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Abstract –The evolutionary dynamics of molecular populations are strongly dependent on the
structure of genotype spaces. The map between genotype and phenotype determines how easily
genotype spaces can be navigated and the accessibility of evolutionary innovations. In particular,
the size of neutral networks corresponding to specific phenotypes and its statistical counterpart,
the distribution of phenotype abundance, have been studied through multiple computationally
tractable genotype-phenotype maps. In this work, we test a theory that predicts the abundance
of a phenotype and the corresponding asymptotic distribution (given the compositional variability
of its genotypes) through the exact enumeration of several GP maps. Our theory predicts with
high accuracy phenotype abundance, and our results show that, in navigable genotype spaces
—characterized by the presence of large neutral networks—, phenotype abundance converges to
a log-normal distribution.

Introduction. – How the genetic information maps
into functional phenotypes (the so-called genotype-to-
phenotype, or GP, map) critically conditions the dynamics
of evolution [1, 2]. Genotypes encode the information to
generate phenotypes and on the process of replication un-
dergo all sorts of mutations. The second basic mechanism
of evolution, selection, acts upon phenotypes. Standard
approaches to evolutionary dynamics have traditionally
overlooked the fact that genotype and phenotype are con-
nected through very complex mechanisms, and that the
latter may have strong effects on the dynamics.

Genotype spaces can be depicted as networks, with
nodes representing genotypes and links joining pairs of
genotypes mutually accessible through a mutation. Phe-
notypes are then subsets of nodes in this network, and the
GP map describes their distribution in genotype space. As
selection acts on phenotypes, evolution within a connected
component of a phenotype is neutral (or nearly so). For
this reason, they are referred to in the literature as neu-
tral networks (NNs) [3, 4]. A characteristic feature of all

known GP maps is the strongly heterogeneous distribution
of the abundance (number of nodes) of their NNs [5,6]. A
few NNs are huge, typically percolating the whole geno-
type space, whereas most of them are small. This has
evolutionary implications. First of all, the existence of
huge NNs endows populations with a high genomic vari-
ability without bearing any selective cost. Secondly, most
phenotypes are not accessible for entropic reasons [7–9].
Besides, large NNs are so interwoven that virtually any
pair of them are connected to each other, thus facilitating
the search for phenotypes [10, 11]. Under this paradigm,
evolution is both robust and innovative.

Given the complexity of GP maps, we need to un-
cover and characterise as many general features as pos-
sible. One of them is the abundance distribution of NNs.
The first studies of this distribution often relied on ran-
dom samplings of the genotype space and considered rel-
atively short RNA molecules [12, 13]. These are chains of
a two- to four-letter alphabet (A, U, C, G or a subset of
those), whose phenotype is identified as a minimum-free-
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Fig. 1: Schematic representation of the different GP maps exhaustively studied in this work. (a) In RNA, sequences are folded to
minimum free energy secondary structures that define the phenotype; (b) in the compact version of the HP model, hydrophobic
(H, white circles) and polar (P, red circles) residues adopt the minimum compact energy configuration; (c) in non-compact HP,
sequences are assigned to self-avoiding walks of minimum energy; (d) toyLIFE is a multilevel GP map with HP-like sequences
that codify for compact HP interacting proteins.

energy folding (secondary structure) [14]. Results pointed
to a fat-tailed, decaying distribution [13,15–18] —although
whether exponential, power-law, or otherwise is far from
clear. Later studies of longer molecules (up to 126 let-
ters long) show bell-shaped abundance distributions in-
stead [8].

The first theoretical model addressing this question con-
sidered a set of binary sequences with a specific GP map-
ping rule [19]: the abundance distribution was an unequiv-
ocal power law. Later, it was pointed out that two differ-
ent kinds of distributions —power-law and log-normal—
are possible [20]. The argument relies on the existence
of sites showing low and high compositional variability
within a phenotype. Power laws are expected when these
positions occupy fixed sites, whereas log-normals arise if
their location is subject to combinatorics. In the case of
RNA sequences, low/high variability sites are associated
to paired/unpaired nucleotides in the folded structure. A
combinatorial calculation of the distribution of paired and
unpaired sites can be carried out exactly (see [21] and ref-
erences therein) and shown to be normal. As the number
of low variability sites can be related to the logarithm of
the phenotype abundance, the resulting distribution turns
out to be log-normal. As a matter of fact, since not only
paired sites, but any other structural feature of the folded
chain can be shown to have a normal distribution, the ar-
gument can be extended even if site variability is affected
by other structural elements. The log-normal prediction
is thus expected to be quite robust.

