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Abstract—In this paper a methodology is proposed to calculate
the load demand flexibility that could be activated within the
next 24-hours for solving the technical impacts of contingencies
that may come up in an unbalanced low voltage distribution
networks with high penetration of intermittent DG sources. The
methodology is formulated within a Demand Response program
environment via load shifting as flexibility enabler mechanism.
To achieve that, a non-linear optimisation problem is formulated
based on an unbalanced optimal power flow, which allows the
determination of the load flexibility that each Demand Response
customer could provide at the request of the Distribution System
Operator. The demand as well as weather conditions are fore-
casted for the day ahead. The optimisation problem is solved in
a sequence fashion, within a daily framework, splitting the whole
problem in optimisation blocks. In each block, the flexible load
demand is obtained and the load demand forecasting its updated
for the upcoming blocks based on the changes in the scheduled
load demand. The methodology is applied to a real distribution
network with the load data received from the smart metering
infrastructure. The results obtained show the strength of the
methodology in solving the technical problems of the network
under high unbalanced operation.

I. INTRODUCTION

Due to the ever-increasing presence of renewable-based Dis-
tributed Generation (DG) such a Photovoltaic (PV) facilities,
as well as Electric Vehicles (EVs) and energy storage units [1],
Low Voltage (LV) distribution systems are becoming active,
therefore some energy policies and actions have to be carried
out to guarantee an optimal operation. The presence of these
Distributed Energy Resources (DERs) could lead the system
to a state with technical risks such as over-loading due to
currents surpassing the limits of the cable lines and over-
voltages due to a high amount of energy injected in the system.
In these situations, Demand Response (DR) becomes a well
suited solution to efficiently integrate those DERs.

Through different DR mechanisms based on certain market
price signals or monetary incentives [2], a certain amount
of load demand flexibility could be activated to return the
system to the normal operation condition. Moreover, DR
programs can be implemented in different timescales, being
day-ahead, the time horizon in which the most common ones
are implemented. For instance, in this time timescale, are
implemented demand bidding/buyback programs as well as
load curtailment/shifting programs [3].

DR has been widely researched by the scientific community
in the last years and recent related works can be found in the
literature. The authors in [4] proposed a genetic algorithm-
based two stage stochastic optimisation procedure to determine
the scheduling of shiftable appliances without considering
LV networks. In [5] is presented an optimal DR program
for rural areas in day ahead basis considering battery-based
storage systems. In [6] is proposed an optimal planning
for the day ahead to provide DR services considering PV
units, energy storage and load shifting adopting as well an
economic point of view. The authors in [7] proposed a DR
scheduling under different price-based DR programs with the
objective of minimise the customers electricity consumption
cost. Nonetheless, the mentioned works do not examine the
technical network contingencies adopting instead a economic
point of view. Additionally, the majority of them only consider
balanced operation conditions which is not the reality.

Therefore, in this paper is proposed a methodology to
determine the amount of flexibility that could be activated for
the day-ahead to solve the technical problems that arise in
LV distribution networks with high penetration of PV-based
DG. A modified three-phase optimal power flow including a
DR mechanism is formulated to obtain the load flexibility.
The resulting non-linear programming problem is solved in a
sequence fashion, splitting the whole problem in optimisation
blocks and updating the demand forecast according to the load
flexibility.

II. SYSTEM MODELLING

LV distribution systems can be represented as a graph [8]
with b = |V | nodes (or buses) and N = |E| edges (or
lines), being V = {V1, . . . , VN} the set of nodes of the
system and E = {e1, . . . , em} the set of edges. Since LV
distribution systems are operated in radial configuration, the
considered graph has a tree topology. Moreover, as loads
are connected in single phase mode, the system operation is
usually in unbalanced conditions. Taking this into account,
each individual line is defined as a four-wires line section, so
the edge em is a four-tuple of the three phases plus the neutral
cable em = {lak,j , lbk,j , lck,j , lnk,j}.

Regarding the notation of the paper, all the magnitudes
expressed in lower case are in per unit values [9] using as the



the reference power SB the rating of the Secondary Substation
transformer, meanwhile the reference voltage VB it set to the
nominal line-to-line voltage (400V ).

