
 
 

 

Biomedical Engineering  

(2017-2018) 

 

Bahelor thesis 

“Synthetic biology of 

genetic circuits” 
 

 

Gabriel Rodríguez Maroto 

Tutor: Victoria Lucía Doldan Martelli 

Leganés, 11th July 



II 
 

 

 

 

 

 

 

 

 

 

 
  



III 
 

Aknowledgements 

 

I would like to express my gratitude to all the people that have contributed to this 

bachelor thesis offering me their support, advice and time.  

 

 

  



IV 
 

  



V 
 

ABSTRACT 

 

The combination of positive and negative feedback loops has been shown to increase 

the robustness of oscillations. Such breakthrough has enabled to understand the 

importance of that dual control in a few biological systems. The reason is that most 

biological systems are non-linear. One of the obstacles that must be overcome when 

dealing with non-linear systems, even if they are simple, is that the use of intuition to 

predict its behavior is no longer valid. The comprehension of the behavior of the system 

can only be achieved mathematical modeling and computational simulations  

This bachelor thesis aims to develop a mathematical model of the relaxoscillator, a 

gene regulatory network in which two genes with identical promoters are regulated by 

the same activator and repressor. At the same time, the binding of those depends on the 

concentrations of two inducers: arabinose and IPTG, which correspond to the control 

parameters of the system. The obtained model, derived from the chemical reactions, was 

simulated under different inducer concentrations in an attempt to comprehend the long 

term behavior of the system. The results show that varying these inducer concentrations 

allows to tune the period and the amplitude of the oscillations observed in the system. In 

order to analyze changes in the long term behavior of the system it will be required to 

include a third control parameter, the transcription repressor rate, so that the system 

displays different dynamic behaviors. The analysis of the simulations indicates the 

presence of a supercritical Hopf bifurcation for a given value of the transcription 

repressor rate that would explain the transition between damped oscillations and 

persistent oscillations. Nevertheless, due to the theoretical nature of the project, 

experimental studies as well as two-parameter bifurcation analysis should be performed 

in order to confirm such hypothesis and gain understanding of the behavior of the 

system as a function of inducers concentrations. 
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1. Introduction 

 
1.1 Motivation  

 

Less than thirty years ago, the revolution in genomics meant the origins of synthetic 

biology. Nowadays the breakthroughs in such recent discipline have made possible to 

talk about post-genomic research [1]. One of the future milestones planed by these post-

genomic investigations is the comprehension of cellular processes resulting from 

interactions between genes and protein. Such understanding is mandatory for the 

construction of synthetic genetic circuits. So far, examples of gene circuits had been 

successfully understood and implemented [2], [3]. In spite of this, real use of these 

synthetic circuits for different applications - biofuels, medicine, agriculture purposes- is 

still far from being achieved. One of the reasons is that these synthetic biological 

circuits are proof-of-principle designs, what causes them to not be used outside the 

laboratory [4]. Another limiting factor is the inherent complexity of biological systems. 

Most of these systems are nonlinear. Such feature avoids to predict their behavior - and 

therefore comprehending them – intuitively. Those studies can only be performed 

through computational simulations of the system under different conditions. This 

project follows that research line: the study of a complex biological system using a 

mathematical model to simulate its behavior. 

Understanding sleeping disorders, insight in Alzheimer’s diseases or even the 

implantation of cells containing synchronized clocks that are modulated to synthesize a 

desired protein - for example insulin - at regular time intervals in the right dose [5] are 

some of the aspirations of synthetic biology. The achievements of those goals will only 

be possible if the given gene or protein regulatory network is successfully understood.  
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1.2 Fundamental concepts 
 

In the following section, some of the most fundamental concepts needed to the 

completion of this bachelor thesis will be presented. 

 

1.2.1 Systems biology and synthetic biology 

“The whole is greater than the sum of its parts”, Aristotle. Someone could use this 

quote to describe, in an abstract way, what systems and synthetic biology have 

contributed to biology. These relatively new “cousin” - but different - disciplines were 

responsible for substituting traditional reductionist approaches when studying molecular 

biology by progressively more global analysis strategies. 

Following chronological history to introduce them, systems biology was earlier than 

synthetic biology. As it names indicates, systems biology was born from the application 

of systems science to biology.  It is true that idea of biology as a single scientific field 

did not crystallize until the 19
th

 century, but it is also clear that in order to establish the 

origins of the science of life one has to rewind until the Ancient Greece when Aristotle 

became one of the firsts to systematically study it. Such past is something systems 

biology cannot boast about. Systems biology origins point toward the middle of the last 

century [4] when another discipline of the same field, molecular biology, started to 

discover some of the networks of interacting molecules driving cellular behavior.  

 

Understanding why the origin of systems biology occurred at that time and not before 

requires focusing in the “systems” word. A system can be defined as an organized 

combination of interconnected components forming a whole. In a parallel way, as the 

French biologist Francis Jacob said, all biological systems are in fact systems of 

systems. With that in mind, there have always been two ways of analyzing systems: the 

reductionist and the holistic one. The main exponent of reductionism was René 

Descartes. The rational philosopher of 17
th

 century believed that the best strategy when 

dealing with complex problems was its decomposition into smaller problems. In this 

way, he stated that the sum or the re-assembly of each of those small problems was 

identical to the original complex problem. Although his postulates were earlier than the 

development of biology as a formal science and their initial impact was greater in other 

disciplines like physics, biology adopted this simplistic perspective up to the first half of 

the XX
th

 century. In fact, reductionist approaches are still used by biology in specific 

problems in which the division of the problem into hierarchies with sub-problems is the 

only mechanism to understand it. 

 

 With time, the assumption that everything could be explained using reductionist 

strategies extended in the biological field.  However, there was one characteristic of the 

systems that was not being taken into account, its emergent behavior. This emergent 
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behavior is the behavior of the system that does not depend on each of its components 

but on the interactions between them.  

 

Then, reductionist strategies in biological systems were missing the fact that the 

interaction between the components of the system is as important as each of the 

components individually. As consequence, systems reductionism was missing or 

omitting one of the defining features of a system which explains why the beginnings of 

systems biology can be assumed to come later in time. Such limitations of the 

mechanistic approach to biological systems prompted inevitable reactions against 

reductionism [6] at the beginnings of the 20
th

 century. The general objection was the 

error of considering the whole only as the sum of its parts. Aristotle’s ideas in this way 

reappeared again. Biological systems like cells had emergent properties - life - that 

could not be explained just as the sum of individual parts.  Then, this opposition to the 

reductionism resulted into a new perspective that opted for analyzing systems as 

networks of connected individual components and their associated interactions. This 

was known as holism. This change of paradigm affected different disciplines and within 

molecular biology field it enabled to study the global behavior molecular systems. 

Eventually, it gave rise to systems biology.  

The replacement of the reductionism approach by the holistic one does not invalid the 

former one. Both strategies can be used depending on the specific problem to which 

they are applied. The point is that analysis of biological systems has proved to demand 

not only which are the biological components forming it, but also understanding how 

they interact. This is something reductionist approaches cannot satisfy.  

Regarding synthetic biology, its appearance was a consequence of the development of 

systems biology. If systems biology was developed in an attempt to overcome the 

limitations of mechanistic approaches when analyzing molecular systems [7], synthetic 

biology emerged from the need to reproduce or simulate those previously analyzed 

molecular systems. In other words, first with systems biology the problem is analyzed 

and later, once the component interactions have been understood, synthetic biology tries 

to combine those biological parts to achieve a particular goal. The central idea of 

synthetic biology consists of the application of engineering principles to create, monitor 

and control cellular behavior [4].  

Notice that this inverse relationship between systems biology and synthetic biology can 

be interpreted as an example of reverse and forward engineering. The latter one refers to 

the process going of implementing in reality a theoretical (logical) model, and thus, it 

corresponds to the activities developed by synthetic biology. In contrast, reverse 

engineering, corresponding to systems biology, is responsible from reconstructing or 

inferring that theoretical model from the analysis of a real biological system. This 

explains also why in order for a discipline like synthetic biology to exist, there must 

exist before a reverse engineering discipline, systems biology, that has previously 
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analyzed and understood the whole behavior of the system including its interactions, so 

that now such system can be recreated from the theoretical model.  

Synthetic biology appeared associated to the genomic revolution and the already 

mentioned development of systems biology in 1970 [8]. Similarly to systems biology, 

this discipline chose global approaches when manipulating cellular behaviors with 

biological tools.  The evolution and the transition from systems biology to synthetic 

biology were only possible due to the parallel development of mathematical and 

computational modeling frameworks [9]. Once these two other tools were able to 

account for the data volume associated to biological systems, both systems and 

synthetic biology could start to study larger biological systems [10]. Then, in the 

particular case of synthetic biology, these mathematical and computational 

breakthroughs made possible the publication of two scientific papers [2][3] considered 

as two historical landmarks in synthetic biology evolution [11].   These papers [2],[3] 

were the proof that the forward engineering problem synthetic biology was attempting 

to solve could effectively be solved. Consequently, this demonstrated that systems 

biology had successfully addressed the reverse engineering process too. By the first 

time, design and construction of a synthetic genetic network were detailed. A 

“repressilator” - a type of synthetic oscillator - and a “toggle switch” –a bistable gene 

regulatory network- were the first tangible evidences demonstrating how successful the 

synergy between engineering and biological systems could potentially be. Once the 

basis were established, synthetic biology continued evolving becoming one of the 

hottest emerging areas of biological science research [11]. Nowadays, the synergy 

between synthetic biology, mathematics and computational science combined with the 

progress of technology has made it possible to bring synthetic biology closer to its 

foundational goal, the development of applications in medicine and biotechnology. 

Biofuels, biomedical compounds or new vaccines are just examples of those 

applications, but synthetic biology is expected also expected to account also for more 

theoretical questions like for instance discovering the minimal conditions required to 

life development.  

 

Synthetic biology can be thought as the last stage in the evolution of biological systems 

analysis in molecular biology. During this process, the transition from reductionism to 

holism was responsible for the origins of systems biology. Later on, this discipline 

would be able to solve the reverse engineering problem, being able to comprehend not 

only the different components of a real biological system but also successfully inferring 

the relationships between them. Mathematical and computational breakthroughs were 

also required to overcome such challenge. At that moment, being able to analyze 

biological systems meant covering half of the trip. The other half was being able to do 

inverse process, constructing from the theoretical system an efficient biological system. 

Attempting to complete the forward problem synthetic biology was developed, so that 

eventually such designed biological system could be used to achieve a specific goal. 

Currently, synthetic biology has demonstrated that the application of engineering 
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Fig. 1.1  Diagram representation of a conceptual model of cellular processes [12] 

principles to molecular biology is the correct strategy to model and control cellular 

behavior.  

 

1.2.2 Dynamic mathematical modeling 
 

As a forward engineering discipline, systems biology tries to develop models of 

biochemical and genetic networks. Models are abstractions of reality designed to 

represent systems. Among the different models biologists can use there are tangible 

models - molecular ball-and-stick or animal models - and conceptual models [12]. The 

latter models are the ones systems biology focuses on. Conceptual models are typically 

represented in the form of diagrams showing the interactions between the components 

of the system. Although useful when dealing with simple systems, biological models are 

characterized by the high number of species involved and by the complexity of their 

interactions. At the same time, molecular processes like gene expression or metabolic 

routes demand detailed modeling for investigation. These demands joined to the likely 

ambiguity transmitted by conceptual models when assessing feedback processes make 

the diagram representation of conceptual models insufficient when analyzing complex 

biological systems.  

  

 

 

 

 

 

 

 

These limitations of simple pictographic representations of biological systems can be 

overcome adding a mathematical description of the system. Doing so, complex 

biological networks could be described also quantitatively. This is the central idea 

systems biology revolves around: being able to describe the systems and the 

components interactions quantitatively. The challenge is found on how to parametrize 

or mathematically describe such interactions so that it is possible to jump from the 

conceptual diagram to a dynamic mathematical model. The adjective “challenging” 

comes from the inherent characteristic of systems biology. The vast data volume 

biological networks imply is such great and complex, that just the mere attempt to 

extract from them concise biological formulations with predictive behavior requires in 

most cases from several years of analysis [13]. 

 

When a biological system is modeled, the resulting model would consist of a set of 

equations able to describe the temporal behavior of the system. To do so, the laws of 
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Fig. 1.2 Flow diagram showing system modeling design 

physics and chemistry would have to be applied (see 2.2.3 Chemical reactions 

modeling). Those models are called mechanistic models [12] since they are created to 

describe the mechanism explaining the observed behavior. In addition, there are two 

possible research options when working with mechanistic models: model simulation or 

model analysis. Model simulation can be literally defined as the evaluation of the 

system’s model [14]. Under this strategy, models are used as predictive tools. The 

reason behind such demand deposited on models is the fact human intuition might not 

be accurate enough when trying to infer the dynamical behavior of complex nonlinear 

biological systems [15]. It is convenient to mention that although these simulations will 

never replace real experiments, they offer the possibility to check how the system would 

behave in situations that could never be replicated in a laboratory. Not being able to 

predict the exact - literally exact - behavior of the system does not prevent model 

simulations to be used as tools indicating research lines of investigation.  

