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A B S T R A C T 

 
An approach to determine the force transmitted by the plasma plume of an ion thruster to 
an orbital object immersed in it using its central projection on a selected plane is 
proposed. A photo camera is used to obtain the image of the object central projection. 
The algorithms for the calculation of the transmitted force are developed including the 
determination of the object contour and the correction of the error due to a camera offset 
from the ion beam axis, and the computation of the fraction of the ion beam that impinges 
on the object surface. 
 
Keywords: electric propulsion, plasma plume, contactless, space debris, removal, ion 
beam shepherd 

 
1. Introduction 

As a result of space activity, the near-earth Space is littered by a considerable quantity of 
artificial objects and their fragments, which do not execute useful functions (fragments of final 
stages of launch vehicles, nonfunctioning spacecraft, etc.). Recent research on the modelling of the 
population of space debris (SD) shows that the situation for some earth orbits is critical already. For 
example, results of the official research conducted by the Inter-Agency Space Debris Coordination 
Committee in 2012, show that the number of SD objects on low earth orbits that will form in the 
future as a result of collisions will exceed the number of objects that decay and reenter into the 
atmosphere as a result of natural processes [1]. This fact indicates that the mitigation measures 
approved by the majority of space nations are insufficient to avoid the continued growth of SD. In 
view of this, the space community is seriously considering different strategies for active SD 
removal from earth orbit. 

A number of proposed concepts of active removal of orbital fragments are described in the 
literature, from laser systems [2, 3] to electrodynamic tethers [3, 4]. While docking or grabbing the 
target object by means of auxiliary devices (for example, a net or a harpoon) is the most obvious 
means of deorbiting them, this operation may be technologically difficult and unsafe because SD 
objects are uncontrollable, have a complex motion round the centre of mass, and strongly differ in 
shape and mechanical properties.  

In order to avoid the described complexity, a concept of contactless removal of SD objects 
named “Ion Beam Shepherd” (IBS) [5] has been proposed. The principle of this concept consists in 
using a high-velocity jet of ions from a gridded ion thruster (GIT) as a means transmitting 
momentum to the target object to reposition or force its reentry. The concept of IBS has a number 
of advantages in comparison with other concepts, namely: efficiency of removal, a low risk level, 
reusability (multimission) capabilities, and technological readiness.  

One of the key problems arising in the research of the IBS concept is the modeling and 
determination of the force transmitted by the shepherd to the object of SD. Information about this 
force is necessary both for the successful realisation of the chosen removal program and to solve the 
navigation and control of the relative motion of the system “Shepherd- SD object.”  
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Since this problem is relatively new, the amount of publications devoted to it is still small. 
For example, in [6, 7, 8] the theoretical foundations of the description of the GIT plume and 
calculations of the transmitted force are proposed. In [9, 10] analytical expressions of the force on a 
spherical SD object are obtained. Authors of these publications integrate directly the transmitted 
forces on the object surface. However, application of these results in the form of algorithms 
onboard the Shepherd is inconvenient due to the required information about the exact shape, size, 
and orientation of the object. This paper presents an alternative approach that allows determining 
the transmitted force from far less information about the removed object (target), namely on the 
basis of its central projection on a chosen auxiliary plane. Such projection can be obtained simply 
enough by means of a photo camera mounted onboard the Shepherd.   

The objective of the present work is to develop the algorithm for the calculation of the force 
transmitted by the ion beam on a target using its central projection on an auxiliary plane that is 
perpendicular to the axis of the ion beam, and researching the features of its application to problems 
of contactless removal of the space debris. 