A. Power Flow Modelling

Following the formulation in [10] the complex magnitudes
are separated into their real and imaginary, the components
such as phase voltage ūp

k = up,re
k + jup,im

k , current injection
īpk = ip,rek +jip,imk and current flow īpkj = ip,rekj +jip,imkj where
p ∈ {a, c, b}, k and j are the sending and receiving nodes of
the line. Note that a Kron’s reduction is applied assuming that
the network distribution system is well-grounded so only the
principal phases are taking into account. The state variables of
the system are determined by solving the non-linear equation
that constitute the power mismatch between the specified
power injections (sp) and the calculated power injections (cal).
F (X ) = 0 : IRn → IRn. This non-linear problem is solved
using IPOPT solver (Interior Point OPTimizer) [11] within the
Python environment Pyomo [12]. The mismatch function is
divided into active and reactive power parts.

F (X ) = 0 =

[
Fp(X )
Fq(X )

]
=

[
pp,spi,k + pp,cali,k

qp,spi,k + qq,cali,k

]
(1)

where X is the state variable, indicated in expression (2)
that correspond with the real and imaginary phase voltages
{up,re

k , up,im
k }, ∀k ∈ V ∀p ∈ {a, b, c} where b is the number

of distribution system’s buses.

X =

⎡
⎢⎣

[
ua,re
1 ub,re

1 uc,re
1 . . . ua,re

N ub,re
N uc,re

N

]T
[
ua,im
1 ub,re

1 uc,im
1 . . . ua,im

N ub,im
N uc,im

N

]T
⎤
⎥⎦ (2)

The calculated (cal) complex power injection in each node k
and phase p is given by expression (3). Working in the above
equation, it is possible to find an expression for the power
injected as a function of the line parameters and the voltage.

s̄p,cali,k = ūp
k

(
īpi,k

)∗
= ūp

k

∑
j∈Ωk

∑
p′∈{a,b,c}

(
ȳpp

′
kj

)(
ūp′
j

)∗
(3)

The active and reactive power injections are obtained by
extracting the complex power injection in real and imaginary
parts as described in (4)

pp,cali,k = Re{s̄p,cali,k } = up,re
k ip,rei,k + up,im

k ip,imi,k

qp,cali,k = Im{s̄p,cali,k } = up,im
k ip,imi,k − up,re

k ip,imi,k

(4)

The specified (sp) power injections are determined by the
power balance between the positive power injected coming
from the DG units, and the negative power injection (con-
sumption) due to the customers demand, as indicated in (5).

s̄p,spi,k = s̄pg,k − s̄pd,k (5)

Also the specified complex power injections s̄p,spi,k is sepa-
rated in active and reactive power injections indicated (6).

pp,spi,k = pp,spg,k − pp,spd,k

qp,spi,k = qp,spg,k − qp,spd,k

(6)

The active and reactive power specified in each bus depends
on the considered bus type. To solve the power flow problem,
one of the buses is chosen to be the slack (denoted with k∗)
and their power injections are equal to the net demand of the
system including the losses. This slack node corresponds to
the LV side of the secondary substation, which the voltage is
fixed to the nominal value, the same as the reference voltage so
ūp
k = 1� 0 pu. The rest of the nodes ∀k ∈ V/k∗ are considered

as PQ which phase voltage ūp
k is a variable and their power

injections depend on whether there is connected customers
with DG or not. The active power generation coming from
the DG units are forecasted (FC) by means of the irradiation
conditions meanwhile the load demand of each customer is
also forecasted using the available data via smart meter. The
forecasting procedure is explained in section II-E.

B. Distributed Generation Modelling

In this paper is considered that DG is based 100% on PV
panels, in a way that every customer belonging to the set of DG
nodes of the network (ΩDG) have a PV facility. The variable
power output of each PV facility is indicated in expression
(7) for each phase p and node k ∈ ΩDG based on [13] and
depends on the weather conditions such a solar irradiance G
and ambient temperature Tamb with has to be forecasted since
these values are subject to uncertainty [14]. The resolution
of the power generation is 10-min so to make the notation
consistent with that time-steps the variables are expressed with
t in the subindex, which take values in the daily timeframe
work t ∈ {0, 10, . . . , 1440} min. It is considered that PV
inverters work with unitary power factor so the reactive power
generated its zero qp,spg,k,t = 0

pp,spg,k,t =
PPV k

SB

(
Ĝt

1000
[1 + γ (Tcell,t + 25)]

)
(7)

where:
• PPV k

is the peak power output of the PV installation
(W) under Standard Test Conditions (STC) which means
under a solar irradiation G = 1000 W/m2 as well as
ambient temperature of Tamb = 25◦C.

