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Abstract

We study the evolution of a finite population playing a Hawk-Dove game with
mixed strategies. Players have a fixed strategy and their offspring inherit the
parental strategy, with a probabilityu of mutating to another strategy. Payoff
in the game is the only variation in fitness among individuals, and a selection co-
efficientδ measures the importance of the game in the overall fitness. Population
evolution is carried out through a Moran process. We compare our numerical sim-
ulations with theoretical predictions in earlier work by Tarnitaet al. (2009). Our
results show that the effect of selection on the abundances of favored strategies is
nonlinear, being less intense asδ increases. The mutation rateu has an opposite
and stronger effect to that of selection. Heuristic theoretical arguments are given
in order to explain this nonlinear relationship.
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1. Introduction

Evolutionary game theory models a population of individuals interacting in
a game, each playing different strategies. Each player has a fixed strategy. The
payoff of every player will be an average of the payoffs obtained from the games
played with every other individual. Payoff is interpreted as fitness, meaning that
individuals with higher payoff reproduce faster, and outcompete players of worse
strategies. Therefore, the fitness of an individual depends on the composition of
the population at a certain moment of time. This is called frequency-dependent
selection.



The study of evolutionary games has traditionally been doneconsidering pop-
ulations of infinite size, where stochastic effects due to “sampling error” are not
considered. Many of these models use the replicator equation [1].

However, although populations are sometimes large enough to study them
through the replicator equation, there are many cases in which stochastic effects
due to small population sizes are very relevant to the evolution of the population.

When considering evolutionary games in finite populations, an evolutionary
updating must be done through stochastic methods. Althoughthere are many pos-
sible approaches to this study, e.g. the Wright-Fisher process [2] or the pairwise-
comparison process [3], we will focus here on the Moran process [4].

The goal of this article is to study the stochastic evolutionary dynamics of
well-mixed, finite-sized populations, playing a Hawk-Dovegame. We will work
on a model developed previously by Corina Tarnita and collaborators [5]. Tarnita
et al. developed analytical expressions for the average abundance of any strategy
in the population in the limit of weak selection, for arbitrary mutation rates. They
observed a linear effect of selection on the abundances of different strategies. We
examined the model numerically for stronger levels of selection, finding a non-
linear effect.

The organization of this paper is as follows. In Sec. 2, we present the model
used throughout the article, with some of the theoretical approximations devel-
oped in [5]. In Sec. 3, we present some numerical results obtained from this
model. Heuristic arguments for the behaviour of the model are given in Sec. 4.
Finally, a brief discussion is presented in Sec. 5.

2. Model description

The model developed in this article is based on a previous work [5], where a
finite population of individuals playing a game is considered. There aren pure
strategies, and the payoff that strategyi gets after playing against strategyj is
given by theijth element of then×n payoff matrixA. In this game, every player
has a mixed strategy, choosing to play a pure strategyi with probability pi. A
mixed strategy is defined by a stochastic vectorp = (p1, ..., pn), with 0 ≤ pi ≤ 1
andp1+ p2+ ...+ pn = 1. The pure strategies are those in which anypi = 1. The
payoff of strategyp playing strategyq is A(p,q) = pAqT .

The population size is given byN and its evolution follows a Moran process.
Each generation one individual is chosen for reproduction and another for elimi-
nation. The total population size remains constant. In our model, the reproducing
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individual is chosen proportionally to its fitness. Fitnessof the playeri is depen-
dent on the average payoff that its strategypi = (pi1, ..., pin) gets after playing
every other strategy in the population, and it is given by theexpression

fi = 1 + δ

∑N

j piAp
T
j

N
, (1)

wherei = 1...N are the individuals in the population andδ represents the intensity
of selection, i.e., the relevance of the game played in the overall fitness of the
individuals.

This model considers mutation. We represent the probability of mutation, the
mutation rate, asu. Thus, the offspring of the chosen individual will inherit the
strategy of the parent with a probability1 − u. With a probabilityu, it mutates,
choosing one mixed strategy uniformly at random from all thepossible strategies.
Then, another individual is chosen randomly to die. The chosen individual can be
the same that was chosen for reproduction.

