
RESEARCH ARTICLE

FUX-Sim: Implementation of a fast universal

simulation/reconstruction framework for X-

ray systems

Monica Abella1,2☯*, Estefania Serrano2,3☯, Javier Garcia- Blas2,3, Ines Garcı́a2, Claudia de

Molina1,2, Jesus Carretero2,3, Manuel Desco1,2,4

1 Dept. Bioingenierı́a e Ingenierı́a Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain, 2 Instituto

de Investigación Sanitaria Gregorio Marañón, Madrid, Spain, 3 Computer Science and Engineering Dept.,

Universidad Carlos III de Madrid, Madrid, Spain, 4 Centro de Investigación Biomédica en red de Salud Mental

(CIBERSAM), Madrid, Spain

☯ These authors contributed equally to this work.

* mabella@ing.uc3m.es

Abstract

The availability of digital X-ray detectors, together with advances in reconstruction algo-

rithms, creates an opportunity for bringing 3D capabilities to conventional radiology sys-

tems. The downside is that reconstruction algorithms for non-standard acquisition protocols

are generally based on iterative approaches that involve a high computational burden.

The development of new flexible X-ray systems could benefit from computer simulations,

which may enable performance to be checked before expensive real systems are imple-

mented. The development of simulation/reconstruction algorithms in this context poses

three main difficulties. First, the algorithms deal with large data volumes and are computa-

tionally expensive, thus leading to the need for hardware and software optimizations. Sec-

ond, these optimizations are limited by the high flexibility required to explore new scanning

geometries, including fully configurable positioning of source and detector elements. And

third, the evolution of the various hardware setups increases the effort required for maintain-

ing and adapting the implementations to current and future programming models. Previous

works lack support for completely flexible geometries and/or compatibility with multiple pro-

gramming models and platforms.

In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework

that was designed to be flexible and fast. Optimized implementation for different families of

GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized

approach based on a layered architecture and parallel implementation of the algorithms for

both architectures.

A detailed performance evaluation demonstrates that for different system configurations

and hardware platforms, FUX-Sim maximizes performance with the CUDA programming

model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU

and OpenCL programming models allow FUX-Sim to be executed over a wide range of

hardware platforms.

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Abella M, Serrano E, Garcia- Blas J,

Garcı́a I, de Molina C, Carretero J, et al. (2017)

FUX-Sim: Implementation of a fast universal

simulation/reconstruction framework for X-ray

systems. PLoS ONE 12(7): e0180363. https://doi.

org/10.1371/journal.pone.0180363

Editor: Le Zhang, Southwest University, CHINA

Received: March 6, 2017

Accepted: June 14, 2017

Published: July 10, 2017

Copyright: © 2017 Abella et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

available from the Zenodo database, under the DOI:

https://doi.org/10.5281/zenodo.343839.

Funding: This work was funded by the projects

TEC2013-47270-R, RTC-2014-3028-1, TIN2016-

79637-P, DPI2016-79075-R, and the

Cardiovascular Research Network (RIC, RD12/

0042/0057) from the Spanish Ministerio de

Economı́a y Competitividad (www.mineco.gob.es/)

and, FPU14/03875 grant from the Spanish

Ministerio de Educación, Cultura y Deporte (http://

www.mecd.gob.es). We also thank NVidia for

https://doi.org/10.1371/journal.pone.0180363
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180363&domain=pdf&date_stamp=2017-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180363&domain=pdf&date_stamp=2017-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180363&domain=pdf&date_stamp=2017-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180363&domain=pdf&date_stamp=2017-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180363&domain=pdf&date_stamp=2017-07-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0180363&domain=pdf&date_stamp=2017-07-10
https://doi.org/10.1371/journal.pone.0180363
https://doi.org/10.1371/journal.pone.0180363
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.343839
http://www.mineco.gob.es/
http://www.mecd.gob.es
http://www.mecd.gob.es

1. Introduction

In recent decades, there has been a rapid advance towards the use of digital equipment in radi-

ology. The introduction of digital detectors, together with more flexible movement of the X-

ray source and detector, makes it possible to obtain 3D information from conventional X-ray

systems. This new approach differs substantially from CT systems in that it involves the acqui-

sition of a limited number of projections using non-standard scanning geometries, which

demands new acquisition protocols for existing systems or the design of new systems with a

wider range of movements. Research on new configurations for X-ray systems, new acquisi-

tion protocols, and advanced reconstruction algorithms to obtain tomographic images from a

limited number of projections can benefit from simulation tools, which enable evaluation of

possibilities before their actual implementation in real systems.

The development of simulation/reconstruction algorithms in this context poses three main

challenges. First, reconstruction algorithms for non-standard acquisition protocols are gener-

ally based on computationally expensive iterative approaches with large datasets that require

both hardware and software optimizations. Second, possible optimizations are limited by the

high flexibility required to explore new scanning geometries, including fully configurable posi-

tioning of source and detector elements. And third, the evolution of various computing archi-

tectures increases the effort required to maintain and adapt the implementations for current

and future programming models.

The literature provides solutions that allow us to simulate the acquisition and/or recon-

struction of tomographic studies. However, these solutions generally offer restricted possibili-

ties for positioning the source and the detector, thus reducing their ability to simulate new

acquisition protocols based on non-standard setups. For instance, CT Sim [1] is an open

source CT simulator that enables the projection of various phantoms, although it is limited to

2D circular scans with ideal parallel-beam and fan-beam geometries. It provides analytical

reconstruction methods (FBP and Direct Fourier), without supporting iterative reconstruction

algorithms. A more flexible alternative is IRT, an open-source image reconstruction tool-

box [2], which provides a number of iterative algorithms, together with tools to build new

ones. The main drawback of this approach is that it focuses only on standard cone-beam CT

systems and does not provide enough flexibility for the more sophisticated scanning geome-

tries achievable with radiology systems. TomoPy [3] provides projection, reconstruction meth-

ods, and pre-processing and post-processing tools, such as filters and artifact removal

algorithms. However, the geometries offered are again rather simple, with the possibility of

only changing the center of rotation for projection and reconstruction.