Versatility of a site. – An alternative way to look
at the problem of estimating phenotype abundance was
suggested in the discussion of [20]. If, for a given pheno-
type, a variable vi could measure the average number of
different letters of the alphabet that show up at site i of
its sequences, then the abundance could be estimated as

Sest = v1v2 · · · vL (1)

if the genotype is a chain of length L. This definition is
easy to understand if sites are either completely neutral
(any mutation maintains the phenotype, vi = k) or fully
constrained (any mutation changes phenotype, vi = 1). In
a more general case, vi would take intermediate values.

Given that phenotypes differ in the distributions of their
structural motives, and that the variability of a site is
strongly correlated to the motive it sits in, variables vi
can be regarded as phenotype-dependent random variables
that take values from a certain distribution. Thus, by the
central limit theorem lnS will be a phenotype-dependent,
normally-distributed random variable.

Here is a way to estimate one such variable vi (hence-
forth referred to as versatility). Suppose an alphabet of k
letters. We choose a phenotype and count in how many of
its genotypes letter α shows up at site i. Let mα,i be that
number. Then we define the versatility at site i through

vi =
1

Mi

k∑
α=1

mα,i, Mi ≡ max{m1,i, . . . ,mk,i}. (2)

The rationale behind this definition relies on assuming
that the relative frequencies of each letter of the alphabet
at each position i are proportional to the fraction of the
space of genotypes associated to the phenotype. It implic-
itly assumes that the most frequent letter at each position
is always characteristic of the phenotype, while other let-
ters, appearing less frequently, may yield sequences cor-
responding to different phenotypes. For example, if G
appears mG,i times and C appears mG,i/2 times, other
letters being absent, the versatility of that site would be
vi = 3/2, meaning that a half of the mutations from G
to C at that site change phenotype. When only one let-
ter appears, vi = 1, while vi = k if all letters are equally
likely, recovering the limits of simple models [19,20].

Testing the definition of versatility. – In order to
show that the versatility introduced in Eq. (2) is a mean-
ingful concept, we have tested it for different GP maps
(sketched in Fig. 1) regarding how well it predicts the
abundance of a specific phenotype component and its re-
lationship with the distribution of phenotype abundances.

First, we have folded all RNA sequences of length
L = 16, using the Vienna package [22], and classified them
according to their secondary structures. For such a small
length phenotypes are normally fragmented into several
connected, neutral components (NCs), but exhaustively
folding longer sequences quickly becomes computationally
unfeasible. Since NCs behave, to all purposes, as inde-
pendent NNs, we treat them as independent phenotypes,
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Fig. 2: Log-log-log histograms of the estimated abundance
(Sest calculated as in (1)), versus actual abundance (S) of the
connected components of different GP maps: (a) four-letter
RNA of length L = 16, (b) two-letter GC-RNA of length
L = 30, (c) compact HP model 5×6 with U(HH) = −1, and
(d) toyLIFE for two genes.

regardless of whether or not they fold into the same sec-
ondary structure. Then, we count how many sequences
each NC contains (its abundance, S) and calculate its site
versatilities vi according to the definition (2). The product
of them all yields the estimated abundance (1). Fig. 2(a)
shows a histogram comparing actual and estimated abun-
dances for all the NCs, showing a remarkable agreement.

A variant of this model is made of RNA sequences con-
taining only two complementary bases, for example G and
C (GC-RNA). A two letter alphabet allows us to study se-
quences almost twice as long with a similar computational
effort [10]. We have repeated the previous analysis for GC-
RNA sequences of length L = 30, and plotted the result in
Fig. 2(b). Fragmentation is more frequent in this model,
and NCs are generally smaller. This is why their number
is so high and why they are so dispersed in Fig. 2(b). Also,
the largest NCs are three orders of magnitude smaller than
those of four-letter RNA sequences. For this model, the
versatility of paired sites is strictly 1 because any muta-
tion in such a pair will break the link. Unpaired sites do
not have much more freedom either, because a mutation
can often create a new link and change the folding. In
spite of these constraints, Fig. 2(b) shows a clear correla-
tion between S and Sest, with the overwhelming majority
of NCs near the diagonal.