We focus on estimating the abundance of each strategy through time, in order
to discover which strategies are being favored by selection. To this end, we run
the process long enough, obtaining the strategies present in the population at every
generation. We then estimate the stationary abundances of every strategy, dividing
the [0, 1] interval in finite segments, and counting how many times do strategies
appear in each segment in our data. This number is then related to the average of
all the segments, giving the estimated stationary abundance in each segment. We
then plot the abundances of each strategy relative to the average abundance.

2.1. Weak selection

In the context of this model, a weak selection, i.e.δ → 0, means that the
relevance of this game in the total fitness of the players is small. In other words,
there are many components that affect fitness, and the game being played is just
one of them. In Ref. [5], the authors developed theoretical results for this model
in the case of weak selection. Using a perturbative method employed in previous
work [6], they have found the theoretical abundance of strategyp with respect to
the average abundance in the equilibrium,

x̃p =
1

||Sn||

(

1 + δN(1− u)
L̃p + µH̃p

(1 + µ)(2 + µ)

)

, (2)
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where ||Sn|| =
√
n/(n − 1)! is the abundance mean,µ = Nu is the rate of

mutation in a population of sizeN . L̃p andH̃p are defined as

L̃p =
1

||Sn||

∫

Sn

[A(pp) + A(pq)− A(qp)− A(qq)]dq (3)

H̃p =
1

||Sn||2
∫

Sn

∫

Sn

[A(pq− A(rq)]dqdr, (4)

and are the conditions needed forp to be favored by selection in the case of low
and high mutation, respectively. For an arbitrary mutationrateµ, p is favored by
selection if and only if̃Lp + µH̃p > 0.

All these results hold for large, but finite population sizes, 1 ≪ N ≪ 1/u.

2.2. Hawk-Dove game

In order to numerically simulate this model, we use the Hawk-Dove game.
This game was first presented by John Maynard Smith and GeorgePrice in 1973
[7]. This game presents two pure strategies, and is thus a particular case of the
general case withn strategies. The two strategies are hawks and doves. We can
think of this game as an intra-population fight for resources, partners, or any other
conflict. Whenever a hawk encounters another individual, it will fight his oppo-
nent, independent of the opponent’s strategy. Doves, on thecontrary, retreat when
the opponent escalates the fight. The benefit of winning a fightis given byb, and
the cost of injury in a fight isc. T When two hawks (H) meet, there is a0.5 prob-
ability that either one wins the fight, as they are both equally strong. Therefore,
the average payoff is(b− c)/2. When a hawk meets a dove (D), it wins the fight,
and the payoff isb. When a dove meets a hawk, its payoff is0, since it retreats.
Finally, when two doves meet, one wins and the other loses without injury. The
payoff isb/2.

The payoff matrix is thus







H D

H
b− c

2
b

D 0
b

2






. (5)

Normally, and in our model as well,0 < b < c. Sinceb < c, if everyone else
plays hawk, it is better to play dove, and vice versa. This means that there is no
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strict Nash equilibrium — a Nash equilibrium is such that no player can improve
its payoff by changing its strategy [9]. As a result, hawks and doves can coexist.
At the equilibrium, the frequency of hawks is given byb/c. Thus, if c ≫ b, the
equilibrium frequency of hawks will be small.

If we consider mixed strategies that play hawk with probability p and dove
with a probability1−p, then the evolutionarily stable strategy (ESS) —defined as
the strategy that has maximum fitness when adopted by the majority of the pop-
ulation and is therefore uninvadable by new mutants [8]— is the mixed strategy
that plays hawk with probabilityp∗ = b/c. No other strategy can invade this ESS
if there is no mutation.

Strategyp = [p, 1 − p] is a function ofp only, and thus every mixed strategy
can be described just by the parameterp. The strategies are then confined to the
[0, 1] interval.

From the previous cited reference [5] the condition that strategyp = [p, 1−p]
is favored for an arbitrary mutation rate becomes

L̃p + µH̃p = −p2 + p
[

2
b

c
+ µ
(b

c
− 1

2

)]

−

−
(b

c
− 1

3

)

− µ

2

(b

c
− 1

2

)

> 0.