 

Alternatively, with model analysis, models can also be directly investigated to better 

understand why they behave in one way and not in other. Consequently, model 

simulation [16] would answer how the system temporally behaves depending on the 

initial conditions, while model analysis would focus on explaining why the system 

adopts such behavior.  

Either way, system modeling is an iterative process. The initial hypotheses that are used 

to create the first model are tested to see if this one matches the observed data. In case 

of positive results, it means that the model was successfully built; if inconsistencies are 

found, these ones will have to be used to refine the initial hypotheses and thus re-

compute a new model until the model is able to correctly predict the behavior of the 

system. Such iterative process contributing to the improvement of the model is known 

as the virtuous cycle [12].  

 

 

 

 

As previously stated, the ultimate goal of system modeling consists of building a perfect 

model capable of predicting the behavior of the real system with maximum precision. In 

Experimental observations Hypothesis formulation Possible model Simulation 

Do they match? 

NO YES 

Final model = Possible model 
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biological systems this is yet to be achieved. In spite of this model feature susceptible to 

be improved, systems biology has been able to create good enough models that can be 

used in synthetic biology.  

 

Finally, when introducing the most basic features defining dynamic systems, there is 

one feature that needs to be highlighted regarding biological systems: the existence of 

feedback loops. Those feedback loops can be either negative if systems components 

inhibit their own activity [12] or positive loops, which are behind processes in which 

small disturbances of systems components result into a greater perturbation. Although 

in principle negative feedback loops are associated to stable behaviors, they can induce 

oscillations when some kind of temporal delay is introduced in the system. Under the 

same logic, positive feedback processes, traditionally paired with unstoppable 

increasing divergence, can also be used to force the system to maintain on its long-term 

state when using appropriately. 

 

1.2.2.1 Key aspects in dynamic mathematical models 

One of the most basic components of mathematical models is called variable of state. 

Associated to each molecular species belonging to the system, it represents the 

abundance of a given species as a function of time. They should not be confused with 

the parameters. The latter ones are constant and they settle the environmental 

conditions as well as systems interactions. This explains why within the same 

simulation, parameters are kept fixed. The aim of a particular simulation is to recreate 

the behavior of the systems under a very precise set of environmental conditions. This 

does not prevent to globally study the behavior of the system under different external 

conditions provided a simulation for each set of conditions has been performed.  

In relation to the distinction between state variables and parameters, these roles will 

have to be assigned depending on the specific biological system under study. While 

for some reactions the concentration of a given species will have attached an 

associated state variable, such species abundance could be assumed to be fixed if the 

studied biological process has now a different time-scale [12], thus becoming a 

parameter. 

 

As previously mentioned, another important feature in dynamic mathematical models 

is at which time those models will be analyzed. For long enough simulations, systems 

will display their corresponding asymptotic or steady behaviors. However there is 

another time interval susceptible to be analyzed, the one going from the initial state to 

the asymptotic behavior. Such time interval is known as transient state. 

 

Models can also be classified according to its linearity into linear or non linear models. 

Linear models are used whenever the interactions between systems components are 

linear. Although simpler models, the possibilities these type of models offer are 

scarce. In contrast in nonlinear models such relationship between systems components 

is precisely non linear, and thus it is more difficult to be modeled. This is the case of 
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Fig. 1.3 Transient and steady states of a system’s variable [12] 

most biological systems (further information in section 1.2.4 Analyzing dynamics of 

mathematical models.) In the same line, it is also possible to talk about global versus 

local behavior. Ideally, global behavior analysis is the aim of mathematical modeling. 

Being able to analyze the global behavior of the system implies that all interactions are 

understood, up to the smallest detail.  Nevertheless, this global behavior analysis is 

sometimes unfeasible mostly due to the presence of nonlinearities.  Consequently, 

local approaches are accepted as they allow one to consider those nonlinearities as 

linear, thus, facilitating the analysis. Someone could believe that such strategy 

oversimplifies too much the model at the cost of missing important information; 

however, it has been shown that the general behavior of systems is in a high 

proportion dependent on its behavior around several individual points [12]. In other 

words the analyzing the local behavior of the systems often provides enough 

information to infer the global behavior of the system. 

Local behavior analysis is different to reductionism. While reductionism divides or 

compartmentalize the original system in parts to analyze them individually, local 

approaches analyze individual interactions between the components.  

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, mathematical models can be stochastic or deterministic. In deterministic 

models the behavior of the model is exactly reproducible; this means that no matter 

how many times the system is simulated, the obtained result will be identical provided 

the parameters were also identical. On the other hand, stochastic simulations include 

randomness in such way that they are influenced not only by specified conditions but 

also by unpredictable factors [12]. The advantage of stochastic models is the 

possibility to account for such randomness contribution influencing the systems. For 

certain biological system like gene networks this randomness comes in the real world 

from the thermal agitation of individual molecules. Gillespie’s simulation is an 

example of a Monte Carlo method (stochastic algorithm). 
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1.2.3 Chemical reactions modeling 
 

As it was previously stated, one way of representing systems is through its interaction 

diagrams. These will contain the species involved in the system as well as arrows 

indicating the interactions between them. When dealing with simple systems, one can 

intuitively infer the behavior of the system just looking at its interaction diagram. 

However, biological networks do not fall within the group of “simple systems”. One of 

their characteristics is their complexity which hampers elucidating the behavior of the 

system correctly. Fortunately, this obstacle can be overcome if the system is described 

not only qualitatively but also quantitatively. Chemical reaction modeling develops 

dynamical mathematical models of those biological networks. In the following section, 

some of the fundamental concepts involved in chemical reactions modeling will be 

introduced. 

 

1. Chemical networks: 

As their own name indicates, chemical networks are set of chemical reactions. From 

a mathematical point of view, a chemical network can be expressed [17] as: 

 

                         

        

 ( 1.1) 

 

Where Ri is the set of reactions,     and     are the stoichiometric coefficients and     

represents each species participating in the reactions. Then, the left hand side 

components would correspond to the reactant species and the right side to the 

products. The arrow indicates the direction of the reaction meaning irreversible if its 

point rightwards. It has to be mentioned that theoretically all chemical reactions are 

assumed to be reversible [12]; nevertheless, those reactions can be described as 

irreversible whenever the reaction rates of the inverse process are negligible 

compared to the forward reaction rate.  

 

Chemical networks can be considered as closed or opened. In close networks all 

participating species lie inside the network. Consequently in the long term, these 

networks will reach a point in which all net reaction rates are zero (thermal 

equilibrium). In contrast, if a reaction happens spontaneously without reactants or 

without yielding products, such network will be classified as open, since there will be 

material exchange with the external environmental. This would be a simple example 

of an open chemical reaction.  

    A + B  C   

 

In open networks there will be a steady flow through the chemical set of reactions 

when they are in steady state [12]. This is named as dynamic equilibrium. 
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2. Dynamics of chemical reaction networks (CRN) 

As stated before, the aim of systems modeling it to obtain a model of the real system 

that is able to predict its behavior. When saying “behavior”, one is referring to its 

temporal behavior. Then, in order to describe the temporal evolution of the system, it 

will be mandatory to infer the time-varying behavior of the different component of 

the system - molecular species - considering their interactions. If system components 

interactions have been assumed to be described as reactions between different 

species, in order to know the variation in time of each species, one will need to 

understand the reaction rates of each reaction. At the same time, these are known to 

depend on environmental conditions. Eventually, this dependence can be neglected 

assuming that chemical reactions occur at fixed environmental conditions, allowing 

reactions rates to depend just on the species involved.  

The concept of temporal behavior of a molecular species refers to the concentration - 

in some cases, instead of concentration discrete number of molecules is used - of that 

molecular species (reactant or product) as a function of time. 

 

There are two common assumptions made when modeling chemical reaction 

networks. One of them is that reaction rates are constant in the space [12]. Such 

assumption seems reasonable if one accepts that the distribution of the reactants is 

homogeneous. The second assumption refers to the possibility of representing the 

abundance of each molecular species in terms of the concentration provided that the 

number of molecules of such species is great enough. There are situations in which 

these assumptions do not hold. This second assumption, known as continuum 

hypothesis may weaken when the number of molecules per species is relatively low. 

Under the previous assumptions, it is possible to use the law of mass action to 

describe chemical reaction networks. Formulated by Cato M. Guldberg ans Peter 

Waage, [18] two Norwegian scientists, this law states that the rate of any chemical 

reaction is proportional to the product of the concentrations of the reactants [12]. 

Considering the following reaction: 

 

       

 

According to the law of mass action, the reaction rate can be expressed as: 

                        (1.2) 

Where [A] and [B] are the concentration of the reactants and ki is the rate constant, 

the constant of proportionality. The dimensions of this constant will be determined 

by the number of reactants as well as their kinetic order [12], the exponent to which 

each reactant appears. In case of a reaction consisting of the uptake of a species 

from the environment (for instance A), such reaction is called zero order reaction 

with a reaction rate equal to the rate constant. 

The construction of the dynamic mathematical model of a given biological network 

will be possible thanks to such law. The law of mass action will allow jumping 
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from the qualitative description of the system to the quantitative one. At the end, 

the result will be a set of ordinary differential equations (ODEs) describing the 

time-varying behavior of each of the biological components belonging to that 

biological system. 

 

3. CRN example: Modeling a reversible conversion 

Most biological systems are complex chemical reaction networks that result into 

complex systems of differential equations requiring numerical computation. In this 

section, a basic example will be solved so that the previously mentioned theoretical 

concepts can be better understood when applied to real examples. 

 

  
  

           
  

  

 

In this example, k+ and k- are the rate constants corresponding to each of the 

production and degradation of species B respectively. Notice that as the there are 

two reactions, the time variation of each species will depend on two reactions rates, 

a positive one representing the synthesis of that species and a negative one 

indicating its degradation. 

 

Rate of change of species A = rate of production of A – rate of consumption of A 

Rate of change of species B= rate of production of B – rate of consumption of B 

 

Mathematically, rate of change of the species can be expressed as the derivative of 

the species concentration with respect to time. Then, using that and applying the 

law of mass action those equations can be mathematically rewritten as: 

     

  
                 (1.3) 

     

  
                  (1.4) 

 

Where A(t) and B(t) represent the concentration of each species. Notice that both 

species appear in both equations. It is possible to simplify such variable 

dependency by assuming steady state conditions. Accepting this assumption 

implies that the behavior of the system that will be analyzed will correspond to its 

long term behavior, not accounting for its transient one. Under the steady state 

condition, eventually the concentrations of both species will be constant when 

dynamic equilibrium is reached, meaning that although some A molecule species 

will be converted into B molecules, at the same time there will be B molecules 

doing the inverse reaction. This causes at the end, the net rate of change to be zero. 

From a mathematical point of view, this allows not having to explicitly solve the 

differential equations. Consequently, the system of equations remains as: 
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                (1.5) 

                (1.6) 

With A
ss

 and B
ss

 representing the steady state concentrations of each species. When 

these equations are solved, the following relationship is obtained: 

   

   
 

  

  
     (1.7) 

 

This relationship is the concentration ratio between the two species at steady state. 

Once this condition has been obtained, the initial equations (equations 1.3 and 1.4) 

can be rewritten using mass conservation principle - the mass is neither created nor 

destroyed in chemical reactions -. According to this, the total mass of products and 

reactants together must be constant over time. If such quantity is called Ct, the 

equation 1.3 becomes: 

                       (1.8) 

     

  
                      (1.9) 

Grouping terms: 

     

  
                    (1.10) 

 

Now, applying again the steady-state condition, equation 1.10 becomes: 

                 
   (1.11) 

And solving for A
ss

 and repeating the same process with B
ss

 gives: 

    
  

       
                      

   
  

       
    (1.12) 

These are the concentrations species A and B in their steady state. Notice that such 

assumptions have allowed not having to compute directly the differential equations. 

If solved, the solution would be: 

                   
  

       
    (1.13) 

The constant F could be obtained using the initial condition (A(t=0)=Ao). This 

expression for the concentration of A would yield the same result as the steady-
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state concentration of A previously computed, when calculating A(t) for long 

enough times: 

   
   

        
   

               
  

       
     

  
       

         (1.14) 

 

This example in which several assumptions have been used to simplify the process 

is in fact one the most simple examples of chemical networks. Biological networks 

are by far much more complex. Consequently, the resulting differential equation 

models are always nonlinear, which contrasts with the previous linear example. 

These complex systems of differential equations cannot be solved then analytically, 

but they will require the use of numerical simulation tools.  

The issue with biological systems is that defining a priori the best timescale to 

analyze them is not always easy. Sometimes, one may want to get rid off of 

variables whose values are almost constant during the whole process. Such model 

reduction consists of assigning to those variables a constant value. In contrast, 

sometimes there are processes that occur much faster than the timescale one wants 

to consider [12]. In those situations the best option is to treat them as instantaneous 

processes. In order to mathematically describe those assumptions, there are 

approaches like rapid equilibrium assumption or quasi-steady-state assumption.  

