 std::terminate();

20 }

21 return 0;

22 }

With the code in Listing A.18, what we observed is what we needed to do in order for our function to

work properly and according to the specification. The solution to implement this implied two main de-

sign decisions. The first of them was modifying the contract_violation class and including inner attributes

inside that allowed to store the information. Apart the creation of a constructor that received pointers to

basic types was needed. The main problem with that is that the types used in contract_violation are all

complex types. Those types are unknown to the compiler and finding them supposes a lot of overhead

and it exists the possibility of them not existing. Therefore, we shall try as most as possible to use basic

types. Luckily, it exists a StringView constructor which accepts a pointer to a character (char*) which is a

string in the end. With that in mind, we just needed to perform the proper conversions in order to avoid

how this worked. Then the prototype class that was specified changed to the following code in Listing

A.20. This was the first step on how to solve the problem.
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Listing A.20: assert attribute code

1 namespace std {

2 class contract_violation {

3 private:

4 int line_number_;

5 experimental::string_view file_name_, function_name_, comment_, assertion_level_;

6 public:

7 contract_violation(int line_number,

8 const char * file_name,

9 const char * function_name,

10 const char * comment,

11 const char * assertion_level):

12 line_number_{line_number},

13 file_name_{file_name},

14 function_name_{function_name },

15 comment_{comment},

16 assertion_level_{assertion_level}

17 {};

18 int line_number() const noexcept{

19 return line_number_;

20 };

21 experimental::string_view file_name() const noexcept{

22 return file_name_;

23 };

24 experimental::string_view function_name() const noexcept{

25 return function_name_;

26 };

27 experimental::string_view comment() const noexcept{

28 return comment_;

29 };

30 experimental::string_view assertion_level() const noexcept{

31 return assertion_level_;

32 };

33 };

34 }
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With that, we already had something from which we were able to start. The first step was to support

the creation of a contract_violation object is generating a constructor for that class. Since it is complicated

to guess which nodes of the AST have to be created, the first step was to compile to generate the AST

dump of that code and the objective is trying to replicate it with as much fidelity as possible. The AST

dump of the code we are interested in replicating is the relative to a declaration statement. Figure A-3

shows the AST dump of what we needed to generate.

Figure A-3: Assertion Levels vs Build Levels

In order to be able to properly develop this task, we have to start from the bottom of the tree and

go generating upwards. The first element to be generated are the leaf nodes. For the leaf nodes, we

needed to generate the string and integer literals. These literals are going to include the information

of the contract violation, therefore, we previously need to be able to extract this information from the

compiler. The code for the extraction of the different attributes is going to be exposed in A.21.

Listing A.21: Information Extraction For Violation Information

1 //File name extraction

2 const std::string file_name_ = CGM.getDiags().getSourceManager().getFilename(Loc).str();

3 //We extract the line number

4 std::string location_ = Loc.printToString(CGM.getDiags().getSourceManager());

5 std::size_t a_ = location_.find(":") + 1;

6 std::size_t b_ = location_.find(":", a_);

7 int line_number_ = std::stoi(location_.substr(a_,b_- a_));

8 //We extract the function name.

9 const FunctionDecl* EFD = cast<FunctionDecl>(CurFuncDecl);

10 std::string function_name_ = EFD->getDeclName().getAsString();

11 //We extract the assertion level.

12 std::string assertion_level_ = _Attr->getLevel()->getName();

13 //We extract the condition of the contract violation.

14 const char *start_ =

15 CGM.getDiags().getSourceManager().getCharacterData(_Attr->getCond()->getLocStart());

16 const char *end_ =

17 CGM.getDiags().getSourceManager().getCharacterData(_Attr->getCond()->getLocEnd());
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18 std::string comment_(start_, (end_ - start_) + 1);

As we can see in the code we have to perform several computations in order to be able to generate the

conditions that we need in order to give the information to the contract violation. The easiest element to

extract is the file name. The file name is contained in the SourceManager. If we remember, we mentioned

it within the preprocessor. It is one of the key elements in charge of performing an abstraction from the

file system. We use it to obtain the file name associated with a source location. The SourceLocation object

is in charge of storing the locations of each of the elements in the AST.

With regard to the line number, it can be extracted from the source location. However, it has a strange

format that we have to be able to interpret it to extract the information we want. For that purpose, we

have to reformat the string to extract it specifically. The functions find and the generation of a string is

used in that case to extract the information.

