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Abstract. Interactions between people are the basis on which the structure of our society
arises as a complex system and, at the same time, are the starting point of any physical
description of it. In the last few years, much theoretical research has addressed this issue
by combining the physics of complex networks with a description of interactions in terms
of evolutionary game theory. We here take this research a step further by introducing a
most salient societal factor such as the individuals’ preferences, a characteristic that is key
to understand much of the social phenomenology these days. We consider a heterogeneous,
agent-based model in which agents interact strategically with their neighbors but their
preferences and payoffs for the possible actions differ. We study how such a heterogeneous
network behaves under evolutionary dynamics and different strategic interactions, namely
coordination games and best shot games. With this model we study the emergence of the
equilibria predicted analytically in random graphs under best response dynamics, and we
extend this test to unexplored contexts like proportional imitation and scale free networks. We
show that some theoretically predicted equilibria do not arise in simulations with incomplete
Information, and we demonstrate the importance of the graph topology and the payoff function
parameters for some games. Finally, we discuss our results with available experimental
evidence on coordination games, showing that our model agrees better with the experiment
that standard economic theories, and draw hints as to how to maximize social efficiency in
situations of conflicting preferences.
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1. Introduction

The behavior of complex systems is determined by its components and, chiefly, by their
interactions. Generally speaking, specifying the interactions of a complex system [1] involves
a network, that indicates who interacts with whom, and the rule or law governing the
interaction itself. This paradigm applies to purely physical systems but also to social systems
[2, 3], the difference being that in the latter case interactions are strategic, i.e., the agents have
some degree of intelligence and can anticipate the reactions of their counterparts to their own
actions. Such a situation requires a description in terms of game theory [4] and, in fact, this
framework it is becoming the standard to describe complex systems in social and economic
systems [5, 6, 7, 8].

The complex systems community has devoted a lot effort to this approach in this century
(see, e.g., [9, 10, 11, 12] for reviews). Typically, the models considered in this research are a
combination of the above mentioned ingredients of games (describing how interactions take
place) and networks (describing the interaction structure) with some evolutionary dynamics
[13]. The rationale for such an approach is twofold: On one hand, several of the dynamics can
be shown to lead to equilibrium states that are related to the Nash equilibria of the network
game [4, 14], i.e., to what the system should be actually doing were it formed by rational
agents. On the other hand, a dynamical approach is intended to explain which, if any, such
equilibria are actually reached by pointing to a mechanism that shows how they can be reached
by agents whose cognitive capabilities are bounded, i.e., they do not conform to the omniscient
rational agents of economics.

This type of approach is currently being applied to understand different socially relevant
issues, such as the emergence of cooperation [15], where a paper on spatiotemporal chaos [16]
originated a huge number of papers on theoretical models [9, 10]. This effort further fructified
in several experiments with human subjects [17, 18, 19] leading to the understanding of the
dynamics in terms of moody conditional cooperation and reinforcement learning [20, 21, 22].
In this context, a very pressing issue that is key to understand human societies and how they
can be nudged towards cooperating with each other is that of identity (religious, linguistic,
political, etc.) as the source or reason for different preferences [23]. Indeed, the interplay
between our preferences and the influence of our social relationships (friends, acquaintances,
coworkers) on our choices arises in may aspects of our daily life life. This occurs, for instance,
when we choose friends [24] or neighbors [25], a process where individual preferences are a
key in our decisions. Another example of the importance of preference is the large influence
peers have on human behavior [7], affecting whether people’s behavior aligns to that of their
social relationships [26]. Such social influence effects range from which products we buy [27],
to the decision to get involved in criminal activities [28], or to our participation in collective
action [29]. Particularly important is the case of strategic interaction in networks, a realization
of which is the situation in which one has to decide on a technological product that should
be compatible with the co-workers’s choices. This is a case of a coordination problem, in the
class we will discuss below, and clearly choices change depending on others’ decisions, but
every person has her own initial preference [30]. All these particular situations boil down to a
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specific research question: What is the effect of individual preferences on strategic interaction,
be it of the coordination or anti-coordination type?

We here study this issue in a very broad range of socially relevant scenarios, by using the
model introduced by Hernández et al. [31]. This is a generalization of earlier work [27] where
two entire classes of games were studied, namely coordination games and social dilemmas
(more precisely, strategic complements and strategic substitutes) in random networks. In
[31], the problem of diversity in preferences was analyzed by considering that there are
two different types of players in the population, and that each type prefers (because the
corresponding payoff is larger) one of the two available actions. Therefore, coordination
and/or cooperation becomes more difficult, in so far that agents have incentives to choose
a specific action that yields more benefit to them irrespective of the choices of those with
whom they interact. In fact, as has been recently shown [32], this difficulty in coordination
is predicted to be largely dependent on the payoff ratio between the preferred and the
disliked actions, but it may even disappear when payoffs become similar. In this context,
we here address a number of issues that are relevant from viewpoints of both the evolutionary
dynamics of complex systems and its application to societal issues. Firstly, we intend to
identify the effect of the presence of agents with different preferences in the system and how
this effect depends on the network structure. Secondly, we want to understand whether these
effects change in cases where all agents would prefer to choose the same action as the rest
(complements/coordination) or different actions (substitutes/anti-coordination). Last, but not
least, we want to assess the relevance and validity of our approach by comparing with existing
experimental results.