 

1.2.4 Analyzing dynamic mathematical models: 

 

In this section, different techniques suitable for analyzing dynamics of mathematical 

models will be introduced. As it has been mentioned several times, ultimately the goal 

of mathematical models is to predict the temporal behavior of the system. This is 

achieved by obtaining the time varying concentrations - or discrete molecule population 

number - of each of components forming that system from a system of ordinary 

differential equations that is created accounting for the components interactions. If one 

solves a system of two equations with two species involved, in order to plot the results 

one can plot the concentration of each species as function of time. Another approach is 

to plot the concentration of one of the species against that one of the second species. 

The resulting generated space is called phase plane. The advantage of the phase plane 

plot is that it shows how concentrations evolve from the initial state at t=0 to the final 

steady state. Such evolving curve is known as trajectory. Phase plane plots accentuate 

the relationship between the variables in time, although it de-emphasizes of each of the 

species with time. 

In the following sub-sections, the mathematical-geometrical analysis of systems will be 

presented starting with linear 2-D systems until reaching more complex systems. 
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Fig. 1.4 Species concentration against time (left) and species 1 concentration against species 2 

concentration or phase plane plot (right) [19]. 

Fig. 1.5 Stable fixed point represented as a black-filled circle (left) and unstable fixed point 

–white-colored circle- (right) [19]. 

1.2.4.1 Linear systems 

Although biological systems are mainly nonlinear, linear systems’ characteristics must 

be understood first, since the global behavior of systems can be inferred analyzing a 

set of key points. Studying the behavior of the system at such points is a local analysis. 

This enables to use linearization at those small regions. Consequently, it is mandatory 

to comprehend first the behavior of linear systems. Starting with a two-dimensional 

linear system, it can be written as: 

 

        
           

       
  
  
   

  
  

  
 
                (1.15) 

              

Where    and    are the time derivatives. Such system is linear because provided x1 and 

x2 are solutions, any linear combination of x1 and x2 will be a solution of the system. 

There are special points that will determine the behavior of the system. They are 

known as fixed points. These points satisfy      (with    being the vector (      ) and 

thus, they represent equilibrium solutions of the system [19]. Consequently, whenever 

the system is at one of those fixed points, it will stay there for all time, explaining why 

they are also called steady or constant solution. Depending on whether trajectories are 

attracted to them in the phase plane they will be classified as stable fixed points in case 

they all converge at the fixed point or unstable fixed points if they are diverge.  
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The stability analysis at these points allows one to infer the stability of the whole 

system itself. To do so, what needs to be done is to classify the linear system. In order 

to do it, searching for trajectories with the following form is critical: 

          (1.16) 

In this solution v is a non-zero vector and   can be understood as the growth rate and 

need to be determined [19]. If such solution exists, it will mean that there would be an 

exponential motion along the curve defined by v that will be pointing or “escaping” a 

given fixed point. Then, defined this, the problem now becomes finding such values. 

Notice that introducing that solution into the definition of a linear system, it results 

into: 

      (1.15) 

   
 

  
             (1.17) 

                (1.18) 

Then, the initial equation (1.15) becomes: 

            

      (1.19) 

This is just the typical eigenvalue-eigenvector problem. From that point on, the 

traditional method for computing the eigenvalues can be used. The determinant of (A-

     is computed obtaining the characteristic equation: 

 

   
          

       
  

              

      
   (1.20) 

 

The characteristic equation is a second order equation from which the resulting 

eigenvalues can be obtained as: 

  
        

 
 (1.21) 

 

Eventually if one wants to write the general solution, it would resemble to this: 

        
         

      (1.22) 

Where c1 and c2 are constants that can be computed using the initial conditions. 

Additionally, the eigenvectors would be computed solving the equation (A-    v=0. 
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Fig. 1.6 Fixed points classification diagram [19] 

However, regarding stability analysis is more important to understand what such 

eigenvalues mean. There are several options: 

 

 Case 1:    : both eigenvalues are real and have opposite signs
1
. That fixed 

point is called a saddle node. These types of points are stable - attract 

neighboring trajectories - in the direction with the negative eigenvalue and 

unstable –repelling trajectories- in the eigenvector associated to the positive 

eigenvalue. 

 

 Case 2:    : both eigenvalues are real or complex. 

o If        , both are real. Those points are called nodes. 

o If        , both are complex. They are called spirals.  

In the case, in order to analyze the stability, one has to see whether one has to 

analyze  . If    , both eigenvalues have positive real parts, thus the fixed point 

is unstable. If the opposite case    , it would be a stable spiral or node. 

 

 Case 3:    : In that situation, at least one eigenvalue is 0. This means that 

there is a line or a plane of fixed points [19]. 

This classification is represented in the following diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inside this classification, notice that there are limiting cases - the frontier lines 

between different regions - but, since they will not be used in this bachelor thesis, they 

will be left for other studies. 

Herein the basic tools for the analysis of linear systems - phase plane plots and 

stability analysis -. Nonetheless, nonlinear biological systems need more tools to be 

properly studied. 

  

                                                           
1
 The characteristic equation can be written as                     . Then,        

and         
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1.2.4.2 Linearization 

Most solutions of nonlinear systems cannot be extracted analytically. The only way to 

address such problems is by means of numerical methods. In spite of this, nonlinear 

systems can be analyzed from a quantitative perspective. This corresponds to 

obtaining the phase plane without the need of computing the solutions to the system. 

As said before, when dealing with linear systems, classification of fixed point in the 

phase plot is almost straightforward, it just requires solving an eigenvector-eigenvalue 

problem. Nevertheless, the same process cannot exactly be applied to nonlinear 

systems.   

In this way, linearization can be thought as the pre-processing step that must be done 

when analyzing nonlinear systems’ stability. The hypothesis would be that the phase 

plane plot located close to the fixed points of the nonlinear system is similar enough so 

that it can be approximated by that of the corresponding linear system [19]. At the end, 

the algorithm behind linearization results into the substitution of our initial matrix A in 

equation 1.15 by the Jacobian matrix. Once that matrix is calculated, it will have to be 

evaluated at all fixed points in order to classify them. 

Then, starting with a 2D nonlinear system defined as: 

 

         

         
 (1.23) 

With (x*, y*) as the fixed point, 

 

                    (1.24) 

 

Then, introducing some disturbance close to the fixed point, two additional 

components are described: 

                  (1.25) 

With this change,            can be expressed as: 

 

 
  
  
  

 

 
 

  

  

  

  
  

  

  

   

 
 

       

        

 
 
 
                  

 

(1.26) 

If quadratic terms are neglected, the resulting system is a linearized system whose 

fixed points can be classified applying the criterion for linear systems to the Jacobian 

evaluated at the fixed points. 

The neglection of the quadratic terms is a reasonable assumption provided that the 

eigenvalues have a nonzero real part. When this does not apply, Re( )=0, that 
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Fig. 1.7:  Limit cycle in phase plane plot representation (left) and conventional time visualization (right) 

[12] 

assumption is not valid since the fixed points correspond to those lying on the frontier 

between different regions. In those situations, other approaches need to be used: 

 

1.2.4.3 Limit cycles 

Limit cycles are defined as isolated closed trajectories, meaning that trajectories near 

them are attracted or repelled by them, so they are not closed [19].  The concept of 

stability in limit cycles is relatively similar to that of fixed points. Attracting limit 

cycles are called stables and repulsive ones are known as unstable.  

 

 

The role of limit cycles in biological systems is critical as it will be explained in the 

following sections. The reason is that they are the phase plane representation of 

systems with self-sustained oscillations [19], with periodic solutions, which are 

characteristics of biological processes like transcription and translation in genetic 

networks. Other examples of limit cycles are circadian rhythms or heart beating. 

Another feature of limit cycles is that they are a nonlinear phenomenon. 

 

When analyzing nonlinear systems there are strategies used to discard the existence of 

limit cycles (gradient systems, Lyapunov functions or Dulac’s criterion) as well as a 

theorem to determine that closed orbits exist in the given system. Such theorem is 

known as Poincaré-Bendixson theorem.  

 

Then, limit cycles can be described as isolated trajectories in the phase plane causing 

neighboring trajectories to spiral into it or out of it as time tends to infinity.  
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Fig. 1.8 Saddle node bifurcation phase plane plot. As the control parameter decreases, the fixed 

points become closer to each other until finally disappear. This bifurcation appears in systems 

with the form:                [19] 

1.2.4.4 Bifurcations 

So far, when analyzing dynamical systems, all parameters associated to the state 

variables were assumed to be both fixed. However, as mentioned in section 2.1.2.1, it 

is possible to gradually change some parameters for each simulation so that the 

system’s behavior can be studied under different environmental conditions. Those 

parameters are called control parameters and play an important role in the stability of 

the model, as they will be responsible for their creation or destruction of fixed points 

and limit cycles. These qualitative changes in the stability of the systems are called 

bifurcations. In this epigraph, some of the most important bifurcations will be 

presented. 

 

 Saddle node bifurcation: it is the basic mechanism by which fixed points are 

created or destroyed [19]. Imagine a phase plane plot with two fixed points, one 

stable and another unstable. Then, as the chosen control parameter is changed, 

both fixed points approach to each other. Eventually, they collide and disappear. 

 

 

 

 Transcritical and pitchfork bifurcations: sometimes one fixed point will exist for 

all values of the parameters. In this case, changing the value of the control 

parameter will not create nor destroy such fixed point but it will modify its 

stability. This is what happens in transcritical bifurcations. On the other hand, in 

pitchfork bifurcations, one fixed point gives rise to three fixed points as the 

parameter is changed. This bifurcation commonly appears in systems showing 

symmetry. 

Subcritical and supercritical features are given by the cubic term in pitchfork 

bifurcation. When it is positive - subcritical bifurcation - there is an abrupt 

change transition in the fixed point that changes from stable to unstable. Such 

blow up effect causes x(t) to jump to infinite in a finite time. That is the reason 

why subcritical pitchfork bifurcations are unwanted in biological systems, as 

they imply that small disturbances can destabilize the whole system.  
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Fig. 1.9 Supercritical pitchfork (left) and Subcritical pitchfork (right) bifurcation diagrams.  

Their prototype formulas are:                                         

respectively [19]  

Fig. 1.10 Real eigenvalues in the negative half plane (a) and complex eigenvalues with negative 

real parts (b) [19]. 

 

 Hopf bifurcation: there is another way fixed points can change their stability. 

Let’s assume that the system under study has a stable fixed point. This 

automatically implies that its eigenvalues have negative real parts. To be more 

precise, there are only two options: the eigenvalues are both real and negative or 

they are complex eigenvalues with negative real parts. Either way, the 

eigenvalues of the fixed points must move to the positive real half plane (right 

plane) in order to change its stability. The bifurcations explained before 

correspond to such transition in real eigenvalues. Hopf bifurcation appears when 

the real part of complex eigenvalues crosses to the positive plane [19] (Fig. 

1.10). In this way, similarly to pitchfork bifurcations, there are supercritical and 

subcritical Hopf bifurcations.  

 

 

Supercritical Hopf bifurcation occurs when a stable spiral turns into an unstable 

spiral surrounded by a limit cycle. In other words, for certain values of the 

parameter, the fixed point behaves as a sink, attracting neighboring trajectories 

in a circular way (stable spirals). Initially, they are attracted strongly, which in 
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Fig. 1.11 Supercritical Hopf bifurcation. When the bifurcation point is crossed, the stable spiral 

(left) becomes into a unstable spiral surrounded by a stable limit cycle. Possible system: 

                   [19]. 

 

mathematical terms means exponentially, but as parameter changes such 

attraction becomes weaker – algebraic - until eventually when the eigenvalues 

acquire positive real parts the fixed point reverses becoming into unstable. Then, 

it behaves as an unstable spiral constricted within a stable limit cycle.  

 

 

From an oscillatory perspective, supercritical Hopf bifurcations can be 

understood in the following way: initially, the system exhibits oscillations that 

progressively become smaller in amplitude until converging into a steady state -

damped oscillations-. However, when the control parameter crosses the 

bifurcation point, the system exhibits the opposite effect: it starts with a constant 

value and small-amplitude oscillations appear resulting into limit cycle 

oscillations around the steady state [19]. 

The example described above represents an ideal case in which the eigenvalues 

have the following form: 

       (1.27) 

Consequently they cross the imaginary axis as   positively increases. Although 

idealized, it allows to extract important conclusions about supercritical Hopf 

bifurcations. The first one is that the amplitude of the limit cycle continuously 

increases from zero, being proportional to       near the bifurcation point ( ) 

[19]. The second one is that the frequency of oscillations located at the 

bifurcation point is         being the period is     
                

Obviously, the example is ideal but there are some missing points, like the fact 

that most Hopf bifurcations do not have circular limit but elliptical cycles. In 

spite of this, those two conclusions can be safely generalized for most situations. 