Another drawback common to the abovementioned approaches is that they are all limited

to CPU implementations. Given the high computational burden of some of the algorithms

used in simulation and reconstruction, it is widely accepted that parallel implementations are

needed to achieve reasonable execution times. Along these lines, more recent works have

opted for graphic processor units (GPUs), with CUDA and OpenCL being the most widely

used programming models [4]. X-ray Sim [5], which has a basic open-source version in the

CPU, lacks flexibility in the available system geometries and is based on the projection of digi-

tal computer-aided design (CAD) models, thus hindering the direct use of real acquired

images. A similar drawback is found in ImaSim [6], where objects are based on specific geo-

metrical shapes and not voxels, thus precluding handling of voxelized objects such as actual

CT datasets. CONRAD [7] is a Java-based software framework that uses GPU devices for hard-

ware acceleration. It provides tools for simulating 4D studies, analytical reconstructions, and

artifact correction. Flexible scanning geometries are supported, although not in a straightfor-

ward manner, since they are based on a projection matrix that needs to be obtained

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 2 / 22

providing the Tesla K40 device used to perform the

experiments. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The NVIDIA K40 graphic

card is part of a non-commercial donation from

NVIDIA Corporation. This hardware device was

donated by NVIDIA freely as an unrestricted gift to

support the research of Javier Garcia-Blas, one of

the authors of this work. In this hardware, we have

carried out the experimental evaluation of our

prototype. We mention the hardware employed for

reproducibility reasons, so there are no

commercial intentions from our side. There are not

comparisons with any other hardware providers.

There are no patents, products in development, or

marketed products to declare. This does not alter

the authors’ adherence to all PLOS ONE policies on

sharing data and materials.

https://doi.org/10.1371/journal.pone.0180363

beforehand. Finally, the ASTRA toolkit [8] offers a solution based on CUDA that can be used

to develop advanced reconstruction algorithms and allows the user to experiment with cus-

tomized geometries. However, it is limited to datasets that fit completely in the memory space

of the GPU and to circular orbits, thus precluding simulation of new acquisition geometries

such as those used in tomosynthesis.

With respect to programming models for acceleration and optimization, previous works

[9–15] conclude that the use of GPUs in these types of algorithms is remarkably faster than the

single-thread version in CPU or even OpenMP implementations. The decision on the use of

CUDA, OpenCL, or other programming models for the implementation of the algorithms is

normally based on performance and portability. Direct comparisons have shown slightly better

performance (10% of speedup) for CUDA implementations [10, 12].

In previous works, the authors implemented projection and backprojection algorithms that

focused mainly on performance optimizations and support for large data volumes. However,

these algorithms lack support for flexible geometries or are not compatible with multiple pro-

gramming models and platforms.

In this work, we present FUX-Sim, a geometrical X-ray simulation/reconstruction frame-

work, which was designed to overcome the drawbacks set out above by providing fast support

for flexible scanning geometries. Optimized implementation of programing models for GPUs

(CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach

based on a layered architecture and parallel implementation of the algorithms in both the

GPU and the CPU. We provide a general description of the layers, from the kernel layer and

support layer at the bottom, with the basic algorithms, to the architecture layer at the top, with

the various system configurations. We detail the optimizations carried out at each layer in

terms of computation and memory management and evaluate different system setups by com-

paring three programming models.

2. General description of the FUX-Sim framework

FUX-Sim was designed with three main goals: (1) flexibility, enabling multiple geometries,

with flexible positioning of source and detector; (2) easy compatibility with multiple current

programming models and platforms; and (3) performance based on parallel programming

models that take advantage of the underlying hardware, including multi-core CPUs and two

families of GPUs (NVidia and AMD). To this end, the tool is organized as a framework with a

layered software architecture that provides support for different hardware and programming

models, as shown in Fig 1.

The configuration layer implements various system configurations including circular
scan, arbitrary position, wide field of view, tomosynthesis, and helical scan. The architecture
layer enables the execution of the simulator on different hardware platforms. For this pur-

pose, all the algorithms are implemented in three programming models, namely, OpenMP,

CUDA, and OpenCL, all of which are identical in terms of functionality and results. The

kernel layer represents the execution core of the simulator and provides the main building

blocks for the upper layers. At the same level, the support layer contains the processing

operations and platform management modules to handle memory for different GPUs and

CPUs.

The architecture layer acts as a wrapper of optimized kernels and algorithms in lower layers.

The execution of the simulator passes through the architecture layer to automatically reach the

corresponding functionality in the kernel layer or support layer, depending on the availability

of the GPU and the programming model chosen.

A detailed description of each layer can be found in the following sections.

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 3 / 22

https://doi.org/10.1371/journal.pone.0180363

3. Kernel layer

The kernel layer constitutes the simulator core and contains the projection and backprojection

kernels, which are implemented based on cone-beam geometry (Fig 2).

Fig 1. Overview of FUX-Sim architecture.

https://doi.org/10.1371/journal.pone.0180363.g001

Fig 2. Geometrical parameters used to parametrize deviations from the ideal position of the detector: Shifts, skew, roll, and tilt.

https://doi.org/10.1371/journal.pone.0180363.g002

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 4 / 22

https://doi.org/10.1371/journal.pone.0180363.g001
https://doi.org/10.1371/journal.pone.0180363.g002
https://doi.org/10.1371/journal.pone.0180363

It is possible to set all the system geometrical parameters (projection angle, source-object

distance, detector-object distance, matrix and pixel size of the detector, matrix and voxel size

of the volume), as well as the deviations from the ideal position of the detector (shifts, skew,

roll, and tilt in Fig 2). The adjustment of these parameters enables the study of the effects of

misalignments and the simulation of non-regular geometries at arbitrary angular positions for

other X-ray equipment such as a C-arm or tomosynthesis systems.

Linear shifts (xshift, yshift) and skew angle (ϕ) are applied by simple geometrical operations

(shift or rotation of pixel coordinates):

xaux
yaux

 !

¼
cos; � sin;

sin; cos;

 !
x þ xshift
y þ yshift

 !

ð1Þ

The effect of detector inclination (roll and tilt) is shown in Fig 3, where ε is the inclination

angle of the detector, A’ is a pixel in the real detector, and A is the corresponding pixel in the

ideal detector.

For each point in the ideal detector, we can calculate the corresponding point in the real

detector according to the expression

jPA 0j ¼
jPAj

cosðεÞ þ sinðεÞ �
jPAj

DSOþDDO

ð2Þ

Projection and backprojection kernels are the main building blocks for the upper layers.

FUX-Sim implements ray-driven, voxel-driven, and distance-driven interpolation

approaches. Ray-driven methods tend to introduce artifacts (Moiré patterns) in the backpro-

jection, whereas voxel-driven projection introduces grid artifacts into the projections [16].

With more accurate geometric modeling, distance-driven methods often lead to better image

quality than ray-driven projection and voxel-driven back-projection [17]. This is done by

projecting voxel and detector boundaries into the same axis and calculating the overlap

between them (Fig 4), both for projection and for backprojection. Ray-driven and voxel-driven

approaches rely on the computation of the trajectory corresponding to the center point of the

voxel/pixel (black dot in Fig 4 for the case of voxel-driven backprojection), whereas distance-

Fig 3. The effect of detector inclination (roll and tilt).

https://doi.org/10.1371/journal.pone.0180363.g003

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 5 / 22

https://doi.org/10.1371/journal.pone.0180363.g003
https://doi.org/10.1371/journal.pone.0180363

driven mode aims to obtain a more accurate representation of the contribution to the voxel/

pixel by computing trajectories for its limits (u1 and u2 in Fig 4).

