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Abstract

We study the evolution of a finite population playing a Hawk-Dove game with
mixed strategies. Players have a fixed strategy and their offspring inherit the
parental strategy, with a probability of mutating to another strategy. Payoff

in the game is the only variation in fithess among individuals, and a selection co-
efficientd measures the importance of the game in the overall fithess. Population
evolution is carried out through a Moran process. We compare our numerical sim-
ulations with theoretical predictions in earlier work by Tarretaal. (2009). Our
results show that the effect of selection on the abundances of favored strategies is
nonlinear, being less intense @gcreases. The mutation ratehas an opposite

and stronger effect to that of selection. Heuristic theoretical arguments are given
in order to explain this nonlinear relationship.
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1. Introduction

Evolutionary game theory models a population of individuals interacting in

a game, each playing different strategies. Each player has a fixed strategy. The
payoff of every player will be an average of the payoffs obtained from the games
played with every other individual. Payoff is interpreted as fithess, meaning that
individuals with higher payoff reproduce faster, and outcompete players of worse
strategies. Therefore, the fithess of an individual depends on the composition of
the population at a certain moment of time. This is called frequency-dependent
selection.



The study of evolutionary games has traditionally been damsidering pop-
ulations of infinite size, where stochastic effects due smipling error” are not
considered. Many of these models use the replicator equit]jo

However, although populations are sometimes large enocoigitutly them
through the replicator equation, there are many cases iohndtochastic effects
due to small population sizes are very relevant to the enaiutf the population.

When considering evolutionary games in finite populatiomsgeolutionary
updating must be done through stochastic methods. Alththegke are many pos-
sible approaches to this study, e.g. the Wright-Fisher pof# or the pairwise-
comparison process [3], we will focus here on the Moran Bs¢4].

The goal of this article is to study the stochastic evolwigndynamics of
well-mixed, finite-sized populations, playing a Hawk-Dayeme. We will work
on a model developed previously by Corina Tarnita and cotkoos [5]. Tarnita
et al. developed analytical expressions for the averagedance of any strategy
in the population in the limit of weak selection, for arbiyranutation rates. They
observed a linear effect of selection on the abundancedfefeht strategies. We
examined the model numerically for stronger levels of d&dac finding a non-
linear effect.

The organization of this paper is as follows. In Sec. 2, we@nethe model
used throughout the article, with some of the theoreticaraxdmations devel-
oped in [5]. In Sec. 3, we present some numerical resultsirddadafrom this
model. Heuristic arguments for the behaviour of the modelgaven in Sec. 4.
Finally, a brief discussion is presented in Sec. 5.

2. Modd description

The model developed in this article is based on a previou& y&jr where a
finite population of individuals playing a game is considerdhere are: pure
strategies, and the payoff that strateggets after playing against strategys
given by theijth element of the, x n payoff matrixA. In this game, every player
has a mixed strategy, choosing to play a pure straiegith probability p;. A
mixed strategy is defined by a stochastic vegtet (p1, ..., p,), With0 < p; < 1
andp; + p2 + ... + p, = 1. The pure strategies are those in which any 1. The
payoff of strategyp playing strategyy is A(p,q) = pAq’.

The population size is given by and its evolution follows a Moran process.
Each generation one individual is chosen for reproductimhanother for elimi-
nation. The total population size remains constant. In codleh the reproducing



individual is chosen proportionally to its fitness. Fitnesshe player: is depen-
dent on the average payoff that its stratggy= (p:1, ..., pin) gets after playing
every other strategy in the population, and it is given byakgression

> pidp!

N )
where; = 1...N are the individuals in the population afidepresents the intensity
of selection, i.e., the relevance of the game played in trexadvfitness of the
individuals.

This model considers mutation. We represent the probgbdimutation, the
mutation rate, as. Thus, the offspring of the chosen individual will inhetiiet
strategy of the parent with a probability— «. With a probabilityu, it mutates,
choosing one mixed strategy uniformly at random from allgbssible strategies.
Then, another individual is chosen randomly to die. The ehasdividual can be
the same that was chosen for reproduction.