• Ĝt is the solar irradiance (W/m2) that receive the PV
panel of the customer k on the inclined plane. The hat
indicates that this variable is forecasted.

• γ is the power-temperature coefficient (%/oC) of the PV
panel of the customer k.

• Tcell is the temperature (oC) of the panel surface witch
depends on the ambient temperature T̂amb,t and the solar
irradiance G and the Nominal Operating Cell Tempera-
ture (NOCT) (oC) (8)

Tcell,t = T̂amb,t + Ĝt

(
NOCT − 20

800

)
(8)
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C. Demand Modelling

Real load data with 10-min resolution coming from smart
meters are used in this paper with residential load patterns.
To account for the voltage dependency of the demand, is
considered a load ZIP model (9) [15] for all the nodes with
customers ∀k ∈ Ωc and for all phases ∀p ∈ {a, b, c}.

pp,spd,k,t = p̂pd,k,t

[
cp,1p,k

(
up
k,t

)2

+ cp,2p,k

(
up
k,t

)
+ cp,3p,k

]

qp,spd,k,t = q̂pd,k,t

[
cp,1q,k

(
up
k,t

)2

+ cp,2q,k

(
up
k,t

)
+ cp,3q,k

] (9)

where:
• up

k,t is the phase voltage magnitude in pu.
• p̂pd,k,t = P̂ p

d,k,t/SB is the active demand forecasted in pu.
• q̂pd,k,t = Q̂p

d,k,t/SB is the reactive demand forecasted in
pu.

• cp,1p,k, cp,2p,k, cp,3p,k, cp,1q,k, cp,2q,k, cp,3q,k ∈ (0, 1) are the active
and reactive power demand sensibility coefficients that
determine the voltage dependence of the customer k
connected to phase p. These coefficients have to be
forecasted along the demand.

D. Demand Response Modelling

A load shifting mechanism is considered for managing the
flexibility of the load demand of the customers participating
in the DR program. This mechanism consists of reducing
or increasing a certain quantity of power demand Δppd,k,t at
certain time instant t to provide load demand flexibility and
so to reduce overloading in the cables and over voltages due
to the presence of DG in the distribution system at the request
of the DSO.

From the point of view of the DR, two types of customers
are considered depending on if they participate in the program
or not, therefore a set of customers participating in the DR
program is defined Ω̃c ⊂ V and also a set of Non-DR
customers is defined as Ωc ⊂ V .

For the DR customers, the formulation for the specified
power injection has to be modified, and include the load shift
Δpd,k,t as it is indicated in (10). Note that the term for the
power generation pp,spg,k,t will be present if the customer has a
PV facility connected to the grid.

pp,spi,k,t = pp,spg,k,t −
(
ppd,k,t +Δppd,k,t

)
, ∀k ∈ Ω̃c (10)

The DR mechanism is subject to certain operational con-
straints related to the availability of the DR customers to
provide such load demand shift. First, the load shift has to
guarantee a minimum power supply pp,min

d,k,t , defined for each
DR customer by a percentage βk of the power contracted
pctd,k = Pctd,k/SB as indicated in (11).

ppd,k,t +Δppd,k,t ≥ βk · pctd,k (11)

Second, in terms of energy, the load shift works as an energy
management tool where the energy resulting from the negative

load shifting (demand reduction) has to be equal to the energy
resulting from the positive load shifting (load increase), that
way the load shifting is referred to the variation in time of the
use of the appliances in a certain time framework as indicated
in (12). ∑

t∈{t0,...,tn}
Δppd,k,t = 0 (12)

Finally, the load shift is also bounded by an operational
limit related to the power contracted of each customer by a
percentage αk as indicated in (13).

