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CDN Slicing over a Multi-Domain Edge Cloud
Tarik Taleb, Pantelis A. Frangoudis, Ilias Benkacem, and Adlen Ksentini

Abstract—We present an architecture for the provision of video Content Delivery Network (CDN) functionality as a service over a 
multi-domain cloud. We introduce the concept of a CDN slice, that is, a CDN service instance which is created upon a content 
provider’s request, is autonomously managed, and spans multiple, potentially heterogeneous, edge cloud infrastructures. Our design is 
tailored to a 5G mobile network context, building on its inherent programmability, management flexibility, and the availability of cloud 
resources at the mobile edge level, thus close to end users. We exploit Network Functions Virtualization (NFV) and Multi-access Edge 
Computing (MEC) technologies, proposing a system which is aligned with the recent NFV and MEC standards. To deliver a
Quality-of-Experience (QoE) optimized video service, we derive empirical models of video QoE as a function of service workload, 
which, coupled with multi-level service monitoring, drive our slice resource allocation and elastic management mechanisms. These 
management schemes feature autonomic compute resource scaling, and on-the-fly transcoding to adapt video bit-rate to the current 
network conditions. Their effectiveness is demonstrated via testbed experiments.

Index Terms—Content Delivery Network (CDN), Multi-Access Edge Computing (MEC), Network Slicing, Management and 
Orchestration (MANO), Network Functions Virtualization (NFV), 5G, Mobile Network.

1 INTRODUCTION

Internet traffic is dominated by data distributed over Con-
tent Delivery Network (CDN) infrastructures, and a signifi-
cant share of this traffic volume is due to video content. At
the same time, with the increase in mobile data rates, video
streaming is becoming one of the most popular services for
mobile consumers. This trend is expected to strengthen in
view of 5th generation mobile networks (5G), which repre-
sent the next major phase of the mobile telecom industry,
going beyond the current Long Term Evolution (LTE) and
IMT-advanced systems. In fact, mobile video traffic, which
accounted for 55% of the total mobile traffic in 2015, will
represent more than 75% in 2020 [1].

5G comes with increased peak data rates, higher spectral
efficiency, better coverage, and the support of large num-
bers of diverse connectable devices, including machine type
communications (MTC) ones. 5G systems are required to
be cost-efficient, flexibly deployable, elastic, and, above all,
programmable. Lowering mobile infrastructure costs and
rendering their deployment flexible and elastic has become
critical for the sustainability of mobile operators worldwide,
mainly due to the growing mobile data traffic on one hand,
and the stagnant average revenue per user (ARPU) on the
other. With current mobile network designs, such required
flexibility and elasticity are hard to realize, particularly
due to the traditional usage of special-purpose networking
equipment that can neither dynamically scale with mobile
traffic nor be easily upgraded with new functions.

From the perspective of a telecom operator, mobile In-
ternet usage trends and the promise of 5G come with both
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challenges and opportunities: High-quality video delivery
for users on-the-go with heterogeneous device and connec-
tivity profiles and, importantly, time- and space-varying traf-
fic demand can stress both the core and the radio access
networks. At the same time, telecom operators strive to get
more involved in the content delivery value chain; their
inherent user proximity, and network and infrastructure
awareness are features that they can exploit to gain a com-
petitive advantage, assuming a more active role in Quality-
of-Experience-optimized multimedia delivery. In the quest
for flexible, cost- and quality-optimized mobile multimedia
service provision, cloud computing, Network Functions Vir-
tualization (NFV), and Software Defined Networking (SDN)
technologies, some of the key components of the 5G archi-
tecture, appear promising. These technologies make it pos-
sible to offer on-demand, scalable and elastic content deliv-
ery services with performance guarantees, over potentially
fragmented physical infrastructures provided by a federated
networked cloud [2].

Ideally, this federated infrastructure will involve cloud
resources at the mobile edge, thus bringing services as close
to end users as possible. For example, video caches running
as virtual servers at the edge cloud can improve user expe-
rience by minimizing startup latency, while at the same time
saving on core network resources, since content is served
to users by a local service instance. The ETSI standard on
Multi-access Edge Computing (MEC) may play an impor-
tant role in this direction [3], [4]. MEC allows harnessing
the power of cloud computing by deploying application
services at the edge of the mobile network, e.g., at the Radio
Access Network (RAN) level [5]. This can facilitate content
dissemination within the access network and can offer new
business opportunities by integrating Mobile Network Op-
erators (MNO) into the video delivery value chain.

In this article, we address the challenges of mobile video
delivery in a 5G network context. We present an archi-
tecture which allows content providers to deploy virtual
CDN instances dynamically over a federated multi-domain
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edge cloud. Our system exposes a northbound API over
which customers can request the creation of CDN slices for
a specific duration. These CDN slices consist of Virtual-
ized Network Functions (VNF) deployed over the multi-
domain cloud, such as virtual streaming servers, caches,
and transcoders, appropriately chained and configured with
optimally-assigned resources (e.g., CPU and storage) for
specific service-level performance targets. Cloud resource al-
location decisions and elastic resource management, so that
a virtual CDN instance is scaled following end-user demand,
are some of the main issues our design tackles. Resource
allocation decisions are measurement-driven: With respect
to compute resources, we use empirical models of video QoE
as a function of service workload, while service demand
information (e.g., maximum number of simultaneous video
streams in an area covered by a specific macro-cell) submit-
ted by the customer at service instantiation time can be used
to appropriately provision the CDN slice with radio access
and core network resources.

