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Abstract—This paper presents saddlepoint approximations of
state-of-the-art converse and achievability bounds for nonco-
herent, single-antenna, Rayleigh block-fading channels. These
approximations can be calculated efficiently and are shown to
be accurate for SNR values as small as 0 dB, blocklengths of
168 channel uses or more, and when the channel’s coherence
interval is not smaller than two. It is demonstrated that the
derived approximations recover both the normal approximation
and the reliability function of the channel.

I. INTRODUCTION

New services in next-generation’s wireless systems will
require low latency and high reliability; see [1] and references
therein. Under such constraints, capacity and outage capacity
are not accurate benchmarks, and more refined metrics on the
maximum coding rate, which take into account the short packet
size required in low-latency applications, are called for.

Several techniques can be used to characterize the finite-
blocklength performance. One possibility is to fix a reliability
constraint and study the maximum coding rate as the block-
length grows. This approach, sometimes referred to as normal
approximation, was followed inter alia by Polyanskiy et al. [2]
and has been generalized to several wireless communication
channels; see, e.g., [3]–[8]. Particularly relevant to the present
paper is the recent work by Lancho et al. [7], [8], who derived
a high-SNR normal approximation for noncoherent single-
antenna Rayleigh block-fading channels. Alternatively, one
can fix the coding rate and study the exponential decay of the
error probability as the blocklength increases. The resulting
error exponent is usually referred to as reliability function [9,
Ch. 5]. Both the exponential and sub-exponential behavior of
the error probability can be characterized via the saddlepoint
method [10, Ch. XVI]. This method has been applied in [11]–
[13] to obtain approximations of the random coding union
(RCU) bound [2, Th. 16], the RCU bound with parameter s
(RCUs) [14, Th. 1], and the meta-converse (MC) bound [2,
Th. 31] for some memoryless channels.
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In this paper, we apply the saddlepoint method to derive ap-
proximations of the MC and the RCUs bounds for noncoherent
single-antenna Rayleigh block-fading channels. While these
approximations must be evaluated numerically, the computa-
tional complexity is independent of the number of diversity
branches L. This is in stark contrast to the nonasymptotic MC,
RCU and RCUs bounds, whose evaluation has a computational
complexity that grows linearly in L. Numerical evidence sug-
gests that the saddlepoint approximations, although developed
under the assumption of large L, are accurate even for L = 1
if the SNR is greater than or equal to 0 dB. Furthermore,
the proposed expansions are shown to recover the normal
approximation and the reliability function of the channel, thus
providing a unifying tool for the two regimes, which are
usually considered separately in the literature.

In our analysis, the saddlepoint method is applied to the tail
probabilities appearing in the nonasymptotic MC and RCUs
bounds. These probabilities often depend on a set of parame-
ters, such as the SNR. Existing saddlepoint expansions do not
consider such dependencies. Hence, they can only characterize
the behavior of the expansion error in function of L, but not
in terms of the remaining parameters. In contrast, we derive in
Section II saddlepoint expansions for random variables whose
distribution depends on a parameter θ, carefully analyze the
error terms, and demonstrate that they are uniform in θ. We
then apply the expansions to the Rayleigh block-fading chan-
nel introduced in Section III. As shown in Sections IV–VI, this
results in accurate performance approximations, in which the
error terms depend only on the blocklength and are uniform
in the remaining parameters.

II. SADDLEPOINT EXPANSION

Let {Zk}nk=1 be a sequence of independent and identically
distributed (i.i.d.), real-valued, zero-mean, random variables,
whose distribution depends on θ ∈ Θ, where Θ denotes the
set of possible values of θ.

The cumulant generating function (CGF) is defined as

ψθ(ζ) , log E
[
eζZk

]
(1)

and the characteristic function is defined as

ϕθ(ζ) , E
[
eiζZk

]
(2)



where i ,
√
−1. We denote by ψ

(k)
θ the k-th derivative of

ζ 7→ ψθ(ζ). For the first, second, and third derivatives we
sometimes use also the notation ψ′θ, ψ′′θ , and ψ′′′θ .