We focus on estimating the abundance of each strategy thitimg, in order
to discover which strategies are being favored by selecfianthis end, we run
the process long enough, obtaining the strategies prestre population at every
generation. We then estimate the stationary abundancesmyfstrategy, dividing
the [0, 1] interval in finite segments, and counting how many times datesjies
appear in each segment in our data. This number is thenddtatae average of
all the segments, giving the estimated stationary aburedeneach segment. We
then plot the abundances of each strategy relative to thrage@bundance.

fi=1+90 (1)

2.1. Weak selection

In the context of this model, a weak selection, i®e.— 0, means that the
relevance of this game in the total fitness of the players &llsim other words,
there are many components that affect fitness, and the gamg fidayed is just
one of them. In Ref. [5], the authors developed theoreticallte for this model
in the case of weak selection. Using a perturbative methqaared in previous
work [6], they have found the theoretical abundance of atyap with respect to
the average abundance in the equilibrium,

-1 o f}p—i—uﬁp
Tp = (1+5N(1 )(14‘#)(2“‘#))’ (2)




where|[S,|| = /n/(n — 1)!'is the abundance meap, = Nu is the rate of
mutation in a population of siz&. L, and H,, are defined as

~ 1
Lp =

s, [A(pp) + A(pa) — A(ap) — A(qq)]dq (3)

] &

and are the conditions needed foto be favored by selection in the case of low
and high mutation, respectively. For an arbitrary mutatee ., p is favored by
selection if and only if., 4+ uH, > 0.

All these results hold for large, but finite population sizes N < 1/u.

2.2. Hawk-Dove game

In order to numerically simulate this model, we use the H&akwe game.
This game was first presented by John Maynard Smith and Géwicein 1973
[7]. This game presents two pure strategies, and is thusteydar case of the
general case with strategies. The two strategies are hawks and doves. We can
think of this game as an intra-population fight for resourpastners, or any other
conflict. Whenever a hawk encounters another individual,litfight his oppo-
nent, independent of the opponent’s strategy. Doves, oocdhigary, retreat when
the opponent escalates the fight. The benefit of winning a isghiven byb, and
the cost of injury in a fight is. T When two hawks (H) meet, there i9& prob-
ability that either one wins the fight, as they are both egustiong. Therefore,
the average payoff i® — ¢)/2. When a hawk meets a dove (D), it wins the fight,
and the payoff i$. When a dove meets a hawk, its payoffissince it retreats.
Finally, when two doves meet, one wins and the other losdsowitinjury. The
payoff isb/2.

The payoff matrix is thus

H D
H b;C b

b (5)
p\ o 3

Normally, and in our model as well, < b < ¢. Sinceb < ¢, if everyone else
plays hawk, it is better to play dove, and vice versa. Thismedhat there is no
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strict Nash equilibrium — a Nash equilibrium is such that teypr can improve
its payoff by changing its strategy [9]. As a result, hawkd doves can coexist.
At the equilibrium, the frequency of hawks is given b¢. Thus, ifc > b, the
equilibrium frequency of hawks will be small.

If we consider mixed strategies that play hawk with probgbjp and dove
with a probabilityl — p, then the evolutionarily stable strategy (ESS) —defined as
the strategy that has maximum fitness when adopted by theitgagbthe pop-
ulation and is therefore uninvadable by new mutants [8]—hé&srhixed strategy
that plays hawk with probability* = b/c. No other strategy can invade this ESS
if there is no mutation.

Strategyp = [p, 1 — p| is a function ofp only, and thus every mixed strategy
can be described just by the parameteil he strategies are then confined to the
0, 1] interval.