Our results are organized as follows: we begin by introducing the main game theory,
focusing on the conceptual differences the preferences paradigm brings in to the homogeneous
framework (Sec. II). We then study in Sec. III the dynamically relevant equilibria and compare
them with the ones found in [31, 32] with an analytical, static approach. Subsequently, we
also extend the study to the case of a scale-free network and Proportion Imitation, comparing
the differences when the same games are played in the absence of individual preferences.
Our next step is to look into the case of incomplete information (Sec. IV), where agents
do not have knowledge about their neighborhood, which we analyze having the complete
information situation case as our reference point. In this case, only best response case because,
as we will discuss below, proportional imitation cannot be applied for lack of information. In
the conclusion (Sec. V) we summarize our results, compare with the available experimental
results, and discuss how they give insight on how to solve coordination problems in situations
of conflicting preferences.

2. Model

The building blocks of our models are a set of agents, a game that specifies their interaction,
and a network of connections between them that rules who interacts with whom. Each agent
has two possible actions, which we label X = {0,1} and a preference for one of them. Due
to this preferential heterogeneity, individuals who choose their preferred action gain greater
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payoffs than when they choose the other one, for every game in the families we will consider
below. This is mathematically represented by two parameters, which represent the rewards
for choosing the liked or disliked option, and hence affect the incentive to change action
and so the dynamics of the game. In order to cover an ample set of games (i.e., of possible
interactions between people) we work with a very general payoff function

ui(θi,xi,xNi) = λ
θi
xi
[1+δ ∑

j∈ki

I{x j=xi}+(1−δ ) ∑
j∈ki

I{x j 6=xi}] (1)

where xi is the action taken by agent i, ki are the neighbors of agent i as specified by the
corresponding network, xNi is the vector of actions taken by i’s neighbors, θi is agent i’s
preference (that, as actions, can be 0 or 1), and I{x j=xi}indicates the neighbors who choose the
same action as i. As for the payoffs λ takes the value α if the agent takes his liked action
or β otherwise, where 0 < β < α < 2β , and δ defines the kind of game we are playing: if
δ = 1 we are playing a Coordination Game (CG; the best action is to do as others do), if δ = 0
we are playing Anticoordination Game (AG; the best action is to do the opposite of what the
others do). We note that in economics jargon these game families are usually referred to as
strategic complements and strategic substitutes, respectively [27], but in this work we prefer
to use the names above as they make it easier for the reader to grasp the actual meaning of
the two types of interaction. We also note that the original homogeneous model in [27] is
recovered when all players have the same preference. Below, we will in addition differentiate
two types of arrangements: The first is a situation of complete information, where every
individual knows who his neighbours are and what they do at every round of the game; the
second is a situation of incomplete information, where agents know how many neighbors do
they have and the distribution of preferences in the network, but they don’t know what the
specific preferences of their neighbors are. In this last case, agents can infer the proportion
of neighbors who might prefer action 1 or 0 knowing the preferences distribution and their
degree, but they don’t know exactly the distribution of actions in their local network. Finally,
we need to specify the dynamics we will consider in this model. Following [33], we will use
the following two dynamics as representative of the more economics-style (best response) and
evolutionary (imitation) choices.

2.1. Best response

Let us call χi the number of agent i’s neighbors who choose action 1, so the number of
neighbors that choose action 0 is ki − χi. As described in [31], from the purely static,
theoretical viewpoint in economics, we have two thresholds to compare with χi in order to
permit to agent i to decide which action to take:

τ(ki) =

[
β

α +β
ki−

α−β

α +β

]
, (2)

τ(ki) =

[
α

α +β
ki +

α−β

α +β

]
. (3)
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With these two thresholds, the best response for agent i with preference θi = 1 in a CG is
given by:

xi =

{
1 iff χ ≥ τ(ki)

0 otherwise;
(4)

Conversely, the best response for agent i with preference θi = 0 is given by:

xi =

{
0 iff χi ≤ τ(ki)

1 otherwise.
(5)

These two options for the CG are simply illustrated in the sketch of figure 1. below.

Figure 1. Action change thresholds for both preferences in the Coordination Game.