 
2. Interaction of Ion Beam with Target 

The plasma plume of the GIT (ion beam) consists of a flow of heavy ions of propellant (for 
example, xenon), accelerated to energy levels of a few keV, plus the neutralizing electrons. A rigid 
body immersed in this plasma jet receives a net force, caused by the momentum of ions bombarding 
the target. Ions that reach the surface of the target penetrate into its material, lose their momentum 
and energy to it, and subsequently stop on distance of several nanometers from its surface. After an 
accommodation time, ions leave the material and escape the target surface at thermal speeds. Since 
the escaping ion speed is much lower than the incoming ion velocity, this last phenomenon has no 
essential effect on the transmitted force. Additionally, the energetic ions can have the effect of 
sputtering the SD material. The contribution to force of these two effects (leaving thermal ions and 
sputtered materials) can be taken into account as an empirical multiplier factor on the incoming ion 
momentum; nevertheless, its influence is insignificant on the problem under consideration, and will 
be neglected hereafter. Likewise, the force caused by electron pressure in the highly hypersonic 
plasma beam of a GIT is also negligible with respect to the incoming ion momentum in first 
approximation. 

Under these simplifying assumptions, the elementary force transmitted to a differential area 
of SD object may be calculated as follows [9]:  

  dsmn UVUdF  ,  (1) 

where m  is the ion mass; n the particle density; U  is the ion velocity vector; ds  is the elementary 
area of surface of the target;  V  is the unit normal vector to the elementary area.  
The force F  transmitted to the target by the ion beam can be thus calculated as the integral of 
elementary forces (1) on the irradiated surface of the target S  

 

S

dsdFF .  (2) 

3. Ion Beam Model 
The plasma plume can be roughly divided into the near (usually less of metre from GIT) and 

far regions [7, 8]. In the mathematical description of the near region it is necessary to consider 
influence of the GIT electromagnetic field, cathode emission, and non-uniformity of plasma. For the 
far region, the influence of these factors becomes insignificant and the distribution of plasma 
depends essentially on its residual electron pressure and the ambipolar electric field. The beam far 
region is the region of interest for the problem of contactless removal of the SD considered in this 
paper, since the plasma and target interaction occurs namely there. 
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There are many mathematical models having different degrees of complexity and accuracy 
[8] for the description of the far region of the ion beam. The so-called self-similar model of plasma 
distribution can be chosen as a compromise model for the purposes of this study.  

Self-similar models are based on the supposition that the plasma expansion can be described 
by means of the dimensionless function of similarity  zh ~  as follows 
 

    zhrzr ~
0 , 0/~ Rzz  , 

where r , z  are the radial and axial coordinates of the ion distribution; 0R , 0r  are the initial radius 
of the beam and the radial coordinate of ion streamlines at an arbitrary initial plane that denotes the 
the beginning of the far region ( 0z ). 

With use of the function   zh ~ , the plasma density at an arbitrary point with coordinates r , 
z  can be determined as follows [8]:  
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where 0n  is plasma density in the beginning of the distant area of the beam; C  is a constant 
defining what part of the plasma flux is contained in the circle of radius 0R  (for example, a value 

6C  corresponds to approximately 95 % of the ion current, which is the conventional fraction of 
plasma current used to define the plume divergence angle, as used below). 

The similarity function  zh ~  can be found as the solution of the following differential 
equation 

 h
M

C
h ln

2
tan

2
0

0
2

  , 

where h   is the derivative of the function  zh ~  with respect to z~ ; 0  is the initial divergence 

angle of the 95% beam streamtube; and mTuM e00   is the ion Mach number in the 

beginning of the distant area; eT  is the electron temperature (here assumed isothermal for 
simplicity); 0u  is the ion velocity at the origin. 

It is necessary to notice that the character of the ion distribution approaches a cone when 
10 M , though, strictly speaking, it is not a cone, but a slowly flaring-out tube. For typical 

values of 300 M  and distances to the target less than 7 metres, it is safe to asume that the beam is 
conical with very little error. In this case the similarity function can be approximated as  

 0tan~
zh  .  (4) 

For the problem under study (highly hypersonic plasma beam), the axial component of the 
ions velocity does not practically change, and will be assumed constant in the following: 

 const0  zz uu .  (5) 

The radial component of the velocity within the limits of the considered model is defined by 
following expression [8, 9]: 

 
h

h
ruu zr




~ .  (6) 
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Taking into account the expression (4) the radial component of the velocity can be 
represented simply as 

 
z

r
uu zr ~

~

0 .  (7) 

 
4. Central Projection of the Target 

As it has been noted above, under certain conditions the shape of the ion beam can be 
represented as a cone. Because the plasma properties are different at various angles of the beam, we 
will divide the cone into finite elements in the spherical coordinates, as it is shown in Fig. 1.  
 