Given that the kernels are the most time-consuming components, this layer is where most

of the optimizations were made, including the full parallelization of the ray trajectories. We

implemented two alternatives for projection and backprojection based on ray-/voxel-driven

and distance-driven methods. Since each interpolation method needs a specific parallelization

approach, we decided to implement two versions of each kernel in order to optimize

performance.

3.1. Projection kernel

The projection kernel emulates data acquisition in an X-ray system: the line integral is based on

the computation of the sum of Nstep values along the X-ray beam to update the contribution

to the detector pixel:

pθðx; yÞ ¼ step � Σ
rad
step

vi¼� rad
step

1

cosα
� f

1

Mag
xcosθ þ vsinθ; �

1

Mag
xsinθ þ vcosθ;

1

Mag
y

� �

ð3Þ

where rad is the maximum radius of the FOV (in mm), f (u, v, z) is the voxel value in the sam-

ple at coordinates (u, v, z), pθ(x, y) is the projection data for position (x, y) in the detector at

angle θ, α is the angle of the ray with respect to the central ray of the beam, and Mag is the

Fig 4. Voxel-driven vs. distance-driven for backprojection. The contribution for the voxel (u,v) is

calculated from the yvd value in the projection in the voxel-driven case and from ydd1 and ydd1 in the distance-

driven case.

https://doi.org/10.1371/journal.pone.0180363.g004

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 6 / 22

https://doi.org/10.1371/journal.pone.0180363.g004
https://doi.org/10.1371/journal.pone.0180363

magnification due to the cone angle, given by

a ¼ arctg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p

DSO þ DDO
ð4Þ

Mag ¼
DSO þ v

DSO þ DDO
ð5Þ

where DSO and DDO are the distance from the center of the field of view (FOV) to the source

and the detector, respectively (see Fig 2). Sampling is performed along the v-axis given by step
(in mm), which is set by default to the minimum dimension of the pixel, covering 2×rad. We

include the term 1/cosα to compensate for the higher sampling in rays that are distant from

the central ray, as shown in Fig 5 for the case of the ray that corresponds to y1.

Pseudocode 1 shows the projection kernel for both the ray-driven algorithm (italic font)

and the distance-driven algorithm (bold font).

Pseudocode 1: Projection algorithm. Lines in italic font correspond to the ray-driven algo-

rithm. Lines in bold font correspond to the distance-driven algorithm.
Data : volume,geometricparameters(tilt,skew, . . .)
Result : projectiondata
for θ in projections

for x in x_proj:
for y in y_proj:
Computecenteredx coordinatein projection
Computecenteredy coordinatein projection
Computecenteredx1 and x2 coordinateboundaryin projection
Computecenteredy1 and y2 coordinateboundaryin projection
if skew
Applyskew to (x,y) coordinates
Applyskew to (x1,y1)and (x2,y2)coordinates

end
if tilt or roll

Fig 5. Sampling scheme on the v-axis for the case of a non-isotropic voxel. y0 corresponds to the

central ray. Sampling points are indicated with dots.

https://doi.org/10.1371/journal.pone.0180363.g005

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 7 / 22

https://doi.org/10.1371/journal.pone.0180363.g005
https://doi.org/10.1371/journal.pone.0180363

Applytilt or roll to (x,y)coordinates
Applytilt or roll to (x1,y1)and (x2,y2)coordinates

end
if shift
Applyx- and/ory-shiftto (x,y) coordinates
Applyx- and/ory-shiftto (x1,y1)and (x2,y2)coordinates

end
for v in v_vol:

Computecenteredv coordinate
Compute(u,v) rotatedcoordinatesfor θ angle
Compute(u1,v)and (u2,v)rotatedcoordinatesfor θ angle
Computereal so and do distances
Computeinversemagnificationfactor:InvMag
Obtainidealu coordinate:InvMag×u_rot
Obtainidealz coordinate:InvMag×z
Obtainidealx1 and x2 coordinate:InvMag×u_rot1and InvMag×u_rot2
Obtainidealy1 and y2 coordinate:InvMag×y1and InvMag×y2
for x_i > floor(x1)and x_i < ceil(u2):
Computecontributionfor x_i
for y_i > float(y1)and y_i < ceil(y2):
Computecontributionfor y_i

Updateweightedvalue
Trilinearinterpolation
Updateprojectionposition(θ,x,y)with computedvaluein

end
Applyfactor1/cosα

end
end

end

3.2. Backprojection kernel

The backprojection kernel implements the integral along all the angles of the result of spreading

back the projection values (sometimes after filtering or other pre-processing steps) along each

ray, according to the following equation (if all the geometrical parameters are zero):

f ðu; v; zÞ ¼ Δθ � Σiniþnproj
θ¼ini pθðMag � ½ucosθ � vsinθ�; Mag � zÞ ð6Þ

Where ini is the initial projection angle, nproj is the total number of projections, f (u, v, z) is

the value in the back-projected volume at coordinates (u, v, z), pθ(x, y) the projection data for

position (x, y) in the detector at angle θ, Δθ the step angle in radians, and Mag the magnifica-

tion due to the cone shape of the beam given that

Mag ¼
DSO þ ½usiny þ vcosy�

DSO þ DDO
ð7Þ

where DSO and DDO are the distance from the center of the FOV to the source and the detec-

tor, respectively (see Fig 2).

The implementation of the backprojection kernel is shown in Pseudocode 2 for the ray-

driven algorithm (italic font) and distance-driven algorithm (bold font).

Pseudocode 2: Backprojection algorithm. Lines in italic font correspond to the ray-driven

algorithm. Lines in bold font correspond to the distance-driven algorithm.
Data : projections,geometricparameters(tilt,skew, . . .)
Result : volumedata
for u in u_vol:

for z in z_vol:

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 8 / 22

https://doi.org/10.1371/journal.pone.0180363

Computecenteredu and z coordinates
Computecenteredu1,u2and z1,z2boundarycoordinates
for v in v_vol:

for θ in projections:
Computecenteredv coordinates
Computereal so and do distances
Computeu and v rotatedcoordinatesfor θ angle
Computeu1,u2and v rotatedcoordinatesfor θ angle
Computemagnificationfactor
Obtainideal x and y coordinates
Obtainideal x1,x2and y1,y2coordinates
if shift
Applyx- and/ory-shiftto (x,y)coordinates
Applyx- and/ory-shiftto (x1,y1)and (x2,y2)coordinates

end
if tilt or roll
Applytilt or roll to (x,y)coordinates
Applytilt or roll to (x1,y1)and (x2,y2)coordinates

end
if skew
Applyskew to (x,y)coordinates
Applyskew to (x1,y1)and (x2,y2)coordinates

end
for x_i > floor(x1)and xi < ceil(x2):
Computecontributionfor x_i
for y_i > float(y1)and y_i < ceil(y2):
Computecontributionfor y_i

Updateweightedvalue
Bilinearinterpolation
Storecomputedvalue in volumeposition(u,v,z)

end
end

end
end

3.3. Optimizations

The performance of the framework was optimized by applying different techniques, some of

which depend on the hardware platform, while others can be applied indistinctly to the GPU

and the CPU.