The function name can be extracted from CodeGenFunction. Inside these objects, there is a record

that holds the function declaration object that is being emitted. That object can be cast to a FunctionDecl

object and then it can be used for the extraction of the function name.

With regard to the condition, the strategy used to extract the condition is to obtain the data from the

source buffer. The source buffer works as a big string of which pointers are created on each of the AST

elements. In this case, two pointers are obtained which point to the beginning and the end. With those

two pointers a string can be created and this string will be holding the condition of the contract. This

process named here is applicable to any contract clause, including assert, expects and ensures. With this

step all the data needed for the creation of the literals are ready. The creation of the literals is the next

step. The code in Listing A.22 represents how a literal is created.

Listing A.22: Literals generation

1 //String literal for the line number.

2 llvm::APInt IL1_NUM = llvm::APInt(32,line_number_, false);

3 IntegerLiteral* IL1_line_number = IntegerLiteral::Create(Ctx, IL1_NUM,

4 Ctx.IntTy, Loc);

5 //String literal for the file name

6 llvm::APInt SL1_QT_EXPR_NUM =

7 llvm::APInt(32, file_name_.length() + 1/*String size*/, false);

8 QualType SL1_QT = Ctx.getConstantArrayType(Ctx.getConstType(Ctx.CharTy),

9 SL1_QT_EXPR_NUM,

10 ArrayType::ArraySizeModifier::Normal,



194 Contract-Based Programming on Modern C++

11 0);

12 StringLiteral* SL1_file_name =

13 clang::StringLiteral::Create (Ctx, file_name_,

14 clang::StringLiteral::StringKind::Ascii,

15 false, SL1_QT, Loc);

16 //String literal for the function name

17 llvm::APInt SL2_QT_EXPR_NUM = llvm::APInt(32,

18 function_name_.length() + 1/*String size*/,

19 false);

20 QualType SL2_QT =

21 Ctx.getConstantArrayType(Ctx.getConstType(Ctx.CharTy),

22 SL2_QT_EXPR_NUM,

23 ArrayType::ArraySizeModifier::Normal,

24 0);

25 StringLiteral* SL2_function_name =

26 clang::StringLiteral::Create (Ctx, function_name_,

27 clang::StringLiteral::StringKind::Ascii,

28 false, SL2_QT, Loc);

29 //String literal for the commentm in this case the condition

30 llvm::APInt SL3_QT_EXPR_NUM =

31 llvm::APInt(32, comment_.length() + 1/*String size*/, false);

32 QualType SL3_QT =

33 Ctx.getConstantArrayType(Ctx.getConstType(Ctx.CharTy),

34 SL3_QT_EXPR_NUM,

35 ArrayType::ArraySizeModifier::Normal, 0);

36 StringLiteral* SL3_comment =

37 clang::StringLiteral::Create (Ctx, comment_,

38 clang::StringLiteral::StringKind::Ascii,

39 false, SL3_QT, Loc);

40 //String literal for the assertion level of the contract

41 llvm::APInt SL4_QT_EXPR_NUM =

42 llvm::APInt(32,

43 assertion_level_.length() + 1/*String size*/,

44 false);

45 QualType SL4_QT =

46 Ctx.getConstantArrayType(Ctx.getConstType(Ctx.CharTy),
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47 SL4_QT_EXPR_NUM,

48 ArrayType::ArraySizeModifier::Normal, 0);

49 StringLiteral* SL4_assertion_level =

50 clang::StringLiteral::Create (Ctx, assertion_level_,

51 clang::StringLiteral::StringKind::Ascii,

52 false, SL4_QT, Loc);

For the creation of an integer literal needed for the line number only one element is needed and it

is an APInt with storing the number that it has inside. The APInt is a LLVM object which represents a

integer of any size. In our case it is initialized to 32 bits since it is the default size of an integer on many

OS and it is enough for this representation. The integer literal receives the ASTContext where it will be

created, the integer that we just created, the type of the literal and the source location that we fake using

the same as in the assert attribute.