A real-valued random variable Zk is said to be lattice if it
is supported on the points b, b±h, b±2h. . . for some b and h.
A random variable that is not lattice is said to be nonlattice.
It can be shown that a random variable is nonlattice if, and
only if, for every δ > 0 [10, Ch. XV.1, Lemma 4]

|ϕθ(ζ)| < 1, |ζ| ≥ δ. (3)

We shall say that a family of random variables Zk
(parametrized by θ) is nonlattice if for every δ > 0

sup
θ∈Θ
|ϕθ(ζ)| < 1, |ζ| ≥ δ. (4)

Similarly, we shall say that a family of distributions
(parametrized by θ) is nonlattice if the corresponding family
of random variables is nonlattice.

Proposition 1: Let the family of i.i.d. random variables
{Zk}nk=1 (parametrized by θ) be nonlattice. Suppose that there
exists a ζ0 > 0 such that

sup
θ∈Θ,|ζ|<ζ0

∣∣∣ψ(k)
θ (ζ)

∣∣∣ <∞, k = 0, . . . , 4 (5)

and
inf

θ∈Θ,|ζ|<ζ0

∣∣ψ′′θ (ζ)
∣∣ > 0. (6)

1) If for a given γ ≥ 0 there exists a τ ∈ [0, ζ0) such that
nψ′θ(τ) = γ, then

P

[
n∑
k=1

Zk ≥ γ

]

= en[ψθ(τ)−τψ′θ(τ)]

[
fθ(τ, τ) +

Kθ(τ, n)√
n

+ o

(
1√
n

)]
(7)

where o(1/
√
n) comprises terms that vanish faster than

1/
√
n and are uniform in τ and θ. Here,

fθ(u, τ) , en
u2

2 ψ
′′
θ (τ)Q

(
u
√
nψ′′θ (τ)

)
(8a)

Kθ(τ, n) ,
ψ′′′θ (τ)

6ψ′′θ (τ)3/2

(
− 1√

2π
+
τ2ψ′′θ (τ)n√

2π

− τ3ψ′′θ (τ)3/2n3/2fθ(τ, τ)

)
(8b)

with Q(·) standing for the Gaussian Q-function.
2) Let U be uniformly distributed on [0, 1]. If for a given

γ ≥ 0 there exists a τ ∈ [0,min{ζ0, η}) (for some arbitrary
η < 1 independent of n and θ) such that nψ′θ(τ) = γ, then

P

[
n∑
k=1

Zk ≥ γ + logU

]
≤ en[ψθ(τ)−τψ′θ(τ)]

×
[
fθ(τ, τ) + fθ(1− τ, τ) +

K̂θ(τ)√
n

+ o

(
1√
n

)]
(9)

where
K̂θ(τ) ,

2√
2π

ψ′′′θ (τ)

6ψ′′θ (τ)3/2
(10)

and o(1/
√
n) is uniform in τ and θ.

Proof: See [15].

III. RAYLEIGH BLOCK-FADING CHANNEL

We consider a single-antenna Rayleigh block-fading channel
with coherence interval T . For this channel model, the input-
output relation within the `-th coherence interval is given by

Y` = H`X` + W` (11)

where X` and Y` are T -dimensional, complex-valued, random
vectors containing the input and output signals, respectively;
W` is the additive noise with i.i.d., zero-mean, unit-variance,
circularly-symmetric, complex Gaussian entries; and H` is
a zero-mean, unit-variance, circularly-symmetric, complex
Gaussian random variable. We assume that H` and W` are
mutually independent and take on independent realizations
over successive coherence intervals. Moreover, the joint law of
(H`,W`) does not depend on the channel inputs. We consider
a noncoherent setting where the transmitter and the receiver
are aware of the distribution of H` but not of its realization.

We next introduce the notion of a channel code. For sim-
plicity, we shall restrict ourselves to codes whose blocklength
n satisfies n = LT , where L denotes the number of coherence
intervals of length T needed to transmit the entire codeword.
An (M,L, ε, ρ)-code for the channel (11) consists of:

1) An encoder f : {1, . . . ,M} → CLT that maps the message
A, which is uniformly distributed on {1, . . . ,M}, to a
codeword XL = [X1, . . . ,XL]. The codewords satisfy the
per-coherence-interval power constraint1

‖X`‖2 = Tρ, ` = 1, . . . , L. (12)

2) A decoder g: CLT → {1, . . . ,M} satisfying the average
error probability constraint

P
[
g
(
YL
)
6= A

]
≤ ε (13)

where YL = [Y1, . . . ,YL] is the channel output induced
by the transmitted codeword XL = f(A) according to (11).