3.3.1. Data interpolation. For the GPU version, FUX-Sim takes advantage of the texture

memory in NVidia GPUs and in OpenCL-aware GPUs to reduce memory latencies and gener-

ate automatic bilinear or trilinear interpolations. The projections and volumes are uploaded to

this memory space before kernel execution.

For the CPU-based version, projection data are stored in the main memory, through an

explicit implementation of the bilinear or trilinear interpolation, which reduces the overall

performance and consumes up to 25% of the total execution time.

3.3.2. GPU memory transfer pattern. The pattern for the memory transfers from the CPU

to the GPU can dramatically affect execution time. Transferring bigger datasets results in a

more efficient exploitation of the bus capacity between the host and the GPU by taking advan-

tage of the full memory bandwidth. Additionally, this approach enables simultaneous processing

of various data and, therefore, optimal use of the available computational power of the GPU.

The transfer of projection data to the GPU memory in the backprojection algorithm is one

of the bottlenecks of kernel execution. Although the kernel is applied in each projection

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 9 / 22

https://doi.org/10.1371/journal.pone.0180363

independently, if the GPU memory can hold one or more projections simultaneously, data are

transferred in groups of projections. Projections belonging to each group are stored in the

same array object (i.e., slot) concatenated vertically and separated with a padding zone, thus

avoiding the use of values from the end of previous projections at the beginning of the current

processed projection. The slot size is a configurable parameter selected by the user after taking

into consideration the size of the projections and the underlying hardware. As demonstrated

in our previous work [17], there is a tradeoff between dataset size and performance for the case

of the backprojection kernel. A huge dataset can be disadvantageous owing to the overhead in

kernel execution, since the number of projections present in the GPU affects the complexity of

the kernel (third line of Pseudocode 2).

In the case of the projection kernel, the subvolumes transferred to the GPU memory are

formed directly by a group of contiguous axial slices (used for the 3D interpolation). In this

case, the abovementioned tradeoff does not hold: since the large number of axial slices does

not affect the complexity of the GPU kernel (the kernel does not iterate over the z-axis), it does

not imply an overhead in kernel execution.

After execution, output data are transferred to the host memory for further processing or

final storage.

3.3.3. Parallelism strategy. Parallelism represents the fundamental optimization imple-

mented in the kernel layer. The strategy consists of dividing workload among different compu-

tational threads executed in parallel on either the CPU or the GPU. This work division differs

depending on the interpolation method used. However, in both cases, parallelism exploits the

data independence of the processing of each voxel or pixel, as described in [18].

To optimize memory access, the minimal computational thread in our parallel implementa-

tion is the iteration over the v-axis (black-delineated voxels in Fig 4 are computed by the same

computational thread). Each of the parallel executions is identified by u and z in the case of the

projection kernel, and by x and y in the case of the backprojection kernel (see first two loops in

Pseudocodes 1 and 2, respectively).

The number of threads that can be scheduled is optimized by taking into account the num-

ber of required GPU registers. As we increase the number of threads available for execution,

we increment the occupancy of the GPU, thus reducing the memory latency perceived [19].

The calculation of these trajectories for ray-driven and voxel-driven methods is shown in Pseu-

docodes 1 and 2, which are highlighted in italic font.

Parallelization of the distance-driven algorithm is highly limited by the intensive calculation

of overlapping areas for each ray (shown in Fig 5). The computation of the boundaries, either

on the volume or in the detector, adds four operations at each iteration. These boundaries are

the limits of the voxels/pixels projected on each u-z plane, as shown in Fig 4. Although inde-

pendent, these boundaries have the same v-coordinate and access contiguous positions of the

input data, thus increasing data locality when retrieving the values thanks to the memory lay-

out. This loop is highlighted in bold font in Pseudocodes 1 and 2.

4. Support layer

The support layer contains two modules: processing operations, such as derivatives and filters,

and platform management.

4.1. Processing operations

The support layer provides basic processing operations for the customization of the simulation

and auxiliary kernels needed for reconstruction algorithms.

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 10 / 22

https://doi.org/10.1371/journal.pone.0180363

Customization includes functions for geometry computation and calculation of offsets for

the definition of the volume/region of interest (VOI/ROI). These functions are always exe-

cuted in the CPU owing to their low computational cost.

The support layer also includes auxiliary kernels responsible for matrix and element-

wise operations such as arithmetic operations, derivatives, and computation of norms. Two

important operations included here are the computation of the weighting factors W1 and W2,

a necessary step for backprojection, and the application of a ramp filter to enhance high fre-

quencies, which is an essential step in FDK-based methods and could be used to enhance high

frequencies in other reconstruction methods.

Factors W1 and W2 are given by

W1 ¼
DSO

ffi
DSO2 þ x � size x2 þ y � size y2

p W2 ¼
DSO

DSO � v � size v

� �2

ð8Þ

where DSO is the distance from the source to the detector (in mm), x and y are coordinates in

the projection, and v is the coordinate in the reconstructed volume (as shown in Fig 2) and

size_x, size_y and size_v are the pixel/voxel size in mm along x-, y- and v-axis, respectively.

The filtering operation involves Fourier transform and inverse Fourier transform steps,

which are achieved by means of the cuFFT library (https://developer.nvidia.com/cuFFT) in

CUDA and the clFFT library (http://clmathlibraries.github.io/clFFT) in OpenCL. For the

CPU, the filter is applied in the spatial domain through a convolution.

4.2. Platform management kernels

The platform management kernels are dedicated to operations such as memory allocation and

deallocation in the GPU and the CPU, input/output operations, memory transfers between the

GPU and host memory, and resource management.

We designed two partitioning strategies to address memory limitations in both the CPU

and the GPU. The first consists of the division of the volume into multiple sub-volumes called

chunks along the z-axis. The second consists of the division of the projections into sets (cover-

ing different angles). The decision on the number of projections included in one set fixes an

upper threshold for the slot size, which is described in Section 3.3.2 (maximum number of pro-

jections transferred to the GPU).

These partitioning strategies, which can be combined, enable the execution of the kernel

with partial volumes or projections in both the GPU and the CPU. They also provide the possi-

bility of speedup using multiple GPUs, where each GPU is in charge of the backprojection of a

chunk or projection of a projection set.
The chunk-partitioning strategy (Fig 6, left) is used for both projection and backprojection

kernel executions. In the case of the backprojection kernel, each chunk is computed and stored

to disk independently. In the case of the projection kernel, each chunk is read and computed

for all the projection angles independently. The projections that result from each chunk are

added and stored to disk.