Similarly, in the case of an AG, agent i will choose the liked action when χi ≤ τ(ki) for
θi = 1 and when χi ≥ τ(ki) for θi = 0. With these results, the predictions from the analysis
in [31] are that equilibria in the network are such that all players coordinate on one action
(specialized) or both actions are chosen by different players (hybrid). There are two categories
of equilibria, depending on whether all players coordinate in choosing the action they like
(satisfactory) or at least one player chooses the disliked option (frustrated). So we have four
possible equilibria: (i) satisfactory specialized (SS) where all players coordinate on the same
action, which is their preferred choice (so, this can happen only in the homogeneous model,
where all agents have the same preference); (ii) frustrated specialized (FS), where all players
coordinate on the same action, but at least one of them is choosing his disliked option; (iii)
satisfactory hybrid (SH), where all players choose their preferred option but there is at least
one player with a preference different from the rest, so that both actions are present; and (iv)
frustrated hybrid (FH) which presents both actions and at least one player chooses her disliked
option. We will analyze below what happens dynamically, i.e., when the game is repeated for
a number of rounds starting from a random initial condition and players choose their action
in their next round through myopic best response [34], by deciding their next action as a best
response to their neighbors’ actions in the previous round.
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2.2. Proportional imitation

The second dynamics we will consider in this study consists of the imitation of a neighbor:
at each time step a fraction of the agents choose one of their neighbors at random and, if the
neighbor’s payoff is higher than her payoff, she chooses the neighbor’s action for the next
time step with a probability given by the difference between their two payoffs, according to

P{π → π
(t+1)
i }=

{
(π

(t)
j −π

(t)
i )/φ if π

(t)
j > π

(t)
i ,

0 otherwise.
(6)

The reason to consider this dynamics is that it is the evolutionary version of the well-
known replicator dynamics [4] that, in the limit of an infinite number of agents, can be shown
to converge to the Nash equilibria of the game. However, the approach to the equilibria is
different from the best response case: In best-response, all agents try to choose directly the
action that would give them the largest payoff given the actions of the others, whereas in
imitation dynamics agents have a much smaller cognitive capability and limit themselves to
imitate some action that they perceive to yield higher payoffs. Imitation is thus a much more
realistic dynamics to represent human (or even animal or bacteria) decisions as arising from
something akin to a learning (or adaptation) process. On the other hand, best response is
deterministic whereas imitation dynamics is stochastic, which provides another interesting
comparison.

2.3. Simulations

In what follows, we report the results of a simulation program in which we have looked at
the behavior of the model for its most important parameters: the payoff to choose the liked
option, α , the payoff to choose the disliked option, β , and the proportion of 1-preference
agents ρ , always respecting the conditions of the games: 0 < β < α < 2b and 1 < ρ < 0.
We have considered networks with n = 102 nodes (except when specified) and all the results
are averaged over a number of iterations of t = 102 time steps each. Simulations with more
nodes have also been done and will be reported below in order to check our conclusions,
and the number of iterations has been taken to be 20 or 50, also for verification purposes.
Simulations are run over 8× 8 different sets of values for α and β , choosing 0.2 ≤ α ≤ 0.9
and α/2 < β < α , and they are as long as needed for the system to equilibrate. We verified our
code by checking that, for the homogeneous model, we recovered the results reported in [33],
with very satisfactory results. In addition, we considered two types of networks: an Erdös-
Reńyi (ER) [35] random graph, for different values of connectivity m, and a Barabási-Albert
(BA) [36] scale free graph, with 3 (the parameter typically referred to as m in the BA model,
different from the connectivity m of our ER networks) edges connecting every new node added
to the graph to nodes already in the network. The reason to do this is that the theoretical
predictions summarized above are only valid for an uncorrelated random graph, which is
represented by the ER network. Therefore, we find it interesting to include a completely
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different network such as the BA one, that is in fact associated to many more realistic social
situations.

3. Complete information

We begin by discussing the results when players have complete information about their
neighbors’s preferences. For the sake of clarity, we present the results separately for each
type of game and each type of dynamics. In this section and throughout the paper, in all plots
every dot is a particular set of parameters. In equilibria graphics, red dots are the Specialized
Satisfactory equilibria, yellow ones are the Specialized Frustrated equilibria, green ones are
the Hybrid Frustrated equilibria, and blue ones are potentially Hybrid Satisfactory equilibria
or Hybrid Frustrated.

3.1. Coordination Game

3.1.1. Best Response In order to compare with the predicted results from the static approach,
we discuss first uncorrelated networks given by the ER model. Our first observation is that, as
we raise the connectivity of ER networks, equilibria tend to be more specialized and hybrid
equilibria tend to disappear. Figure 2 shows clearly that equilibria are symmetric for different
fractions of preferences, as it was to be expected as there is nothing intrinsically different
between the two types. When the two preferences have an equal number of agents in the
population, the final density of agents who choose action 1 in equilibrium takes values in a
range around 0.5, a range that tends to decrease the more we raise the ratio α/β . This is due to
the particularities of the different networks realized in the simulations, as there may be local
environments that just by chance make agents choose one action that is not their preferred
one.