The second type of Hopf bifurcation is the subcritical Hopf bifurcation. As 

stated before, this case can be potentially dramatic when facing it in real 

systems. In this case, the phase plane plot is different. Initially, for a certain 

parameter range there is a stable fixed point that co-exists with two concentric 
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Fig. 1.12 Subcritical Hopf bifurcation phase plant plot [19]. 

 

limit cycles, the inner one unstable and the outer one stable. Consequently, 

trajectories whose initial conditions lie between the fixed point and the unstable 

limit cycle will be circularly attracted towards the stable fixed point (stable 

spirals). In contrast, those trajectories starting out of the unstable limit cycle will 

move to the outer stable limit cycle. In this way, at the same time there would be 

two stable states: one steady-state and an oscillatory state.  However, when the 

control parameter changes what happens is that the inner limit cycle tightens 

each time more becoming closer to the stable fixed point. At the end, there is 

annihilation between them when the amplitude of the unstable limit cycle 

reaches zero, it collides with the stable fixed point. This event produces a blow-

up effect since solutions that used to be close to that fixed point are suddenly 

forced to become large-amplitude oscillations [19] attracted to the stable limit 

cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Other bifurcations: Beside Hopf bifurcations there are other bifurcations 

involved in the destruction and creation of limit cycles like saddle-node 

bifurcation of cycles, the infinite period bifurcation or the homoclinic 

bifurcation, each of them with their associated characteristics and established 

amplitude and period of the limit cycles.  

 

 

1.2.5 Gene regulatory networks 
 

Our system is a gene regulatory network, which is defined as a set of genes whose 

derived proteins regulate the expression of some of each other. 

Gene expression is a process divided into two stages: transcription and translation. The 

first term refers to the process by which DNA is converted into mRNA. This process is 

performed by an enzyme called RNA polymerase that binds to the promoter region in 

the gene [12]. Translation is the process by which ribosomes read the mRNA 

synthesizing the corresponding protein. What makes gene regulatory networks different 

from other chemical reaction networks is the high number of reactions they involve. 

Additionally, the mentioned continuum hypothesis - assuming that the number of 
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Fig 1.13 Diagram showing regulated gene expression by activator and repressor [12]. 

 

reacting molecules is high enough so that it is possible to described species abundance 

using concentration - requires to be revisited. These genetic processes affect to a 

relatively low number of molecules, something that in principle would disable such 

hypothesis. In addressing the behavior of systems with low molecule counts, we can 

justify the mass-action formalism by interpreting differential-equation models as 

descriptions of the average behavior over a large population of cells [12].  

 

In regulated gene expression (Fig. 1.13), such regulation occurs by controlling the 

initiation of transcription.  

Within prokaryotes that happens when the enzyme initiating the transcription, RNA-

polymerase, binds to promoter region in the gene. Such association event is influenced 

by a second protein, called transcription factor that binds to the operator regions - 

nearby promoter region -. That transcription factor can be an activator or a repressor of 

the transcription. Even in the absence of the activator, a gene can still be expressed, 

therefore, a term referring to the basal transcription rate must also be considered.  
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Fig. 1.14: Auto-inhibition/activation diagram of a genetic circuit [12]. 

 

it is possible to express the binding of a transcription factor as: 

 

    

 

 
 

   

Where O is the operator, P is the activator or repressor and OP is the combination of 

both. As the binding-unbinding process occurs much faster than the gene expression 

itself, it can be assumed to be in equilibrium [12]. In a parallel way, the number of 

operators that have attached transcription factors is assumed to be proportional to the 

transcription rate. To model it, it can be assumed to depend on that fraction of bound 

operators: 

 

                                    
    

        
 (1.28) 

 

Taking into account that: 

  
 

 
 

      

    
      

      

 
 (1.29) 

 

 

Introducing it into equation 1.28: 

 

                
        

            
     

     

       
 

(1.30) 

 

Where    is the basal transcription rate and   the maximal transcription efficiency. 

 

Transcription of a gene can also be regulated by a repressor –now the transcription rate 

would be proportional to the number of unbound operators, by multiple transcription 

factors. The level of complexity can even increase more if one accounts for 

cooperativity. 

 

The simplest example of genetic regulatory network is that one of gene whose translated 

protein auto-inhibits or auto-activate its expression.  
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The auto-inhibition can be modeled as: 

 

     

  
  

 

        
        (1.31) 

 

Where p(t) is the concentration of transcription factor, K is the equilibrium constant -

assuming the binding is much faster than the gene expression itself - and    accounts 

for the degradation of the repressor. 

 

Other examples of important gene regulatory networks include genetic switches like the 

Lac Operon or oscillatory gene networks like the Goodwin oscillator. Within the last 

group, it is possible to find synthetic oscillatory networks over which this thesis will 

revolve around. 

 

 

1.3 Project background  
 
The work developed in this bachelor thesis is focused on the article “A fast, robust and 

tunable synthetic gene oscillator” (2008) [20]. This publication, together with “Robust, 

tunable biological oscillations from interlinked positive and negative feedback” (2008) 

[21] constitute the main research lines adopted in this bachelor thesis. Additionally, the 

third pillar of this thesis comes from the studies and experiments, Saúl Ares had 

performed related to those scientific articles. 

Articles [20] and [21] highlighted the idea that the combination of positive and negative 

feedback loops in gene regulatory networks enabled to increase the robustness of 

oscillations. [21] studies such hypothesis in real biological oscillators like circadian 

rhythms or mammalian heart rate, [20] applies that hypothesis to the construction of a 

synthetic oscillator. The fact that sustained oscillations could be generated by negative 

feedback loops was already known in systems biology, however, there were many 

biological oscillators that not only had a negative feedback loop but also a positive one 

[21]. The advantages and the implications of such characteristic were poorly understood 

until both articles were published. Both concluded that the advantage of mixed feedback 

regulatory networks over only negative-feedback networks was found on the greater 

tunability of systems with positive feedback loops. While frequency was difficult to 

adjust in negative feedback loops without dramatically affecting the amplitude, the 

addition of the positive feedback diminished such dependency. This advantage would 

contribute to explain the predominant existence of mixed feedback loops in biological 

processes required to operate at a different range of frequencies but giving the same 

output, like the heart beating. 

In [20], researchers arrived to the same conclusion by showing that the deletion of the 

positive feedback loop avoided the possibility of tuning the oscillation period - and thus, 

frequency -.  Thus, the contribution of both investigations is fundamental for the future 
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of synthetic biology, the design of a genetic “clock” - a synthetic oscillator - that would 

release drugs when needed or express a given protein, like insulin, every certain time 

period [22]. 

 

1.4 Objectives 

 
The main objective of this bachelor thesis is to analyze the synthetic oscillator 

developed in the article “A fast, robust and tunable synthetic gene oscillator” [20]. This 

general objective can be divided into several subgoals: 

 

1. To understand from a biological point of view all the components and 

interactions within this biological system. 

 

2. To develop a mathematical model for this synthetic oscillator. 

 

3. To study the changes in the qualitative behavior of the system when varying 

the control parameters. 

 

4. To analyze the roles of the positive and negative feedback loops in the 

system and comparing those results with the original article. 

 

5. To develop a mathematical interpretation of the results. 
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Fig. 2.1 Network diagram of  relaxation oscillator [20]. 

 

2. Methods: 

 
This chapter describes how the mathematical model is built as well as how the 

simulations are implemented. Initially, the biological network to be modeled will be 

described and then the derivation of the differential equations will be presented. The 

following reactions, diagrams and ODEs are based on the original scientific article [20].  

 

 2.1 Step 1: Biological network to be modeled 
 

As stated in the project background, the biological system to be modeled corresponds to 

a relaxation synthetic genetic oscillator in Escherichia coli, one of the most widely used 

model organisms in molecular biology. This oscillator involves two genes whose 

resulting proteins act as a repressor and an activator for gene expression.  

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

As it can be seen in the diagram (Fig. 2.1), the synthetic gene network is governed by 

two genes AraC and LacI, each of them with the same hybrid promoter (plac/ara-1) 

formed by the activator operator site - from araBAD promoter - and the repressor 

operator site - from the lacZYA promoter - [20]. AraC and LacI products - AraC and 

LacI proteins - act as the transcription factors of that hybrid promoter: while AraC 

protein activates the expression of both genes in the presence of arabinose, LacI protein 

represses the expression in the absence of IPTG (Fig. 2.1).  

 

This dual-regulation of the promoter represents the co-existence of both negative and 

positive feedback loops.  
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Fig. 2.2 Diagram showing the effect of allolactose –IPTG- on gene expression. If it is present, it 

inhibits the binding of the repressor to the promoter. If it is absent, lac repressor can bind to the 

promoter inhibiting gene expression [12]. 

 

On one hand, AraC protein production together reinforces promoter activity - as long as 

there is arabinose and IPTG -. This process represents the positive feedback loop. At the 

same time, there is a parallel increment in LacI protein that induces promoter repression 

when IPTG diminishes. This second process is the negative feedback loop. The 

difference in activity between both loops will be responsible for the oscillatory behavior 

of the network [20]. Additionally, there is a third gene with the same promoter whose 

expression will produce a fluorescent protein that was used by the authors to 

experimentally measure the amplitude and period of oscillations. 

 

From an experimental perspective, notice that arabinose is a monosaccharide used as a 

culture medium for certain bacteria, while IPTG is a molecular mimic of allolactose. 

The latter one is a lactose metabolite that activates transcription of the lac operon by 

binding to the lac repressor, which explains why it can be used to regulate gene 

expression (Fig. 2.15) 

 

 

 

2.2 Step 2: Identification of chemical reactions 

 

In the original research araC gene and the gene coding for the fluorescent protein were 

cloned in the same plasmid –activator/reporter plasmid while the lacI gene was placed 

in a different plasmid - the repressor plasmid - . In both cases the cloned genes were 

controlled by the hybrid promoter plac/ara-1. Although it can be done in a different way, 

for instance Ares cloned them within the same plasmid. The mathematical model was 

built according to this two-plasmid experimental design, although the separation of the 

genes into two plasmids is not strictly necessary as commented with by Ares. 

In our system, it is possible to establish four different groups: reactions involved in the 

binding of the transcription factors to the promoter, transcription reactions, translation 

and post-translational reactions and degradation processes. 
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Fig. 2.3 Higher level diagram showing intermediate processes involved in the gene circuit [20]. 

 

 

 

 

 

 

 

 

 

 

 

The reactions responsible for the binding of the transcription factors to the hybrid 

promoters are the following ones: 
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Where,     
   

 refers to the promoter state in each of the plasmids -     
  corresponds to the 

activator and     
  to the repressor -. The sub-indexes coupled to each promoter define 

the state of the promoter where “i” indicates the number of AraC dimers,    (only one 

dimer can bind the promoter), while the “j” represents the number of LacI tetramers,   , 

bound to the promoter (up to two tetramers can bind the promoter). Notice that reactions 

I,II and III represent a set of reactions. Nevertheless, the latter derived differential 

equations will have to explicitly consider all possible promoter states. On the other 

hand,     
   

 accounts for DNA in its loop form [23]. Whenever in that form, AraC 

dimers are unable to bind the promoter. At the same time, these DNA loops are assumed 
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to occur just when the promoter has bound two LacI tetramers. Then, reaction VI 

corresponds to the unlooping reaction by which DNA would come to its normal state, 

and the reactions IV and V represent the looping processes. Contrary to the rest of 

reactions, looping and un-looping reactions are assumed to be irreversible. This 

assumption holds since reverse reaction rates were much slower than the forward rate, 

explaining why the researchers decided to neglect them. 

 Regarding the rate constants, ka and kr are defined as the forward binding rates of the 

activator and repressor to the operator site [23]. In the same way, k-a and k-r represent 

the rate of unbinding of the activator and repressor from the promoter. Finally, kl and kul 

are the looping and unlooping reaction rates, respectively.  

So far, the reactions I-VI described the binding processes between the transcription 

factors and the promoter. The following reactions describe the transcription from DNA 

to mRNA,     .  

    
   

  
    
          

   
      (VII) 

 

    
   

  
     
           

   
      

 
(VIII) 

Reaction VII represents the basal transcription, occurring in the absence of activator 

(AraC protein), while reaction VIII corresponds to the gene expression increase due to 

the activator-promoter binding (the promoter state is     
   

 indicates that it has attached 

an AraC dimer). ba and br are the basal transcription rates of the activator and repressor 

genes, while the product of the previous constants with α gives the transcription rates 

when the promoter has bound to the activator transcription factor -  -. 
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(XIII) 

      

   

 
    

     (XIV) 
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     (XV) 

 

Reactions IX-XV correspond to the translational and post-translational modification of 

the LacI and AraC proteins. Initially, mRNA is translated by ribosome into proteins. 