The set-partitioning strategy (Fig 6, right) follows a similar logic. For the backprojection

kernel, each set of projections is read and processed independently. The results are added in a

final volume that is stored when all projections have been processed. In the case of the projec-

tion kernel, each set of projections is created from the volume and stored independently on

disk.

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 11 / 22

https://developer.nvidia.com/cuFFT
http://clmathlibraries.github.io/clFFT
https://doi.org/10.1371/journal.pone.0180363

The parameters chunk size and set size are calculated automatically by FUX-Sim at the

beginning of the execution based on the hardware characteristics and current usage of the

available resources.

5. Architecture layer

The abstraction of the architecture layer makes it possible to create new configurations on sev-

eral platforms (GPU, x86 CPU-based) and in different operating systems (Linux, Windows,

and MacOS) without requiring a deep knowledge of accelerator architectures (Fig 7). For this

purpose, all algorithms and kernels were implemented according to three programming mod-

els: CUDA (for NVidia GPUs), OpenCL (for GPUs and ARM architectures), and OpenMP

(for CPUs), thus enabling execution of the same algorithm in a parallel manner.

The architecture layer provides a wrapper for the specific version of the algorithms, which

is configurable by the user depending on the available resources. The execution flow of the

simulator passes through the architecture layer to automatically reach the corresponding func-

tionality in the kernel layer or support layer, depending on the availability of the GPU and the

programming model chosen. In the example shown in Fig 6, the allocate memory function in

the architecture layer is translated into cudamalloc, clcreatebuffer, or malloc in the kernel layer
and support layers, depending on the devices and the available programming models.

6. Configuration layer

The configuration layer translates the parameters of the scanning geometry obtained from the

command line or through the calibration file into a specific parameter set for the various sys-

tem configurations.

6.1. Cone-beam with circular trajectory

The most standard configuration is a cone-beam system with the detector placed orthogonally

to the line that passes through the source and the origin with the piercing point at its center,

as shown in Fig 8—left, and with the source-detector pair following a circular trajectory.

The implementation of this geometry is based on several calls to the projector/backprojec-

tor kernels for each view angle. The view angle is either calculated from the span angle and

number of evenly spaced projections or read from the calibration file.

Fig 6. Partitioning strategy for projection and backprojection. Chunk-partitioning strategy (left), set-partitioning strategy (right).

https://doi.org/10.1371/journal.pone.0180363.g006

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 12 / 22

https://doi.org/10.1371/journal.pone.0180363.g006
https://doi.org/10.1371/journal.pone.0180363

Fig 8. Circular scan (left) and helical scan (right) configurations.

https://doi.org/10.1371/journal.pone.0180363.g008

Fig 7. Execution flow for the architecture, kernel, and support layers.

https://doi.org/10.1371/journal.pone.0180363.g007

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 13 / 22

https://doi.org/10.1371/journal.pone.0180363.g008
https://doi.org/10.1371/journal.pone.0180363.g007
https://doi.org/10.1371/journal.pone.0180363

6.2. Helical scan

The helical configuration is implemented based on the circular cone-beam geometry described

above, with the position of the volume for each projection changed to simulate the movement

of the bed (Fig 7—right). For each angular position, θ, the shift of the voxels in the z direction

is calculated by

shifty ¼
pitch � span

360 � n
� thick ð9Þ

where pitch is the displacement of the bed in one rotation, n is the number of projections per

rotation, span is the total angle span covered during the acquisition, and thick is the slice thick-

ness in the volume.

6.3. Arbitrary positioning

The arbitrary positioning configuration allows us to define an arbitrary trajectory for source

and detector. Each position is translated into a set of linear displacements and angular inclina-

tions from the ideal position (circular scan geometry), as shown in Fig 9. The translation is car-

ried out in two steps: (1) u- and v-shifts are calculated so that the source-object line passes

through the center of a virtual detector; and (2) inclinations (tilt and roll) are calculated as the

angles formed between the real and virtual detectors around z and u axis, respectively.

Fig 9. Arbitrary positioning configuration. Translation of an arbitrary position of the detector into a set of geometrical non-idealities of a virtual detector.

Dotted lines show source and detector in ideal intermediate positions.

https://doi.org/10.1371/journal.pone.0180363.g009

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 14 / 22

https://doi.org/10.1371/journal.pone.0180363.g009
https://doi.org/10.1371/journal.pone.0180363

6.4. Tomosynthesis

As shown in Fig 10, the simulator implements two system configurations for tomosynthesis:

linear tomosynthesis, where the source follows a linear trajectory while the detector moves in

the opposite direction, as in conventional tomography, and arc tomosynthesis, where the detec-

tor is static and the source follows a circular trajectory.

In both cases, the structures contained in the focal plane are projected into the same posi-

tion of the detector, while structures in other planes appear at different locations in the

projections.

The implementation of these configurations is based on the use of a virtual detector that is

larger than the real detector, as shown in Fig 11.

In the case of linear tomosynthesis, the large detector size, Dlarge, is calculated as

Dlarge ¼ 2 � Sx þ Dx þ
Dreal

2

� �

¼ 2 � Sx � 1 þ
DDO þ FP
DSO � FP

� �

þ Dreal ð10Þ

where Dx and Sx are the displacements of the detector and source respectively, Dreal is the

actual detector size, DDO is the object-detector distance, and DSO is the source-object dis-

tance.

Dx ¼ Sx �
DDO þ FP
DSO � FP

ð11Þ

For each projection, we will calculate an ROI in the virtual detector equal to the real detec-

tor size centered at Dx+Sx.

Fig 10. Linear (left) and Arc (right) tomosynthesis configurations.

https://doi.org/10.1371/journal.pone.0180363.g010

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 15 / 22

https://doi.org/10.1371/journal.pone.0180363.g010
https://doi.org/10.1371/journal.pone.0180363

For the case of Arc tomosynthesis, Sx and DSO are calculated for each projection as

sinðSbÞ ¼
Sx

DSO � FP
! Sx ¼ sinðSbÞ � ½DSO � FP� ð12Þ

cosðSbÞ ¼
DSO � FP � a

DSO � FP
! DSO � FP � a ¼ cosðSbÞ � ½DSO � FP� ð13Þ

DSO0 ¼ DSO � a ¼ ½cosðSbÞ � ðDSO � FPÞ� þ FP ð14Þ

Dlarge ¼ Dreal þ ð2 � SxÞ ð15Þ

where Sβ is the angle rotated by the source.