−αk · pctd,k ≤ Δppd,k,t ≤ αk · pctd,k (13)

E. Short-Term Forecasting

In this paper, the demand of each customer as well as
the PV Generation coming from each PV facility connected
to the network are forecasted for the day ahead with 10-
time resolution. The load data used to perform that short-
term forecasting was gathered from the model [16] which
data comes from a Advanced Metering Infrastructure (AMI).
A widely used forecasting technique is the ARIMA model
[17] that combine Auto-Regressive models (AR) with Moving-
Average (MA) applied for non-stationary time series by using
integrated moving average. Since Load demand and PV gen-
eration (solar irradiation and temperature) are not-stationary
processes, ARIMA model is chosen to perform the forecasting
[18]. An ARIMA(pa, da, qa) process at time t + τ (τ period
in the future) can be expressed as is indicated in (14)

ŷt+τ = δ +

pa+da∑
i=1

φiyt+τ−i + εt+τ −
qa∑
j=1

θjεt+τ−j (14)

In the above expression, δ its a constant term that depends
on the mean value of the time series δ = μy (1− φ0), εt is a
white noise process and yt+τ is the time series that represent
the variables to be forecasted such a load demand P p

d,k,t and
Qp

d,k,t as well as solar irradiance Gt and ambient temperature
Tamb,t. The value of the time series forecasted in time τ is
ŷt+τ (i.e. the time series variables to be forecasted such a
ambient temperature Tamb or solar irradiance G). The degree
of the model (pa, da, qa) is defined by pa, which represents the
order of the auto-regressive part, da which denotes the degree
of the first differencing involved and qa which denotes the
order of the moving average. The degree of the model as well
as the coefficients have to be fitted using the STATS MODELS
[19]. The later, is an open-.source tool widely used in statis-
cial studies. Different ARIMA models have been compared
using the AIC statistic (Akaike Information Criteria) which
definition its indicated in the expression (15).

AIC = 2K − 2ln(L) (15)

Where K is the the number of parameters of the model
and L is the value of the maximum likelihood function of the
ARIMA model. The AIC statistic quantify the goodness of
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the fit as well as the simplicity of the model. Between two
models, the one with the lowest AIC value is the better to be
fitted [20].
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Fig. 1. Forecasted variables

Samples of the carried out forecasting are showed in Fig
1 for load demand p̂d,t in the upper plot a), for ambient
temperature T̂amb,t in the middle plot b) and for solar irradi-
ance Ĝt in the lower plot c). Weather data has been collected
from several weather stations in the Madrid area provided by
AEMET (Agecia Estatal de Meteorologia) [21].

III. LOAD DEMAND FLEXIBILITY

The flexibility methodology proposed in this paper is based
on incorporating the DR mechanism described as a control
variable into an unbalanced three-phase Optimal Power Flow
(OPF). This results in a non-linear programming problem
(NLP) consisting of minimise the total load shift necessary
to meet the technical limits of the system along the day ahead
time framework t ∈ T = {to, . . . tn} as is indicated in the
objective function (16) subject to the limits of the demand
flexibility mechanism (11)-(13), as well as the constraints
related to the statutory limits of current and voltage (17).

Minimise:

OF =
∑
t∈T

∑
p∈{a,b,c}

∑
k∈Ω̃c

(
Δppd,k,t

)2

(16)

Subject to:

(ip,rekj,t )
2 + (ip,imkj,t )

2 ≤ (imax,p
kj )2

(umin)2 ≤ (up,re
k,t )2 + (up,im

k,t )2 ≤ (umax)2
(17)

IV. METHODOLOGY

The optimisation process is carried out in a rolling-window
way as illustrated in Fig. 2 with a certain frequency along the
time framework denoted with tk. In this paper, that frequency
is set up to be 6 hours, k = 360 min, which implies that 4
(i.e. n/k = 4) optimisation blocks has to be solved.
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Fig. 2. Rolling window based optimisation procedure

Previous to everything, in stage 0 (Fig. 2) the short-term
forecast with 10-min resolution explained in section II-E is
carried out for the demand and PV generation to the day ahead,
that represent the initial time framework for forecast in the
interval t0 → tn with n = 1440 min.

For t0, the load shift from each DR customer is obtained,
by solving the non-linear optimisation problem for the first 6-
hours block (t0 → tk). Then, the demand forecast is updated
for the new forecasting time-framework (tk → tn) considering
the new values of demand of the first block p′pd,k,t = ppd,k,t +
Δppd,k,t. After that, in tk the optimisation problem is solved
again with the new demand forecast to obtain the load shift for
the current block. Following that, the load demand forecast for
the new forecast time framework (tk+1 → tn) is updated and
the optimisation process continues to the next block (tk+1 →
tk+2). The process continues until all of the n/k optimisation
blocks have been solved and the load shifts for the complete
24 hours are obtained.