From the previous cited reference [5] the condition thattettyp = [p, 1 — p|
is favored for an arbitrary mutation rate becomes

S boob 1
L+ pH, = —p? [2- (-—-)}—
p T Ht) p-+p C+N ¢ 2

(6)
b 1 pweb 1
“(i-3)5(-3) >0
This equation describes a parabola, whose tip is given by
5 — p* Py _H
p_p<1+2) 4 0

Note that fory = 0, thenp = p*, as expected. Ag increases, the tip of the
parabola is “pushed” towards the closest pure strategys,Tihp* < % we have
p < p*. And similarly if p* > % As 11 — oo, the the most favored strategy is one
of the two pure strategies. We will study this effect of migtathrough numerical
simulations.

Finally, the expected abundance of stratggfrom Eq. (2), becomes

~ L +u}~1
:Ep:1+5N(1—u)<1+pu)(2+pu), (8)
where||S;|| = 1 as we are considering, as a function ofp instead ofp =

[p,1 — p| and, therefore, we are working in one dimension, and

L= ofiben(t- D) (G- 1)-5C-1) ©
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When comparing the results from numerical simulations ofrtteelel, Ref. [5]
showed that Eq. (8) approximated the simulations quiteetypgor low values
of 6. We will use Eq. (8) to compare the numerical simulationsh& model
to the theoretical curves, and also to observe the diveegbrtween those two
approaches as the intensity of selectdancreases.

3. Results

Here we analyze the effect of selectiorand mutationu on the abundances
of the different strategies in thje, 1] interval playing a Hawk-Dove game. In our
numerical simulations, the benefits 2 and the cost is 5. Different choices ob
andc will only move the optimal strategy towards the pure strateg= [1, 0] or
the pure strategy, = [0, 1].

3.1. The effect of selection

The value of in this model means, as was commented in the last section, the
influence of the game being played on total fithess. Biologiogdnisms are con-
fronted with different challenges during their lifetimeatraffect their probability
of survival and, as a result, their contribution to the pagioh’s offspring. Lower
0 values mean that the game being played has little relevahea wompared to
all the other factors that affect fitness, i.e., environmawilability of mates, ill-
nesses, and so on. Highewralues mean that the game is much more important
than all the other factors combined and that these othavrfaete less influential
to fitness. In our model, we compare individuals who are orffgient in the
strategy they use in the Hawk-Dove game, but are equal italbther aspects.
In other words, all of them are equally susceptible to ilbess environmental
changes, predation, and so on.

In all cases, strategies’ abundances form a parabola wipeesented against
p, with the optimal strategy being more favoredidaacreases.

However, the accuracy of the theoretical parabola, as akfayeEq. (8), is
lower asj increases. This is not surprising as in Ref. [5] the authdte@wledged
that their approach was useful only whénr- 0. As § increases, the theoretical
curve for a certain value af is closer to the numerical simulations for a lower
value ofd. This can be observed in Fig. 1, where the theoretical cuuvé £ 0.5
is actually closer to the numerical data o« 0.7. In other words, the theoretical
model is overestimating the effect of selection — for highuea ofé, the model
predicts that the effect will be more intense than what is&bt observed.
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Figure 1: Plot showing abundance densityn a Hawk-Dove game with = 2 andc = 5 as

a function of the probability of playing Hawk. The theoretical curve (lines) from Eq. (8) is
compared to numerical simulation results (symbols). The parameters in the simulatin-are

10, v = 0.1 andd = 0.1 (oblique crosses, solid line)).3 (crosses, dashed lind),5 (circles,
dotted line) and = 0.1 (asterisks, dotted and dashed line). The tip of the parabola, i.e., the most
favored strategy, is at = 0.395 for all curves, according to Eq. (7).

This inaccuracy is due to the fact that the theoretical approximation developed
in the work [6] is based on a perturbative method which only considers the first
terms in the power expansion, namely, those withAs ¢ increases, the accu-
racy of the perturbation method is reduced. This could be corrected using another
equation to fit the data, as can be seen in Fig. 2. The theoretical approximation
predicts a linear relationship betweérand the abundance of any strategy (see
Eq. (2)). The fitted curve shown in Fig. 2 assumes that this relationship is loga-
rithmic, that is,y = 1 + In(1 + 0.349¢). This expression accurately includes the
diminishing effect of§ as it increases.