6.5. Wide field of view

FUX-Sim enables the possibility of simulating an increased FOV, which is useful in scenarios

where the detector is smaller than the scanning area. In these cases, two or more projections

Fig 11. Translation of tomosynthesis configurations into a set of geometrical non-idealities of a virtual detector that is larger than the real

detector. A-C: Linear tomosynthesis with a different focal plane (FP). D: Arc tomosynthesis. DSO and DDO are the distance from the center of the FOV to

the source and the detector, respectively, and ROI corresponds to the real detector.

https://doi.org/10.1371/journal.pone.0180363.g011

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 16 / 22

https://doi.org/10.1371/journal.pone.0180363.g011
https://doi.org/10.1371/journal.pone.0180363

can be obtained and stitched together using a post-processing algorithm to build a larger

image.

Depending on the movement of the source, FUX-Sim provides two models: linear displace-

ment and tilting, as shown in Fig 12.

Linear displacement is based on the same idea as the helical scan: shift of the whole volume

in the z-direction. The tilting configuration is based on defining a larger virtual detector, as in

linear tomosynthesis. The large detector size, Dlarge, is calculated as

Dlarge ¼ N � ðDreal � ðN � 1Þ � OverlapÞ ð16Þ

where Dreal is the detector size and N the total number of projections. For each projection at

position n, we calculate an ROI on the virtual detector equal to the size of the real detector cen-

tered at Dx:

Dx ¼ n � Dreal � ðn � 1Þ � Overlap �
Dreal

2
ð17Þ

where Overlap is the overlap between two consecutive positions of the detector.

7. Evaluation

The performance of FUX-Sim was evaluated on two hardware architectures, namely, a high-

performance workstation and a low-performance workstation. The high-performance work-

station had an Intel(R) Xeon(R) E5-2630 processor with 32 cores at 2.4 GHz and 250 GB of

RAM and an NVidia Tesla K40 with CUDA version 7.5 and OpenCL version 1.2. The low-end

workstation was a commodity laptop equipped with an Intel Core i7 processor, 8 GB of DDR3

Fig 12. Wide field of view configurations. Enhancement of FOV through linear displacement (left) and tilting (right) of the source.

https://doi.org/10.1371/journal.pone.0180363.g012

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 17 / 22

https://doi.org/10.1371/journal.pone.0180363.g012
https://doi.org/10.1371/journal.pone.0180363

RAM, and a mobile GPU (NVidia GTC 965m). We fixed the slot size to 1—the most limited

option—to show the performance of our framework under the poorest conditions.

We used four studies: (1) standard-resolution; (2) high-resolution; (3) whole body versions

of the Digimouse phantom (http://neuroimage.usc.edu/neuro/Digimouse); and (4) a CT scan

of the life-size human thorax phantom PBU-50 model (manufactured by Kyoto Kagatu), previ-

ously acquired with a Toshiba Aquilion/LB CT scanner. Different configurations were simu-

lated using ray-driven/voxel-driven interpolation mode with the parameters shown in Table 1.

The last two rows show the configurable parameters set size and chunk size, which are calcu-

lated automatically during execution depending on data size.

Table 2 presents the results of the circular scans for standard and high resolution and

Table 3 the results of helical, linear, and arc tomosynthesis. Both tables show the processing

time in seconds for the kernel including memory transfers (kernel execution) and the process

including I/O operations (overall execution).

The poorest performance was with the CPU versions using OpenMP for parallelization of

the core algorithms. Although OpenCL and CUDA used the same GPU and for high-resolu-

tion studies the performance was similar, OpenCL performed worse than CUDA for small

volumes.

Table 1. Detailed description of the studies used in the experimental evaluation.

Study Standard resolution High resolution Whole body Thorax study

Detector pixel size (mm) 0.2×0.2 0.1×0.1 0.2×0.2 0.4×0.4

Detector matrix (pixels) 512×512 1024×1024 512×512 889×1080

Volume voxel size (mm) 0.1253 0.06253 0.1253 0.931×0.931×0.5

VOI (voxels) 512×512×512 1024×1024×1024 512×512×942 349×230×938

Chunk size 512×512×512 1024×1024×128 512×512×942 349×230×938

Set size 360/720 360/720 360 41

Circular scan

projections 360/720 360/720 - -

Tomosynthesis scan

projections - - - 41

Source displacement (mm) - - - 150

Arc range (degrees) - - - 10

Helical scan

projections - - 360 -

Pitch - - 62 -

https://doi.org/10.1371/journal.pone.0180363.t001

Table 2. Processing times in seconds for CBCT configurations with backprojection and projection kernels for the different configurations and

programming models evaluated.

Digimouse Standard Resolution (sec) Digimouse High Resolution (sec)

Kernel execution Overall execution Kernel execution Overall execution

CUDA OpenCL CPU CUDA OpenCL CPU CUDA OpenCL CPU CUDA OpenCL CPU

Projection—circular scan

360 proj 2.67 7.69 183.65 4.33 9.36 185.05 86.17 144.96 1456.07 92.39 150.92 1462.10

720 proj 5.12 15.19 377.03 7.95 18.05 379.71 170.52 269.08 2931.47 181.07 279.57 2942.57

Backprojection—circular scan

360 proj 10.76 13.74 259.22 12.59 15.61 260.79 71.40 78.57 1995.03 83.82 90.90 2007.40

720 proj 21.32 26.67 630.14 23.43 28.90 632.17 136.55 149.19 4163.51 147.12 162.77 4177.13

https://doi.org/10.1371/journal.pone.0180363.t002

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 18 / 22

http://neuroimage.usc.edu/neuro/Digimouse
https://doi.org/10.1371/journal.pone.0180363.t001
https://doi.org/10.1371/journal.pone.0180363.t002
https://doi.org/10.1371/journal.pone.0180363

In the case of the circular scan, the execution time of the projection kernel increased line-

arly with both number of projections (360 projections 2× faster than 720 projections) and reso-

lution (standard resolution 32× faster than high resolution). Backprojection showed a different

dependency on resolution, with the standard-resolution study only 8× faster than the high-res-

olution study. The reason for this is that we set slot size to 1 to evaluate the most limited case;

better results could be obtained by optimizing the slot size, as explained in [18].

Finally, we evaluated the programming model that showed the best results, CUDA, in the

low-performance workstation. We applied the most demanding study, namely, backprojection

of the high-resolution Digimouse with a circular trajectory. The configuration enabled a total

execution time of 376 seconds, which is 5× slower than on a high-performance computer.

Chunk size and set size in this case are 1024×1024×286 (resulting in 4 chunks, the last one

being slightly smaller) and 360, respectively.

8. Discussion

FUX-Sim was designed to address three key difficulties in the development of simulation/

reconstruction algorithms: (1) the need to manage large data volumes and are computationally

expensive, thus necessitating hardware and software optimizations; (2) the limitation of opti-

mizations by the high flexibility required to explore flexible scanning geometries, including

fully configurable positioning of source and detector elements; and (3) the fast evolution of dif-

ferent hardware setups, which increases the effort required to maintain and adapt implementa-

tions to current and future programming models.