V. CASE STUDY

To implement the load demand flexibility estimation proce-
dure presented in this paper, a real LV feeder with high pene-
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tration of PV-based DG generation has been selected from the
Research Project LVNS (Low Voltage Network Solutions) [22]
showed in Fig. 3. The selected feeder consist of 23 customers
connected in a single-phase configuration along the feeder in
pairs being the normal operation of the network unbalanced
with sporadic over-voltage and over-loading situations as well.
Each customer has a PV facility with peak power of PPV k

= 4
kW (which means that each facility has a compound of 16
panels with 250 W of peak power each one) The power
contracted by each customer is Pctd,k ∈ {3, 15} kW. The
network its headed by a Secondary substation transformer with
a power rating of 800 kVA. The DR control parameters are
selected to take the following values: βk ∈ (0.05, 0.1) and
αk ∈ (0.1, 0.5) which exhibit a real situation [16].
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Fig. 3. LV Unbalanced feeder of the case study [22]

In Fig. 4 the results of the unbalanced power flow are
shown as follows: in plot a) the total demand and the total
PV generation, in plot b) the total power losses, in plot c) the
currents of each phase of the line most loaded and in plot d)
the phase voltage magnitude of the node with the maximum
voltage. As it can be seen, the network operation conditions
is unbalanced and the technical limits of the systems has been
overtaken.

A. Methodology Results
After applying the load demand flexibility methodology,

the results are showed in Fig 5 as follow: in plot a) the
new load demand obtained in dashed line, in plot b) the new
power losses of the system, in plot c) the total load flexibility
obtained, in plot d) the new maximum phase current in dashed
line, and in plot e) the new maximum phase voltage in dashed
line. At first sight, it can be observed that load flexibility
works shifting the demand from the early and late hours to the
central hours of the day to absorb the power injected by the PV
units. With this, the demand flexibility can return the system
to normal operation conditions since voltage and current limits
are respected. Finally, the DR mechanism works as an energy
efficiency measure since reduce the peak of power losses.
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Fig. 4. Network state under normal operation

VI. CONCLUSIONS

In this paper, an optimisation based methodology for load
demand flexibility management is proposed to solve the techni-
cal problems related to voltage and currents in unbalanced dis-
tribution systems with high penetration of PV-based DG units.
The load demand flexibility methodology is formulated as an
optimal power flow which results in a non-linear programming
problem (NLP). The load demand as well as the weather
conditions such as ambient temperature and solar irradiation
have been forecasted for the day ahead. The optimisation
problem is solved in a sequential way to take into account
the changes in the initial forecast. The simulation results
show the capability of the load shift mechanism to reduce
the over-voltages and over-loading’s of the system and even
a reduction of the power losses has been achieved. Further
research lines may include the consideration of energy storage

5 



0 200 400 600 800 1000 1200 1400
0.00

0.02

0.04

T
ot
al

L
oa
d
D
em

an
d
(p
u
)

a)

Without DR

With DR

0 200 400 600 800 1000 1200 1400

0.0000

0.0005

0.0010

0.0015

T
ot
al

P
ow

er
L
os
se
s
(p
u
)

b)

Without DR

With DR

0 200 400 600 800 1000 1200 1400

−0.005

0.000

0.005

0.010

T
ot
al
L
oa
d
F
le
xi
b
ili
ty

(p
u
)

c)

DR:
∑

k Δpd,k,t

0 200 400 600 800 1000 1200 1400
0.000

0.025

0.050

0.075

0.100

M
ax
.
C
u
rr
en
t
M
ag
n
it
u
d
e
(p
u
) d)

Limit

Without DR

With DR

0 200 400 600 800 1000 1200 1400
Time (min)

1.07

1.08

1.09

1.10

M
ax
.
V
ol
ta
ge

M
ag
n
it
u
d
e
(p
u
) e)

Limit

Without DR

With DR

Reductionn

Increase

Fig. 5. Network state with load demand flexibility

(chemical such a batteries or thermal such as hot water) as
well as modelling the temperature-dependant appliances of the
customers.

ACKNOWLEDGMENT

The work done by Valentin Rigoni and Alireza Soroudi
is supported by a research grant from Science Foundation
Ireland (SFI) under the SFI Strategic Partnership Programme
Grant No. SFI/15/SPP/E3125. The opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the Science Foundation Ireland. Jose Angel Velasco and
Hortensia Amaris are supported by the Spanish Ministry of
Economy and Competitiveness through the National Program
for Research under the project OSIRIS (RTC-2014-1556-3).

