
 

This is a postprint version of the following published document: 

Rodríguez-Martínez, J.A. Fernández-Sáez, J., Zaera, 
R. (2015). The role of constitutive relation in the 
stability of hyper-elastic spherical membranes subjeted 
to dynamic inflation. International Journal of 
Engineering Science, 93, pp. 31-45. 

DOI: https://doi.org/10.1016/j.ijengsci.2015.04.004 

© Elsevier, 2015 

 

This work is licensed under a Creative Commons Attribution-
NonCommercialNoDerivatives 4.0 International License.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288501648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ijengsci.2015.04.004


The role of constitutive relation in the stability of hyper-elastic spherical
membranes subjected to dynamic inflation

Abstract

In this work the mechanical response of hyper-elastic spherical membranes subjected to dy-

namic inflation is revisited. Specifically, a comprehensive analysis on the role that the constitutive

behaviour of the material has on the mechanical stability of the membrane has been developed.

Six different strain-energy functions, frequently used to approximate the constitutive behaviour

of elastomeric solids, have been considered: three of the Mooney-Rivlin class and three of the

Ogden class. For all the constitutive models used, the material parameters have been obtained

from Bucchi and Hearn (2013a,b), where the same set of experimental results was used to cali-

brate the models. We show that essential features of the dynamic response of the spherical shell

are closely related to the strain-energy function selected to describe the constitutive behaviour of

the membrane. As reported by Bucchi and Hearn (2013a,b), this issue is frequently overlooked

within the literature since too often only one strain-energy function is used to address this type

of dynamic problems.
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1. Introduction

Since the pioneering works of Mooney (1940), Treolar (1944, 1949) and Rivlin (1948, 1996),

the mechanics of hyper-elastic membranes under finite deformations has been a matter of great

interest for the continuum mechanics community. The contributions to this topic over the last

70 years are by far too numerous to be cited individually. We focus here the attention on the

(approximately) last decade, in which significant advances have been made on the investigation of

the mechanical stability of inflated elastomeric shells. As described by Tamadapu and DasGupta

(2013) and Kumar and DasGupta (2013), hyper-elastic inflated structures are used in modern

applications such as in balloons, self-deploying structures, terrestrial and space structures, airbags

and suspensions for cushioning and absorbing shocks. Moreover, we find an important applica-

tion within the framework of biomedical engineering since the inflation of spherical and cylindrical
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hyper-elastic shells is frequently taken as a canonical problem to investigate the formation and

growth of saccular and fusiform aneurysms (Shah and Humphrey, 1999; David and Humphrey,

2003; Haslach and Humphrey, 2004; Volokh and Vorp, 2008; Freitas, 2009; Rodŕıguez and Mero-

dio, 2011; Alhayani et al., 2014). In this regard, one should pay special attention to the papers of

Fu and co-workers (Fu et al., 2008; Pearce and Fu, 2010; Fu and Xie, 2010; Il’ichev and Fu, 2012,

2014; Fu et al., 2012; Fu and Xie, 2014) who focused on the analysis of bifurcated (bulged) con-

figurations from pressurized tubular and spherical membranes, and explored the stability of the

bulging motion. The authors stated that this bifurcation interpretation of the initial formation

of aneurysms could provide a theoretical framework under which different mechanisms leading to

aneurysms development can be assessed in a systematic manner (Fu and Xie, 2012).

Driven by the applications described above, several authors have attempted to shed light into

the key role played by the constitutive behaviour of the membrane material on the mechanical

response of the shell. One has to mention the work of Ogden et al. (2004) who carried out

a systematic study on the procedure of fitting of experimental data which is regularly used to

determine the material parameters of different hyper-elastic constitutive laws. Ogden et al. (2004)

pointed out that the fitting process often leads to non-unique optimal parameters. The authors

noted that, for a given constitutive model, to use different sets of material parameters markedly

affects the solution of boundary value problems, despite these material parameters may be fitted

using the same experimental data. With the aim of deepen into the interplay between the

material parameters and the mechanical response of elastomeric membranes, Biscari and Omati

(2010) studied the inflation of thin spherical shells modelled as a (generalized) Knowles’ material

(Knowles, 1977). By allowing the constitutive parameters to vary within a wide range of values,

Biscari and Omati (2010) showed the close relation between the values assigned to the material

parameters and the mechanical stability of the shell. Within the same framework, we highlight the

very recent work of Mangan and Destrade (2015) who, as previously did Biscari and Omati (2010),

revisited the inflation of spherical shells. Mangan and Destrade (2015) used the 3-parameter

Mooney (Mooney, 1940) and the Gent-Gent (Pucci and Saccomandi, 2002) models to describe

the membrane behaviour. The authors pointed out the constitutive sensitivity of the problem at

hand and the great influence exerted by the material parameters on the stability/instability of

the shell response.

Nevertheless, the work of Bucchi and Hearn (2013a,b) seems to be the only research paper

which relies on a significant number of different strain energy functions to provide detailed analysis



3

on the interplay between the material constitutive model and the mechanical response of the

membrane. It is pointed out by Bucchi and Hearn (2013b) that, in the recent literature, too

often only one strain-energy function is used to describe the material behaviour. Even if two

or more strain-energy functions are utilised, their parameters are frequently taken from different

sources. This practice is a drawback as soon as different sources implies that different sets

of experimental data have been used for determining the model parameters. Comparison of

alternative analyses based on using different strain-energy functions requires that the parameters

of these constitutive models have been obtained using a unique set of experiments and a common

identification procedure.