It is important to realize that the ratio α/β gives us a direct measure of the incentive given
to agents to maintain their preferred action instead of changing it, so it is clear that when this
incentive is small a larger variety of outcomes are possible. For instance, when α/β → 1,
if the simulation starts with a 60% of 0 agents, the final equilibria will be a 0-specialized
frustrated one, because the 40% of initial 1 agents aren’t sufficiently motivated to maintain
their liked option. On the contrary, when α/β → 2, in the same case of a 60% of initial 0
preferences, a relevant part of the 1 agents resist the temptation to go against their preferences,
because the incentive to maintain their preferred action is really higher than the one given to
change (unless in very specific realizations one 1 agent is surrounded by a large number of
0 agents; this is something that occasionally, but not frequently, will occur). Therefore, the
final equilibrium is not specialized anymore, but it is hybrid and there will be less frustration
in the final state. This is seen in figure 2 by the fact that for small α/β the transition from
one specialized equilibrium in the action of the majority of the agents to the other is much
more abrupt than for large α/β , implying that the range of fractions of each type leading
to hybrid equilibria is larger in the latter case. This is so specially in the less connected
graphs: in the case of α/β → 2 in the final states there are more satisfied agents, because they
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Figure 2. Final average density of agents who play action 1 d1 against fraction of
0-preference players ρ0 and reward ratio α/β in equilibrium, for the CG on different ER
networks (connectivity as indicated in the plot) and a BA network. Red: Specialized
Satisfactory equilibria; yellow: Specialized Frustrated equilibria; green, Hybrid Frustrated
equilibria; blue, potentially Hybrid Satisfactory equilibria or Hybrid Frustrated.

are pushed to maintain their action as they do not have many neighbors which could induce
them to change. We can say the opposite in the case with α/β → 1 where in the final states
we find more frustrated agents and specialized equilibria. Figure 3 confirms this insight by
showing the equilibria for the two extreme values of the payoff ration and including the density
of frustrated agents. For small α/β , the fraction of frustrated agents grows approximately
linearly with the fraction of 0 agents until they reach a 50-50 distribution: this makes sense
as for small payoff ratios only a small majority of agents of the opposite preference is needed
to make one change. Interestingly, frustration is much lower for larger α/β , reflecting the
fact that locally it may pay to keep one’s preferred action even if there are more neighbors of
the opposite side. This is particularly true for low connectivity networks; larger connectivity
leads to larger chance to have many neighbors of the opposite type forcing one to change
(keep in mind that best response is deterministic and always chooses what is best in view of
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the environment).
Let us now look at the case of the BA scale free graph. As we can see from the plot, the

overall behavior is not far from the ER random graph one with m = 5. This is likely to result
from the fact that there are a large majority of agents that have a small number of neighbors,
and therefore in terms of the total fraction of agents choosing each action these subset of
nodes dominates the dynamics. On the contrary, hubs are just one neighbor of other agents,
so in a best response environment their contribution to the decision of their neighbors is not
particularly relevant. In this manner, we have identified two main variables that determine the
type of equilibria that will come out in a Coordination Game: the connectivity of the graph
and the payoff ratio.

(a) (b)

Figure 3. Final average density of frustrated agents d f over 50 realizations against
0-preference density ρ0 (solid lines). Shown also is the corresponding final average density
d1 (dashed lines). (a) Coordination Game with reward ratio α/β = 1. (b) Coordination
Game with reward ratio α/β = 2. Lines are as indicated in the plot.

In the light of what we know about the homogeneous model [31], we observe that in both
models connectivity is a catalyst for the achievement of a specialized equilibrium: the more
the connectivity is, the less the hybrid equilibria will be. What was true in the homogeneous
case about cooperation (understood as coordination in the Pareto-dominant or more profitable
equlibrium) can be also said of the heterogeneous model about coordination: If full
cooperation was reached thanks to high connectivity under the same cooperation incentive,
now high connectivity allows, under the same reward ratio, to reach full coordination (which
means specialized equilibria) in the most of the cases. On the other hand, an important
difference with the previous model is that in the homogeneous case agents had an incentive to
cooperate (α) which helped the achievement of full cooperative final states. When preference
enters the game, there is a payoff ratio which hinders full coordination, because it preserves
the satisfaction of the individual. Therefore, preference does qualitatively change the problem
and, more importantly, the perception of the outcome of evolution as satisfactory by the
individuals.