Simulation and reconstruction require large memory capacity because of the need to allo-

cate both projections and volumes in memory to ensure efficient computation. We addressed

memory limitations by including two efficient partitioning strategies that allow the processing

of small partitions of the input data. These strategies made it possible to run FUX-Sim on stan-

dard workstations with commodity hardware and low-memory GPUs, even for simulating or

reconstructing large studies.

The optimized implementation for the different systems, i.e., programing models for the

GPU (CUDA and OpenCL) and CPU, is achieved thanks to a modularized approach based on

a layered architecture and parallel implementation of the algorithms in both the GPU and the

CPU. The modular approach enables flexible and easy creation of new system configurations

using existing kernels and utilities. This flexibility implies a trade-off with performance, as it

prevents application of very specific optimizations. An example of this type of optimization

would be the overlap of input/output operations and kernel execution, which would require

tighter coupling between the support layer and the kernel layer, thus leading to a loss of modu-

larity. Another example is the reduction in geometrical parameters used in the projection and

backprojection kernels, such as detector shifts and rotations, in the case of simple geometries

(e.g., ideal circular cone-beam scans). This simplification would imply the need for customized

kernels for each geometry, thus hindering the creation of new system configurations.

Table 3. Processing times in seconds for the configurations and programming models evaluated.

Digimouse Standard Resolution (sec)

Kernel execution Overall execution

CUDA OpenCL CPU CUDA OpenCL CPU

Helical scan 4.21 9.65 181.91 5.99 11.61 182.89

Linear tomosynthesis 3.18 4.34 19.57 11.32 12.61 26.07

Arc tomosynthesis 3.46 3.50 36.66 11.71 11.65 43.05

https://doi.org/10.1371/journal.pone.0180363.t003

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 19 / 22

https://doi.org/10.1371/journal.pone.0180363.t003
https://doi.org/10.1371/journal.pone.0180363

However, our evaluation showed that performance was similar to that of previous works

thanks to the other optimizations included in the different layers.

As expected, the worst performance was observed with the CPU version of FUX-Sim, even

with the parallelization of the core algorithms using OpenMP. We evaluated the GPU version

of FUX-Sim on both a laptop and a high-performance computer. The possibility of using a

wide range of underlying hardware is an advantage over other simulation/reconstruction plat-

forms presented in previous works, where, despite using the same acceleration device, execu-

tion with CUDA was 10% faster than with OpenCL when backprojecting high-resolution

studies [10, 12]. However, we found a much larger difference in performance between CUDA

and OpenCL when projecting smaller volumes: CUDA was 2× faster than OpenCL because

hardware is used more efficiently with CUDA, which is compensated for when there is enough

load to use the maximum computational capacity of the device.

Differences in hardware and software platforms make it difficult to compare execution

times between studies. Nevertheless, an approximate comparison shows, for example, that

FUX-Sim was around 4× faster when projecting and around 5× faster when backprojecting

than in the TIGRE study [20]. We also obtained good results, even with our layered architec-

ture, with respect to state-of-the-art implementations of the algorithms. Backprojection of sim-

ilar volume sizes with FUX-Sim was more than 2× faster than the CUDA/C implementation in

[10]. Finally, we showed that it was possible to simulate high-resolution studies in commodity

computers, even when there is not enough memory to allocate the whole dataset.

The three configurable parameters that affect the overall performance of FUX-Sim are

chunk size, set size, and slot size. Chunk size and set size are used for the optimization of mem-

ory transfers between the CPU and the GPU. Their value is automatically calculated based on

the available resources of the computer (GPU global memory and CPU memory capacity). A

low value for these parameters would increase the number of memory transfers and result in a

low GPU utilization factor. The relationship between performance and slot size was studied in

a previous work [18]. The value for this parameter is defined by the user after taking the tex-

ture memory capacity and GPU model into consideration. In the future, we plan to find a

mechanism to automatize this setup.

The simulator can deal with a wide variety of scanning geometries but does not include the

source model (heel effect, polychromatic nature, focal spot) or detector model (noise model,

intensity response), both of which could easily be included in the future as new modules of

FUX-Sim in the support layer.

The architecture we propose is significantly more flexible than that of previous simulators

(CT Sim [1], IRT [2], TomoPy [3], X-ray Sim [5]), which do not allow the simulation of new

acquisition protocols based on non-standard setups. The CONRAD [7] and ASTRA [8]

toolkits allow flexible scanning geometries but present limitations. The simulation of non-

standard geometries with CONRAD is less straightforward, as it is based on a projection

matrix that needs to be previously obtained, and the ASTRA toolkit is limited to datasets that

fit completely in the memory space of the GPU and to circular orbits, thus preventing simula-

tion of new acquisition geometries such as those used in tomosynthesis.

In conclusion, we present a new, highly flexible X-ray simulation/reconstruction frame-

work that enables fully configurable positioning of source and detector elements. The imple-

mentation is optimized for two different families of GPUs (CUDA and OpenCL) and multi-

core CPUs using a modularized approach based on a layered architecture and the parallel

implementation of the algorithms in both devices. Consequently, FUX-Sim can be executed in

most current hardware platforms, since OpenCL is supported by AMD and NVidia GPUs and

by Intel and ARM processors, while CUDA is the most widely applied programming model

for GPUs [4]. The modular architecture also facilitates the maintenance and adaptation for

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 20 / 22

https://doi.org/10.1371/journal.pone.0180363

current and future programming models. The execution times we measured were faster than

other state-of-the-art implementations for different system configurations and hardware plat-

forms. FUX-Sim can prove valuable for research on new configurations for X-ray systems with

non-standard scanning orbits, new acquisition protocols, and advanced reconstruction algo-

rithms. In addition, our framework will make it possible to obtain tomographic images from

very few projections, thus enabling easy and inexpensive assessment before implementation in

real systems.

Acknowledgments

This work was funded by projects TEC2013-47270-R, RTC-2014-3028-1, TIN2016-79637-P,

DPI2016-79075-R, the Cardiovascular Research Network (RIC, RD12/0042/0057) of the Span-

ish Ministerio de Economı́a y Competitividad (www.mineco.gob.es/), and grant FPU14/03875

from the Spanish Ministerio de Educación, Cultura y Deporte (http://www.mecd.gob.es). We

also thank NVidia for providing the Tesla K40 device used to perform the experiments.

Author Contributions

Conceptualization: Monica Abella, Manuel Desco.

Formal analysis: Monica Abella, Estefania Serrano, Ines Garcı́a, Claudia de Molina.

Funding acquisition: Monica Abella, Jesus Carretero, Manuel Desco.