 
 

Fig. 1. Partition of ion beam on finite elements 
 
Here i

  is the discrete polar angle,   is the step of the polar descretization, j
  is the discrete 

azimuthal angle,   is the step of the azimuthal discretization.  
As the square of the cone cross-section increases proportionally with the distance from the 

vertex of a cone and the plasma density decreases proportionally to the distance from the virtual 
vertex (3). Also taking into account the described mechanism of interaction of the beam with the 
target surface, the elementary force acting on the elementary surface ds  of the target is equal to the 
elementary force acting on a central projection of this surface on some plane that is perpendicular to 
the axis of the beam. Hence, for the calculation of the force is possible to consider not a 3D target 
surface but its central projection to a perpendicular plane.  

It is obvious that if all rays emanating from the plume vertex hit the target, the force that 
acts on it is directed along the axis of the beam and is equal to the full GIT thrust. If ions from some 
area of a ray the    hit in the target, direction of the acting force coincides with the line of 
the projection of the centre of this area. Now let us assume that the stream of ions carried by some 
part of an annular domain hits on the target. Taking into account the conic character of the plasma 
distribution, there is no necessity to integrate elementary forces all over the target surface; it is 
enough to sum the resultants of all forces, created by elementary components of the beam, which 
intersect the central projection of the target to the plane, perpendicular to the beam axis (Fig. 2).  
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Fig. 2. Central projection of target on auxiliary plane 
 
To continue with the derivation of the force model, we will introduce the following right-

handed orthogonal frames of reference.  
The frame PPPP zyxO  is fixed to the chosen plane of projection of the beam (FRPL), PO  

being the intersection of the plane and the axis of the beam. The axis PP zO is perpendicular to 
plane of projection and is directed toward the target, axes PP xO  and PP yO  lie in the projection 
plane.  

The frame TTTT zyxO  whose origin TO  is in vertex of the imaginary cone of the beam is 
fixed to the GIT (FRE). The axis TT zO  coincides with the axis of the beam and is directed toward 
the target. Axes PP xO  and TT xO , PP yO  and TT yO  are parallel.  

The origin of the frame MMMM zyxO  is fixed in the mass centre of the target (FRT). The 
direction of FRT coincides with the principal central axes of inertia of the target. The attitude of 
FRT axes with respect to FRE is defined by Euler angles  ,  ,  .The transitive matrix 
corresponding to these rotations is 

 

TTTTMT  , 

where 
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Let us approximate the target surface by a mesh of finite surface elements. The mesh here is 
understood as the topological set of points, connected by edges, segments of straight lines, so that 
the initial surface is divided into elements of a defined shape. The choice of the partition method 
depends on the complexity of the target. For example, in case of a cylindrical shape it is enough to 
set certain amount of points to define the bases of the cylinder. For targets of arbitrary shape 
methods of triangulation [11] can be used that are well developed and are based on the 
approximation of surfaces by a mesh of triangles.  

The position vectors defining a set of points of the target in FRE can be found as follows: 

 MT
l
MMT

l
T BPTP  , Ll ,...,1 ; 
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where l
MP  are the vectors defining a set of target points in FRT; MTB  is the vector defining 

position of FRT origin in FRE; l  runs over all points. 
Coordinates l

TP  of of the target points, which are projected on the considered plane, are 
defined as follows: 

 
l
T

l
Tl

P
z

x
fx  , 

l
T

l
Tl

P
z

y
fy  ,  (8) 

where f  is the distance between points of origins FRPL and FRE; l
Tx , l

Ty , l
Tz  are coordinates of 

points of the target in FRE; l
Px , l

Py  are coordinates of central projections of points of the target on 
this plane in FRPL. 