In order to verify the above conclusions, wee raised the number of agents to n = 103
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to see if network size could affect the final equilibria. Comparing graphics in figure 4 with
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Figure 4. Final average density of agents who play action 1 d1 against fraction of
0-preference players ρ0 and reward ratio α/β in equilibrium, for the CG on different ER
networks (connectivity as indicated in the plot) and a BA network. Simulations with 1000
agents. Colors as in figure 2.

those with n = 102 nodes we can see that the size of the network fosters coordination. Hybrid
equilibria almost disappear, although we find some hybrid equilibria for low connectivities,
particularly in ER graphs with m = 5 and in BA scale free graphs. Levels of frustration
go up since every agent now coordinates better with the neighbors, and this takes the final
configuration to more frequent specialized equilibria. Figure 5 confirms this interpretation:
Indeed, for α/β = 2 we observe a small difference from the case with 100 nodes, with a
phase transition from a specialized equilibrium to the other that is much sharper for high
connectivities. Correspondingly, frustration curves in figure 5 show higher curves than before
since now coordination is more frequent and agents prefer to change action when α/β = 1.
On the contrary, when α/β = 2 preference matters more when preference distribution is close
to equal compositions, and in fact when the distribution is 50-50 the system reaches a more
satisfactory equilibrium even if it is not hybrid satisfactory. Therefore, what we observe is that
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(a) (b)

Figure 5. Final average density of frustrated agents d f over 50 realizations against
0-preference density ρ0 (solid lines). Shown also is the corresponding final average density
d1 (dashed lines). (a) Coordination Game with reward ratio α/β = 1, (b) Coordination
Game with reward ratio α/β = 2.

for larger systems coordination is found in a wider range of fractions of 0-preference agents,
but that even for 1000 agents there is still quite a sizable range for which hybrid equilibria are
possible.

3.1.2. Proportional Imitation We now turn to the study of the model under proportional
imitation dynamics. In this case, we simulated ER random graphs for different values of
connectivities and a BA scale free graph with only 10 iterations to save computing time,
because reaching the equilibrium takes sometimes much longer times than in the deterministic
case of best response discussed in the previous subsubsection. It is interesting to keep in
mind that in simulations of the homogeneous model with proportional imitation no hybrid
equilibria were found [33], the only equilibria arising being specialized. In our study, for
the heterogeneous model hybrid equilibria do appear, expecially in the scale free graph as
shown in figure 6. While in the ER random graphs hybrid equilibria appear only in the
neighbourhood of a 50-50 distribution of preferences, in the scale free graphs almost the
whole set of parameters leads to the emergence of hybrid equilibria.

Frustration curves (figure 7) do not show large differences between ER and BA graphs,
the main reason being that when the reward ratio is low and the distribution is equal, the
selection dynamic goes totally random. This is so because agents choose a random neighbor,
independently of her preference, and subsequently they choose their action if the payoff is
better than their own one. When α/β = 1 this implies that half of the 0-individuals and
the half of the 1-individuals will eventually change their action, which results in a 50% of
frustration in the final state. This is so independently of the type of network because for this
dynamics agents update their action without taking into account their whole neighborhood as
they only look at a randomly chose neighbor. On the other hand, the reward ratio does not
affect the sharpness of the crossover from one specialized equilibrium to the other one as the
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Figure 6. Final average density of agents who play action 1 d1 against fraction of
0-preference players ρ0 and reward ratio α/β in equilibrium, for the CG on different ER
networks (connectivity as indicated in the plot) and a BA network. Colors as in figure 2.

connectivity does: Indeed, less connected ER and BA scale free graphs in figure 7 show more
smooth crossovers for both values of the reward ratio, while the frustration curves are also
very similar for α/β = 1 and α/β = 2.

3.2. Anticoordination Game

3.2.1. Best Response In this subsection, we will be dealing with AG, i.e., strategic
interactions in which the best thing to do is the opposite of one’s partners. However, this
is not easy in so far as in our model players intrinsically prefer a specific action over the other,
which may coincide with that of their partners. In our simulations for the AG we do not
observe very relevant differences for different connectivities, but in figure 8 we do observe
differences between ER and BA scale free graphs: For the former, the dependence on the
reward ratio is more smooth, but for the BA network (and, to some extent, for the ER network
with m = 5) it appears that there is a type of behavior when α/β . 1.5, and a different
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(a) (b)

Figure 7. Final average density of frustrated agents d f over 10 realizations against
0-preference density ρ0 (solid lines). Shown also is the corresponding final average density
d1 (dashed lines). Coordination Game with reward ratio α/β = 1, Coordination Game with
reward ratio α/β = 2.

one for larger values. Small reward ratios lead to behavior that is mostly independent of the
preference composition of the population, whereas larger reward ratios give rise to final states
in which there is a linear relation between the density of 0 actions and the density of 0 agents.
In other words, for large α/β less agents will feel inclined to change their preferred action to
anti-coordinate with their neighbors. Figure 9, that shows the frustration dependence on the
composition for the two extreme cases of the reward ration, indicates clearly that this is the
case. Another interesting feature that this plot shows is that, opposite to the case of CG, the
minimum frustration occurs for intermediate compositions, being more clear for large α/β .
Specialized equilibria do not exist in this case for any population composition, and neither do
satisfactory equilibria. Interestingly, for low reward ratios anti-coordination is almost perfect,
in the sense that half the agents choose one action and the other half choose the other, but
their choices do not correlate with their preferences, which in turn makes half the population
frustrated.