The third GP map that we have analysed is the HP
model for lattice proteins [23], where a protein is repre-
sented by a self-avoiding chain of hydrophobic (H) or polar
(P) beads on a lattice. The energy of a given configuration
is calculated from a contact potential,

E =
∑
i<j

U(σi, σj)Cij (3)

where σi ∈ {H,P}, Cij = 1 when i and j are neighbours
on the lattice (with |i − j| 6= 1) and Cij = 0 otherwise,
and U(σi, σj) specifies the interaction strenght. Several
different specific realizations of the model can be found
in the literature (see below). For two-dimensional square
lattices, compact and non-compact versions of the model
have been studied. In compact HP, sequences of length
L = l1 × l2 are forced to fold into rectangular structures,
while non-compact HP considers all self-avoiding walks
in the lattice. In Fig. 2(c) we show the case example of
compact HP 5×6 with a single nonzero energy parameter,
U(H,H) = −1.

Finally, we have also analysed toyLIFE, a multilevel
model of a simplified cellular biology [24, 25] in which
binary sequences are first mapped to HP-like proteins
that interact between themselves, with the genome, and
with metabolites. The phenotype is defined by the set of
metabolites that a given sequence is able to catabolise.
Consequently, toyLIFE has a lower genotype level, which
translates into proteins (second level), whose interactions
add a third, regulatory level. This regulation is altered
by the presence of metabolites, which can be catabolised
as a result, giving rise to the phenotypic expression at
this highest level. Even though the connection between
genotype sites and structural elements in this model is far
from clear, versatilities can be computed nonetheless. The
estimations of phenotype abundances arising from their
values, for the case of two genes (length L = 40), are
compared with actual abundances in Fig. 2(d). We can
observe a slight but systematic underestimation of abun-
dances. In spite of that, the correlation between S and Sest

is strong, and the cloud of points runs parallel to the diag-
onal. The slight underestimation of versatility, however,
does not affect the argument leading to the log-normal
abundance distribution —only the mean and the variance
will be affected.

The prediction of phenotype abundance has been a mat-
ter of study, among others due to its relevance for protein
designability [26], for molecular robustness and evolvabil-
ity [27], or in the neutralist-selectionist controversy [8].
Attempts at estimating phenotype abundance have been
made using compositional entropy [23, 26]. However, the
comparison with the predictions obtained through site ver-
satility reveals that versatility has a superior performance
(see Supplementary Material and Supplementary Figure
S1).

Distribution of abundance of RNA NCs. – Fig-
ure 3(a) shows the distribution p(lnS) of the abundance
of RNA sequences of length L = 16 in NCs, along with a
least-squares fit of the function exp[a(lnS)2 + b lnS + c],
the expected asymptotic distribution according to Eq. (1).
The length of the sequences is too short to exhibit a per-
fect Gaussian shape yet: the curve is truncated on the
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Fig. 3: Log-abundance distributions p(lnS) for the the NCs of
(a) four-letter RNA sequences of length L = 16 and (b) GC-
RNA sequences of length L = 30. Dots are the actual values;
lines are Gaussian fits to the data.

left-hand side and there are deviations for small and large
NCs abundances.

Though the abundance distribution of NCs for GC-
RNA sequences is a decreasing function with a fat tail
(Fig. 3(b)), the right tail of a log-normal provides a good
fit that captures the slight concavity of the curve. Re-
gardless of the alphabet size, the log-normal distribution
is theoretically supported by Eq. (1).

The theory developed up to now strictly applies to NCs
of phenotypes. However, it was originally inspired by stud-
ies reporting a log-normal distribution of phenotype abun-
dances [8]. Also, data corresponding to GC-RNA pheno-
types compatible with a power-law distribution [16] can
be fit at least equally well by a truncated log-normal such
as that in Fig. 3(b). In the next section we will introduce
an effective model that will provide some insights into the
specific shapes of these distributions and clarify how the
theory asymptotically applies to phenotypes.