 
5. Evaluation of the Transmitted Force on the Central Projection of the Target 

The boundaries of the ring elements of the central projection of a beam (Fig. 1) can be 
described with the use of the parametrical equation of a circle. The radius of the i -th ring element 
is defined as follows 

 ii fR tan , 00  
i , Ii ,...,1 , 

where I  is the number of ring elements. 
The angle of a divergence of i -th conic element of the beam can be found as follows:  

  ii
 . 

 The set of points that approximate the projection of the mesh of finite elements will be 
described as:  

 










jiij
P

jiij
P

Ry

Rx





sin

cos
, Jj ,...,1 ,  20 

j .   (9) 

The discrete angle of the parametrical equation of the circle (8) is defined as follows: 

  jj
 , 1,...,0  Jj , 

where J  is number of sectors in the beam. 
As it is seen in Fig. 1, the finite elements defined by three points with coordinates  00 , PP yx , 

 jP
j

P yx 11 ,  and   1111 ,  j
P

j
P yx  represent sectors of circles with radius 1R , and the elements 

characterised by four points with coordinates  ijP
ij
P yx , ,  ijP

ij
P yx , ,  ji

P
ji

P yx 11 ,   and 

 1111 ,  ji
P

ji
P yx  are truncated sectors. Hence, the area of these elements can be calculated 

accordingly: 

   
211 Rds i

  and     2211 iiji RRds 
 , 1,...,1  Ii , 1,...,0  Jj .  (10) 

As mentioned above, the beam can hit on the target only partially. In that case, not all 
elementary components of the projection of the beam fall within the contour of the target projection 
and, hence, it is necessary to identify these elements. For this purpose, from the set of all points l

PP  
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of the target that are projected on the considered plane, we will first select the K  points l
PC  

( Kk ,...,1 ) that define a polygon that best approximates the contour of the target projection. 
In the case when the target is a convex body, the contour of its projection can be found by 

solving of the problem of construction of its convex hull, which is fundamental in computational 
geometry and algorithms for its solution are well developed [11]. 

For targets of arbitrary shape there are simple and effective algorithms for the construction 
of nonconvex envelopes characterising the shape of the set of points placed on a plane [12]. The 
Delaunay triangulation [12] lies at the basis of these algorithms. The shape produced by these 
algorithms is controlled by a single normalized parameter, which can be used to generate a family 
of shapes, varying between its convex hull at one extreme and a shape with minimum area. 
Efficiency of these algorithm is comparable with optimum algorithms for the construction of the 
convex hulls, namely, the number of evaluations is proportional to  nnO log , where n  is number 
of input points. Nevertheless, it is necessary to notice that the supposition about convexity of a 
target allows to use a smaller number of points to approximate its surface, and, hence, to reduce 
significantly the calculation time. 
To identify the elements of the beam projection that are bound by the target contour it is possible to 
use known algorithms from computational geometry for the point-in-polygon problem [13]. We will 
consider that an element of the beam is inside the area bounded by the contour if three points of  a 
sector element with the coordinates  00 , PP yx ,  jP

j
P yx 11 , ,  1111 ,  j

P
j

P yx   or four points of  a 

 truncated sector element with the coordinates  ijP
ij
P yx , ,  11 ,  ij

P
ij
P yx ,  ji

P
ji

P yx 11 ,  , 

 1111 ,  ji
P

ji
P yx  lie inside the polygon with vertices k

PC . 
With the use of expressions (5) and (7) the velocity vector of ions acting on an elementary 

area of a target, in FRE, is defined as  

 
Tij

T
ij
Tij

T u
f

y
u

f

x
u 









 000  ;

ˆ
 ;

ˆ
U ,  (11) 

where ij
Tx̂ , ij

Tŷ  are the coordinates of the centre of the elementary area in FRE, which are calculated 
as follows 

 
4

2ˆ
10 




ij
P

ijl
PPij

T

xxx
x , 

4

2ˆ
10 




ij
P

ij
PPij

T

yyy
y    1i  , 

 
4

ˆ
1111 




ij
P

ijl
P

li
P

li
Pij

T

xxxx
x , 

4
ˆ

1111 




ij
P

ijl
P

li
P

li
Pij

T

yyyy
y   1j . 