Comparing this case with the same one in the homogeneous model is not easy since we
had no reward parameters in that case. In the homogeneous model connectivity fostered
defection, whereas in the heterogeneous model connectivity has no role as we have just
discussed. Similarities can be seen when we take into consideration scale free graphs,
because in this structures anticoordination works generally better and frustration is reduced in
heterogeneous distributions. In fact, in the homogeneous model, as in the heterogeneous one
we see that final configurations are better anticoordinated than those in the random graphs.

3.2.2. Proportional Imitation The dynamics of AG under proportional imitation is,
generally speaking, similar to that under best response, but there are some specific features
worth discussing. First of all, with a homogeneous distribution the system cannot change
his state by definition, since no agent can imitate an action that nobody is playing. This is
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Figure 8. Final average density of agents who play action 1 d1 against fraction of
0-preference players ρ0 and reward ratio α/β in equilibrium, for the AG on different ER
networks (connectivity as indicated in the plot) and a BA network. Colors as in figure 2.

represented by the extreme cases (red dots) in figure 10. Outside these special values, a large
degree of anticoordination is achieved in most cases. In the case of heterogeneos preference
distributions with reward ratio α/β → 1, anticoordination is reached almost always, except
for the scale free networks, where the transition to specialized equilibria is smoother than
in the random graphs (see also figure 11). As before, anticoordination works worse when
α/β → 2, because obviously the agents are more motivated to keep on playing their preferred
option. Frustration final values show that for homogeneous distributions there is no frustration
in the final states, as of course they did not anticoordinate at all so they kept on playing their
liked action till the end. We observed a difference between the random graphs and the scale
free graphs: when α/β → 1 frustration is reduced when the distribution is close to 50-50,
but not in the scale free graphs where there is a maximum of frustration; when α/β → 2
it appears that scale free architecture makes it more difficult to anticoordinate and to stay
satisfied. With α/β = 1 the crossover to specialized equilibria is sharp, although not so much
for low connectivity graphs. On the contrary with a high reward ratio α/β = 2, connectivity
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(a) (b)

Figure 9. Final average density of frustrated agents d f over 50 realizations against
0-preference density ρ0 (solid lines). Shown also is the corresponding final average density
d1 (dashed lines). a) Anti-coordination Game with reward ratio α/β = 1, b)
Anti-coordination Game with reward ratio α/β = 2.

does not affect at all the equilibria, but raising the reward ratio makes the crossover much
smoother than before.

4. Incomplete Information

Thus far, we have been discussing a situation in which all agents have full information about
their surroundings, both about types of partners and about their actions. However, in many
social contexts it is difficult to have information about others’ preferences, and therefore it
is worth considering how the results change when we switch to an incomplete information
framework. In this case, agents know what they like (i.e., their own preference, of course),
they know how many neighbors they have, but they do not know who these neighbors are.
All they can resort to decide on their action is a distribution of preferences that allows them
to estimate the quantity of the two types of neighbors they will have around them. This is a
quite realistic assumption as very often one has an idea of how opinions or preferences are
distributed in the population (e.g., through polls) but is unaware of the specific preferences
of the people with whom one is interacting. Our aim is to show if the simulation results of
our agents based model fit with the theoretical analysis, which showed how the incomplete
information framework reduces the multiplicity of Nash Equilibrium respect to those obtained
with the complete information framework.

In what follows, we discuss our results under best response dynamics. In the framework
of incomplete information, we cannot consider proportional imitation dynamics, since it is
not permitted to the agent to know her neighbour’s payoff, the agent knows only her own
preference, the number of neighbours and distribution of preferences present in the network.
Therefore, a payoff comparison is not possible, making the dynamics unapplicable to this
case.
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Figure 10. Final average density of agents who play action 1 d1 against fraction of
0-preference players ρ0 and reward ratio α/β in equilibrium, for the AG on different ER
networks (connectivity as indicated in the plot) and a BA network. Colors as in figure 2.

4.1. Coordination Game

Compared with the equilibria we found with the complete information framework we see
a strongly reduced and ordered set of equilibria in figure 12, confirming what the work of
Galeotti et al. [27] predicted. There are less dots in the figure, indicating that the system
ends up in a reduced set of configurations. On the other hand, there are similarities between
the two informational setups: As we discussed above, raising connectivity implies the loss
of many hybrid equilibria, taking the system to more specialized configurations. Looking
at frustration in figure 13 we see full satisfactory equilibria when we play games with 50-
50 distributions. This agrees with the analytic results obtained [31], where it was found that
when the distribution on preferences is very heterogeneous, α

α+β
> ρ > β

α+β
, with ρ being the

fraction of players with preference 1 in the population, then satisfactory hybrid configurations
appear as a consequence of symmetric equilibrium. The theoretical predictions are in fact
more specific, and can be summarized as follows: There exists a only a pure symmetric
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(a) (b)

Figure 11. Final average density of frustrated agents d f over 10 realizations against
0-preference density ρ0 (solid lines). Shown also is the corresponding final average density
d1 (dashed lines). a) Anti-coordination Game with reward ratio α/β = 1, b)
Anti-coordination Game with reward ratio α/β = 2.

equilibrium, and

• if α

α+β
> ρ > β

α+β
then every symmetric equilibrium is satisfactory for any connectivity,

• if ρ > α

α+β
then the action of a given player may only go from 0 to 1 as the degree

increases, and all players with preference 1 are satisfied, and

• if ρ < β

α+β
then the action of a given player may only go from 1 to 0 as the degree

increases, and all players with preference 0 are satisfied.