Effective two-versatility model for RNA. –
Consider long RNA sequences —irrespective of their

composition— folded into secondary structures. It has
been shown that paired and unpaired sites admit on aver-
age a different amount of mutations in a given NC, that
is, they differ in neutrality. Asymptotically, the overall
neutrality of a phenotype can be well described by two
values, each corresponding to one of the structural ele-
ments [28, 29]. In this vein, we consider now a simplified
model with two versatility values: one for paired (vp) and
one for unpaired (vu) sites (with 1 ≤ vp < vu ≤ k for an al-
phabet of k letters). As neutrality, site versatility depends
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Fig. 4: Average versatilities of unpaired (v1) and paired (v2)
sites obtained by fitting a two-versatilities model to the sam-
pled abundance distributions of Ref. [8] for RNA sequences
of different lengths. Lines are fits to data of the form vi =
v∞i − bie

−ciL, from which the asymptotic values of the two
versatilities v∞i are extrapolated.

in principle on many factors other than whether the corre-
sponding base forms a bond. Nevertheless, we do observe
that, on average, versatilities associated to paired sites
are significantly smaller than those associated to unpaired
ones. Interestingly, previous works have identified a clear
correlation between RNA secondary structure elements
(stems and loops) and nucleotide composition [30,31], giv-
ing indirect support to our approximation.

The two-versatility model was introduced [20] to argue
for a log-normal distribution of the abundance of RNA
sequences in NNs. It relies on an exact enumeration of
RNA secondary structures with a given number ` of paired
sites. This number is shown to be (in the limit L → ∞)
proportional to a normal distribution with mean µL −
µ0 and standard deviation σL1/2 − σ0L−1/2 + O(L−3/2)
(µ = 0.28647, µ0 = 1.36502, σ = 0.25510, σ0 = 0.00713).
In virtue of (1), this immediately leads to a log-normal
distribution of S with mean and standard deviation

µL = L(ln vu − µ) + µ0 +O
(
L−1

)
, (4)

σL = 2 ln(vu/vp)
(
σL1/2 − σ0L−1/2

)
+O

(
L−3/2

)
. (5)

In order to test this two-versatility model we will use
the data of Ref. [8] —a collection of estimates of the
abundance distribution of RNA secondary structures ob-
tained by sampling random sequences of lengths in the
range L = 20–126. The resulting distributions are pro-
portional to Sp(lnS) but, if p(lnS) is a normal distribu-
tion with mean µL and standard deviation σL, then so is
Sp(lnS), with the same standard deviation but a shifted
mean µl + σ2

L. Fitting Gaussian functions to these data
yields µL and σL. Then, through Eqs. (4), (5) we can
infer the corresponding versatilities vp, vu —which ap-
pear in Fig. 4. This plot suggests that these versatilities
have well defined asymptotic values for L → ∞, namely
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vp = 1.17 ± 0.08, vu = 2.79 ± 0.08. For comparison, the
average versatilities obtained from our data for L = 16 are
vavp = 1.11, vavu = 2.37.

A caveat is in order here. The results of [8] correspond
to the abundance of phenotypes, no matter how many NCs
they have, whereas, strictly speaking, the two-versatility
model can only be applied to the latter. The surprising
agreement of the extrapolated versatilities with those di-
rectly obtained from the data for L = 16 suggests that
for L large, either phenotypes are broken into few NCs,
or one of these components is much larger than the oth-
ers and dominates the abundance of the phenotype. The
existence of genetic correlations in NCs seems to cause
both effects [6]. Even for short RNA and HP sequences,
the largest connected component of a phenotype grows lin-
early with the abundance of the phenotype, while the num-
ber of components either diminishes with phenotype abun-
dance [10] or remains mostly independent [32]. Therefore,
the largest NC becomes more dominant the larger the phe-
notype, so that the latter is well approximated by a single
component. In consequence, the distribution of phenotype
abundances is asymptotically equivalent to the distribu-
tion of NCs abundances.

The improvement of the fit upon increasing length can
be indirectly inferred from the data of Ref. [8]. The fits of
Gaussian functions to these data are more accurate than
the one of Fig. 3(a) (see Supplementary Material and Sup-
plementary Figure S2), and show that the log-normal be-
haviour of p(S) is what should be expected for long se-
quences.

We can apply the two-versatility model to our results
with GC-RNA. The effective versatilities are vp = 0.75
and vu = 1.32 (from the data we obtain the exact value
vp = 1 and the average vavu = 1.43). As in the case of
four-letter RNA (c.f. Fig. 4), the values of vp for short
lengths are unphysical (vp < 1). This notwithstanding,
effective versatilities are not too far from the average ones,
providing an indirect support to the fact that the log-
normal distribution for this model has a mean close to 1
—explaining why only the right branch is observed.