However, these initial proteins are unfolded -              -. Consequently, as it was 

described in the diagram of Fig. 2.3 the products of the translation are folded so that 

they can properly perform the corresponding function. Notice that proteins are firstly 

synthesized in its primary structure, which is just a linear sequence of aminoacids. In 

order to become functional they must at least adopt their secondary structure. Thus, 

such event is described by the two folding reactions (XI and XIII). After that, the 

monomers of LacI and AraC proteins (a and r) are functional. Nevertheless, they still 

require additional reactions. AraC monomers will undergo a reversible dimerization 

reaction -   - , while LacI monomers will be first grouped into dimers -  - and later into 

tetramers -  -. 

Within this set of reactions, ta and tr are the translation rates of the AraC and LacI 

mRNA into AraC and LacI proteins and kfa and kfr represent the folding rates of the 

previous protein precursors. Moreover, forward and inverse dimerization rates must be 

established in both the activator and the repressor proteins (kda, k-da, kdr and k-dr). In the 

case of LacI dimers, they can also be grouped into tetramers with tetramerization rates kt 

and k-t. 

 

The degradation reactions are described with the following terms: 
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  (XXVIII) 

           
   

 
      
          

   
 (XIX) 

 

Notice that this system is considered to be open because of the degradation reactions 

(XVI-XXIV). mRNA transcripts decay exponentially with degradation rates da and dr. 

The different protein forms are degraded through enzymatic reactions (XVIII-XXIV). 

These degradation reactions are crucial when modeling the behavior of the gene 

network. Proteins functioning as transcription factors - AraC and LacI proteins - are 

characterized by rapid degradation reactions. The reason behind such speed is enabling 

cells to respond quickly to external stimuli [24]. In an attempt to improve cell’s 

responsiveness to the changing environment, researchers added degradation tags to the 

proteins in the network - ssrA tags [23] -, peptide sequences genetically grafted onto 

these proteins. These degradation tags are responsible for the variable f(X) appearing as 

a rate constant in the previous degradation reactions. That constant can be defined as: 

     
 

    
 (2.1) 

 

Where X is the total number of ssrA tags in the system [23], γ represents the maximum 

active degradation rate of the tag and Ce is the number of ssrA tags so that degradation 

rate is reduced by half. Additionally, there are two other parameters that need to be 

established, λ which is the maximum degradation rate of activator protein forms and  , a 

correcting factor included when the degradation of tetramers occurs in any of the DNA 

loops forms. 

2.3 Step 3: Obtaining differential equations 

Once all the reactions have been introduced, the next step is the development of the 

mathematical model. At stated in the introduction, the two possible options were 

deterministic or stochastic simulations. The former one was the chosen one. To do so, 

the resulting deterministic ordinary differential equations were constructed on the 

grounds of the law of mass action where all equations are deterministic. According to 

this law, the rate of any chemical reaction is proportional to the product of the 

concentrations of the reactants. Additionally, the second assumption made will be the 
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continuum hypothesis. Under this second condition, it will be possible to work with 

molecule concentrations as long as the number of molecules is high enough. It is true 

that this assumption sometimes moves away from reality when modeling genetic 

networks; however it can still apply if one considers that the resulting differential 

equations do not just model the behavior in a single cell, but over a large population of 

cells (see 1.2.5 Gene Regulatory Networks). 

With those concepts in mind, it is possible to write the differential equations that will 

describe the temporal behavior of the system. Although the hybrid promoter is the same 

for both genes, since the genes have been cloned into two different plasmids, there will 

be two set of equations describing the variation in the concentration of the promoter on 

each of the plasmids. The equations describing the time variation of promoters in a 

given state are: 
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     (2.10) 

 

These first nine equations (2.2 – 2.10) represent the change in the concentration of 

promoters at a given state. Notice also that they correspond to promoters found in 

activator plasmids. There is an identical set of equations for the promoters in repressor 

plasmids (see Appendix A). 

Those equations corresponding to mRNAs and the different protein forms are written 

as: 
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So far, none of the equations accounts at the same time for promoters in both the 

activator and the repressor plasmids. The next two equations do include such 

relationship, and thus, can are critical equations to model.  
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This set of twenty seven equations (including the nine equations regarding the repressor 

plasmid in the Appendix A) will form the system of ordinary differential equations that 

will have to be solved in order to simulate the behavior of the system. 

2.4 Step 4: Solving and simulating the system 

This system of deterministic ordinary differential equations cannot be solved 

analytically. Because they are nonlinear and they include several time dependent 

variables, explaining why numerical computational algorithms will have to be used. 

Before solving the system there is a still a previous task to performed, we need to 

establish the values of the rate constants governing the chemical reactions. The 

parameters used for the simulations were the following ones: 

TABLE 2.1: PARAMETER’S VALUE USED FOR SIMULATION [23] 

Basal transcription rate activator/repressor
2
:                  

Transcription rate with one activator bound to promoter:      

Rate of unbinding of activator/repressor from promoter:                   

Translation rates of activator/repressor transcripts:                

Degradation rate activator/repressor transcripts:                  

Folding rates:                    

Dimerization rates:        
                          

Tetramerization rate of r2:                             

Dimer breaking rate:                          

Tetramer breaking rate:                  

Looping rate:                

Un-looping rate:                 

Activator/repressor active degradation rate:                      

ssrA tags that half the degradation rate:                  

Maximum degradation rate of activator proteins forms:       

Active degradation factor in looped/un-looped promoters:       

 

All these parameters are assumed to be the same for all the simulations, except for br, 

whose value will be modified later on. Furthermore, there are three missing parameters 

in table 2.1: two of them correspond to the forward binding rates of the activator dimers 

and repressor tetramers to the operator site [23]. These two parameters are kept apart 

because they do depend on environmental conditions and as consequence they will 

change depending on the chosen simulation conditions. They are expressed as: 

                                                           
2
 The rate of transcription in the repressor will be later modified (see 3.Results) 
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 (2.21) 

 

Where k-r and k-a are the unbinding rates of the repressor and the activator, respectively. 

Notice also that these two parameters depend at the same time on more parameters such 

as the maximum and minimum affinities of transcription factors to their binding sites -

    
    and     

   - (table 2.2). But more importantly, for the first time in the modeling 

steps, the two inductors appear. They are the arabinose and IPTG concentrations - [ara] 

and [IPTG] -. In fact, they can be classified as the control parameters, since they 

represent environmental conditions that can be physically controlled.   

 

TABLE 2.2: PARAMETER’S VALUE IN FORWARD BINDING RATES  [23] 

Maximum affinity of LacI tetramers to binding site:   
                    

Minimum affinity of LacI tetramers to binding site:   
                     

IPTG half strength for kr:              

IPTG cooperativity for kr:      

Maximum affinity of AraC dimers to binding site   
                  

Minimum affinity of AraC dimers to binding site   
                  

Activator half strength:                 

IPTG half strength for ka:            

IPTG cooperativity for ka:      

Activator –arabinose- cooperativity:      

 

All parameters were obtained from the original research [21]. For the sake of simplicity, 

we wanted to keep the values of the original paper. Considering the original article 

works with discrete variables and in this work, the continuum hypothesis is applied; by 

an abuse of notation we will use “number of molecules” as an equivalent to 

“concentration” in our simulation plots. As the goal of this thesis was to analyze the 

qualitative behavior of the system, this equivalency does not affect the results. 

The general name of those coefficients is Hill coefficient. The Hill coefficient is used to 

when describing reactions in which there exists some kind of cooperation between the 
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events. Just mentioned in section 1.2.5 Gene Regulatory Networks, Hill coefficient is 

used typically used when genes are regulated by transcription factors acting on multiple 

binding sites, like in this case, in which there are two operator sites, one for the activator 

- AraC dimer - and another two for the repressor - LacI tetramer -. The existence of this 

multiple binding makes transcription factors already bound to the operator site to 

influence the binding process of further transcription factors. Such influence is known 

as cooperativity and it can be modeled using the Hill function [12]: 

  
    

       
 

 

 
  

   
 
 

  

 
(2.22) 

 

Where Y, in this case represents the fraction of the transcription factor already bound to 

the ligand, [X] is the unbound ligand concentration, Ki is the ligand concentration 

needed to occupy half of the binding sites and n is the so called Hill coefficient.  

 

The third parameter missing in table 2.1 refers to the total number of ssrA tags.  

 

This parameter, affecting nearly all the degradation reactions, was not placed in that 

table because it is expected to change. The number of ssrA tags depends on each 

molecule, in such a way that there is one for each monomeric version, two for dimers 

and four for tetramers, including proteins bound to the operator sites. 

Once all the parameters have been defined, the next step was to solve the system of 

equations. As it has been mentioned several times, a system of twenty seven nonlinear 

ordinary differential equations cannot be solved analytically; instead, numerical 

methods are the most appropriate option. Within the computational field, there exist 

different options for solving differential equations. XPPAUT, Matlab, Mathematica or 

Mapple are only some examples of available computational software packages [12]. In 

this thesis, Matlab was the selected option as it is one of the programs learnt and used in 

this degree.  

In an initial value problem, like this one, the system of ODEs is solved starting from an 

initial state. From that initial condition and establishing a time interval over which the 

simulation is wanted to be obtained, the solution is obtained through iterations. In this 

                                                      

       
         

         
         

         
         

       

       
         

         
         

       

       
         

         
         

       

       
         

              
         

         

(2.23) 
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specific case, the initial conditions correspond to the initial species concentrations. All 

of them were set to zero, except the number of free hybrid promoters. 

    
          (2.24) 

    
          (2.25) 

As there was just one hybrid promoter cloned in each plasmid, the number of 

activator/repressor plasmids used determined these initial conditions. 

Once the initial conditions were established, the next step was the selection of a 

numerical ODEs solver. Matlab offers a wide variety of ODEs solvers, depending on 

the problem type they are aimed to solve [25]. An ODE problem would be stiff if the 

searched solution varies slowly, but at the same time, there were nearby solutions that 

do it rapidly. As a consequence, some numerical methods would have to use a 

extremely small step size - explicit methods - while others could perform quite well – 

implicit -. [25] [26]. As one can infer from this description, the concept of stiffness is 

related to computational efficiency. When modeling big systems of equations, one key 

variable determining the efficiency of the numerical method - solver - used is the 

computational time it needs to reach the solution. One of the factors affecting this time 

is the step size used. Ideally, in regions were the solution curve is nearly flat one would 

like the step size to be increased; the opposite behavior would be desired when solution 

curve considerably varies. Stiff problems force some numerical methods to use such 

small step size that they become exceedingly difficult to solve.  

Determining a priori if a given problem is stiff or not is not trivial, therefore, the 

common approach is to initially consider the problem as non-stiff, and then, depending 

on whether the solver is able or not to solve or the time it takes, a decision can be made. 

Initially, ode45 was used. According to Matlab’s documentation, this non-stiff ODEs 

solver should be the first one to try. However, experience showed that ode23 was more 

efficient in this case, especially in terms of computational time. This could occur 

because the problem was closer to be mildly stiff than non-stiff [27]. This solver 

consists of an implementation Bogacki-Shampine method [27]. This numerical method 

is a type Runge-Kutta method of order three. Moreover, it has added an extra second-

order method that makes possible to have an adaptive step size.  

Suppose the equation to be solved is: 

                                    (2.26) 

 

Then, Bogacki-Shampine method uses: 
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            (2.27) 
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Where yn represents the numerical solution at time tn, and hn is the step size defined as: 

           (2.31) 

 

Equations 26-29 correspond to the third-order approximation [28]. However, this type 

of Runge-Kutta method has another method of order two: 
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Where zn+1 is the mentioned second order approximation. The use of this second 

method is what actually allows adapting the step size, since the difference between zn+1 

and yn+1 is used for that adaptation purpose. Additionally, another property of Bogacki-

Shampine is the so-called FSAL - first same as last - meaning that k4 at a certain step is 

equal to k1 in the following step, therefore, it just needs three function evaluations per 

step [29]. 

Assuming all variables have been defined, the line of code calling that solver would be 

the following one: 

[t,yd] = ode23 (odefun, tspan, yd0, options); 

 

The solver receives four input arguments. Odefun input argument refers to the 

function to solve. In this case, it would correspond to a matrix containing on each row 

one of the differential equations describing the system. The second input parameters is 

tspan,which is the time interval of integration. This time span has to be defined as a 

vector with two entries for initial and final times. Ideally, the final time would be a high 

number, so that long term behavior of the system can be observed. However, the 
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greatest the time interval, the more computational time the program will take. 

Therefore, this tradeoff between computational time and desired output makes 

necessary to adjust these input parameters depending on the specific simulation to be 

performed. The third parameter yd0 corresponds to the initial conditions used to 

compute the first numerical solution. As mentioned above, all promoters, mRNA 

transcripts and protein forms were set to zero except the concentrations of free 

promoters, which received the same values as the number of activator/repressor 

plasmids used by the researchers. Finally, the fourth input parameter is an optional one 

allows the user to specify parameters like relative error tolerance [25], turn on solver 

statistics… Although available during this simulation that parameter was left as default. 

 

The output arguments of solver are t and yd. t is an array containing all the 

intermediate evaluation points between the initial and the final times introduced as input 

arguments and yd is  a matrix with as many columns as number variables the system 

has and with each row corresponding to the solution value at a time located in that same 

row of the time vector - t -.   