After discretizing, the force acting on an elementary area may be defined according to the 
differential expressions 

   ijij
TT

ij
T

ijij
T dsmn UVUdF 

0 ,  (12) 

 
   















 


0
22

22

0
22

2
00

tan2

ˆˆ
exp

tan  f

yx
C

f

Rn
n

ij
T

ij
Tij , (13) 

where  
T

1 ;0 ;0 V  is the unit vector of the normal to the plane, which is perpendicular to the 
ray. 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d0%be%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%87%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9&translation=bordered&srcLang=ru&destLang=en
http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%83%d1%81%d0%b5%d1%87%d0%b5%d0%bd%d0%bd%d1%8b%d0%b9&translation=truncated&srcLang=ru&destLang=en
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The force acting on the target is finally calculated as 

  








I

i

J

j

ij
TT

1

1

0

dFF .  (14) 

6. Numerical example 
Let us compute the force transmitted by the GIT to a target of cylindrical shape with the 

proposed approach. The following input data are used for carrying out of the calculations: 
The height of the cylinder is h  =2.6 m. The diameter of the foundation of the cylinder is d  

=2.2 m. The target attitude in FRE is the following: 0  deg, 45  deg, 45  deg. The 

vector defining the position of the mass centre of the target in FRE is:  
T

ml 700L  m. The 
distance between the centre of projection and the projection plane is f =0.2 m. 

Parameters of the GIT are the following: the initial plasma beam radius 0R = 0.1 m; the ion 

mass (Xenon) 25102.2 
m  kg; the initial plasma density 16

0 106.2 n  3m ; the initial axial 
velocity of ions 0u = 38000 km/s; ion Mach number is assumed infinite to accept the conic 
approximation for the beam; the angle of  the beam divergence 150   deg. 

In Fig. 3 the considered target is shown in FRE. In Fig. 4 the thick line represents a contour 
of projection of the target on the plane, and the dashed line shows the partition of the ion beam into 
finite elements. 

In Fig. 5 the thicker points note the nodes of the mesh of finite elements of the beam that hit 
inside the target contour. For the input data introduced above, the vector of the force transmitted to 
the target calculated with the proposed approach has following components: 

 
T

07.010689.010487.0 44 
F N. 

 

 
 

Fig. 3. Target in FRE 
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Fig. 4. Contour of central target projection on auxiliary plane  
 

 
 

Fig. 5.  Nodes of mesh of finite elements of ion beam hitting inside the target contour  
 

7. Determination of Target Contour from Target Imaging 
For the determination of the transmitted force, a digital photocamera or similar optical 

device can be used onboard the Shepherd. The objective of this device is acquiring the central 
projection of the target. When using photos of the target for the definition of the transmitted force 
with the above approach it is necessary to determine the coordinates of the points of the contour on 
its image on a projection plane in FRPL. In the following, additional frames of reference are defined 
for this purpose.  

The frame SSSS zyxO  is connected to the sensitive element of the camera (FRSE), whose 
origin SO  is fixed in the optical centre of the plane of projection. The axis SS zO  is perpendicular 
to the plane of projection and is directed toward the target; axes SS xO  and SS yO  are parallel to 
the central axes of symmetry of the sensitive element. We will consider that the camera is mounted 
in such a manner that the corresponding axes of frames SSSS zyxO  and PPPP zyxO  are parallel.  