With this in mind, we develop here an analytical study with the aim of exploring specifically

the role played by the strain-energy function in the inflation of spherical shells. Unlike the work of

Bucchi and Hearn (2013a,b), the constitutive sensitivity analysis developed in the present paper

lies within the dynamic regime. While the dynamic inflation of elastomeric shells is less explored

than the static one, it was shown by Verron et al. (1999, 2001) and Yuan et al. (2010) that

inertia has a significant influence on the mechanical stability of spherical balloons. Within this

framework, we address in this paper a key issue: different constitutive models calibrated using

the same set of experimental data and the same fitting procedure provide different predictions of

the dynamic response of the spherical balloon. This highlights how crucial may be the selection

of the (appropiate) strain-energy function for (reliable) mathematical modelling of hyper-elastic

membranes subjected to dynamic solicitations. As such, our investigation complements recent

papers developed under similar premises but within the static regime, see (Biscari and Omati,

2010; Bucchi and Hearn, 2013a,b; Mangan and Destrade, 2015).

The paper is organized as follows. In Section 2 the equation which governs the dynamic

inflation of the spherical membrane is deduced. Then, the two loading cases to be analysed

are presented: a spherical membrane subjected to (1) constant inflation acceleration and (2)

constant inflation pressure step. Section 3 shows the six different strain-energy functions, from

which the constitutive relation is derived, that are selected to describe the membrane behaviour.

Three constitutive models belong to the Mooney-Rivlin class (Rivlin, 1948) and the other three

to the Ogden class (Ogden, 1972). These are classical models that have been frequently used

in the literature to describe the mechanical behaviour of elastomeric solids. In section 4 results

are presented and analysed combining, systematically, the two loading scenarios and the six

constitutive equations. We point out that essential features of the dynamic response of the shell
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are closely related to the strain-energy function selected to describe the membrane behaviour.

Specifically, we focus the attention on the effect that material constitutive modelling has on

the mechanical stability of the membrane. This issue is further discussed in section 5 where a

critical overview of the main outcomes of this research is developed. Section 6 summarizes the

key conclusions obtained from this investigation.

2. Problem formulation

2.1. Governing equation

Consider a spherical membrane of non-linear elastic, isotropic, and incompressible material of

density ρ subjected to dynamic inflation. The membrane deformation is described in spherical

coordinates (R,Θ,Φ) in the undeformed configuration, and (r, θ, φ) in the deformed configuration.

Let (R0, H0) and (r0, h0) denote the membrane midsurface radius and thickness in the undeformed

configuration and in the deformed configuration, respectively. Let σrr = 0 and σθθ = σφφ be the

diagonal components of the Cauchy stress tensor in the radial and circumferential (meridional and

azimuthal) directions respectively. Because of the spherical symmetry, all the variables depend

only on time t. The conservation of linear momentum in the radial direction leads to:

ρh0r̈0 = −2σθθ h0
r0

+ p (1)

where p is the inflation pressure and a superposed dot denotes differentiation with respect to

time.

Let λ1 = h0/H0 denote the principal stretch ratio in the thickness direction, and λ2 = λ3 =

λ = r0/R0 be the principal stretch ratios in the circumferential directions. The incompressibility

condition implies that λ1λ
2 = 1. Then, we rewrite Eq. (1) as:

ρH0R0
λ̈

λ2
= −2σθθ

λ3

H0

R0
+ p (2)

Next, we introduce the following dimensionless variables:

τ =
t

t0
; σ̄ =

σθθ
CM1
10

; p̄ = p
R0

CM1
10 H0

where t0 = R0

√
ρ

CM1
10

, being CM1
10 a material constant as further discussed in section 3.

σθθ
σ̄ = ;

CMM1C10

RR0
p̄ = pp

CMM11HH0HHC10√
ρ CM

10
M1t = R , beingt0 R0 CM1

√
CMC10
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Thus, Eq. (2) takes the following non-dimensional form:

λ̈

λ2
= −2

σ̄

λ3
+ p̄ (3)

where now a superposed dot denotes differentiation with respect to the dimensionless variable

τ . Therefore, the problem gets reduced to solve an equation of the type:

λ̈ = F (λ, p̄) (4)

with

F (λ, p̄) = −λ2g (λ) + λ2p̄ (5)

being g (λ) = 2σ̄
λ3 a function which considers the non-linear elastic behaviour of the material.

This function g (λ) depends on the constitutive model used to describe the material behaviour as

further shown in section 4.

2.2. Dynamic loading scenarios

We consider the case of the membrane initially in equilibrium and unstretched, i.e. subjected

to the following initial conditions:

λ (0) = 1; λ̇ (0) = 0 (6)

Then, two different dynamic loading scenarios are examined: (1) constant inflation accel-

eration and (2) constant inflation pressure step. One could argue that these loading scenarios

do not reflect the complexity of the dynamic loading that has to be withstood by suspensions

designed for cushioning and absorbing shocks or by aneurysms subjected to the sudden rise in

blood pressure caused by automobile accidents or sports falls (see the introductory section). Nev-

ertheless, we submit that the idealized loading scenarios we consider here can be assumed in the

interest of further understanding the role played by the constitutive behaviour of the material

on the dynamic response of the membrane, as further illustrated in section 4. These idealized

loading scenarios are required to obtain closed analytical solutions, which help to interpret the

outcomes of the analysis. Anyway, we cannot not deny that forthcoming studies of this type have

to pay attention to different kinds of time-dependent loading scenarios which characterize the

applications listed in the introductory section.
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2.2.1. Case I: constant inflation acceleration

The governing equation can be written as:

p̄ = g (λ) +
λ̈

λ2
(7)

where the inflation pressure is an explicit function of the material constitutive behaviour g (λ),

the circumferential stretch λ and the constant acceleration λ̈. To be noted that if λ̈ = 0 we obtain

the static condition.