The maximum coding rate and minimum error probability are
respectively defined as

R∗(L, ε, ρ) , sup

{
logM

LT
: ∃(M,L, ε, ρ)-code

}
(14a)

ε∗(L,R, ρ) , inf
{
ε : ∃(2LTR, L, ε, ρ)-code

}
. (14b)

We shall present our results in terms of error probability and
use that upper (lower) bounds on ε∗(L,R, ρ) can be translated
into lower (upper) bounds on R∗(L, ε, ρ) and vice versa.

1In the information theory literature, it is more common to impose a
power constraint per codeword XL. However, practical systems typically
require a per-coherence-interval constraint. Although it may be preferable to
impose (12) with inequality, since it allows more freedom in optimizing the
codebook, it seems plausible that using maximum power is optimal. For the
high-SNR normal approximation presented in [7], [8], this turns out to be the
case.



IV. SADDLEPOINT EXPANSIONS FOR RCUS AND MC

Throughout the paper, we shall evaluate the achievability
bounds for the capacity-achieving input distribution, for which
the inputs are of the form XL =

√
TρUL, where the

components of UL = [U1, . . . ,UL] are i.i.d. and uniformly
distributed on the unit sphere in CT . This distribution can be
viewed as a single-antenna particularization of unitary space-
time modulation (USTM).

We define the generalized information density as

is(x`;y`) , log
pY`|X`

(y`|x`)s

E
[
pY`|X`

(y`|X`)s
] . (15)

For brevity, let i`,s(ρ) , is(X`;Y`) and Is(ρ) , E[i`,s(ρ)].
The CGF of the zero-mean random variable Is(ρ)− i`,s(ρ) is

ψρ,s(τ) = log E
[
eτ(Is(ρ)−i`,s(ρ))

]
(16)

which depends on the parameters θ = {ρ, s}. For some
arbitrary 0 < s < s, 0 < ρ < ρ, 0 < a < 1, and

0 < b < min
{

T
T−1 ,

1+Tρ
Tρs

}
, we denote by Sψ the set of

all (τ, ρ, s) ∈ R3 satisfying −a ≤ τ ≤ b, ρ ≤ ρ ≤ ρ, and
s ≤ s ≤ s. In [15], we show that Sψ is in the region of
convergence of ψρ,s, i.e.,

sup
(τ,ρ,s)∈Sψ

ψ(k)
ρ,s (τ) <∞, k ∈ Z+

0 . (17)

A. RCUs Bound

As upper bound on ε∗(L,R, ρ), we use the RCUs bound [14,
Th. 1], which states that, for every s > 0,

ε∗(L,R, ρ) ≤ P

[
L∑
`=1

i`,s(ρ) ≤ LTR− log(U)

]
(18)

where U is uniformly distributed on the interval [0, 1].
Theorem 2 (Saddlepoint Expansion RCUs): The coding

rate R and minimum error probability ε∗ can be parametrized
by (τ, ρ, s) ∈ Sψ as

R(τ, s) =
1

T
(Is(ρ)− ψ′ρ,s(τ)) (19a)

ε∗(τ, s) ≤ eL[ψρ,s(τ)−τψ′ρ,s(τ)]

×
[
fρ,s(τ, τ) + fρ,s(1− τ, τ) +

K̂ρ,s(τ)√
L

+ o

(
1√
L

)]
(19b)

where f(·, ·) is defined in (8a), K̂ρ,s(·) is defined in (10), and
o(1/
√
L) is uniform in τ , s and ρ.

Proof: The desired result follows by applying Proposi-
tion 1, Part 2) to (18). For details see [15].

Remark 1: The set Sψ with s = 1 includes 0 ≤ τ < 1.
In this case, the identity (19a) with s ∈ (0, 1] and τ ∈ [0, 1)
characterizes all rates R between the critical rate

Rcr
s (ρ) ,

1

T

(
Is(ρ)− ψ′ρ,s(1)

)
(20)

and Is(ρ). Solving (19a) for τ , we obtain from Theorem 2 an
upper bound on the minimum error probability ε∗(L,R, ρ) as
a function of the rate R ∈ (Rcr

s (ρ) , Is(ρ)], s ∈ (0, 1].