(6)

This equation describes a parabola, whose tip is given by

p̂ = p∗
(

1 +
µ

2

)

− µ

4
. (7)

Note that forµ = 0, thenp̂ = p∗, as expected. Asµ increases, the tip of the
parabola is “pushed” towards the closest pure strategy. Thus, if p∗ < 1

2
, we have

p̂ < p∗. And similarly if p∗ > 1

2
. Asµ → ∞, the the most favored strategy is one

of the two pure strategies. We will study this effect of mutation through numerical
simulations.

Finally, the expected abundance of strategyp, from Eq. (2), becomes

x̃p = 1 + δN(1− u)
L̃p + µH̃p

(1 + µ)(2 + µ)
, (8)

where ||S1|| = 1 as we are considering̃xp as a function ofp instead ofp =
[p, 1− p] and, therefore, we are working in one dimension, and

L̃p + µH̃p = −p2 + p
[

2
b

c
+ µ
(b

c
− 1

2

)]

−
(b

c
− 1

3

)

− µ

2

(b

c
− 1

2

)

. (9)
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When comparing the results from numerical simulations of themodel, Ref. [5]
showed that Eq. (8) approximated the simulations quite closely, for low values
of δ. We will use Eq. (8) to compare the numerical simulations of the model
to the theoretical curves, and also to observe the divergence between those two
approaches as the intensity of selectionδ increases.

3. Results

Here we analyze the effect of selectionδ and mutationu on the abundances
of the different strategies in the[0, 1] interval playing a Hawk-Dove game. In our
numerical simulations, the benefitb is 2 and the costc is 5. Different choices ofb
andc will only move the optimal strategy towards the pure strategy p1 = [1, 0] or
the pure strategyp2 = [0, 1].

3.1. The effect of selectionδ

The value ofδ in this model means, as was commented in the last section, the
influence of the game being played on total fitness. Biologicalorganisms are con-
fronted with different challenges during their lifetime that affect their probability
of survival and, as a result, their contribution to the population’s offspring. Lower
δ values mean that the game being played has little relevance when compared to
all the other factors that affect fitness, i.e., environment, availability of mates, ill-
nesses, and so on. Higherδ values mean that the game is much more important
than all the other factors combined and that these other factors are less influential
to fitness. In our model, we compare individuals who are only different in the
strategy they use in the Hawk-Dove game, but are equal in all the other aspects.
In other words, all of them are equally susceptible to illnesses, environmental
changes, predation, and so on.

In all cases, strategies’ abundances form a parabola when represented against
p, with the optimal strategy being more favored asδ increases.

However, the accuracy of the theoretical parabola, as defined by Eq. (8), is
lower asδ increases. This is not surprising as in Ref. [5] the authors acknowledged
that their approach was useful only whenδ → 0. As δ increases, the theoretical
curve for a certain value ofδ is closer to the numerical simulations for a lower
value ofδ. This can be observed in Fig. 1, where the theoretical curve for δ = 0.5
is actually closer to the numerical data forδ = 0.7. In other words, the theoretical
model is overestimating the effect of selection — for high values ofδ, the model
predicts that the effect will be more intense than what is actually observed.
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Figure 1: Plot showing abundance densityx̃ in a Hawk-Dove game withb = 2 andc = 5 as
a function of the probabilityp of playing Hawk. The theoretical curve (lines) from Eq. (8) is
compared to numerical simulation results (symbols). The parameters in the simulation areN =
10, u = 0.1 andδ = 0.1 (oblique crosses, solid line),0.3 (crosses, dashed line),0.5 (circles,
dotted line) andδ = 0.1 (asterisks, dotted and dashed line). The tip of the parabola, i.e., the most
favored strategy, is at̂p = 0.395 for all curves, according to Eq. (7).

This inaccuracy is due to the fact that the theoretical approximation developed
in the work [6] is based on a perturbative method which only considers the first
terms in the power expansion, namely, those withδ. As δ increases, the accu-
racy of the perturbation method is reduced. This could be corrected using another
equation to fit the data, as can be seen in Fig. 2. The theoretical approximation
predicts a linear relationship betweenδ and the abundance of any strategy (see
Eq. (2)). The fitted curve shown in Fig. 2 assumes that this relationship is loga-
rithmic, that is,y = 1 + ln(1 + 0.349δ). This expression accurately includes the
diminishing effect ofδ as it increases.
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3.2. The effect of mutationu

Mutation is the originator of diversity. When a population isdominated by
one strategy, what generates a new strategy is the mutation and, as a result, a
new selection process starts. Therefore, the effect of mutation is opposed to that
of selection. Where selection eliminates variation, choosing among the optimal
strategies, mutation creates more and more diversity. The combined effect of these
forces leads to what is known as a mutation-selection equilibrium.