2.2.2. Case II: constant inflation pressure step

It is straightforward to demonstrate that:

λ̈ =
1

2

d(λ̇2)

dλ
(8)

Therefore, from Eq. (4) we get:

d(λ̇2)

dλ
= 2F (λ, p̄) (9)

Since p̄ is independent of time, λ̇ can be obtained as an explicit function of λ:

λ̇ = ±

√
2

∫ λ

1
F (ξ, p̄) dξ (10)

This expression allows to obtain the phase diagrams λ̇ versus λ. Moreover, the temporal

behaviour of the circumferential stretch is obtained as:

τ =
1√
2

∫ λ

1

dζ√∫ ζ
1 F (ξ, p̄) dξ

(11)

To be noted that when the motion of the membrane is periodic (further discussions about

the oscillatory response of the membrane are presented in section 4.2), the corresponding phase

curve is a closed loop in the (λ, λ̇) plane. Then, the dimensionless period T can be calculated as:

T =
√
2

∫ λmax

1

dζ√∫ ζ
1 F (ξ, p̄) dξ

(12)

where λmax is the maximum value of the stretch in the oscillatory motion of the membrane.
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3. Constitutive modelling

Hyper-elastic (also known as Green-elastic) materials are non-linear elastic materials for which

the existence of a strain-energy function W can be postulated. The derivative of W with respect

to a strain component determines the corresponding stress component, and therefore the material

constitutive relation. Six different strain-energy functions are selected to describe the membrane

behaviour. Three belong to the Mooney-Rivlin class (Rivlin, 1948) and the other three to the

Ogden class (Ogden, 1972). The material parameters of the strain-energy functions are taken

from Bucchi and Hearn (2013a,b), where the same set of experimental results (Treolar, 1944) was

used to calibrate the models. Further, the same fitting procedure was followed to identify the

material parameters of all the strain-energy functions considered (Bucchi and Hearn, 2013a,b). It

can be easily checked that, despite they are not identical, the predictions of these 6 constitutive

models within the linear limit are rather similar.

One could argue that these strain energy functions do not reflect the complexity of the true

mechanical behaviour of elastomeric solids, whether they are structural or biological. In this

regard, one could mention the paper of Hoo Fatt and Ouyang (2008) who showed the viscid

behaviour of structural rubber-like materials within the dynamic regime, and the paper of Ogden

and Saccomandi (2007) who pointed out the need of incorporating relevant biological information

into the constitutive equations used to describe arterial walls. Nevertheless, we hold that the

simple constitutive models studied in this paper facilitate the interpretation of the results which,

in turn, enables to uncover essential features of the dynamic response of the shell. Namely, as

further illustrated in section 4, it helps to show the key role that material constitutive modelling

plays on the dynamic stability of the spherical membrane. On the other hand, in order to improve

the description of the material behaviour, in future analyses we should not discard to incorpo-

rate additional material characteristics (like viscosity, compressibility, ...) in our mathematical

modelling.

3.1. Mooney-Rivlin class

The Mooney-Rivlin class of models expresses the mechanical strain energy as:

W =
∑
i

∑
j

CMk
ij (I1 − 3)i (I2 − 3)j (13)

where I1 = λ2
1 + λ2

2 + λ2
3 and I2 = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3 are the first and second invariants of

the Green strain tensor. Moreover CMk
ij are material constants.

It

can be easily checked that, despite they are not identical, the predictions of these 6 constitutive

models within the linear limit are rather similar.

CMk
ijCC

CMk
ijCC
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Three different models of the Mooney-Rivlin family (Treolar, 1944; Rivlin, 1948; Treolar,

1949; Yeoh, 1993), frequently used to approximate the constitutive behaviour of elastomeric

solids (Wolters et al., 2005; Volokh and Vorp, 2008; Beatty, 2009; Bucchi and Hearn, 2013a,b),

are considered:

• Neo-Hookean

W = CM1
10 (I1 − 3) (14)

Note that the parameter CM1
10 is directly related to the infinitesimal shear modulus of the

material. Thus, with the aim of favoring the physical interpretation of our results, we

selected in section 2 this parameter to define the dimensionless variables of our formulation.

• Mooney-Rivlin

W = CM2
10 (I1 − 3) + CM2

01 (I2 − 3) (15)

• Yeoh

W = CM3
10 (I1 − 3) + CM3

20 (I1 − 3)2 + CM3
30 (I1 − 3)3 (16)

3.2. Ogden class

The Ogden class of models expresses the mechanical strain energy as:

W =

N∑
i=1

COk
i0

αOk
i

(
λ
αOk
i

1 + λ
αOk
i

2 + λ
αOk
i

3 − 3
)

(17)

where COk
i0 and αOk

i are material constants.

Three different models of the Ogden family (Ogden, 1972, 1997), frequently used to approxi-

mate the constitutive behaviour of elastomeric solids (Destrade et al., 2009; Volokh, 2011; Fu and

Xie, 2012; Bucchi and Hearn, 2013a,b), are considered:

CM
10
M1

CMM1Note that the parameter is directly related to the infinitesimal shear modulus of theC10

material. Thus, with the aim of favoring the physical interpretation of our results, we

selected in section 2 this parameter to define the dimensionless variables of our formulation.