In the case of the strings, it becomes more difficult because of the internal representation of strings

in memory of C like programs. The string is represented as an array of characters and it is what it is

needed to represent. For each of the strings, we will also need an APInt object that will store the size

of the array. We will use the strings with the values to extract the length. Apart from that a QualType

is needed. A QualType is the object used to represent any type in Clang. The ASTContext implements

several functions in order to interact with basic types and provides the possibility of creating complex

types as well as modifications of the former. A QualType associated with an array type will be created for

a character array representation. Since the strings will not have modifications in their size it is enough

with a constant sized array. The ASTContext function, getConstantArrayType is a good alternative to ob-

tain this type and is the one used in this project. With this type, the string literal can be generated. For

the creation of the string literal, we will also need the ASTContext, the string value that will use, the

string encoding that in this case is ASCII, the QualType that was generated and a source location that

is again faked assuming the assert contract value. The false element is used for a Pascal String Literal

representation since it is not interesting it is marked as false.

Internally the compiler transforms the string literals to arrays of characters of type const char*. The

reason for that is passing the argument that the function requires. Since this behaviour shall be replicated

the implicit cast expressions are created. The implicit cast expressions need of the output type. For that

reason, the first task is the artificial generation of the const char* type. The code in Listing A.23 represents

the generation of it.

Listing A.23: const char * type generation

1 QualType IC_QT = Ctx.getPointerType(Ctx.getConstType(Ctx.CharTy));
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Now it just needs the generation of the different ImplicitCastExpr. This objects receive as parameters

the ASTContext that is used as allocator, the QualType to which the conversion is made, then a type

of conversion is used (array to pointer conversion), the string literal and what is the consideration of

the literal being passed. The consideration of a literal can be two, either RValue or LValue. This is a

consideration that C++ introduced with movement semantics. In this case it implies that the value is not

extracted from a variable and therefore it can be passed straightly. With regard to the nullptr it refers to

calls to C++ member functions that in this case is not interested in and is not useful.

Listing A.24: const char * type generation

1 ImplicitCastExpr* IC1= ImplicitCastExpr::Create(Ctx, IC_QT,

2 CK_ArrayToPointerDecay, SL1_file_name, nullptr, VK_RValue);

3 ImplicitCastExpr* IC2= ImplicitCastExpr::Create(Ctx, IC_QT,

4 CK_ArrayToPointerDecay, SL2_function_name, nullptr, VK_RValue);

5 ImplicitCastExpr* IC3= ImplicitCastExpr::Create(Ctx, IC_QT,

6 CK_ArrayToPointerDecay, SL3_comment, nullptr, VK_RValue);

7 ImplicitCastExpr* IC4= ImplicitCastExpr::Create(Ctx, IC_QT,

8 CK_ArrayToPointerDecay, SL4_assertion_level, nullptr, VK_RValue);

Only the generation of the call to the constructor is remaining in now. However, that is one of the

most difficult steps. The constructor generation requires from the class and that is something that is not

obtainable directly. For that, the extraction needs to be performed from the identifiers table. In this step,

a generic and very powerful function is created. This function is able to obtain from the identifiers table

(symbols table) any element with a name given its type. It is important to match both the name and the

type since it is what the function will try to match. Apart from that, the function allows looking first

either to the std namespace or to other namespaces first. The reason for that is that the first alternative

included a default violation handler inside the std namespace, and in order to avoid any user overwriting

the handler the search over std was first performed. The generic function is listed in Listing A.25.

Listing A.25: Generic function for any type extraction

1 template<typename T>

2 T* getDecl(ASTContext& C, StringRef Name, bool SearchOnStd) {

3 T* invalid_ret = nullptr;

4 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();

5 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);

6 auto lambda1 = [&](){

7 IdentifierInfo &CII = C.Idents.get(Name);

8 for (const auto &Result : DC->lookup(&CII))

9 if (const auto TD = dyn_cast<T>(Result))
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10 return TD;

11 if (!C.getLangOpts().CPlusPlus)

12 return invalid_ret;

13 return invalid_ret;

14 };

15 auto lambda2 = [&](){

16 IdentifierInfo &CXXII =

17 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ")

18 ? C.Idents.get("terminate")

19 : C.Idents.get(Name);

20 for (const auto &N : {"__cxxabiv1", "std"}) {

21 IdentifierInfo &NS = C.Idents.get(N);

22 for (const auto &Result : DC->lookup(&NS)) {

23 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);

24 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result))

25 for (const auto &Result : LSD->lookup(&NS))