 

The measurement and amplitude of oscillations was done using a Matlab function called 

findpeacks. This function receives an input vector with data values and then returns a 

vector with the maxima of the input vector and another vector with the location of those 

maxima. The period was extracted by averaging the distance between the position of 

consecutive maxima. To compute the minima, the initial data was inverted (multiplied 

by -1) and then, findpeaks again was used to compute the maxima that in this case 

correspond to the original minima. Finally, the amplitude was calculated by subtracting 

to the maxima the subsequent minima. Findpeaks offers the possibility to adjust several 

parameters. In this case, one of those options, MinPeakProminence, was used to discard 

oscillations caused by the integrator itself and not by the system. 

 

 

[peaks, locs]=findpeaks(signal,'MinPeakProminence'); 

 

 

Up to this point, what it has been done is to go from the chemical reactions describing a 

gene regulatory network to obtain the differential equations required to analyze that 

system qualitatively and quantitatively. The next step was to obtain the temporal 

variation of each molecular species involved in the reaction network as a function of 

time. Those results will be presented in the following section (3. Results) and then will 

be analyzed and discussed (See 4. Discussion and conclusion ). 
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Fig. 3.1 Simulation example. Time dynamics of AraC dimers, LacI tetramers and mRNA of LacI and 

AraC as a function of time for 0.1% arabinose concentrations  and 1mM IPTG. 

3. Results: 

 
In this section, the different results obtained from the simulation of the system will be 

presented. These results will be developed from a more general to a more specific 

analysis. 

3.1 General analysis 
 

The key point about systems modeling is the possibility of testing and simulating the 

behavior of the system under different conditions. In this case, the different conditions 

correspond to the different values given to the control parameters: the forward binding 

rates of the transcription factors to the operator sites - ka and kr - which in turn depend 

on both arabinose and IPTG concentrations (see equations 2.20 and 2.21). Thus, we can 

study the system under different concentrations of each of the inducers and see how 

variations in their concentrations affect the behavior of the system. 

 

Initially, the simulations were performed using some of the values of inducers of the 

original model. First of all, the system was simulated keeping constant one of the 

inducers and varying the other one.  
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Fig. 3.2 Time dynamics of normalized AraC dimers, LacI tetramers and mRNA of both genes as a 

function of time at constant fixed 1mM IPTG and at 0.1% (A), 0.2% (B), 0.4% (C) and 0.7% (D) 

arabinose concentration. 

A 

C D 

B 

In order to perform these simulations, the arabinose values were 0.1%, 0.2%, 0.4%, 

0.7% and 1% while the IPTG concentrations varied between 0mM, 1mM, 2mM, 4mM, 

7mM and 10mM. As it can be seen in Fig. 3.1, it is a difficult task to compare the 

absolute values of the variables: i.e., the range of the variable AraC dimers is very small 

compared to the range of LacI tetramers. Changes in AraC dimers values are small due 

to the low number of molecules involved. In order to solve that, we decided to 

normalize the variables by dividing each species population by the maximum value of 

that species during the simulation.  
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Fig. 3.3 Time dynamics of normalized AraC dimers, LacI tetramers and mRNA as a function of time at 

constant fixed 0.7% arabinose and at 0 (A), 1 (B), 2 (C) 4 (D), 7(E) and 10(F) mM of IPTG. 

concentration. 

 

B A 

C D 

F E 
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Fig. 3.4 Time dynamics of AraC dimers, LacI tetramers and mRNA at 1 mM of IPTG and 

1% arabinose. 

This normalization was applied to the 30 simulations (see in the Appendix B). The 

results obtained were qualitatively similar. Although the specific variable values of the 

system changed for different simulations, in all cases the same key points can be 

appreciated. Interpreting or even describing this type of graph is a challenging task that 

requires knowledge about the specific gene regulatory network modeled. 

 

I. There is a burst beginning with the basal transcription of mRNA of both 

promoters.  

II. After a short delay, the amount of functional transcription factors increases. 

Depending on the specific concentration of arabinose and IPTG, such increase 

will be faster for AraC dimers or LacI tetramers (see Fig. 3.4). As it was 

mentioned when describing the system, AraC dimer binding to operator site will 

reinforce transcription in both genes, while LacI tetramers will have the opposite 

effect.  

III. As mRNA is translated into protein, transcription is already repressed by the 

repressor factor (LacI tetramers) resulting into a decrease of mRNA transcripts 

(blue curve).  

IV. AraC dimers and LacI tetramers population increases until the fall in mRNA 

levels produces a decrease in translation, and degradation dominates protein 

dynamics 

V. Eventually, almost at the same time, AraC dimers and LacI tetramers extinguish 

and mRNA transcripts start increasing again, repeating the cycle. 

 

 

 

 

 

 

 

 

 

 

 

I 
II 

III 

IV 

V 
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A 

B 

As it can be seen, these general simulations were performed over a time interval of 50 

minutes.  

Having normalized the plots, it was still difficult to understand from a quantitative point 

of view how the system behaved in response to changes in inducer concentrations. 

Although changes in amplitude and period of oscillations could be inferred if all graphs 

were observed at the same time, we plot the evolution of each molecule population 

against time individually for different inductor values within the same graph. Therefore, 

according to that criterion, there would be two types of graphs: one for AraC dimers and 

another one for LacI tetramers. Moreover, for each molecule, there would be two 

possible situations, one in which IPTG is kept constant and arabinose is changed and 

vice versa. The graphs associated to AraC dimers are in Fig.  3.5 and Fig. 3.6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Time dynamics of AraC dimers varying IPTG at fixed arabinose concentration 0.1% 

(A) and 1% (B) versus time. 

T
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Fig. 3.6 Time dynamics of AraC dimers at fixed IPTG concentrations of 1 (A) and 10 (B) mM with 

varying arabinose concentration versus time. 

T

A 

B 

 

Fig. 3.5A shows how at low arabinose concentrations the oscillations are almost 

identical for different IPTG concentration values. For high IPTG values, oscillations 

also look similar at different arabinose conditions (Fig. 3.6B). When arabinose 

concentration is increased to 1%, oscillations increase in amplitude and reduce in period 

when IPTG increases (Fig. 3.5B). In contrast, at low IPTG values (1mM), AraC dimers’ 

oscillations decrease in amplitude and increase in period for increasing arabinose (Fig. 

3.6A). 
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Fig. 3.7 Time dynamics of LacI tetramers at fixed arabinose concentrations of 0.1% (A) and 1% (B) 

with varying IPTG concentration versus time. 

T

A 

B 
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Fig. 3.8 Time dynamics of LacI tetramers at fixed IPTG concentrations of 1 (A) and 10 (B) mM with 

varying arabinose concentration versus time. 

T

B 

 

Similarly to AraC dimers, changes in amplitude and period of oscillations can also be 

appreciated in the dynamics of LacI tetramers. On one hand, the behavior of LacI 

tetramers is identical to that of the AraC dimers when arabinose concentration is low 

A 
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(0.1% Fig. 3.7A) or IPTG concentration is high enough (10Mm Fig. 3.8B). However, 

the other two figures (Fig. 3.7B and Fig. 3.8A) display different behaviors compared to 

that of AraC dimers plotted under the same conditions. In this case, LacI tetramers 

oscillations appear to decrease both in amplitude and period when IPTG increases (Fig. 

3.7B). At the same time, these oscillations seem to increase in amplitude and period 

when arabinose concentration increases at low levels of IPTG (Fig. 3.8A).  

These results will be further analyzed in section - 4. Discussion and conclusion -. 

However, from the point of view of the system’s behavior, all the simulations show that 

the system oscillated independently of the inducer concentrations. One of the initial 

goals of this thesis was to analyze qualitative changes in the system, something that it 

was not observed in the previous results. In an attempt to see more complex behaviors, 

we decided to modify the transcription rate of LacI. We hypothesized that that 

decreasing this transcription rate would diminish the influence of the negative feedback 

loop, which is responsible for the oscillation behavior. 

 

3.2 Analysis with a third control parameter: 

 

As previously stated, in this section we introduced a third control variable: the 

transcription rate of LacI - br -. This parameter, originally 0.36 min
-1

, was varied in 

order to modulate the negative feedback loop. Then, the oscillatory behavior of the 

system was explored. These analysis were only performed at relatively low IPTG 

concentrations (1 mM and 2 mM) since higher concentrations had been shown to 

interfere with arabinose-AraC binding and consecutive activation of promoter [23]. 

The system was simulated for the following values: 

 

TABLE 3.1 VALUES CONTROL PARAMETERS: 

br [min-1]: 0.015 0.025 0.05 0.1 0.36 

Arabinose [%]: 0.1 0.2 0.4 0.7 1 

IPTG [mM]: 1 2    

 

 

Obtaining the results shown in Fig. 3.9: 
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As it can be observed in Fig. 3.9, for the original value of br there are oscillations 

independently on the value of the other two control parameters. This situation changes 

when br was reduced. 

 

Fig. 3.9 Dynamics of AraC dimers, LacI tetramers and mRNA with original transcription rate at 1 mM and 

2 mM of IPTG and 0.1% and 0.2% arabinose concentrations. 

 

Fig. 3.10 Time dynamics AraC dimers, LacI tetramers and mRNA at br=0.015 min
-1

 at 1 mM and 

0.1% (A) and 0.2% arabinose (B).    

 

A B 
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Fig. 3.11 Time dynamics of AraC dimers, LacI tetramers and mRNA at 1 mM IPTG and different 

arabinose and br values. 

 
 

Now, when the transcription rate of LacI is reduced, changes in the behavior of the 

system for different inducer concentrations can be appreciated. For some conditions the 

variable quickly reaches the steady state (Fig. 3.10A or Fig. 3.11A). For others, there is 

an initial set of damped oscillations (Fig. 3.11B or 3.11C) or these oscillations persist 

over time (Fig. 3.11D). Although all these simulations were performed for 1mM of 

IPTG, variability in the results was also obtained when using 2mM of IPTG. This 

variability can be observed in Fig. 3.12, where AraC dimers are plotted at constant 

IPTG and arabinose concentration while varying LacI transcription rates. Depending on 

br values, the system displays oscillations or not (Fig. 3.12A).  

Although these results will be analyzed in detail in the following section, it can be 

observed that the oscillatory behavior of the system depends on the values of br. 

A B 

C D 
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 Fig.3.12 Time dynamics of AraC dimers at fixed 1 mM IPTG, 0.1% arabinose (A) and 0.2% 

arabinose (B) and varying br . 

 

A 

B 
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Fig. 3.13 Time dynamics of  AraC dimers at 1 mM IPTG and 0.4% arabinose and varying and br . 
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3.3 Restricting the interval: 
 

The simulations above indicate that there are values of the LacI transcription rate for 

which different behaviors can be observed. Following that, the next step was to study 

with higher accuracy the point at which such change in the behavior of the system 

occurs. This change in the behavior (and then in the stability) of the system corresponds 

to a bifurcation.  

Among the different possible inducer inducers concentrations and br values over which 

the system had shown persistent oscillations and convergence to a steady state, the 

following conditions were chosen: 

 

                                                                  

 

Simulations were performed at fixed IPTG and br and varying the arabinose 

concentration. As shown in Fig. 3.10, another valid approach could have been fixing the 

arabinose concentration and changing the repressor transcription rate. The reason why 

varying arabinose was preferred is that it is a parameter that it is easier to control 

experimentally. 

 

Another important parameter to consider was time. In this case, the closer arabinose 

concentration was to the bifurcation point, the more time would be needed to simulate 

the system. Very long simulation times will be the only way to observe if the 

oscillations are maintained in time or in contrast are damped very slowly to reach a 

steady state. The main drawback derived from these long simulation times was the 

associated long computational times. 

 

Having said that, initially the behavior of the system was simulated with the above 

parameters using increments of 0.005% in arabinose concentration. 

Figure 3.14 Time dynamics of AraC dimers, LacI tetramers and mRNA at 1 mM IPTG, br=0.015min
-1 

and varying arabinose versus time.  Right panel represents amplified regions of the left panel.  
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A 

 

 

 

 

 

 

Thanks to these simulations, it was possible to restrict the interval of interest between 

0.19 and 0.2 % arabinose concentration. Additionally, the period and the amplitude of 

the oscillations were also computed. For those simulations in which oscillations were 

damped, the period together with the amplitude were set to zero.  Fig. 3.16 confirms that 

the bifurcation point is located inside the interval 0.19 to 0.20% of arabinose. Then, the 

next simulations were performed between 0.19 and 0.20% arabinose concentrations 

using increments of 0.0005% and increasing the simulation time up to 10
5
 minutes. 

 

 

 

 

 

 

Figure 3.15. Time dynamics of  AraC dimers, LacI tetramers and mRNA at 1 mM IPTG, 

br=0.015min
-1

 and 0.19% (A) and 0.20% (B) arabinose. Graphs at the right column are zoomed in 

regions of graphs in the left.  