CMM2C10 CM
01CCM2

CM
10
M3 CM

20CCM3 CM
30CM3

COk
iCC 0

αOk
i

OkαO(
λ
ααiλ1

OkαO

λ
ααiλ2

OkαO

λ
ααiλ3

COk
iCC 0 αOkαi
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• Ogden N=1

W =
CO1
10

αO1
1

(
λ
αO1
1

1 + λ
αO1
1

2 + λ
αO1
1

3 − 3
)

(18)

• Ogden N=2

W =
CO2
10

αO2
1

(
λ
αO2
1

1 + λ
αO2
1

2 + λ
αO2
1

3 − 3
)
+

CO2
20

αO2
2

(
λ
αO2
2

1 + λ
αO2
2

2 + λ
αO2
2

3 − 3
)

(19)

• Ogden N=3

W =
CO3

10

αO3
1

(
λ
αO3
1

1 + λ
αO3
1

2 + λ
αO3
1

3 − 3
)
+

CO3
20

αO3
2

(
λ
αO3
2

1 + λ
αO3
2

2 + λ
αO3
2

3 − 3
)
+

CO3
30

αO3
3

(
λ
αO3
3

1 + λ
αO3
3

2 + λ
αO3
3

3 − 3
)

(20)

4. Analysis and results

Following Ogden (1972), it can be easily shown that the expression for σθθ is given by:

σθθ = 2λ

(
λ− 1

λ5

)(
∂W

∂I1
+ λ2∂W

∂I2

)
(21)

Previous expression is particularized for each strain-energy function considered, and inserted

into g (λ) to explore loading cases I (section 2.2.1) and II (section 2.2.2).

To be noted that, as shown by Janele et al. (1989), the spherical symmetry and the incom-

pressibility of the material preclude the generation of wave disturbances in the problem at hand.

4.1. Constant inflation acceleration

Loading case I (section 2.2.1) is addressed. Firstly, the role of inflation acceleration on the

response of the spherical membrane is examined.

4.1.1. Influence of inflation acceleration

Fig. 1 shows the dimensionless pressure p̄ versus the circumferential stretch λ for several values

of the acceleration λ̈. Three strain-energy functions are selected within those listed in section

3, namely: Ogden N=2 in Fig.1(a), Neo-Hookean in Fig.1(b) and Yeoh in Fig.1(c). These are

chosen because they lead to three representative (distinct) behaviours for the static case (Beatty,

1987; Verron et al., 1999). The static condition is fulfilled considering in Eq. (7) that λ̈ = 0:

COO1C10=
αO
1
O1

O1

λ
αOα1

O1

λ
αOα1

O1

λ
αOα1

COO2C10

αO
1
O2

O2

λ
αOα1

O2

λ
αOα1

O2

λ
αOα1

COO2C20CC

αO
2
O2

O2

λ
αOα2

O2

λ
αOα2

O2

λ
αOα2

CO3COC10
O3αOα1

O3

λ
αOα1

O3

λ
αOα1

O3

λ
αOα1

CO3COC20
O3αOα2

O3

λ
αOα2

O3

λ
αOα2

O3

λ
αOα2 CO3COC30

O3αOα3

O3

λ
αOα3

O3

λ
αOα3

O3

λ
αOα3

To be noted that, as shown by Janele et al. (1989), the spherical symmetry and the incom-

pressibility of the material preclude the generation of wave disturbances in the problem at hand.
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• Ogden N=2 model: the static curve p̄ − λ shows neither a maximum nor a minimum;

increasing λ implies increasing p̄. Eq. (7) becomes a bijection, for every inflating pressure

p̄ there is only one real root.

• Neo-Hookean model: the static curve p̄−λ shows a maximum which determines the greater

pressure the membrane can withstand in static inflation. This is typically known as critical

static pressure or limit pressure p̄c. For 0 < p̄ < p̄c, Eq. (7) has two distinct real roots, one

on the ascending portion of the curve and another on the descending portion. For p̄ > p̄c

there is not real solution for Eq. (7), the membrane cannot withstand such static pressure.

• Yeoh model: the static curve p̄ − λ shows a local maximum p̄max and a local minimum

p̄min. The inflation curve consists on three branches, two stable and one unstable. For

0 < p̄ < p̄min, Eq. (7) has only one real root in the first stable branch. For p̄min < p̄ < p̄max,

Eq. (7) has three real roots, one in the first stable branch, one in the unstable branch and

one in the second stable branch. For p̄ > p̄max, Eq. (7) presents only one real root in the

second stable branch. To be noted that for p̄ = p̄min and p̄ = p̄max there are only two real

roots.

Irrespective of the constitutive relation, increasing values of λ̈ lead to greater values of inflation

pressure. Initial equilibrium of the membrane corresponds to p̄ = λ̈. Thus, the impact of

acceleration on the inflation curve is maximum for λ = 1 and gets gradually reduced as λ increases,

as can be deduced from Eq. (7). If λ→∞, virtually, the contribution of dynamic effects to the

p̄ − λ curve is negligible. Besides that, the shape of the inflation curves changes with λ̈. In this

regard, some specific issues have to be commented:

• Ogden N=2 model: for λ̈ = 10, λ̈ = 4 and λ̈ = 2 the inflation curve shows a local minimum

p̄min; i.e. the curve consists on one unstable branch and another stable. Sufficiently high

inflation accelerations transform the bijection of the static case into p̄ − λ curves with an

unstable portion.

• Neo-Hookean model: for λ̈ = 10 the inflation curve does not show either a local maximum

nor a local minimum, i.e. the curve consists on only one unstable branch. For λ̈ = 4 and

λ̈ = 2 the inflation curve shows a maximum; i.e. the curve consists on one stable branch

and another unstable.

¨ ¨ ¨λ λ λ

pmin;p̄m i.e. the curve consists on one unstable branch and another stable. Sufficiently high

−inflation accelerations transform the bijection of the static case into ¯ λ curves with an

unstable portion.

= 2 the inflation curve shows a local minimum= 4 and= 10,Ogden N=2 model: for•
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• Yeoh model: for λ̈ = 10 the inflation curve shows a local minimum p̄min; i.e. the curve

consists on one unstable branch and another stable. For λ̈ = 4 and λ̈ = 2 the inflation

curve shows a local maximum p̄max and a local minimum p̄min; i.e. the curve consists on

two stable branches and one unstable.

From previous analysis the following conclusions can be drawn: in comparison with static

inflation, dynamic inflation at constant acceleration (1) boosts the inflation pressure and (2)

dramatically changes the shape of the p̄− λ curves.