Phenotype definition, alphabet size, and naviga-
bility of genotype spaces. – Figure 2 suggests that
the goodness of the phenotype abundance estimation (1)
might depend on the specific GP map. While it works
amazingly well for four letter RNA, it is not that good for
compact HP or toyLIFE, which have similarly large NCs.
Indeed, high accuracy in that prediction implicitly relies
(i) on the existence of a clear-cut quantitative relationship
between sequence sites and structural elements —which is
mediated by a consistent definition of phenotype, and (ii)
on the presence of a giant NC in phenotypes. The latter
seems essential for the abundance of phenotypes to follow
a bona fide log-normal distribution. Though the relation-
ship between sequence and structure is unequivocal for
RNA, it depends on the definition of phenotype in various
versions of the HP model, becomes unavoidably cryptic for
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Fig. 5: (a, c, e)- Log-log-log histograms of the estimated abun-
dance Sest versus actual abundance S of the NCs of differ-
ent HP versions. (b, d, f) NCs abundance distributions. (a,
b) Compact HP 5×6 with U(H,H) = −2.3 and U(H,P ) =
U(P,H) = −1, (c, d) non-compact HP30 with U(H,H) = −1,
and (e, f) non-compact HP20 S (based on minimal contact
maps) with U(H,H) = −1.

toyLIFE, and might be hard to define in GP maps lack-
ing an easy representation of genotypes as sequences [35].
On the other hand, a comparison of the distribution of
abundances in two- and four-letter RNA indicates that the
larger the alphabet the larger the components of pheno-
types and the better defined the log-normal distributions.
These observations are in full agreement with results for
the HP model, as shown in the following.

Figure 5 illustrates the performance of versatility and
abundance distributions for three additional definitions of
phenotype in HP models: compact HP30 with two param-
eters for energy (Fig. 5 (a) and (b)), non-compact HP30
((c) and (d)) and non-compact HP20 with phenotypes de-
fined through minimal contact maps ((e) and (f)) that is,
the set Sij formed by those pairs with a nonzero contribu-
tion to the folding energy, Sij = {i, j |U(σi, σj)Cij < 0}.

Initially, the HP model was implemented in its com-
pact version for computational tractability: notice that
the number of different two-dimensional folds in compact
HP30 is 108-fold smaller than in non-compact HP30 (Ta-
ble 1). Compact HP versions actually impose unrealistic
spatial constraints: two residues i and j can be forced
to be in contact without having an associated interaction
energy, that is Cij = 1, but U(σi, σj) = 0. Spatial re-
strictions may therefore assign to a unique phenotype (or
NC thereof) sequences whose affiliation easily changes un-
der more natural phenotype definitions [36]. This has an
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Table 1: Data corresponding to the exhaustive folding of multiple GP maps. The first column lists the maps studied and some of
its quantitative properties: total number of phenotypes, number of non-empty (NE) phenotypes, number of sequences assigned
to a unique phenotype (UaS), average abundance of phenotypes Sav, total number of neutral components (NCs), and fraction
of non-functional sequences (f∅). Non-compact HP20 (n-c HP20) is included to compare with n-c HP20 with minimal contact
maps (n-c HP20 S) as phenotypes (a distribution of phenotype abundances for n-c HP20 can be found in [33]). 1Data obtained
with two energy parameters, U(H,H) = −2.3 and U(H,P ) = U(P,H) = −1. 2Data from [34].

Model Phenotypes NE phenotypes UaS Sav NCs f∅
RNA30 GC 240,944,076 432,221 1,073,725,603 2,484.2 68,389,814 0.0000151
RNA16 ACGU 5,223 648 1,712,323,320 2,642,474 23,092 0.601
compact HP30 13,498 13,498 187,212,435 13,869.6 362,221 0.826
compact HP301 13,498 13,498 258,434,457 19,146.1 1,986,907 0.759
n-c HP302 784,924,528,667 2,333,498 22,466,621 9.63 3,732,449 0.979
n-c HP20 41,889,578 5,310 24,900 4.69 6,586 0.976
n-c HP20 S 910,971 54,818 292,732 5.34 62,379 0.721
toyLIFE 2214 ' 2.63× 1064 775 134,400,450 173,419.9 1,523,544 0.9999