 

B 
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Fig. 3.17  Time dynamics of AraC dimers, LacI tetramers and mRNA at 1 mM IPTG, br=0.015min
-1

 

and 0.194% (A) and 0.1945% (B) arabinose.  Amplitude (C) and period (D) of oscillations of AraC 

dimers at 1 mM IPTG, br=0.015min
-1

 with 0.0005% arabinose increments. 

 

A 
B 

 

 

 

 

Fig. 3.16 Amplitude (A) and period (B) of oscillations of AraC dimers at 1 mM IPTG, br=0.015min
-1

 

and varying arabinose.  

 
A 

C D 

B 
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As it can be seen in Fig. 3.17, the change in system’s behavior occurred between 

0.194% and 0.1945%, passing from damped oscillations to persistent oscillations. This 

sharp transition can also be inferred in the graphs showing period variation (Fig. 3.18). 

As consequence, the interval of interest was restricted to 0.194 - 0.196% arabinose 

concentrations. This resulting interval was again analyzed by reducing the step size of 

arabinose concentration to        (10 times smaller than the simulations before). 

 

 

 

 

These simulations allowed to restrict the interval of arabinose concentration values 

containing the bifurcation point to 0.1944% to 0.1945% arabinose. Such interval was 

analyzed in the following simulations, reducing the arabinose increments to        

and increasing the time up to 500,000 minutes.  

 

Fig. 3.18 Time dynamics of AraC dimers, LacI tetramers and mRNA at 1 mM IPTG, br=0.015min
-1

 

and 0.1944% (A) and 0.19445% (B) arabinose.  Amplitude (C) and period (D) of oscillations of AraC 

dimers at 1 mM IPTG, br=0.015min
-1

 with 0.00005% arabinose increments. 

D C 

B A 
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Fig. 3.20 Time dynamics of AraC dimers, LacI tetramers and mRNA at 1 mM IPTG, br=0.015min
-1

 

and 0.199442% (A) and 0.194425% (B) arabinose concentrations. 

 

 

 

 

 

Fig. 3.19 shows how the location of the bifurcation point is somewhere between 

0.19442% and 0.194425% arabinose. Interestingly, as we get closer to the bifurcation 

point, the amplitudes become progressively smaller. Finally, a last interval restriction 

was performed by simulating the system within that interval with smaller arabinose 

increments. These results are displayed below:  

 

 

Although apparently similar, those two arabinose concentrations are responsible for 

inducing different system’s behaviors. If the graphs in the Fig. 3.18 are amplified, the 

difference becomes more evident. 

Fig. 3.19 Amplitude (A) and period (B) of oscillations of AraC dimers at 1 mM IPTG, br=0.015min
-1

 

with 0.000005% arabinose increments. 

 

A B 

A B 
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Fig. 3.21 confirms such thought: the arabinose concentrations induce different 

behaviors.  At 0.19442% arabinose the oscillations do not come from the system itself 

but from the integrator used to solve the differential equations. Consequently, the 

resulting oscillations do not have a sinusoidal but a triangular shape and are much 

smaller in amplitude than real oscillations observed at 0.194425% arabinose. Thus, we 

Fig 3.21 Amplification of fig. 3.20.  LacI tetramer variation. 

 

A 

B 
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consider 0.19442% of arabinose as a steady solution in which oscillations are assumed 

to extinguish while the system does oscillate at 0.194425% arabinose. 

 

 

 

 

These final simulations made possible to restrict the location to the bifurcation point to 

the interval going from 0.1944235-0.1994425 % arabinose concentrations.  

 

  

Fig. 3.22 Amplitude (A) and period (B) of oscillations at 1 mM IPTG, br=0.015min
-1

 with 

0.0000005% arabinose increments. 

 

 

A 

B 
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4. Discussion and conclusion 
 

4.1 Interpretation of the results 
 

 

The system under study is called a relaxation oscillator or relaxoscillator which codifies 

for two different transcription factors: one activator and a repressor. Both genes have 

the same promoter which can be regulated by both transcription factors (the activator 

and the repressor). This system is able to produce persistent oscillations. Initially, the 

activator and the repressor are expressed together, but then, when there is enough 

repressor, this cuts off gene expression of both transcription factors. Consequently, the 

number of activators and repressors is reduced. After some time, repression is relieved 

and gene expression of both transcription factors starts, initiating again the cycle. The 

name of relaxoscillator is due to the alternation of periods of gene expression and 

periods without expression. One of the features of this system that enables oscillations 

is the time delay between reactions. If there was no time delay between gene expression 

and gene repression processes, there would be no oscillations. As soon as the expression 

of repressor was different from zero, it would automatically repress gene expression. 

The time delay between reactions was achieved by the inclusion of intermediate 

reactions such as folding of protein precursors, protein multimerization, translation or 

DNA looping. Hasty and coworkers [20] exposed it was mandatory to consider these 

intermediate processes in order to reproduce the experimental behavior of the system. 

 

The coexistence of an activator and a repressor acting on the same promoter requires to 

be examined. As it was shown in Fig. 2.1, this dual-opposite regulation of the genes 

results into two feedback loops. The negative feedback loop is represented by the 

inhibition of the transcription in both genes by LacI tetramers. On the other hand, the 

positive feedback loop is caused by the activation of transcription via AraC dimers. The 

strength of these feedback loops can be controlled with two parameters: arabinose and 

IPTG. The negative feedback loop will be weakened if there is enough IPTG. At the 

same time, the increase in arabinose concentration will reinforce the positive feedback 

loop.  

 

Initially, the goal of the simulations was to observe the behavior of the system under 

different conditions. Arabinose and IPTG concentrations were the two control 

parameters allowing for different simulations. As described in equations 2.20 and 2.21, 

these inducers affect the forward binding rate of the transcription factors - AraC dimers 

and LacI tetramers - to the operator sites. Their association to the activator or repressor 

promotes or hinders the successive binding process between the transcription factor and 

the promoter. In case an AraC dimer binds to arabinose, the binding rate of the activator 

- AraC dimer - to the promoter will be faster and then, the transcription rate will also be 
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faster due to the presence of the activator. Therefore, more arabinose will result into 

higher transcription rates of both genes and thus higher protein expression. In the 

simulations, increasing the arabinose concentration keeping fixed IPTG concentration 

resulted into increased amplitude of LacI tetramers and a decrease in AraC dimer 

amplitude with a combined increase in period (Fig. 3.6A and Fig 3.8A). Increasing 

arabinose at constant IPTG means higher binding association rate of AraC dimers to the 

promoter. The binding of the activator causes faster transcription rates in both genes. 

The increase in the number of mRNA transcripts eventually causes an increase in AraC 

dimers. However, as it can be seen in Fig. 3.6A, the number of AraC dimers appears to 

be reduced with higher arabinose. The reason is that those AraC dimers refer to the 

number of unbound AraC dimers. Therefore, a decrease in the amplitude as it can be 

seen in the figure indicates in fact an increase in the number of AraC dimers bound to 

the promoter. This makes sense since the direct effect of arabinose was precisely 

favoring that binding.   

 

Regarding LacI tetramers, they increase in amplitude because of the previously 

mentioned increase of transcription rate. An increase of arabinose reinforces the positive 

feedback loop which in turns causes higher number of transcription factors. The number 

of unbound AraC dimers decreases because such reinforcement of the positive feedback 

loop promotes the binding of these dimers to the promoter. 

 

When IPTG is high, independently of the arabinose concentrations, the period and the 

amplitude of oscillations is almost identical, as IPTG has interfering effects on AraC-

arabinose binding, and therefore, on the activation of the promoter [20].In the second 

type of simulation, arabinose is kept constant while IPTG concentration varies. When 

arabinose concentration is very low, similarly to what occur at very high concentrations 

IPTG, the amplitude and the period of oscillations remain almost constant 

independently on IPTG variations (Fig. 3.5A and Fig. 3.7A). 

 

When there is enough arabinose and IPTG is increased, AraC dimers increase in 

amplitude while LacI tetramers decrease in amplitude. IPTG binds to LacI tetramers - 

the repressor – and to AraC dimers – the activator -, avoiding their binding to the 

promoter. According to the results, AraC dimers grow in amplitude (Fig. 3.5B) while 

LacI tetramers decrease in amplitude (Fig. 3.7B) for increasing IPTG. Therefore, IPTG 

increase will diminish the strength of the negative feedback loop by decreasing the 

number of LacI tetramers. Regarding AraC dimers, IPTG will cause unbound dimers to 

grow in number –since it will lower the binding rate to the promoter – as it can be seen 

in figure 3.5B. 

 

This initial set of results allowed to understand the behavior of the system under 

different conditions. The system’s behavior could be considered to be uniform, meaning 

that independently on the inducer values, the system always displayed sustained 

oscillations. From a mathematical point of view, this oscillating long term behavior of 
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the system corresponds to the existence of a limit cycle at those values. One of the goals 

of this thesis was the mathematical interpretation of the behavior of system. However, 

the lack of variability in system’s behavior oversimplified too much the analysis. 

Therefore, in an attempt to find those changes in the long term behavior of the system 

we decided to simulate the system under the control of a third parameter: the 

transcription rate of the repressor. From a control point of view, the negative feedback -

provided there is time delay - is the one responsible for the oscillating behavior. 

Therefore, from a theoretical point of view, decreasing the strength of the negative 

feedback loop should eventually cause the extinction of the oscillations. The influence 

of the negative feedback loop in the system was reduced by decreasing the transcription 

rate of the repressor gene - LacI gene -. Several simulations were performed with 

reduced br values (Fig. 3.12, Fig. 3.13). From these simulations several ideas could be 

extracted: 

 

 For arabinose concentrations greater than 0.4% the system displayed oscillations 

for low values of br (Fig. 3.13). Arabinose reinforces gene expression of both 

genes. Therefore, more arabinose indirectly causes also to reinforce the negative 

feedback loop as there will be more LacI expression, and then, it will be more 

likely that a LacI tetramer binds to the operator inducing repression and then 

oscillations even if br has been reduced. 

 

 There were no remarkable differences between simulations at 1mM and 2 mM 

IPTG, due to the proximity between these concentrations. 

 

 Even at low arabinose concentrations, convergence to a steady state (a non 

oscillating behavior) was only observed for relatively low values of br (less than 

a third of the original value). 

Therefore, the main conclusion obtained from this second set of simulations was that in 

order to appreciate changes in the long term system’s behavior, two conditions had to be 

satisfied: low arabinose concentrations and low repressor transcription rate. Those 

conditions made possible to see transitions from a steady state to persistent oscillations. 

From a mathematical point of view, the transitions between those states are the 

confirmation of the existence of a bifurcation. The presence of persistent oscillations is 

an indicator of a limit cycle while its absence or convergence to a steady solution 

indicates the existence of a fixed point. This change in the dynamics of the system was 

hypothesized to be due to a Hopf bifurcation. According to the theory, Hopf 

bifurcations occur whenever the behavior of the system changes from damped 

oscillations decaying progressively to the steady state as the parameter is varied, to 

persistent limit cycle oscillations around the previous steady state. If the limit cycle 

oscillations initially start from zero amplitude, such Hopf bifurcation is called 

supercritical. However, a discontinuous change of oscillations’ amplitude will make the 

bifurcation to be classified as subcritical (see Fig. 1.11). This jump in amplitude is 
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specifically one of the features that was used to infer which type of Hopf bifurcation the 

system was going through.  

Although there is an analytical criterion to determine the type of Hopf bifurcation, this 

can become difficult to apply [19]. Consequently, in order to take that decision, we 

decided to perform simulations within a parameter interval whose end values were 

known to cause different long term behaviors. To do so we decided to perform the 

simulations between 0.1% and 0.2% arabinose concentrations, at 1 mM IPTG and 

              . As it had been checked before, the simulation of the system at the 

lower limit of arabinose resulted into the convergence to a steady state, while the system 

had persistent oscillations for the upper limit of arabinose concentrations. An important 

factor to consider in this third set of simulations was the time. As previously stated, 

starting from damped oscillations, the closest the system is to the bifurcation point, the 

more time these oscillations will take to decay. Therefore, these simulations will require 

much longer times to confirm whether there is an effective decay or not. 

Firstly, the simulations were performed between 0.1% and 0.2% choosing increments of 

0.005% in arabinose concentration. The results proved that at 0.19% arabinose 

concentration oscillations were damped to the steady state. Starting at 0.1% arabinose, 

successive values induced damped oscillations longer time (Fig. 3.14 and 3.15A). This 

is progressively longer ringing before reaching the steady state was one of the features 

of Hopf bifurcations above described. The amplitude and period of oscillations was also 

computed in such a way that if the oscillations decayed, both were considered to be 

zero. Although the amplitude seemed to increase drastically (Fig. 3.16A), this increase 

was not due to the bifurcation itself but due to the big step size within the interval of 

arabinose. Whenever analyzing the amplitude of the oscillations once the bifurcation 

point has been crossed, one must be sure that the control parameter is effectively close 

to that bifurcation point, something that could not be confirmed when using such big 

step size.  