λ

λ
λ
λ
λ

(a)

λ

λ
λ
λ
λ

(b)

λ

λ
λ
λ
λ

(c)

Figure 1: Dimensionless pressure p̄ versus the circumferential stretch λ for several values of the acceleration

λ̈. (a) Ogden N=2 model. (b) Neo-Hookean model. (c) Yeoh model.

4.1.2. Influence of strain-energy function

Next, we pay specific attention to the role that the strain-energy function has on the dynamic

response of the membrane. Fig. 2 shows the dimensionless pressure p̄ versus the circumferential

stretch λ for two different accelerations and the six different strain-energy functions listed in

λλλ λλλ
λλλ λλλ

λ λλλλ λλλ
λ λλλλ λ

λ λ

(a) (b)

λλλ
λλλ
λλλ
λλ

λ

(c)
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section 3. Irrespective of the acceleration considered, the inflation curve strongly depends on the

strain-energy function. This relationship of dependence is such that, for given loading conditions,

different constitutive models may trigger largely different (distinctive) predictions of the dynamic

response of the membrane, as shown in Fig. 2. The p̄− λ curve may drastically change with the

strain-energy function, and therefore the conditions of stability/instability of the membrane may

do also. Illustrative examples are shown for λ̈ = 1 and λ̈ = 15:

• λ̈ = 1: (1) For Neo-Hookean, Mooney-Rivlin and Ogden N=1 models the inflation curves

show a maximum, i.e. the curves consist on one stable branch and one unstable. (2) For

Yeoh, Ogden N=2 and Ogden N=3 models the inflation curves show a local maximum p̄max

and local minimum p̄min; i.e. the curves consist on two stable branches (the first one for

Ogden N=2 is very short) and one unstable.

• λ̈ = 15: (1) For Neo-Hookean, Mooney-Rivlin and Ogden N=1 models the inflation curves

do not show either a maximum nor a minimum, i.e. the curves consist on only one unstable

branch. (2) For Yeoh, Ogden N=2 and Ogden N=3 models the inflation curves show a local

minimum p̄min; i.e. the curves consist on one unstable branch and another one stable.

The significance of these observations comes from the fact that, as mentioned before, the same

experimental data were used to obtain the material parameters for the six strain-energy functions

considered. Thus, the following conclusion can be drawn: the choice of the strain-energy function

determines the dynamic response of the membrane up to an extent that (1) constitutive models

calibrated using the same experimental data provide, for the same loading conditions, drastically

different inflation curves which (2) strongly affects the conditions of stability/instability of the

membrane.

4.2. Constant inflation pressure step

Loading case II (section 2.2.2) is addressed. Firstly, the role of inflation pressure on the

response of the spherical membrane is explored.

4.2.1. Influence of inflation pressure step

Similarly to as section 4.1.1 is developed, Ogden N=2, Neo-Hookean and Yeoh models are

selected to examine the influence of inflation pressure on the dynamic response of the membrane.

We first inspect the conditions for an oscillatory (stable) response. As discussed in section

2.2.2, when the motion of the membrane is periodic the corresponding phase curve is a closed

(2) For

maxYeoh, Ogden N=2 and Ogden N=3 models the inflation curves show a local maximum ¯m

min;and local minimum p̄m i.e. the curves consist on two stable branches (the first one for

Ogden N=2 is very short) and one unstable.
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λ

λ

(a)

λ

λ

(b)

λ

λ

(c)

λ

λ

(d)

Figure 2: Dimensionless pressure p̄ versus the circumferential stretch λ. (a) λ̈ = 1, Neo-Hookean, Mooney-

Rivlin and Ogden N=1 models. (b) λ̈ = 1, Yeoh, Ogden N=2 and Ogden N=3 models. (c) λ̈ = 15,

Neo-Hookean, Mooney-Rivlin and Ogden N=1 models. (d) λ̈ = 15, Yeoh, Ogden N=2 and Ogden N=3

models.

λ λλ λ

λ λ

(a) (b)

λ λλ λ

λ

(c) (d)

λ
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loop in the (λ, λ̇) plane. The initial conditions (1, 0) given by expression (6) define an intersection

between the λ axis and the phase trajectory, therefore this trajectory must intersect the λ axis at

least one more time for it to be a closed loop. If we set λ̇ = 0 in Eq. (10) we obtain this second

intersection of the phase trajectory with the λ axis. Hereinafter this stretch value will be denoted

as λ|λ̇=0.

Thus, Fig. 3 shows the comparison between static (λ̇ = 0, λ̈ = 0) and dynamic (λ̇ = 0, λ̈ �= 0)

inflations for the three strain-energy functions mentioned above. It has to be noted that the

shape of the p̄ − λ|λ̇=0 dynamic curves is analogous to the shape of the p̄ − λ|λ̇=0 static curves

(the latter have been previously denoted as p̄ − λ in Fig. (1)). Besides that, a number of key

points have to be highlighted:

• Ogden N=2 model: The dynamic inflation curve goes below the static one, irrespective of

the value of λ|λ̇=0.

• Neo-Hookean model: The dynamic inflation curve goes below the static one until a maxi-

mum in the dynamic curve, p̄cd, is reached. From that point on, the static inflation curve

goes below the dynamic one.

• Yeoh model: The dynamic inflation curve goes below the static one until a relative maximum

in the dynamic curve, p̄max
d , is reached. Then, the dynamic curve goes above the static one

until a local minimum in the dynamic curve, p̄min
d , is reached. From that point on, the

dynamic inflation curve goes below the static one.