26 if ((ND = dyn_cast<NamespaceDecl>(Result)))

27 break;

28 if (ND)

29 for (const auto &Result : ND->lookup(&CXXII))

30 if (const auto TD = dyn_cast<T>(Result))

31 return TD;

32 }

33 }

34 return invalid_ret;

35 };

36 if(SearchOnStd) return lambda2();

37 else return (lambda1() != nullptr)? lambda1() : lambda2();

38 }

The code in Listing A.25 shows the execution is divided into two lambda functions, this allows inverting

the orders of both functions easily. As we see in the last line the steps carried out are returning in

different orders depending on the function. With regard to the first lambda, it takes the identifier by

the name and checks whether it casts to the type of the function created. Since the type of the function

must be given the function will be working for any type that the user wants to search. The second

lambda will be doing the same but within the different namespaces in order to be able to find an equally
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named function within different namespaces. The important element that is needed for the project is the

contract violation class declaration. With the class declaration, we are able to extract some elements that

are contained in it such as the constructor, something that is directly needed to create an instance of it.

The obtention of the class declaration is reduced to the code below.

Listing A.26: Contract violation extraction

1 ASTContext& Ctx = getContext();

2 auto CRD = getDecl<CXXRecordDecl>(Ctx, "contract_violation",false);

With this code, the program looks for a pointer to a CXXRecordDecl that is called “contract_violation”

within all namespaces. A CXXRecordDecl is the class used to represent a C++ class declaration in Clang.

A class is sought since having the class gives the ability of obtaining the constructor, and also the

QualType of the class, which is the type of objects it generates. However, if the search would have

looked for the constructor, there would not be a way to obtain the QualType since the return type of the

constructors is void.

Listing A.27: Finding the Constructor in the CXXRecordDecl

1 //Extraction of the constructor for the std::contract_violation class

2 CXXConstructorDecl* CCD;

3 //Finding the correct constructor in our case

4 for(auto C = CRD->ctor_begin(); C != CRD->ctor_end(); C++){

5 auto P = cast<CXXConstructorDecl>(*C);

6 //Number of initializers is bigger than 1 and is not a copy or move constructor

7 if(P->getNumCtorInitializers() >1 && !P->isCopyOrMoveConstructor()){

8 CCD = P;

9 }

10 }

The code in Listing A.27 looks along the members of the class for the constructor. However, some-

thing has to be noticed and it is that C++ does have class constructors, copy constructors and movement

constructors. And those are generated at compile time if nothing is specified. In such case, the code

has to be able to differentiate which of them it is. What is used is the fact that the constructor that is

represented in the class definition has to receive more than an argument. That is the cause of the first

condition and the second condition is related to eliminating the possibility of it being a copy or move

constructor. As it is demonstrated, it is more useful to look for the constructor from the class because it

allows the acquisition of more information with fewer computations.

Next, the instance of the class has to be created and it has to be assigned to a variable. The steps to
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be performed are first the generation of a constructor and then the assignation of the constructor to the

initializer of a variable declaration. For the generation of the constructor, as it was already mentioned,

the main elements needed are the type of the class and the constructor declaration. As it is observed in

the AST frame, a CXXRecordExpr has to be generated. The expression is the equivalent the use of the

CXXConstructorDecl. The code below shows the elements needed for the creation of the former.

Listing A.28: Generating a Class Instance

1 CXXConstructExpr* CCE1 = CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CRD),Loc,CCD,

2 false, {IL1_line_number, IC1, IC2, IC3, IC4, }, true, true, false, false,

3 CXXConstructExpr::ConstructionKind::CK_Complete, _Attr->getRange());

As we see, many elements are needed for the creation of the constructor call. In this case, they will be

exposed with detail since they provide a lot of information to what the overall meaning of the expression

and it is important for future steps.

1. The ASTContext acts as the allocator for the memory.

2. QualType determines the type of the constructor. It is obtained from the CXXRecordDecl that was

extracted on the first step.

3. The SourceLocation is assumed to be the same as the assert attribute.

4. CXXConstructorDecl it is obtained in the loop described above.

5. Elidable. The elidability refers to the ability to be compared. In this case, it is established to false.

6. ArrayRef< Expr *>. The list of arguments is passed to the constructor. The arguments are the

implicit cast expressions created during a previous step.