REFERENCES

[1] A. Soroudi, P. Siano, and A. Keane, “Optimal DR and ESS scheduling
for distribution losses payments minimization under electricity price
uncertainty,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 261–
272, Jan 2016.

[2] A. M. Carreiro, H. M. Jorge, and C. H. Antunes, “Energy management
systems aggregators: A literature survey,” Renewable Sustainable Energy
Reviews, vol. 73, pp. 1160–1172, 2017.

[3] R. Jain, K. K. Ramakrishnan, and D. M. Chiu, “Identified Short and
Real-Time Demand Response Opportunities and The Corresponding
Requirements and Concise Systematization of The Conceived and De-
veloped DR Programs,” DREAM-GO projec, Tech. Rep. Deliverable
D2.1-v3.0, March 2017.

[4] Y. Wang, H. Liang, and V. Dinavahi, “Two-stage stochastic demand
response in smart grid considering random appliance usage patterns,”
IET Generation, Transmission & Distribution, vol. 12, no. 18, pp. 4163–
4171, 2018.

[5] R. Morsali and R. Kowalczyk, “Demand response based day-ahead
scheduling and battery sizing in microgrid management in rural areas,”
IET Renewable Power Generation, vol. 12, no. 14, pp. 1651–1658, 2018.

[6] J. A. Gomez-Herrera and M. F. Anjos, “Optimal collaborative demand-
response planner for smart residential buildings,” Energy, vol. 161, pp.
370–380, 2018.

[7] S. Nan, M. Zhou, and G. Li, “Optimal residential community demand
response scheduling in smart grid,” Applied Energy, vol. 120, pp. 1280–
1289, 2018.

[8] D. Jungnikel, Graphs, Networks and Algorithms. Springer-Verlag, 2009.
[9] A. Gomez-Exposito, A. J. Conejo, and C. Canizares, Electric Energy

Systems: Analysis and Operation. CRC Press, 2008.
[10] P. A. N. Garcia, J. Luiz, R. Pereira, S. Carneiro, M. Da Costa, and

N. Martins, “Three-Phase Power Flow Calculations Using the Current
Injection Method,” IEEE Transactions on Power Systems, vol. 15, no. 2,
2000.

[11] A. Wachter and L. T. Biegler, “On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–27,
2006.

[12] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: modeling and
solving mathematical programs in python,” Mathematical Programming
Computation, vol. 3, no. 3, pp. 219–260, 2011.

[13] E. Lorenzo, G. Araujo, A. Cuevas, M. Egido, J. Miano, and R. Zilles,
Solar Electricity: Engineering of Photovoltaic Systems. Progensa
Editorial, 1994.

[14] A. Soroudi and T. Amraee, “Decision making under uncertainty in
energy systems: State of the art,” Renewable and Sustainable Energy
Reviews, vol. 28, pp. 376–384, 2013.

[15] M. S. Hossan, H. M. M. Maruf, and B. Chowdhury, “Comparison of the
zip load model and the exponential load model for cvr factor evaluation,”
in 2017 IEEE Power Energy Society General Meeting, July 2017, pp.
1–5.

[16] E. McKenna and M. Thomson, “High-resolution stochastic integrated
thermal-electrical domestic demand model,” Applied Energy, vol. 165,
pp. 445–461, 2016.

[17] R. Vazquez, H. Amaris, M. A. G. Lopez, J. I. Moreno, D. Olmeda, and
J. Coca, “Assessment of an Adaptive Load Forecasting Methodology in
a Smart Grid Demonstration Project,” Energies, vol. 190, no. 10, pp.
25–27, 2017.

[18] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to
Time Series Analysis and Forecasting. Wiley, 2008.

[19] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical
modeling with python,” in 9th Python in Science Conference, 2010.

[20] D. R. Burnham, K. P.; Anderson, Model Selection and Multimodel
Inference: A Practical Information-Theoretic Approach. Springer-
Verlag, 2002.

[21] “Agencia Estatal de Meteorologia (AEMET),” http://www.aemet.es/en/
serviciosclimaticos, accessed on 14 August 2016.

[22] “Low Voltage Network Solutions (LVNS),” https://www.enwl.
co.uk/zero-carbon/smaller-projects/low-carbon-networks-fund/
low-voltage-network-solutions/.

6


	Página en blanco