3.2. The effect of mutation

Mutation is the originator of diversity. When a populationdieminated by
one strategy, what generates a new strategy is the mutatinas a result, a
new selection process starts. Therefore, the effect oftiontes opposed to that
of selection. Where selection eliminates variation, chapsimong the optimal
strategies, mutation creates more and more diversity. dmbdmed effect of these
forces leads to what is known as a mutation-selection dujiuiftn.

If u is very low, the effect of selection is stronger and, as altethie favored
strategies are more abundant in the population, as can bers&gdg. 3, which
represent the effect of changingfor 6 = 0.5. As u increases, mutation dilutes
the effect of selection and abundances get closer to thageekVe can observe
how, the effect of selection whan= 0.01 is much more pronounced than when
u = 0.1. Although the theoretical curves do not fit well with the nuioal results
(due to the high value).

Besides, a% increases, the optimal strategy is “pushed” towards 0, as

=
IN

=
w

Maximum abundance
= H
- N

Figure 2: Plot showing abundance densitiesf the most favored strategy for differemwvalues.
The theoretical prediction (solid line) assumes a lineltienship between the value éfand the
abundance, as seen in Eq. (2). The dashed line follows thessipny = 1 + In(1 + 0.3490).
Numerical simulation values are represented with filledasgs. The pointed line represents an
heuristic approximation to the curve, given by the follogiiaquation:y = 1 + 6§ — ¢d2 + 243,
with ¢ = 0.7689, computed using = 41. The other parameters ale = 10 andu = 0.1.
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Figure 3: Plot showing abundance densityn a Hawk-Dove game witlh = 2 andc = 5 as
a function of the probability of playing Hawk. The theoretical curve (lines) from Eq. (8) i
compared to numerical simulation results (symbols). Thamaters in the simulation aré =
10, 6 = 0.5 andu = 0.01 (crosses, dotted line) ar = 0.1 (oblique crosses, solid line). The tip
of the parabola, i.e., the most favored strategy, i at0.395 (a) andp = 0.35 (b), according to

Eq. (7).

described in Eqg. (7) and in the previous section. The previbaoretical model
[5] is valid for any mutation rate and, therefore, their pcidns match up with
the numerical simulations.

We can study how the effect of selection is diminished by amease inu.
These abundance values decay exponentially, as shown.id,ridpere the abun-
dance values of the optimal strategies are plotted as aifunat «. This means
that, in this model, mutation is stronger than selectionth@sabundances in-
crease with selection logarithmically but decrease withiaton exponentially.
The strength of mutation in this model is a consequence ofdira in which
the mutation has been introduced in the model. When an indwichutates, it
chooses a new strategy at random from the inteffudl]. In fact, this is a very
strong way to model mutation. Depending on the context ohtbeel, we could
introduce mutation in a weaker form: whenever an individoatates, it chooses a
new strategy at random from the subinteriya i, p— i], with p being the parental
strategy. This way, the strength of mutation would incresile i. Another pos-
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Figure 4: Plot showing abundance densitiesf the most favored strategy for differentvalues.
The fitted curve (solid line) follows the expressign= 1.003 + 0.125¢~19-189%  Numerical
simulation values are represented with filled squares. Ther@arameters ar& = 10 and
0 =0.1.

sibility would be to choose strategies from tfie1] interval following a Normal
distribution with mearp, the parental strategy. The relationships between abun-
dances and mutation ratesould then follow different expressions that could be
explored in further work. Such an approach has been carueceoently [10].