7. HadMultipleCandidates. It establishes whether there are multiple candidates to construct a class

of this type. It is true since the default constructor might be automatically generated and there are

copy and move constructors.

8. ListInitialization. It establishes whether the initialization is done with a list. It is true in this case.

9. StdInitListInitialization. It establishes whether the initialization is done with a standard initial-

ization list. It is false in this case.

10. ZeroInitialization. It establishes whether there is a zero-argument initialization. It is not interest-

ing so it is established to false.

11. The ConstructionKind determines the elements that are going to be generated. In this case, all

arguments are initialized so it is established to a complete initialization.
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12. SourceRange. As with the source location it is obtained from the assert attribute.

What comes next is the creation of the variable. The variable will hold this value and will be created

in the memory of the program. For its creation a VarDecl object is needed. And the use of its member

method setInit will allow to establish the constructor as the initializer of the function.

Listing A.29: Creating the Variable and associating the Class to it

1 VarDecl* VD = VarDecl::Create (Ctx, IIDC, Loc, Loc, &II,

2 Ctx.getRecordType(CRD), Ctx.getTrivialTypeSourceInfo(Ctx.getRecordType(CRD)),

3 clang::StorageClass::SC_None);

4 //We make the var decl implicit since it has been declared outside the code of the user

5 VD->setImplicit();

6 //We establish the initialization style as a list initialization.

7 VD->setInitStyle(clang::VarDecl::InitializationStyle::ListInit);

8 //We establish which is going to be the Init of the constructor expression.

9 VD->setInit(CCE1);

10 //We establish which is the Declaration context of the VarDecl a second time.

11 VD->setLexicalDeclContext(IIDC);

12 //We make the declaration to be added to the declaration context

13 IIDC->addHiddenDecl(VD);

14 //We mark the variable declaration as used.

15 VD->markUsed(Ctx);

This code in Listing A.29 refers to several characteristics that allow the compiler not to crash when

dealing with this new variable. An important fact is that it shall exist, but the compiler shall not take

it into account. That is the main reason to declare it implicit and reset the lexical context because it is

important to be taken into account only there. Apart from that, the variable is declared as used so that

it is not automatically removed and the user is not warned.

To conclude with the declaration of the variable a declaration statement has to be generated to include

all the elements. The declaration statement uses a generic declaration and for this purpose the VarDecl

object has to be transformed to a generic Decl reference. With that, the declaration statement would be

ready. At this point the code is similar to the one explained in previous sections in which the function

call was generated from the name and an if statement was generated. There are two main modifications to

that code. The default function call to std::terminate() is replaced to be a call to the function that is chosen

by the user. This function call will receive the argument with the information on the violation. Another

flag will allow switching between aborting on a violation or not. Depending on that the call to abort is

generated or not. Anyways a compound statement is generated to contain all the information, and that
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compound statement is used as the “then” condition of the if statement that evaluates the condition of

the contract. By default, the violation handler will be aborting as it was stated on the requirements.

Listing A.30: Generation of the If Stmt

1 DeclStmt* DS = new (Ctx) DeclStmt(DeclGroupRef::Create(Ctx,DA, 1),

2 _Attr->getRange().getBegin(),_Attr->getRange().getEnd());

3 //We create a Reference Expression to a Declaration in case that we need

4 DeclRefExpr* Arg = new (Ctx) DeclRefExpr(cast<ValueDecl>(VD),

5 false, Ctx.getRecordType(CRD),

6 clang::ExprValueKind::VK_LValue, Loc);

7 auto FD = (!isDefault)?

8 const_cast<FunctionDecl *>(CGM.GetRuntimeFunctionDecl(Ctx, HandlerName)) :

9 const_cast<FunctionDecl *>(getDecl<FunctionDecl>(Ctx, "default_handler", true)) ;

10 //Call Expression to the Function Declaration obtained

11 CallExpr *CE = CGM.SynthesizeCallToFunctionDecl(&Ctx, FD, {Arg});

12 CompoundStmt* CS;

13 if(abort){

14 auto FD1 = const_cast<FunctionDecl *>(CGM.GetRuntimeFunctionDecl(getContext(),

15 "abort"));

16 CallExpr *CE1 = CGM.SynthesizeCallToFunctionDecl(&getContext(), FD1, {});

17 CS = new (Ctx) CompoundStmt(Ctx, {DS, CE, CE1}, Loc, Loc);

18 }

19 else

20 CS = new (Ctx) CompoundStmt(Ctx, {DS, CE}, Loc, Loc);

21 // negate expression

22 ParenExpr *PE = new (Ctx) ParenExpr(

23 SourceLocation(), SourceLocation(), _Attr->getCond());

24 UnaryOperator *UO = new (Ctx) UnaryOperator(

25 PE, UO_LNot, PE->getType(), VK_RValue, OK_Ordinary,

26 SourceLocation());

27 //We create the If Stmt for the class.