As is also shown in figure 13, similarly to the previous cases, with α/β = 1 connectivity
does not affect at all the sharpness of the crossover, but for α/β = 2 we notice an interesting
linear behavior with respect to the proportion of players of one or the other preference.
With α/β = 2, the plot shows that in the range of 0.4 < ρ < 0.6 full satisfactory hybrid
equilibria are reached for the CG in this incomplete information framework. In figure 14 we
show the behaviour of frustration in an alternative presentation to better compare the results
directly with the theory. As can be see from the four cases, the theoretical limits for ρ to
reach full satisfactory equilibria may not be quantitatively correct, but most importantly the
analytical prediction demonstrate to be qualitatively correct and even reasonably accurate.
Cases (a) and (c) are symmetric, demonstrating the symmetry of the equilibria. In case (d)
the full satisfactory configuration is never reached, since the 1-preferences density is too low
compared to β/α+β , even if it is higher than α/α+β .

4.2. Anticoordination Game

The case of AG under best response dynamics is peculiar because, as discussed in [34], the
fact that agents try to anticoordinate leads to unrealistic outcomes when the population is
homogeneous. Let us keep in mind that agents are given exclusively informations about
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Figure 12. Final average density of agents who play action 1 d1 against 0-preference density
ρ0 and reward ratio α/β .

the distribution of preferences but not about actions, so they act to maximize their payoff
expecting that neighbors are going to take their preferred action. In the case of homogeneous
distributions, for example when the whole network is made of 1-preferences, every agent
knows that he has to anticoordinate with a neighborhood full of 1-preferences, the result is
that he will obviously choose action 0, but this happens with every agent in the network. For
heterogeneous distributions, the more the connectivity of the graphs, the higher the reward
ratio has to be to allow hybrid equilibria to appear in the final configuration, which means that
connectivity fosters specialized equilibria, while a large reward ratio, as usual, helps agents to
keep satisfied and not change their action. Therefore, anticoordination is reached easier when
connectivity is low and reward ratio is high. These conditions for anticoordination lead to
strong outcome differences. These same conditions allow satisfactory equilibria to appear. Of
course the dynamics shown above for homogeneous distributions give very large values for
agents frustration, since the loss of information about neighbors actions makes them totally
blind about what is going on. This implies that, while they try to anticoordinate between
same preference neighbors, they end up being totally coordinated on the same undesired
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(a) (b)

Figure 13. Final average density of frustrated agents d f over 50 realizations against
0-preference density ρ0.
(a) Coordination Game with reward ratio α/β = 1,
(b) Coordination Game with reward ratio α/β = 2.

action. In this sense, it turns out that an equal distribution of preferences is optimal to reach
anticoordination, since agents think that half of the neighborhood is like them so they are not
pushed to change their action to maximize their payoff. For α/β = 1, connectivity does not
affect at all the dynamics of the network, but satisfaction is difficult to achieve because agents
are free to change their actions without changing their payoff, and correspondingly there are
some outcomes that show full satisfaction when the distribution is close to 50-50, but by no
means are all of them satisfactory. On the contrary, when α/β = 2, frustration is avoided in
the most of the cases if the distribution is heterogeneous, and low connectivity helps agent
to avoid frustration because they can maintain their liked option. Differently from the same
experiment in the complete information framework, here anticoordination is harder to achieve
due to the loss of information about the neighbors actions, but satisfactory equilibria appear
with some restrictions on reward ratio and connecitivity, which did not appear with complete
information.

5. Conclusions

In this paper, we have presented the results of a numerical simulation program addressing the
issue of preference in network games from an evolutionary viewpoint. We have considered
both coordination and anti-coordination games, as well as different network structures,
including random and scale free graphs. We have also studied two dynamics, best response
and proportional imitation, which are more economic-like and biological-like, respectively,
in order to assess the effects of noise and of a local perspective on decision making.
Finally, we completed the picture by looking at two informationalcontexts, complete and
incomplete. This program has allowed us to address the research questions we pointed out
in the introduction. Thus, beginning in order of generality, regarding the question about the
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(a) (b)

(c) (d)

Figure 14. Final density of frustrated agents d f against reward ratio α/β . (a) ρ = 0.6 (b)
ρ = 0.5 (c) ρ = 0.4 (d) ρ = 0.3

effects of preferences, a first, general finding is that in all scenarios the heterogeneous model
behaves under evolutionary dynamics much closer to the expectations from economic theory
[31, 32] than the homogeneous one studied in [33]. Beyond this broad finding, it is important
to point out that our model leads to a number of specific predictions which we summarize
below.