Previous observations can be summarized as follows: the stable (oscillatory) portions of the

dynamic inflation curves run below the static curves, whereas the unstable portions run above. In

comparison with static inflation, dynamic inflation at constant pressure reduces the pressure that

the membrane holds under stable conditions of deformation. In other words, for given loading

pressure, the membranes experiences greater stretching under dynamic conditions. Note that the

so-called physically unacceptable regions of Fig. 3 are such for the initial conditions that we have

taken λ(0) = 1, λ̇(0) = 0.

Next, in Fig. 4 we examine the phase diagrams, λ̇ versus λ, obtained from Eq. (10) for three

selected values of the inflation pressure, namely p̄ = 2, p̄ = 4 and p̄ = 6. In the first shot of the

analysis, we will comment separately on the three constitutive models considered in this section.

• Ogden N=2 model: The phase diagram is a closed loop, Fig. 4(a), i.e. the membrane

˙taken λ(0) = 1, λ(0) = 0.

so-called physically unacceptable regions of Fig. 3 are such for the initial conditions that we have

Note that the
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λ λ

(a)

λ λ

(b)

λ λ

(c)

Figure 3: Dimensionless pressure p̄ versus the circumferential stretch λ|λ̇=0 for static and dynamic inflations.

(a) Ogden N=2 model. (b) Neo-Hookean model. (c) Yeoh model. Note that the physically unacceptable

regions are such for the initial conditions that we have taken λ(0) = 1, λ̇(0) = 0.˙regions are such for the initial conditions that we have taken λ(0) = 1, λ(0) = 0.

Note that the physically unacceptable

λ λλ λλ λ

(a) (b)

λ λλ

(c)
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shows a periodic (stable) response irrespective of the inflation pressure. This is because the

dynamic inflation curve p̄−λ|λ̇=0 is a bijection (see Fig. 3(a)). For a given inflating pressure

p̄, the membrane oscillates between the initial condition (1, 0) and the maximum stretch

(λmax, 0). The latter is represented in Fig. 3(a) by the intersection point of the dynamic

inflating curve with the corresponding pressure level. As deduced from Fig. 3(a) the value

of λmax increases with p̄. Interestingly, larger stretch rates λ̇ are also obtained increasing p̄.

In other words, as the inflation pressure increases the membrane stretches more and faster.

• Neo-Hookean model: For p̄ = 2 we have that the applied pressure is smaller than p̄cd, Fig.

4(b), as we can observe in Fig. 3(b). The phase diagram is split into two parts. (1) The

first part is a closed loop which describes an oscillation of the membrane between the initial

condition (1, 0) and the maximum stretch (λmax, 0). The latter is represented in Fig. 3(b)

by the first intersection point of the dynamic inflating curve with the pressure level p̄ = 2.

(2) The second part is an open curve which describes an unstable response of the membrane.

Let us note the origin of the curve as (λu, 0), this is represented in Fig. 3(b) by the second

intersection point of the dynamic inflating curve with the pressure level p̄ = 2. Therefore,

this behaviour is not physically acceptable for a membrane initially in equilibrium and

unstretched, i.e. subjected to the initial conditions defined by expression (6). Physically,

the membrane cannot reach the stretch value λu for a p̄ < p̄cd. For p̄ = 4 and p̄ = 6 the

applied pressure is greater than p̄cd, as we can observe in Fig. 3(b). In other words, the

applied pressure is larger than the maximum pressure that the membrane can withstand.

The phase diagram is an open curve whose origin is given by the initial conditions defined

by expression (6).

• Yeoh model: For p̄ = 2 we have that the applied pressure is smaller than p̄max
d , Fig. 4(c),

as we can observe in Fig. 3(c). The phase diagram is split into two parts. (1) A closed

loop which describes a periodic response of the membrane between the initial condition

(1, 0) and the maximum stretch (λmax, 0). The latter corresponds in Fig. 3(c) with the first

intersection point of the dynamic inflating curve with the pressure level p̄ = 2. To be noted

that this intersection point is located in the first stable branch of the inflating curve. (2)

A closed curve which, according to those comments reported in previous paragraph for the

Neo-Hookean model, is not physically acceptable for a membrane initially in equilibrium

and unstretched. The membrane cannot reach the stretch value λu for p̄ < p̄max
d . For p̄ = 4
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and p̄ = 6 the applied pressure is greater than p̄max
d , as we can observe in Fig. 3(c). The

phase diagram is a closed loop which represents an oscillatory response of the membrane

between the initial conditions given by expression (6) and the maximum stretch (λmax, 0).

The latter is located in the second stable portion of the dynamic inflating curve represented

in Fig. 3(c). It has to be noted that the values of λmax and λ̇ which characterize the

oscillatory response of the membrane drastically increase if p̄ > p̄max
d .

λ

λ

λ

λ

(a)

λ

λ

λ
λ

(b)

λ

λ

λ

λ
λ

(c)

Figure 4: Phase diagrams, λ̇ versus λ, for three selected values of the inflation pressure, namely p̄ = 2,

p̄ = 4 and p̄ = 6. (a) Ogden N=2 model. (b) Neo-Hookean model. (c) Yeoh model.

From previous analysis, we can deduce that: increasing inflating pressure boosts the maximum

stretch and stretch rate up to an extent that, for certain constitutive models, the response of the

membrane may turn from stable (oscillatory) to unstable.

We continue by showing in Fig. 5 the period of motion as a function of the inflating pressure,

T versus p̄, obtained from Eq. (12) for the same constitutive models considered before.

λλ

λ
λ λ

λ
λ λ

λ λ
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λ
λ

λ
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• Ogden N=2 model: Firstly the period increases with p̄, then it reaches a maximum denoted

in Fig. 5 by Tmax, finally it decreases monotonically with p̄. The maximum comes from

achieving an optimum balance between the raise of λmax with p̄, which tends to increase

the period, and the raise of λ̇ with p̄, which tends to decrease the period.