28 auto _S = new (getContext()) IfStmt(getContext(),

29 Loc, false, nullptr, nullptr, UO, CS);

30 EmitIfStmt(*_S);
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A.3.4 Continuation Mode and Custom Handler Flags

In the last fragment of code, two variables were used to generate the custom handler and switching

between aborting or not. The value of this variables comes from some compilation flags defined by the

user. In this section, we will be describing the main changes needed to perform this changes. The two

flags will enable continuation and will allow the customization of the function handler. There are few

changes from the steps carried out to create the build level flag.

The first step consists on creating a entry so that the Driver recognises the new flags and allows

us to manage them. The structure that the violation handler flag is going to have is –contract-violation-

handler=<functionname> and the structure that the abort flag is going to have is –enable-continue-after-

violation being activated only when we want the continuation mode. If we remember the entry was

included in Options.td file.

Listing A.31: Flag Declaration

1 def contract_violation_handler_EQ : Joined<["-", "--"], "contract-violation-handler=">,

2 Flags<[CC1Option, CC1AsOption, CoreOption]>,

3 HelpText<"Name of the handler function to be called if a contract is violated">;

4 def enable_continue_after_violation : Joined<["-", "--"], "enable-continue-after-violation">,

5 Flags<[CC1Option, CC1AsOption, CoreOption]>,

6 HelpText<"Enable continuation after violation of a contract">;

Right after that, we need to define the movement from the Driver argument list to the toolchain

argument list. This movement is done in Clang.cpp.

Listing A.32: Movement of Flags

1 if (Arg *A = Args.getLastArg(options::OPT_contract_violation_handler_EQ))

2 A->render(Args, CmdArgs);

3 if (Arg *A = Args.getLastArg(options::OPT_enable_continue_after_violation))

4 A->render(Args, CmdArgs);

This code is going to move the flags from the Driver list to the Toolchain list. In this way, we will be able

to operate with it in the CompilerInvocation.cpp. The violation handler flag requires a different kind of

language option. As it was seen with the build level flag, to determine a value in the LangOptions.def, a

number of bits shall be determined. However, a string has an undetermined length. In order to solve

this problem, the definition of the LangOptions object was modified. In it, a string was added which

would hold the value of the violation handler instead of using the usual way of obtaining the value.

With regard to the continuation mode flag, it can be represented with one bit and it is enough for this

purpose.
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Listing A.33: Lang Option definition in LangOptions class

1 /// \brief The name of the handler function to be called if a contract

2 /// is violated (C++ D0542R2).

3 ///

4 /// If none is specified, std::terminate()

5 std::string ContractViolationHandler;

Listing A.34: Lang Options flag definition

1 VALUE_LANGOPT(EnableContinueAfterViolation , 1,

2 0, "Set the violation continuation mode to on (D0542R2)")

Finally, with the code in the CompilerInvocation.cpp, we manage those flags and transfer it to the

final destination from which they are later received in the CodeGen.

Listing A.35: Build Level handling in CompilerInvocation.cpp

1 static void ParseLangArgs(LangOptions &Opts, ArgList &Args, InputKind IK,

2 const TargetOptions &TargetOpts,

3 PreprocessorOptions &PPOpts,

4 DiagnosticsEngine &Diags) {

5 ...

6 // Handle -contract-violation-handler= option.

7 if (Arg *A = Args.getLastArg(OPT_contract_violation_handler_EQ))

8 Opts.ContractViolationHandler = A->getValue();

9 // Handle -enable-continue-after-violation option.

10 if (Arg *A = Args.getLastArg(OPT_enable_continue_after_violation))

11 Opts.EnableContinueAfterViolation = 1;

12 ...

With this, all the implementation remains complete. This section has described in depth all the

implementation details of the contracts in C++, emphasizing the section that I have developed.
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