Investigation: Monica Abella, Estefania Serrano, Javier Garcia- Blas, Ines Garcı́a, Claudia de

Molina.

Methodology: Monica Abella, Javier Garcia- Blas.

Project administration: Monica Abella.

Resources: Monica Abella, Javier Garcia- Blas, Manuel Desco.

Software: Monica Abella, Estefania Serrano, Javier Garcia- Blas, Ines Garcı́a, Claudia de

Molina.

Supervision: Monica Abella, Jesus Carretero.

Validation: Monica Abella, Estefania Serrano, Javier Garcia- Blas, Ines Garcı́a, Claudia de

Molina.

Visualization: Monica Abella, Estefania Serrano.

Writing – original draft: Monica Abella, Estefania Serrano, Javier Garcia- Blas.

Writing – review & editing: Monica Abella, Javier Garcia- Blas, Jesus Carretero, Manuel

Desco.

References
1. Rosenberg, K.M., CTSim 3.5 User Manual. 2002: Alburquerque, New Mexico.

2. Fessler, J.A. Image reconstruction toolbox. 2011 2011]; http://www.eecs.umich.edu/~fessler/code/

index.html.

3. Gürsoy D., De Carlo F., Xiao X., and Jacobsen C.. TomoPy: a framework for the analysis of synchrotron

tomographic data. J Synchrotron Radiat. 2014; 21: 1188–1193. https://doi.org/10.1107/

S1600577514013939 PMID: 25178011

4. Peddie, J. Nvidia, and AMD Increase GPU Attach Rates While Total GPU Shipments Remain Flat

Quarter to Quarter. 2017; https://jonpeddie.com/.

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 21 / 22

http://www.mineco.gob.es/
http://www.mecd.gob.es
http://www.eecs.umich.edu/~fessler/code/index.html
http://www.eecs.umich.edu/~fessler/code/index.html
https://doi.org/10.1107/S1600577514013939
https://doi.org/10.1107/S1600577514013939
http://www.ncbi.nlm.nih.gov/pubmed/25178011
https://jonpeddie.com/
https://doi.org/10.1371/journal.pone.0180363

5. Viswanathan K. and Balasubramaniam K.. Modeling and Simulation Schemes in X-ray Radiography

and Computed Tomography. Proceedings of the National Seminar & Exhibition on Non-Destructive

Evaluation. 2009: 266–270.

6. Landry G., deBlois F., and Verhaegen F.. ImaSim, a software tool for basic education of medical x-ray

imaging in radiotherapy and radiology. Front Phys. 2013; 1.

7. Maier A., et al. CONRAD—a software framework for cone-beam imaging in radiology. Med Phys. 2013;

40(11): 111914. PMID: 24320447

8. van Aarle W., et al. The ASTRA Toolbox: A platform for advanced algorithm development in electron

tomography. van Aarle W., Palenstijn W. J., De Beenhouwer J., Altantzis T., Bals S., Batenburg K. J.,

and Sijbers J., “The ASTRA Toolbox: A platform for advanced algorithm development in electron tomog-

raphy”, Ultramicroscopy (2015). 2015; 157: 35–47. https://doi.org/10.1016/j.ultramic.2015.05.002

PMID: 26057688

9. Mukherjeet, S., N. Moore, J. Brock, and M. Leeser. CUDA and OpenCL implementations of 3D CT

reconstruction for biomedical imaging. IEEE Conference on High Performance Extreme Computing

(HPEC). 2012: 1–6.

10. Mendl C.B., Eliuk S., Noga M., and Boulanger P.. Comprehensive analysis of high-performance com-

puting methods for filtered back-projection. Electronic Letters on Computer Vision and Image Analysis.

2013; 12(1): 1–16.

11. Siegl, C., H. Hofmann, B. Keck, M. Prümmer, and J. Hornegger. OpenCL: a viable solution for high-per-

formance medical image reconstruction? SPIE Medical Imaging. 2011: 79 612Q-79 612Q.

12. Xie L., et al. An Effective CUDA Parallelization of Projection in Iterative Tomography Reconstruction.

Plos One. 2015; 10(11): e0142184. https://doi.org/10.1371/journal.pone.0142184 PMID: 26618857

13. Zhou L., Clifford Chao K., and Chang J.. Fast polyenergetic forward projection for image formation

using OpenCL on a heterogeneous parallel computing platform. Med Phys. 2012; 39(11): 6745–56.

https://doi.org/10.1118/1.4758062 PMID: 23127068

14. Park H., Shin Y., and Lee H.. A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme

with Voxel-Level Parallelization for Cone-Beam CT Reconstruction. Technol Cancer Res Treat. 2015;

14(6): 709–20. https://doi.org/10.7785/tcrt.2012.500429 PMID: 24750005

15. Fehringer, A., et al. Ultra-fast cone-beam SIR on 2k-cubed data. in Proc. 4th Intl. Mtg. on image forma-

tion in X-ray CT. 2016.

16. De Man B. and Basu S.. Distance-driven projection and backprojection. Nuclear Science Symposium

Conference Record. 2002; 3: 1477–1480.

17. De Man B. and Basu S.. Distance-driven projection and backprojection in three dimensions. Phys. Med.

Biol. 2004; 49: 2463–75. PMID: 15248590

18. Garcia Blas J., Abella M., Isaila F., Carretero J., and Desco M.. Surfing the optimization space of a multi-

ple-GPU parallel implementation of a X-ray tomography reconstruction algorithm. The Journal of Sys-

tems and Software. 2014; 95: 166–175.

19. Brodtkorba A.R., Hagena T.R., and Sætrab M.L.. Graphics processing unit (GPU) programming strate-

gies and trends in GPU computing. Journal of Parallel and Distributed Computing. 2013; 73(1): 4–13.

20. Biguri A., Dosanjh M., Hancock S., and Soleimani M.. TIGRE: a MATLAB-GPU toolbox for CBCT image

reconstruction. Biomedical Physics & Engineering Express. 2016; 2(5): 055010.

FUX-Sim: Fast universal X-ray simulation/reconstruction framework

PLOS ONE | https://doi.org/10.1371/journal.pone.0180363 July 10, 2017 22 / 22

http://www.ncbi.nlm.nih.gov/pubmed/24320447
https://doi.org/10.1016/j.ultramic.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26057688
https://doi.org/10.1371/journal.pone.0142184
http://www.ncbi.nlm.nih.gov/pubmed/26618857
https://doi.org/10.1118/1.4758062
http://www.ncbi.nlm.nih.gov/pubmed/23127068
https://doi.org/10.7785/tcrt.2012.500429
http://www.ncbi.nlm.nih.gov/pubmed/24750005
http://www.ncbi.nlm.nih.gov/pubmed/15248590
https://doi.org/10.1371/journal.pone.0180363