• Neo-Hookean model: The period of motion continuously increases with p̄. When the applied

pressure reaches p̄cd, the membrane becomes unstable and we obtain that T → ∞. The

oscillatory character of the membrane response is lost.

• Yeoh model: Firstly the period increases with p̄. When the applied pressure reaches p̄max
d ,

the membrane tends to reach an unstable static (non-oscillatory) equilibrium and T →∞.

For p̄ > p̄max
d the membrane oscillates again and the period decreases monotonically with

p̄.

Figure 5: Period of motion as a function of the inflating pressure, T versus p̄, for the three selected strain-

energy functions, namely: Ogden N=2, Neo-Hookean and Yeoh models. Since p̄max
d |Y eoh≈ p̄cd |Neo−Hookean

only a vertical line is drawn in the graph for the sake of clarity.

It becomes clear that, irrespective of the constitutive model, the period of motion does not

increase monotonically with inflating pressure.

4.2.2. Influence of strain-energy function

Next, we pay specific attention to the role that the strain-energy function has on the dynamic

response of the membrane. For that task, we use here the six different strain-energy functions

listed in section 3.

We first inspect the conditions for an oscillatory response. Fig. 6 shows the dynamic inflation
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curves, p̄ versus λ|λ̇=0. It has to be highlighted the impact that the strain energy function has

on the dynamic inflation curve. Namely:

• Neo-Hookean, Mooney-Rivlin and Ogden N=1 models: the dynamic inflation curve firstly

shows a stable branch up to p̄ = p̄cd, beyond this value of applied pressure the membrane

becomes unstable.

• Yeoh and Ogden N=3 models: the dynamic inflation curve firstly shows a stable branch

up to p̄ = p̄max
d , subsequently the curve becomes unstable until p̄ = p̄min

d and beyond this

value of applied pressure the membrane becomes stable again (although the curve becomes

stable, it is physically unacceptable if p̄ < p̄max
d for the initial conditions that we have

selected λ(0) = 1, λ̇(0) = 0).

• Ogden N=2 model: the dynamic inflation curve is stable no matter the value of the applied

pressure.

λ λ

(a)

λ λ

(b)

Figure 6: Dimensionless pressure p̄ versus the circumferential stretch λ|λ̇=0. (a) Neo-Hookean, Mooney-

Rivlin and Ogden N=1 models. (b) Yeoh, Ogden N=2 and Ogden N=3 models. Note that the physically

unacceptable regions are such for the initial conditions that we have selected λ(0) = 1, λ̇(0) = 0.

The main outcome of this part of the analysis is to reinforce an idea previously introduced

in this paper: constitutive models calibrated using the same experimental data can lead to very

different stability/instability conditions for the membrane. While this conclusion was obtained

in section 4.1.2 for the case of constant acceleration, here this statement has been extended to

the case of constant pressure.

λ λλ λλ λ

(a) (b)

˙unacceptable regions are such for the initial conditions that we have selected λ(0) = 1, λ(0) = 0.

Note that the physically
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Next, in Fig. 7 we show the phase diagrams obtained for p̄ = 2. This is a very illustrative

example since we can observe very distinct responses of the membrane within the six constitutive

models used, namely:

• Neo-Hookean, Mooney-Rivlin and Ogden N=1: We find that the applied pressure is smaller

than p̄cd, as we can observe in Fig. 6. The phase diagram is split into two parts, a closed

loop and an open loop. Only the closed loop which describes an oscillation of the membrane

between the initial condition (1, 0) and the maximum stretch (λmax, 0) has physical meaning.

• Yeoh model: The applied pressure is smaller than p̄max
d , as shown in Fig. 6. The phase

diagram is split into two closed loops. Only the portion which describes an oscillation of

the membrane between the initial condition (1, 0) and the maximum stretch (λmax, 0) has

physical meaning.

• Ogden N=2: The phase diagram is a closed loop, i.e. the membrane shows a periodic

response. The membrane oscillates between the initial conditions (1, 0) and the maximum

stretch (λmax, 0).

• Ogden N=3: We find that the applied pressure is greater than p̄max
d , as we can observe in

Fig. 6(b). The phase diagram represents an oscillatory response of the membrane between

the initial conditions (1, 0) and the maximum stretch (λmax, 0). The latter point is located

in the second stable portion of the dynamic inflating curve.

λ

λ

λ

(a)

λ

λ

λ

λ

(b)

Figure 7: Phase diagrams, λ̇ versus λ, for p̄ = 2. (a) Neo-Hookean, Mooney-Rivlin and Ogden N=1 models.

(b) Yeoh, Ogden N=2 and Ogden N=3 models.

maxYeoh model: The applied pressure is smaller than ¯m x, as shown in Fig. 6. The phased

diagram is split into two closed loops. Only the portion which describes an oscillation of

the membrane between the initial condition (1, 0) and the maximum stretch ((λmax, 0) has

physical meaning.

λ

λ
λ

λ λ

(a) (b)

λ λ
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Furthermore, we observe that the constitutive relation not only acts upon the maximum

stretch λmax, but it also largely affects to the stretch rate λ̇. Let us stress again that the

constitutive model exerts great influence on how much and how fast the membrane deforms.

This idea can be further discussed relying on Fig. 8, where we show the period of motion

obtained from Eq. (12) as a function of the inflating pressure. We can observe three distinct

responses of the membrane within the six constitutive models used, namely:

• Neo-Hookean, Mooney-Rivlin and Ogden N=1 models: For these three strain-energy func-

tions the period increases monotonically with p̄ up to p̄ = p̄cd. Then, T → ∞ which illus-

trates that the inflating pressure has reached the maximum pressure that the membrane

can withstand. Within the ranges of inflating pressures for which the membrane oscillates,

irrespective of the constitutive relation considered, the relationship T − p̄ is highly depen-

dent on the constitutive model. Namely, T is markedly smaller for Mooney-Rivlin than for

Ogden N=1 and Neo-Hookean models.