The origin CO  of the reference frame connected with the camera (FRC) CCCC zyxO  is 
arranged on the focal point of the camera. Directions of corresponding axes of FRSE and FRC 
coincide.  

Let us obtain the black-and-white image of a target with transmission of shades of gray (Fig. 
6а). We will consider that the camera matrix has N  pixels along the abscissa axis and M  along 
the ordinate axis. Then such an image can be described by a matrix G . Each element of this matrix 

nmg  ( Nn ,...,1 ; Mm ,...,1 ) can accept a value in the range from 0 to s , where s  is the 
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number of levels of gray. Choosing some threshold value for nmg , we will transform the image G  
into binary (Fig. 6b) which we will designate as the matrix B . Elements nmb  of this matrix can 
accept values 0 or 1, depending whether nmg  is lower or higher than the threshold value. The 
following step of handling of the image is to identify the pixels from the matrix B  which are located 
on the black and white boundary and form the target contour (Fig. 6c). This contour we will be 
represented by the matrix  C  with dimension 2K , where K  is the number of the points 
forming the contour. Elements of this matrix 1kc  and 2kc  are horizontal and vertical indexes of 
pixel (k-point) of the contour. Thus, contour points are set by indexes of corresponding pixels. 
Using matrix elements C  one can obtain the coordinates of the contour points in FRSE as follows 

  2/1 ncx k
k
S  ,  2/2 mcy k

k
S   ,  (15) 

where   is size of the pixel of the camera matrix. 
 

 

a 

 

b  
c 

 
Fig. 6. Digital image processing of target 

 
In a case when the camera is established in such a manner that the focal point of the camera 

coincides with the vertex of the imaginary cone of the beam, and its focal length is equal to f , 
frames FRSE and FRPL coincide and expressions (12) define the coordinates of points of the 
required contour. Here it is necessary to notice that if while choosing the plane of the projection to 
be placed on a distance equal to the camera focal length is not hard, installing the camera at the 
vertex of the beam cone is problematic from an engineering point of view. In connection with this, 
we will consider the case when the camera is positioned with a small shift or offset (0.1 … 0.2 m) 
relative to the beam axis. Such a shift will cause the contour of the target obtained from the photos 
to differ from the contour that should be used in the proposed algorithm. This phenomenon is 
visible in Fig. 7 for the numerical example considered above. Line 1 represents the contour 
corresponding to a case of coincidence of the focal point of the camera and vertex of the imaginary 
cone of the beam, and the line 2 shows a contour for the case when the camera is shifted along the 
axis of ordinates 0.2 m.  

Let us consider a possible correction of the coordinates of the points of the contour obtained 
with use of the expressions (15) to account for this shift. The vectors defining the set of target 
points in FRC can be found as follows: 

 TC
l
T

l
C LPP  , (16) 
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where  
T

TC zyx ~~~
L  is the vector defining the position of the FRC origin in FRE. 

Taking into account expressions (8) and (15), the coordinates of target points projected on 
the plane of the camera matrix may be defined as follows: 

 
zz

xx
fx

i
T

l
Tl

S ~

~




 , 

zz

yy
fy

i
T

l
Tl

S ~

~




 .  (17) 

In view of the fact that it is possible to choose a location for the camera for which 0~
z , and 

comparing formulas (8) and (14), it is possible to write the expressions for deriving the coordinates 
of the points of the contour taking into account the camera offset: 

 
l
T

l
S

l
P

z

x
xx

~
 , 

l
T

l
S

l
P

z

y
yy

~
 .  (18) 

However, expressions (18) cannot be used directly for the contour correction since it is 
obviously not possible to define the magnitude of l

Tz  for each considered point. Nevertheless, 

instead of exact values for l
Tz  it is possible to use an approximate value. For example, for all points 

it is possible to use 0z  that is the distance from the vertex of the imaginary cone of the beam to the 
centre of mass of the target. Taking this into account, expression (18) gives 

 
0

~

z

x
xx l
P

l
P  , 

0

~

z

y
yy l
S

l
P  .  (19) 

In Fig. 7a, line 3 represents corrected the contour calculated with use of expressions (18) 
and using the photo that is obtained by the shifted camera. In this Figure it is visible that the 
corrected contour practically coincides with the contour obtained by an unshifted camera (line 1). 