If u is very low, the effect of selection is stronger and, as a result, the favored
strategies are more abundant in the population, as can be seen in Fig. 3, which
represent the effect of changingu for δ = 0.5. As u increases, mutation dilutes
the effect of selection and abundances get closer to the average. We can observe
how, the effect of selection whenu = 0.01 is much more pronounced than when
u = 0.1. Although the theoretical curves do not fit well with the numerical results
(due to the highδ value).

Besides, asu increases, the optimal strategy is “pushed” towardsp = 0, as
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Figure 2: Plot showing abundance densitiesx̃ of the most favored strategy for differentδ values.
The theoretical prediction (solid line) assumes a linear relationship between the value ofδ and the
abundance, as seen in Eq. (2). The dashed line follows the expressiony = 1 + ln(1 + 0.349δ).
Numerical simulation values are represented with filled squares. The pointed line represents an
heuristic approximation to the curve, given by the following equation:y = 1 + δ − cδ2 + c2δ3,
with c = 0.7689, computed usingn = 41. The other parameters areN = 10 andu = 0.1.
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δ=0.5, u=0.01 (simulation)
δ=0.5, u=0.1 (simulation)
δ=0.5, u=0.01 (theoretical)
δ=0.5, u=0.1 (theoretical)

Figure 3: Plot showing abundance densityx̃ in a Hawk-Dove game withb = 2 andc = 5 as
a function of the probabilityp of playing Hawk. The theoretical curve (lines) from Eq. (8) is
compared to numerical simulation results (symbols). The parameters in the simulation areN =
10, δ = 0.5 andu = 0.01 (crosses, dotted line) oru = 0.1 (oblique crosses, solid line). The tip
of the parabola, i.e., the most favored strategy, is atp̂ = 0.395 (a) andp̂ = 0.35 (b), according to
Eq. (7).

described in Eq. (7) and in the previous section. The previous theoretical model
[5] is valid for any mutation rate and, therefore, their predictions match up with
the numerical simulations.

We can study how the effect of selection is diminished by an increase inu.
These abundance values decay exponentially, as shown in Fig. 4, where the abun-
dance values of the optimal strategies are plotted as a function of u. This means
that, in this model, mutation is stronger than selection, asthe abundances in-
crease with selection logarithmically but decrease with mutation exponentially.
The strength of mutation in this model is a consequence of theform in which
the mutation has been introduced in the model. When an individual mutates, it
chooses a new strategy at random from the interval[0, 1]. In fact, this is a very
strong way to model mutation. Depending on the context of themodel, we could
introduce mutation in a weaker form: whenever an individualmutates, it chooses a
new strategy at random from the subinterval[p+i, p−i], with p being the parental
strategy. This way, the strength of mutation would increasewith i. Another pos-

9



0 0.1 0.2 0.3
1

1.05

1.1

1.15

u

M
ax

im
um

 a
bu

nd
an

ce

Figure 4: Plot showing abundance densitiesx̃ of the most favored strategy for differentu values.
The fitted curve (solid line) follows the expressiony = 1.003 + 0.125e−10.189u. Numerical
simulation values are represented with filled squares. The other parameters areN = 10 and
δ = 0.1.

sibility would be to choose strategies from the[0, 1] interval following a Normal
distribution with meanp, the parental strategy. The relationships between abun-
dances and mutation ratesu could then follow different expressions that could be
explored in further work. Such an approach has been carried out recently [10].