• Yeoh and Ogden N=3 models: For these two strain-energy functions the period increases

monotonically with p̄ up to p̄ = p̄max
d . Then, T →∞ which illustrates that the membrane

has reached an unstable (static) equilibrium. Further increase of inflating pressure implies

that the membrane retrieves an oscillatory behaviour. Then, the period of motion mono-

tonically decreases with increasing inflating pressure. The curves T − p̄ are found highly

sensitive to the strain-energy function. In particular, within the lower range of inflating

pressures considered, T is much greater for Ogden N=3 model than for Yeoh model.

• Ogden N=2: For this model it was already commented in section 4.2.1 of this paper that

firstly the period increases with p̄, then it reaches a maximum and finally it decreases

monotonically with p̄. Unlike the rest of the models analysed, the curve T − p̄ is smooth

and does not show any excursion within the inflating pressures analysed.

We show here the great impact of the strain-energy function on the dynamic behaviour of the

membrane response. The period of oscillation, in case we assume loading conditions for which

the membrane oscillates, is largely controlled by the strain-energy function.

5. Discussion

The present paper provides an analytical investigation on the role that the constitutive model

has on the stability of hyper-elastic spherical membranes subjected to dynamic inflation. Two

smaller
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(a) (b)

Figure 8: Period of motion T as a function of the inflating pressure p̄. (a) Neo-Hookean, Mooney-Rivlin and

Ogden N=1 models. (b) Yeoh, Ogden N=2 and Ogden N=3 models. Since p̄cd |Neo−Hookean≈ p̄cd |OgdenN=1

only a vertical line for both models is drawn in Fig. 8(a) for the sake of clarity.

distinctive loading scenarios are addressed: (1) constant inflation acceleration and (2) constant in-

flation pressure step. Besides that, six different strain-energy functions are investigated: three of

the Mooney-Rivlin class and three of the Ogden class. Results are presented combining, systemat-

ically, the two loading scenarios and the six constitutive equations. In this regard, we present here

an analysis on the dynamic response of elastomeric spherical shells with unprecedented scope in

this field. As such, the outcomes of this study show the great influence of the constitutive model

on the mechanical stability of rubber-like balloons subjected to dynamic loading. The interest of

this observation relies on the fact that the constitutive models were calibrated using the same set

of experimental data and the same fitting procedure (Bucchi and Hearn, 2013a,b). We observe

that the oscillatory (stable) response of the membrane is highly conditioned by the strain-energy

function selected. Furthermore, whenever the membrane oscillates, the characteristics of the

oscillation differ pretty much from one constitutive model to another. We emphasize that the

strain-energy function dictates, at a large extent, how much and how fast the membrane deforms.

In this regard, we show a need to reduce the uncertainty surrounding the dynamic constitutive

modelling of rubber-like materials. This task has to be accomplished by developing new experi-

ments which allow to obtain reliable data on the mechanical behaviour of rubber-like materials

at large strains and high strain rates. On the one hand, mechanical testing at large strains is

required to explore strain-driven instabilities. On the other hand, mechanical testing at high

strain rates shall allow to uncover the specific role that rate effects may have on the dynamic

(a) (b)

whenever the membrane oscillates, t
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Neo-Hookean parameters, Eq. (14)

CM1
10 [Pa] 191999.034

Table A.1: Neo-Hookean parameters, Eq. (14).

Mooney-Rivlin parameters, Eq. (15)

CM2
10 [Pa] 210587.307

CM2
01 [Pa] 1504.76719

Table A.2: Mooney-Rivlin parameters, Eq. (15).

response of the material. Namely, we have to further understand the impact that rate effects

may have on boosting/damping strain-driven instabilities. Any step in this direction will help to

derive more reliable constitutive models of hyper-elastic materials.

6. Concluding remarks

We developed in this paper a theoretical analysis to explore the response of thin-walled spher-

ical shells subjected to dynamic inflation. It has been highlighted the fundamental role that the

constitutive relation selected to describe the membrane materials has on the outcomes of our

modelling. The key point here is that the constitutive models considered were calibrated using

the same set of experimental data and the same fitting procedure. We claim that success of math-

ematical models as a tool to understand and predict the processes of enlargement and rupture

of this type of elastomeric shell structures is closely related to the constitutive description of the

material.

Appendix A. Material parameters of the strain-energy functions

We show below the material parameters used in the constitutive models listed in section 3.

They are all taken from Bucchi and Hearn (2013b).

claim

CM
10
M1

CM
01CCM2

CM
10
M2
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Yeoh parameters, Eq. (16)

CM3
10 [Pa] 190592.559

CM3
20 [Pa] −1634.89996

CM3
30 [Pa] 41.3399927

Table A.3: Yeoh parameters, Eq. (16).

Ogden N=1 parameters, Eq. (18)

CO1
10 [Pa] 359237.938

αO1
1 2.11120130

Table A.4: Ogden N=1 parameters, Eq. (18).

Ogden N=2 parameters, Eq. (19)

CO2
10 [Pa] 42073.4586

CO2
20 [Pa] 360636.118

αO2
1 3.60405498

αO2
2 −0.03270528

Table A.5: Ogden N=2 parameters, Eq. (19).

CMM3C10

CMM3C20CC

CM
30CM3

CO
10
O1
0

αO
1
O1

CO
10
O2
0

COO2C20CC

αO
1
O2

αO
2
O2
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Ogden N=3 parameters, Eq. (20)

CO3
10 [Pa] 398206.801

CO3
20 [Pa] 5377.71517

CO3
30 [Pa] 7647.41545

αO3
1 1.13176086

αO3
2 4.73211925

αO3
3 −2.14619240

Table A.6: Ogden N=3 parameters, Eq. (20).
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