Let us now summarize our results about the cases of complements and substitutes. For
the case of coordination games, we have observed that both types of dynamics lead to full
coordination for a wide range of compositions of the population. This is in contrast with the
homogeneous case, in which the outcome of proportional imitation was always coordination
in the risk-dominant, less benefitial action. Here agents tend to coordinate in the action that
is preferred by the majority, which leads to a better payoff for the population as a whole,
even if the minority is choosing the action they dislike. When there are two preferences in
the population, there are only mixed equilibria when the composition is approximately in
the range 40%–60% of one type. In turn, this implies that equilibria are never satisfactory,
in the sense that for any population composition there will always be frustrated agents
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playing the action they dislike. This problem aggravates in the already mentioned 40%–
60% range, particularly for low α/β values; a higher reward for the preferred action leads to
players sticking to their preferences, reducing the degree of coordination but at the same time
lowering global frustration. Connectivity also plays a fundamental role in the achievement of
coordination: Indeed, more connected networks result in full coordination even in contexts of
evenly split population, specially when the reward ratio is kept small, i.e., when preferences
are not particularly salient. In this respect, we observed that scale free networks with low
degree are not connected enough to permit the development of full coordination, and a higher
density of ties between individuals would be needed to let them achieve higher efficiency.

Moving to anti-coordination we have observed that, also for both dynamics, the final
states of the model are better in the sense that players do choose the opposite action as
their partners. When interaction is of this type, particularly when the reward for choosing
the preferred action is large, the amount of frustration is lower than that observed in the
coordination problem. This is not what takes place when the reward is small: in that situation,
players do anti-coordinate but the action they choose is determined by their surroundings
more than by their own preferences, which in the end makes a large fraction of players
unsatisfied. It is also interesting that connectivity, while still playing a role, has a less
determinant influence on anticoordination than in coordination. As for the dynamics, when
there is a large majority of one of the preferences in the population, we have observed that,
somewhat counterintuitively, the whole population anticoordinates, as their local update do
not really allow them to realize that they are in fact a majority.

Finally, information is also very important to understand the effect of preference in
strategic interactions on networks. When players have only information about the global
composition of the population but not of their immediate partners, both coordination and
anticoordination become more difficult, except in the extreme cases of a larger majority of
one of the preferences or of an evenly split population. Because of different mechanisms we
have discussed along the text, in wide population ranges there are very few frustrated players,
and for large reward rations we have even observed many satisfactory hybrid equilibria,
i.e., with no frustration whatsoever. Interestingly, we have also found that connectivity is
beneficial in this case, as the actions players choose from their knowledge of the global
fraction of preferences correspond better to a more populated neighborhood (thus mimicking
the behavior of a mean-field model).

In closing, we would like to note that our conclusions point to the soundness of the
predictions made from standard economic theory and, therefore, to the applicability of the
results we are presenting to real life situations. One particularly appealing conclusion is that,
as the economic and biological dynamics yield similar results, our findings may have a much
wider applicability that purely human societal issues and may be relevant, for instance, when
different strains of a bacteria need to coordinate in producing some chemical. Focusing
on the interactions between people, our results are particularly illuminating for the case
of coordination, where we have seen that connectivity is benefitial for coordination. This
indicates that in social situations where preference gives rise to conflict, one possible way
to decrease the level of conflict and help people reach consensus is to increase the relations
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among both communities. Interestingly, recent experiments [37] show that when every player
is connected with every other one, even when the population is close to a 50-50 composition
full coordination is reached (but not always, some instances of hybrid equilbria have also
been observed occasionally). This suggests that in fact the range in which we have found
hybrid equilibria may vanish both in the very large size limit and when the network is fully
connected. It is important to stress that, in the discussion of the results in [33], up to four
economic-style explanations were proposed, only to be discarded because they disagree in one
way or another with the experimental results. Therefore, we are providing here a starting point
for another approach that can be more fruitful, although its application to the results in [33]
in full would require an extension to the case where subjects choose their own links. Similar
experiments done on the networks we are studying here, which are amenable with similar
laboratory setups, should shed light on the accuracy of our results and confirm or disprove
the validity of the evolutionary approach to an economic-like problem. On the other hand,
the downside of such a socially efficient outcome is a large minority taking an action they do
not like (an issue that might not arise if what is wanted is anticoordination). In this respect,
the only way to nudge the population to a better individual situation would be to decrease
the saliency of preferences, by making more valuable the alternative choice. We hope that
our study encourages more work both on the understanding of the effects of preference in a
highly connected work and how to use them to achieve better societal outcomes both at the
individual and at the global level.
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preparation (2017).


	Página en blanco