B. Meta-Converse Bound

Let the auxiliary output probability density function (pdf)

qY`,s
(y`) ,

1

µ(s)
E
[
pY`|X`

(y`|X`)
s
]1/s

(21)

where µ(s) is a normalizing factor. We define the generalized
mismatched information density as

js(x`;y`) , log
pY`|X`

(y`|x`)
qY`,s

(y`)
. (22)

It holds that

js(x`;y`) = log µ(s) +
1

s
is(x`;y`). (23)

For brevity, let j`,s(ρ) , js(X`;Y`) and Js(ρ) , E[j`,s(ρ)].
When s = 1, j`,1(ρ) = i`,1(ρ) and J1(ρ) = I1(ρ), in which
case we write i`(ρ) , i`,1(ρ) and C(ρ) , I1(ρ).2

A lower bound on ε∗(L,R, ρ) follows by evaluating the MC
bound [2, Th. 31] for the auxiliary pdf qY`,s

and using [2,
Eq. (102)]. This yields, for every ξ > 0 and s > 0,

ε∗(L,R, ρ) ≥ P

[
L∑
`=1

(Is(ρ)− i`,s(ρ)) ≥ sLJs(ρ)− sξ

]
− e(ξ−LTR) (24)

where we have used (23) to express j`,s(ρ) in terms of i`,s(ρ).
Theorem 3 (Saddlepoint Expansion MC): For every rate R

and (τ, ρ, s) ∈ Sψ

ε∗(L,R, ρ) ≥ −e
L

[
Js(ρ)−

ψ′ρ,s(τ)
s −TR

]

+ eL[ψρ,s(τ)−τψ′ρ,s(τ)]
[
fρ,s(τ, τ) +

Kρ,s(τ, L)√
L

+ o

(
1√
L

)]
(25)

where f(·, ·) is defined in (8a), Kρ,s(·, ·) is defined in (10),
and o(1/

√
L) is uniform in τ , s and ρ.

Proof: The inequality (25) follows by applying Propo-
sition 1, Part 1) to the probability term in (24) with ξ =
LJs(ρ)− Lψ′ρ,s(τ)/s. For details see [15].

The expansions (19b) and (25) can be evaluated more effi-
ciently than the nonasymptotic bounds (18) and (24). Indeed,
(18) and (24) require the evaluation of the L-dimensional
distribution of

∑L
`=1 i`,s(ρ), whereas (19b) and (25) depend

only on the cumulants ψρ,s(τ), ψ′ρ,s(τ), ψ′′ρ,s(τ) and ψ′′′ρ,s(τ),
which can be obtained by solving one-dimensional integrals.

V. NORMAL APPROXIMATION

The maximum coding rate can be expanded as

R∗(L, ε, ρ) =
C(ρ)

T
−
√
V (ρ)

LT 2
Q−1(ε) +O

(
logL

L

)
(26)

where V (ρ) , Var
[
i`(ρ)

]
. This is usually referred to as

normal approximation. As we shall outline next, (26) can also
be recovered from the expansions (19b) and (25).

2Recall that we chose the input distribution to be USTM, which for the
power constrain (12) is capacity achieving.



To prove that the right-hand side (RHS) of (26) is achiev-
able, we evaluate (19a) for s = 1 and

τL =
Q−1

(
ε− k1,ρ√

L

)
√
Lψ′′ρ,1(0)

(27)

where k1,ρ > 0 is independent of L and bounded in ρ. We
show in [15] that with this choice of τL, we can make the
RHS of (19b) less than ε by choosing k1,ρ sufficiently large.
Hence, by evaluating R(τL, 1), we characterize R∗(L, ε, ρ).