immediate effect on abundance distributions, as Fig. 5(b)
shows: besides a decrease at small NC sizes, the distri-
bution develops a bump at high abundances. The non-
compact versions of HP are difficult to explore exhaus-
tively due to the astronomically large number of possible
phenotypes [34]. Still, phenotypes are free from spatial
constraints and, as a result, abundance distributions can
be fit with a log-normal function (Fig. 5(d), (f)). These
distributions are qualitatively similar to that obtained for
GC-RNA, though NCs are significantly larger in the lat-
ter. Smaller NCs could be expected if, instead of the Vi-
enna Package to fold RNA sequences, a model with few
energy parameters (such as, e.g., Nussinov algorithm for
loop matching [37]) is used.

In either compact or non-compact realizations, folding
is calculated by using one [34] or two [23] nonzero en-
ergy parameters, examples being U(H,H) = −1, as in
Fig. 2(c)) or U(H,H) = −2.3, and U(H,P ) = −1, e.g.,
as in Fig. 5(a)). Genotypes in these HP models can typi-
cally be mapped to more than one phenotype. Tradition-
ally, these degenerated genotypes are discarded, since they
have been interpreted as the analogues of intrinsically dis-
ordered proteins, and therefore devoid of function. This
convention results in one of the most concerning features of
classical HP models [38], where an astonishingly large frac-
tion of sequences are systematically not assigned to phe-
notypes, yielding small and highly fragmented phenotypes
(see Table 1 for representative examples). It is important
to remark that a high fraction of non-functional sequences
does not necessarily imply that phenotypes are small and
isolated, since other models —where the small fraction of
functional sequences is not due to degeneration— do have
large and easily navigable phenotypes [24,39,40].

Adding more energy parameters serves to disambiguate
the assignation of genotypes to phenotypes, though the in-
crease in the fraction of sequences assigned to phenotypes
is however minor (compare the two compact HP30 versions
in Table 1). Phenotypes defined through contact maps are

closer analogues of RNA secondary structure (as in our ex-
ample with non-compact HP20): contact maps appear as
a more natural definition of phenotype that furthermore
reduces about 40-fold the number of different phenotypes
and notably decreases sequence degeneration (Table 1).
Also, degeneration diminishes significantly when the size
of the alphabet grows. In a systematic study with se-
quences of length L = 25, degeneration is halved when
going from two- to four-letter alphabets, and it reaches a
few percent for 20-letter representations [41]. Concomi-
tantly, phenotypes become larger and more connected.

The fact that most phenotypes are small, weakly con-
nected and even difficult to navigate in classical HP mod-
els [34] raises doubts on their relevance for evolutionary
dynamics, speaking in favour of more complex but also
more realistic scenarios [38], and certainly supporting non-
compact versions of lattice protein models [36]. In agree-
ment with the above, the definition of phenotype critically
affects the distribution of abundances, which changes from
decreasing functions for two-letter alphabets (as in Fig. 5)
to functions with a maximum and a fat tail for 20-letter,
compact versions [38, 42]. Independent studies suggest
that minimal alphabets are not optimal in an evolutionary
sense [43], further supporting the limited applicability of
two-letter models, especially to draw conclusions on evo-
lutionary dynamics. Unfortunately, an exhaustive study
of non-compact lattice protein models with more than two
letters is, as of today, computationally unfeasible.

Conclusions. – The vastness of genotype spaces pre-
vents a complete characterization based in computational
approaches. A look at Table 1 suffices to illustrate the as-
tronomically large numbers involved in calculations with
sequences of length well below that typically found in bio-
chemical processes. The data generated to analyse the
different models in this contribution reaches 0.5TB and,
as their diversity shows, would be of limited use in the
absence of an accompanying theory. Therefore, an under-
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standing of the structure of realistic GP maps demands
further theoretical developments that can be extrapolated
to arbitrarily long sequences. We have shown that the def-
inition of useful quantities such as versatility allows for re-
liable estimations of the abundance of phenotypes and for
the derivation of the expected distribution. Knowledge of
the asymptotic values vp and vu yields that distribution in
RNA of any length, as well as an estimation of the number
of genotypes folding into an arbitrary (typical) structure.
Similar derivations should be possible for other GP maps
endowed with consistent definitions of phenotype.

∗ ∗ ∗

K. Dingle, E. Ferrada, Ch. Holzgräfe, A. Irbäck and A.
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