In Fig. 7b the result of defining the contour of the target by taking into account an 
inaccuracy in the determination of the position of its center of mass is presented. When carrying out 
the calculations, it is accepted that the error in the determination of the center of mass represents a 
random variable with a normal distribution law and zero expectation. The contour 2 is obtained for 
a mean squared deviation of the error 1  m, the contour 3 – for 5.1  m. 

 

 
a 

 
b 

Fig. 7. Contours of target projection  
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As it can be seen in Fig. 7b, satisfactory outcomes for the determination of the contour of the 
target are ensured even for a rough determination of the relative position of the centre of mass. Such 
accuracy in the definition of the position of the center of mass can be ensured by using existing 
hardware, for example on the basis of remote sensing technology that measures distance by 
illuminating a target with a laser and analyzing the reflected light (LIDAR). 

 
8. Algorithm for the Calculation of the Transmitted Force 
The general algorithm for the calculation of the transmitted force can be summarized into the 
following steps. 

1. Choice of the plane of projection. 
2. Partition of the central projection of the GIT beam on finite elements. 
3. Definition of the contour of the central projection of the target. 

3. A. For solving the problems of modelling: 
3.A.1. Approximation of the surface of the target by a mesh of finite elements. 
3.A.2. Projection of the central points of the mesh on the chosen plane with use of the 
expressions (8). 
3.A.3. Calculation of the contour of the target projection on the basis of the solution of 
the problem of construction of the nonconvex (convex) hull that characterises its 
projection on the plane. 

3. B. After photos are obtained in orbit: 
3.B.1. Transformation of the initial image to a binary matrix. 
3.B.2. Definition of the pixels forming the contour of the target projection. 
3.B.3. Calculation of the coordinates of the polygon vertices that approximate the 
contour of the target, with the use of (15). 
3.B.4. Correction of the errors of determination of the target contour due to the shift of 
the camera with use of the expressions (18). 

4. Definition of the finite elements of the ray hitting into the area bound by the contour of the 
target projection using the solution of the problem of belonging of the central points of an 
elementary ray to the polygon. 
5. Calculation of vectors of the elementary forces for the finite elements selected on the 
previous step with the use of the formulas (10) - (13). 
6. Calculation of the vector of the transmitted force by summation of the elementary forces 
(14). 

 
9. Conclusion 

This paper has been devoted to solving the problem of the determination of the force 
transmitted by an ion beam to a downstream target in the context of contactless removal of space 
debris. The approach and algorithms proposed here possess essential advantages in comparison to 
those that use direct integration of the transmitted forces on the object surface, regarding their need 
of information about the exact shape, sizes and attitude of the space debris object. In the proposed 
algorithm, only information on the contour of its central projection on a plane is required. To obtain 
the image of the target central projection in orbit it is proposed to use a photocamera. Algorithms 
for the determination of the target contour and identification of the plasma beam elements hitting 
the target have been developed. Problems of inaccuracy in the determination of the target contour 
due to a mismatch of the focal point of the camera with the vertex of the imaginary beam cone have 
been investigated, and algorithms for the correction of the contour defined from the photos of the 
shifted camera proposed. Numerical calculations illustrating the proposed approach have been 
carried out. The general algorithm to handle the photos for the determination of the target contour 
has been presented. Additional work in this area that takes into account real images obtained in 
orbit that can be a subject of further study. 

 

http://www.lingvo.ua/ru/Search/Translate/GlossaryItemExtraInfo?text=%d1%83%d0%b4%d0%be%d0%b2%d0%bb%d0%b5%d1%82%d0%b2%d0%be%d1%80%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d0%b9&translation=satisfactory&srcLang=ru&destLang=en
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