A summary of the combined effect of selection and mutation can be seen in
Fig. 5. We can see the abundance values for the optimal strategies for different
values ofδ andu in Fig. 5 (a). As seen earlier in other figures, the abundance
values for the optimal strategies tend to increase withδ and decrease withu, with
the effect ofu being stronger. We can see the standard deviation for the data in
the simulations for different values ofδ andu in Fig. 5(b). Higherδ values lead
to lower dispersion in the data, as the optimal strategies become more common.
Higheru values lead to higher dispersion, as mutation tends to make the abun-
dances of all strategies uniform. When bothu andδ are high, the effect ofu is
more pronounced.
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Figure 5: Plot showing (a) abundance densitiesx̃ for optimal strategies for different values ofδ

andu and (b) standard deviation in the data from numerical simulations for different values ofδ

andu. For all simulationsN = 10.

4. Qualitative analysis

In this section, we develop heuristic arguments to understand the logarithmic
relationship betweenδ and the abundance of the most favored strategy. In order
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to do so, we have to refer to the work of Antal and collaborators [6], where they
develop the linear approximation forxk, the expected abundance of strategyk in
the equilibrium, for the case with a finite numberm of strategies. In their paper,
they write the formula for the expected abundance of strategy k as

< xk >=
1

m
+

N(1− u)

u
< ∆xsel

k >, (10)

wheren is the number of strategies playing the game,N is the population size,
u is the mutation rate and< ∆xsel

k > is the variation inxk due to the effect of
selection. The value< ∆xsel

k > is equal toxkωk − xk, whereωk is

ωk = 1− 1

N
+

1 + δ(Ax)k
N(1 + δxTAx)

. (11)

As this is a fairly complicated expression, it seems reasonable to compute its
Taylor series and use it to obtain an expression for< xk >. The Taylor expansion
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Figure 6: Plot showing abundance densitiesx̃ of the most favored strategy for differentδ values.
The curve obtained from the qualitative analysis (dashed line) has the expressiony = 1 + δ −
cδ2 + c2δ3, with c = 0.7689, computed usingm = 41. The fitted curve (solid line) follows the
expressiony = 1 + ln(1 + 0.349δ). The other parameters areN = 10 andu = 0.1.
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for ωk is

ωk = 1 + δ
((Ax)k − xTAx)

N
+

∞
∑

i=2

δi
(−1)i+1((Ax)k − xTAx)(xTAx)i−1

N
.

(12)
Introducing this value ofωk into the computation of< ∆xsel

k >, and following
the calculations done in Ref [6], we arrive at the following expression:

< ∆xsel
k >≈ (δ − cδ2 + c2δ3 − c3δ4 + ...)

µ(Lk + µHk)

nN(1 + µ)(2 + µ)
, (13)

wherec = [(m+µ)
∑

i aii +m
∑

i,j 6= aij]/[Nm2(1+µ)] andc ≤ 1. The number
of strategies playing the game ism, andaij is theijth element of the payoff matrix
A. Using this value in Eq. 8 yields

xk ≈
1

n

(

1 + (δ − cδ2 + c2δ3 − c3δ4 + ...)N(1− u)
L̃k + µH̃k

(1 + µ)(2 + µ)

)

. (14)

All the terms involvingδ represent approximately the series of a logarithm, and
if we plot the first powers versusδ and compare it with the numerical fit obtained
earlier,y = 1+ ln(1+0.349δ) (see Fig. 6), we see that there is a good agreement.

5. Discussion and conclusions

Mutation and selection are opposite forces. Selection takes the fittest strategies
which increase their frequencies with time. Mutation, on the other hand, is always
generating new strategies. As a result, the population stays out of equilibrium, as
mutation is always restarting the selection process.

In our model, selection increases the frequencies of the most favored strate-
gies, while mutation tends to make all abundances closer to the average. The
effect of mutation is stronger than that of selection, as stated previously.

We have analyzed, through numerical simulations, the effect of selection and
mutation on the evolution of a population playing a Hawk-Dove game with time.
We have focused on which strategies are selected and what is their abundance
when selection and mutation change. Selection and mutationare opposite forces,
with selection tending to eliminate diversity and “select”the optimal strategies
and mutation generating new diversity continuously.

We have explored different scenarios involving both high and low selection
and mutation, and we have estimated the relationship between the coefficients of
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selectionδ and mutationu and the abundances of the optimal strategies. Heuristic
arguments are given to explain these nonlinear relationships. Besides, we have
explored the(δ, u) space, showing how these two forces interact and affect the
evolution of the population.
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