A summary of the combined effect of selection and mutatiam lo&a seen in
Fig. 5. We can see the abundance values for the optimal gieatéor different
values ofé andw in Fig. 5 (a). As seen earlier in other figures, the abundance
values for the optimal strategies tend to increase wiehd decrease with, with
the effect ofu being stronger. We can see the standard deviation for tlzeinlat
the simulations for different values éfandw in Fig. 5(b). Higher§ values lead
to lower dispersion in the data, as the optimal strategiesrine more common.
Higheru values lead to higher dispersion, as mutation tends to nfekalun-
dances of all strategies uniform. When batlandé are high, the effect of; is
more pronounced.
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Figure 5: Plot showing (a) abundance densifi€®r optimal strategies for different values ®f
andw and (b) standard deviation in the data from numerical simulations for different valdes of
andu. For all simulationgV = 10.
4. Qualitative analysis

In this section, we develop heuristic arguments to understand the logarithmic
relationship between and the abundance of the most favored strategy. In order
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to do so, we have to refer to the work of Antal and collabosaf6t, where they
develop the linear approximation fay,, the expected abundance of stratégn
the equilibrium, for the case with a finite numberof strategies. In their paper,
they write the formula for the expected abundance of styateas

1 N(1—

<xp >=— + Na-w < Az >, (10)

m u
wheren is the number of strategies playing the gameis the population size,
u is the mutation rate ane Ax;¢ > is the variation inz;, due to the effect of
selection. The value: Az > is equal tarywy — x5, Wherewy is

szl—i‘f‘ 11 0(Ax);

N " N(1+0xTAx)’ (11)

As this is a fairly complicated expression, it seems redsiento compute its
Taylor series and use it to obtain an expressiondar, >. The Taylor expansion
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Figure 6: Plot showing abundance densitiesf the most favored strategy for differefvalues.
The curve obtained from the qualitative analysis (dashee) Ihas the expressiogn= 1+ 6 —
c6? + 253, with ¢ = 0.7689, computed usingn = 41. The fitted curve (solid line) follows the
expressiory = 1 + In(1 + 0.3494). The other parameters ale = 10 andu = 0.1.
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for wy, is

(Ax), — xTAx) N i 5 (=) ((Ax), — xTAx) (XTAX)Z'*l.

=149
WE + N N

=2

(12)
Introducing this value ofv;, into the computation ok Az >, and following
the calculations done in Ref [6], we arrive at the followingpesssion:

p( Ly 4 pHy)
nN(1+p)(2+p)’

< Az > (5 —ed + 700 — A5+ L) (13)
wherec = [(m+p) 35, ai +m Y7, . ail/[Nm?(1+ p)] ande < 1. The number
of strategies playing the gamerig anda;; is theijth element of the payoff matrix
A. Using this value in Eq. 8 yields

~ L 52, 253 354 B Ly, + puH,,
xk~n<1—i—(5 cd® + c*0° — 26 + . )N(1 U)(1+M)(2+M) . (14)

All the terms involvingé represent approximately the series of a logarithm, and
if we plot the first powers versusand compare it with the numerical fit obtained
earlier,y = 1+1n(1+0.3499) (see Fig. 6), we see that there is a good agreement.

5. Discussion and conclusions

Mutation and selection are opposite forces. Selectiorsttiefittest strategies
which increase their frequencies with time. Mutation, aadther hand, is always
generating new strategies. As a result, the populatiors staof equilibrium, as
mutation is always restarting the selection process.

In our model, selection increases the frequencies of the fawsred strate-
gies, while mutation tends to make all abundances closengdmverage. The
effect of mutation is stronger than that of selection, atestpreviously.

We have analyzed, through numerical simulations, the effeselection and
mutation on the evolution of a population playing a Hawk-B@ame with time.
We have focused on which strategies are selected and whagirsatbundance
when selection and mutation change. Selection and mutateopposite forces,
with selection tending to eliminate diversity and “selettté optimal strategies
and mutation generating new diversity continuously.

We have explored different scenarios involving both higd &w selection
and mutation, and we have estimated the relationship betteecoefficients of
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selectiony and mutation: and the abundances of the optimal strategies. Heuristic
arguments are given to explain these nonlinear relatipsshBesides, we have
explored the(d, u) space, showing how these two forces interact and affect the
evolution of the population.
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