Consequently, the simulations between 0.1% and 0.2% allowed to restrict the parameter 

range containing the bifurcation point. In the following simulations, the interval was 

restricted to 0.19% and 0.20%, the step size of arabinose increments would be reduced 

ten times and the simulation time would increase ten times more, in prevision of a 

longer oscillation decay (Fig. 3.17A and B). The same process was repeated again. 

Analyzing the amplitude and the period of the oscillations allowed to restrict the 

interval to 0.194% and 0.196% of arabinose (Fig. 3.17C and D). As it can be seen when 

the amplitude is plotted against arabinose increments (Fig. 3.17C and D), the amplitude 

seemed to grow fast. At this point, there were two possible reasons explaining that 

sudden increase: the Hopf bifurcation was subcritical or the step size used as arabinose 

increments. Too big arabinose increments cause consecutive arabinose concentrations to 

be too far from each other to consider significant the increase in amplitude.  
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In an attempt to solve that doubt, a third set of simulations was performed in that 

interval [0.194% - 0.196% arabinose] with smaller arabinose increments (       %) 

(Fig. 3.18A and B).  This last set of simulations successfully restricted even more the 

interval of interest, but more importantly, they show a curve with a peculiar shape as it 

can be observe in Fig.3.18C. One of the conditions of a supercritical Hopf bifurcation is 

that the amplitude of oscillations - the size of the limit cycle – has to increase 

continuously from zero, proportionally to       provided that the system is close to 

the bifurcation point. In that expression,     represents the searched bifurcation point 

and   is the varying arabinose. The fact of having that shape implies the satisfaction of 

one of the characteristics that supercritical bifurcation has [19].  

 

 

 

 

 

Fig. 4.1 Amplitude at 1 mM IPTG and  br=0.015min
--1

 for varying arabinose. 
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In order to confirm if our system follows that condition, amplitude variation against 

arabinose increments was compared to a function proportional to       : 

 

 

 

As it can be observed, the results clearly matched the theoretical prediction (Fig. 4.2), 

and therefore, it satisfies one of the characteristics features of supercritical Hopf 

bifurcations. This discovery indicated the possible existence of a supercritical Hopf 

bifurcation around 0.1944% and 0.1945%. In spite of this, two more precise sets of 

simulations were performed to discard or reduce the possibility of a sudden increase in 

amplitude that would refute the hypothesis of a supercritical bifurcation. Simulations 

between (0.1944%-0.1945%) first (Fig. 3.19) and then (0.19442%-0.1994425%) 

arabinose concentrations (Fig. 3.20A and B) did not show sudden grows in the 

amplitude of the oscillations (Fig. 3.19A and Fig. 3.22A), reinforcing the hypothesis of 

the existence of a supercritical Hopf bifurcation. Notice that although the slope of the 

amplitude curve in Fig. 3.22A seems to be high, the increase in amplitude is small 

according to the values in the y-axis.  

Therefore, from the results obtained in section 3.3 Restricting the interval, two main 

general conclusions can be extracted. The first one is that the specific change in 

system’s behavior was very likely due to a supercritical bifurcation. This bifurcation 

causes damped oscillations converging to the steady state to decay progressively slower 

Fig. 4.2: Comparison between measured amplitude at different arabinose concentrations (in 

percentage) and theoretical prediction. Ara corresponds to arabinose values (ara   (0.1944 – 

0.196 % arabinose) and Arab refers to the bifurcation point, in this prediction it was taken 

arab=0.1944% arabinose concentration. C1 is a constant of proportionality (C1=325). 
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as they approach the bifurcation point. In contrast, once the bifurcation point has been 

crossed, there will be persistent oscillations of increasing amplitude (starting at zero 

amplitude). From a stability perspective, for smaller values than the bifurcation point, 

the fixed point would consist of a stable spiral that would attract neighboring 

trajectories to the steady solution. Such stable spiral would lose its stability when the 

bifurcation point is crossed, becoming into an unstable spiral that would be attracted 

and surrounded by a stable limit cycle. Second conclusion is that the bifurcation point 

should be somewhere between 0.194423% and 0.194424% of arabinose concentration.  

 

4.2 Conclusion 
 

This bachelor thesis can be divided into three different parts. The first one corresponds 

to the comprehension of both components and interactions of the gene regulatory 

network from a biological point of view. The second part consists of the development of 

a mathematical model to simulate the system. Finally the third part includes the 

implementation of multiple simulations of the system for later evaluation of the results.  

 

Without considering knowledge acquisition process performed prior to the beginning of 

this thesis, the first part of this bachelor thesis consists of the comprehension of the 

system from a general perspective. Understanding the basis of the components and 

interactions of the genetic network – relaxoscillator - before building the model was 

crucial. The coexistence of two genes regulated by the same promoter whose expressed 

proteins act as transcription factors enhancing or inhibiting gene expression was the key 

concept. It is important to emphasize the following: in some biological systems, the 

direct observation of the interactions’ diagram is enough to successfully predict the long 

term behavior of the system. In that case, the mathematical model will only confirm the 

initial predictions. However, in some other cases, when dealing with non-linear systems, 

human intuition can fail when trying to predict system’s behaviors under different 

conditions. In those systems, mathematical models are the only valid tools for analyzing 

the system. The relaxoscillator is a complex nonlinear system so in order to understand 

and predict the behavior of the system we need to use mathematical modeling tools. 

 

This genetic network is included among the latter systems explaining why the 

mathematical model and simulations are needed to understand and predict the behavior 

of the system with higher accuracy. 

 

The development of the mathematical model was the second objective of this thesis. 

The chemical reactions describing the interactions were available [23], and the 

differential equations could be extracted from them. The most important feature to be 

considered when modeling this specific gene network was time delay. The time delay in 

the negative feedback loop is the one responsible for the oscillations exhibited by the 
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system. As stated in the previous section, in the reference article [20], researchers 

realized about the need of including the time delay once they simulated the system and 

checked that its behavior did not match with the measured data. This time delay was 

introduced in the form of intermediate reactions like folding or dimerization.  

 

With the mathematical model built, the second objective was satisfied. The last goal of 

this thesis was to perform the analysis of the system under different conditions from a 

both a biological and a mathematical perspective. In order to do so, the different 

parameters were established and the system was simulated in Matlab. In order to 

analyze the system it was decided to move from the general to the particular case. 

Therefore, multiple simulations were performed varying the two control parameters: the 

inducers (IPTG and arabinose). The influence of inducers was not trivial to interpret. 

IPTG was shown to decrease the strength of the negative feedback loop while arabinose 

reinforced the positive one. Additionally, this initial set of simulations also enabled to 

observe how the period and the amplitude of oscillations were changed due to inducer 

variations, matching the statements that had been made by the researchers [20].  

 

These simulations is did not show the any variability in system’s behavior. Although 

they were different in amplitude and period, all simulations displayed sustained 

oscillations. This lack of variability in system’s behavior clashed with the last proposed 

objective. In front of this situation, the analysis of the behavior of the system was 

reduced to the existence of a limit cycle responsible for the oscillations. Then, the next 

step had to be obtaining some variations in the behavior of the system, like a non-

oscillating behavior. In this type of systems, the reduction of the negative feedback loop 

is known to negatively control the oscillatory behavior. To do so, the repressor 

transcription rate was added as the third control parameters. The system was simulated 

over different conditions with lower repressor transcription rate than the original case. 

The results showed a suppression of the oscillations. 

 

The transition between damped oscillations that converged into a steady state to a limit 

cycle oscillatory behavior suggested the existence of a Hopf bifurcation. The third set of 

simulations was preformed to evaluate such hypothesis as well as restricting the interval 

containing the bifurcation point. The obtained results, especially the shape of the 

amplitude curve for increasing arabinose concentrations (Fig. 4.2) reinforced it. It 

suggested the existence of a supercritical bifurcation near to 0.19442% arabinose 

concentration. Such finding supposed achievement of the last objective proposed.  
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5. Future work: 

 
 

Although in general terms the objectives were achieved, there were several areas 

susceptible to be improved and therefore, candidates for future research lines. One of 

the main limitations found during the project was the theoretical nature of itself. Ideally, 

the study of a biological system like this one should encompass both theoretical and 

practical studies. Although the system under study had been previously experimentally 

analyzed by the researchers, such analysis was performed in based to their needs.  

 

Therefore, two main research lines can be followed after this project: 

 

 To develop an experimental study to find the predicted Hopf bifurcation. The 

experimental confirmation of its presence would reinforce the validity of the 

developed mathematical model. One of the main obstacles this experimental 

study would have to overcome would be the extremely accuracy needed to find 

the bifurcation point. As shown in the results, the bifurcation could only be 

inferred when using very small arabinose increments (up to       %). 

Therefore, the experimental study would require such level of precision in the 

measurements. 

 

 To perform a theoretical study using two-parameter bifurcation analysis to gain 

a global understanding of the qualitative behavior of the system as a function of 

the inducer concentrations.  
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6. Socio-economic impact and budget: 

 

6.1 Socio-economic impact 

As mentioned in the introduction, synthetic biology was born with the aim to develop 

new applications primarily in medicine and biotechnology. In the future, synthetic 

genetic circuits will be designed for biofuel production or vaccine generation among 

other purposes. Since the beginning, synthetic biology has progressed in the 

development of synthetic circuits. The successful development of this discipline has 

been favored by the parallel progress of mathematics, computational science and 

technology. In spite of this, the contributions of these disciplines would have been 

useless if those biological systems had not been understood and modeled before. This 

means that in order to achieve its foundational goal, synthetic biology demands a 

previous comprehension of the biological system to be modeled. Such prior knowledge 

acquisition can be through experimental measures and mathematical model 

construction. Therefore, modeling biological systems will be needed before the 

construction of the synthetic circuits. The impact of this bachelor thesis must be 

understood as the contribution to the acquisition of knowledge about the given system. 

Although the validation of the model requires its comparison to the real system, once 

the model is validated, it can be used to predict the behavior of the system under 

conditions that could be never replicated in vitro but that could be possible in the real 

system. These simulations would allow one to determine critical unstable operating 

points that should be avoided when using the synthetic circuit for different applications.  

 

This bachelor thesis can be understood as one of those intermediate stages needed by 

synthetic biology to appropriately design the corresponding gene circuit. The design of 

a genetic circuit capable of expressing insulin every day at regular interval may sound 

utopist yet, but when it is achieved, it will be thanks to prior study and analysis of that 

biological system. The impact of this bachelor thesis is included as a part of that initial 

stage.  
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6.2 Budget 

 

TABLE 6.1 BUDGET BREAKDOWN 

Project description 
Author: Gabriel Rodríguez Maroto 

Department: Mathematics 
Biomedical and Aerospace Engineering  

Title Synthetic biology of genetic circuits 
Duration 7 months 

 

Budget breakdown 
Processing cost 

Description Number of units Cost per unit (€) Total cost (€) 
Computer 1 1,000.00 1,000.00 

MATLAB license 1 6,000.00 6,000.00 
 Total 7,000.00 

 

Human resources 
Description Number of hours Cost per hour (€):  Total cost (€) 

Student 600 8.00 4,800.00 
Supervisor 250 15.00 3,750.00 

Tutor 100 30.00 3,000.00 
 Total 12,550.00 
 

Other direct costs 
Description Company Cost (€) 

Internet Telefónica 420.00 
Windows 7 Microsoft 85.00 

 Total 505.00 
 

 TOTAL PROJECT COST 19,055.00 € 
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7. Regulatory framework 
 

Regarding this section, the theoretical nature of this bachelor thesis causes the absence 

of regulatory framework ruling this project. The experiments in this research work were 

done in silico; therefore no guidelines regulating cell manipulation have to be presented 

and no bioethical controversy arises. The license of the computational software used, 

Matlab, was provided by the Universidad Carlos III de Madrid. In relation to intellectual 

property, original ideas are properly cited and referred when addressing the 

corresponding scientific topic.   
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Appendix A: ODEs of repressor plasmid 
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Appendix B:  Simulations under different inducer 

conditions 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1 Time dynamics of AraC dimers, LacI tetramers and mRNA at fixed 0 Mm 

of IPTG and at varying arabinose concentrations. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2 Time dynamics of AraC dimers, LacI tetramers and mRNA at fixed 1 Mm 

of IPTG and at varying arabinose concentrations. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9.3 Time dynamics of AraC dimers, LacI tetramers and mRNA at fixed 2 Mm of 

IPTG and at varying arabinose concentrations. 



 
 

 

 

 

 

Fig. 9.4 Time dynamics of AraC dimers, LacI tetramers and mRNA at fixed 4 mM of 

IPTG and at varying arabinose concentrations. 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.5 Time dynamics of AraC dimers, LacI tetramers and mRNA at fixed 7 mM of 

IPTG and at varying arabinose concentrations. 



 
 

 

 

 

 

 

Fig. 9.6 Time dynamics of AraC dimers, LacI tetramers and mRNA at fixed 10 mM of 

IPTG and at varying arabinose concentrations. 



 
 

 