In [15], we further show that all the derivatives of ψρ,s exist
uniformly in s and ρ. Consider the Taylor series

ψ′ρ,1(τ) = τψ′′ρ,1(0) +
τ2

2
ψ′′′ρ,1(τ̃) (28)

for some τ̃ ∈ (0, τ). Combining (28) with (19a) this yields

R∗(L, ε, ρ) ≥ C(ρ)

T
−

√
ψ′′ρ,1(0)

LT 2
Q−1

(
ε− k1,ρ√

L

)

−
Q−1

(
ε− k1,ρ√

L

)2

ψ′′′ρ,1(τ̃)

2Lψ′′ρ,1(0)
. (29)

Using that ψ′′ρ,1(0) = V (ρ), and expanding Q−1(ε−k1,ρ/
√
L)

around ε, we can write (29) as

R∗(L, ε, ρ) ≥ C(ρ)

T
−
√
V (ρ)

LT 2
Q−1(ε) +O

(
1

L

)
(30)

demonstrating that the RHS of (26) is achievable.
To show that the RHS of (26) is also a converse bound, we

evaluate (25) for s = 1 and

τL =
Q−1

(
ε+

k2,ρ√
L

)
√
Lψ′′ρ,1(0)

−
ψ′′′ρ,1(0)

(
1 +Q−1

(
ε+

k2,ρ√
L

)2
)

3Lψ′′ρ,1(0)2
(31)

where k2,ρ is independent of L and bounded in ρ. A Taylor
series expansion of (25) then yields

R∗(L, ε, ρ) ≤ C(ρ)

T
−

√
ψ′′ρ,1(0)

LT 2
Q−1(ε)

+
1

2T

logL

L
−

√
2πψ′′ρ,1(0)

LT
e
Q−1(ε)2

2

−
(
1−Q−1(ε)2

)
ψ′′′ρ,1(0)

6ψ′′ρ,1(0)LT
+O

(
1

L3/2

)
. (32)

Using that ψ′′ρ,1(0) = V (ρ), and collecting terms of order
(logL)/L, we conclude that the RHSs of (32) and (26)
coincide.

Finally note that [7, Eq. (16)]

C(ρ) = (T − 1) log(Tρ)− log Γ(T )

− (T − 1)

[
log(1 + Tρ) +

Tρ

1 + Tρ
− ψ(T − 1)

]
+ 2F1

(
1, T − 1;T ;

Tρ

1 + Tρ

)
+ oρ(1) (33a)

V (ρ) = (T − 1)2π
2

6
+ (T − 1) + oρ(1) (33b)

where Γ(·) denotes the gamma function, ψ(·) the digamma
function, 2F1(·, ·; ·; ·) the Gauss hypergeometric function, and
oρ(1) comprises terms that are uniform in L and vanish as
ρ → ∞. We thus recover from (26) the high-SNR normal
approximation [7, Th. 1], [8, Th. 1].

VI. ERROR EXPONENT ANALYSIS

The expansions (19b) and (25) can be written as an expo-
nential term times a subexponential factor. As we show next,
the exponential terms of both expansions coincide for rates
Rcr

1/2(ρ) < R < C(ρ), so they characterize the reliability
function

Er(R, ρ) , lim
L→∞

− 1

L
log ε∗(L,R, ρ). (34)

Theorem 4: Let ρ ≤ ρ ≤ ρ and τ < τ < τ for some
arbitrary 0 < ρ < ρ and 0 < τ < τ < 1. Set sτ , 1/(1 + τ).
Then, the coding rate R and the minimum error probability ε∗

can be parametrized by τ ∈ (τ , τ) as

R(τ) =
1

T

(
Isτ (ρ)− ψ′ρ,sτ (τ)

)
(35a)

Aρ(τ) ≤ ε∗(L,R, ρ)e−L[ψρ,sτ (τ)−τψ′ρ,sτ (τ)] ≤ Aρ(τ) (35b)

where

Aρ(τ) ,
1√

2πLτ2ψ′′ρ,sτ (τ)
+
|K̂ρ,sτ (τ)|√

L

+
1√

2πL(1− τ)2ψ′′ρ,sτ (τ)
+ o

(
1√
L

)
(36a)

Aρ(τ) ,
s

1
sτ
τ

τ
(
2πLψ′′ρ,sτ (τ)

) 1
2sτ

+ o

(
1

L
1

2sτ

)
. (36b)

The little-o term in (36a) is uniform in ρ and τ . The little-o
term in (36b) is uniform in ρ (for every given τ ).

Proof: To prove the right-most inequality in (35b), we
apply (19b) with s = sτ and τ satisfying (35a). The claim
follows then by using that

1− 1

u2Lψ′′ρ,s(τ)
≤ fρ,s(u, τ)

√
2πu2Lψ′′ρ,s(τ) ≤ 1 (37)

and by simple algebraic manipulations. For details see [15].
To prove the left-most inequality in (35b), we apply (25)

with τ replaced by

τL = τ +
log
(

1
sττ

√
2πLτ2ψ′′ρ,sτ (τ)

)
L ∂2

∂τ2

(
ψρ, 1

1+τ
(τ)− τI 1

1+τ
(ρ)
) (38)

and sL = 1/(1 + τL). The claim follows from the left-most
inequality in (37) upon noting that Kρ,s(τ, L) in (25) is of
order 1/L and by simple algebraic manipulations. For details
see [15].
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Fig. 1: Bounds on R∗(L, ε, ρ) for n = 168, ε = 10−5, and ρ = {0, 10} dB.

The first three terms of Aρ(τ) are positive and dominate the
o(1/
√
L) term. Similarly, the first term of Aρ(τ) is positive

and of order L−
1+τ
2 . It follows from Theorem 4 that the relia-

bility function Er(R, ρ) can be parametrized by τ ∈ (0, 1) as

Er(R, ρ) = τψ′ρ, 1
1+τ

(τ)− ψρ, 1
1+τ

(τ) (39a)

R =
1

T

(
I 1

1+τ
(ρ)− ψ′ρ, 1

1+τ
(τ)
)
. (39b)

VII. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1, we study R∗(L, ε, ρ) as a function of L for
n = LT = 168 (hence T is inversely proportional to L),
ε = 10−5, and the SNR values of 0 dB and 10 dB. We plot
approximations of the RCUs bound in red and approximations
of the MC bound in blue, which can be obtained by dis-
regarding the o(1/

√
L) terms. Straight lines (“saddlepoint”)

depict the saddlepoint approximations (19b) and (25), and
dashed lines (“pref+EE”) depict (35b). We further plot the
nonasymptotic bounds (18) and (24) with dots. Finally, we plot
the normal approximation (26) (“NA”), the high-SNR normal
approximation [7, Th. 1], [8, Th. 1] (“high-SNR-NA”), as well
as the error exponent approximation that follows by solving
ε∗(L,R, ρ) ≈ exp{−LEr(R, ρ)} for R (“EEA”). Observe that
the approximations (19b), (25), and (35b) are almost indis-
tinguishable from the nonasymptotic bounds. Further observe
that the normal approximation “NA” is accurate for 10 dB and
L > 10, but is loose for 0 dB. In contrast, the error exponent
approximation “EEA” is loose for 10 dB, but is accurate for
0 dB.

In Fig. 2, we study R∗(L, ε, ρ) as a function of ε for
n = 168, T = 12, and the SNR values 6 dB and 0 dB. We plot
approximations of the RCUs bound in red and approximations
of the MC bound in green (s = 1) or in blue (s numerically op-
timized). Straight lines (“saddlepoint”) depict the saddlepoint
approximations (19b) and (25), and dashed lines (“pref+EE”)
show the approximations (35b). We further plot the nonasymp-
totic bounds (18) and (24) with dots. For ρ = 0 dB, we also
show the critical rate Rcr

1/2(0). We finally plot the normal
approximation (26) (“NA”) and the error exponent approxima-
tion that follows by solving ε∗(L,R, ρ) ≈ exp{−LEr(R, ρ)}
for R (“EEA”). Observe that the approximations (19b), (25),
and (35b) are almost indistinguishable from the nonasymptotic

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1
0

0.2

0.4

0.6

0.8

1

1.2

NA

NA

EEA EEA

Rcr
1/2

(0)

MC-qY`,1
(y`)

MC-qY`,s
(y`)

RCUs

nonasymptotic
saddlepoint
pref+EE

ρ = 6 dB

ρ = 0 dB

probability of error (log scale)

bi
ts
/c
ha
nn
el
us
e

Fig. 2: Bounds on R∗(L, ε, ρ) for n = 168, T = 12, and ρ = {0, 6} dB.

bounds. Further observe how the normal approximation “NA”
becomes accurate for large error probabilities, whereas the
error exponent approximation “EEA” becomes accurate for
small error probabilities. Finally note that the saddlepoint
approximations can be evaluated for error probabilities less
than 10−8, where the nonasymptotic bounds cannot be evalu-
ated due to their computational complexity.
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