Multi-level monitoring information, both at the cloud
infrastructure and the CDN slice service/application level, is
necessary for elastic slice resource management. Our design
provides the support and the appropriate building blocks
to collect and utilize this information, and it does so in a
standards-based way: our architecture aligns with recently
proposed standards for edge computing and NFV, and the
ETSI MEC [6] and NFV Management and Orchestration
(NFV-MANO) [7] frameworks in particular.

This article is structured as follows. § 2 reviews relevant
works in the literature. § 3 presents our vision and archi-
tecture for the provision of virtual CDN slices over multi-
domain cloud infrastructures in a 5G network context. We
then propose schemes for QoE-driven cloud resource alloca-
tion (§ 4) and elastic resource management (§ 5). In § 6, we
devise and evaluate a model and algorithm for the Elas-
ticity Decision Maker component of the proposed elastic
resource management framework. The process of initiating
the transcoding service on the fly, as part of the envisioned
elastic resource management framework, is described in § 7.
Testbed experiments on the performance of the overall CD-
NaaS system follow in § 8. We conclude the article in § 9.

2 RELATED WORK

2.1 Network Functions Virtualization
Network Functions Virtualization (NFV) is becoming a key
technology for future large-scale service delivery [8]. NFV
involves carrying out in software networking tasks that were
traditionally performed by costly, special-purpose hard-
ware. Significant standardization efforts are currently taking
place around NFV. The European Telecommunications Stan-
dards Institute (ETSI) has specified a Management and Or-
chestration framework for NFV (NFV-MANO [7]), and one
of the proposed NFV use cases is the provision of virtualized
CDN services [9, Use Case #8].

As we show in § 3.3, our work is aligned with this
framework and this use case in particular, with all the basic
components of a CDN slice in our design (i.e., caches, load
balancers, streaming servers, transcoders, and name servers)
being implemented as VNFs. However, NFV is being ap-
plied to a diverse set of functions [9]. In this spirit, an effort

worth noticing is T-NOVA [10], [11], an EU-funded project
proposing a VNF marketplace, where VNF providers will
be making available their functions to be deployed over
the infrastructure of a network or cloud service provider,
developing the necessary support for VNF brokering, man-
agement and service delivery.

2.2 Multi-access Edge Computing for video delivery

MEC has been proposed as an enabler for novel, low-latency
services in a mobile network [5]. Considering its potential,
both industry and the research community are working on
maximizing the benefits and efficiency of MEC technology.
As discussed in [3], [4], [12], such a resilient decentralized ar-
chitecture will enable new services and promising business
models, including those for a smart city [13].

MEC and NFV are complementary technologies, shar-
ing common concepts such as the existence of a virtualiza-
tion infrastructure where applications can be launched and
which is managed by a Virtualised Infrastructure Manager
component. As such, the MEC and NFV platforms could be
running independently or could share some reusable com-
ponents (e.g., parts of the virtualization infrastructure and
its management utilities). A standardized MEC framework
is the subject of a recent ETSI specification [6]. The common-
alities in the characteristics of NFV-MANO and the MEC
management and orchestration system, and the lack of a
unified way to jointly manage VNFs and MEC applications
have been identified by Sciancalpore et al. [14] who propose
specific extensions to the MANO design to address this is-
sue. A basic premise of our work is also the ability to jointly
manage resources and virtual instances both on top of and
outside the mobile edge, and our design supports this in a
standards-compliant way. However, we also need to account
for resources leased on heterogeneous cloud infrastructures.
Therefore, our architecture includes an extra tier outside the
MANO framework, where our CDNaaS Service Orchestra-
tor operates, using standard interfaces to communicate with
NFV and Mobile Edge Orchestrators.

Beyond architecture design issues, and focusing on the
specific video streaming service, Fesehaye et al. [15] propose
a two-hop edge scheme which reflects the data transfer rate
and throughput of the edge in comparison with the remote
cloud. Fajardo et al. [16] introduce a network-assisted adap-
tive streaming application to enhance the QoE of the deliv-
ered multimedia content. An architecture with distributed
parallel edges to increase QoE for content delivery has been
proposed by Zhu et al. [17]. Chang et al. [12] deploy indepen-
dent small-scale data-centers at the network edges, which
are capable of performing video caching and streaming on
their own. Jararweh et al. [18] integrate caching with proxy
functionality at the edge to store media content. They also
enforce computation offloading to increase the lifetime of
mobile devices.

Video transcoding in the cloud has recently received sig-
nificant research attention [19], [20], [21]. Utilizing virtual
cloud instances to perform video transcoding upon request
has been proposed in [22], [23] as the simplest and most
straightforward use case. The works in [24] and [25] also pro-
pose cloud-assisted video transcoding. Utilization of cloud
resources to assist mobile devices for customized transcod-
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ing services [26] and for energy conservation on mobile de-
vices [27] has also been proposed. As an efficient way of
video transcoding in the cloud, an approach to reduce the
bit-rate of the transcoded video by using a higher quantiza-
tion parameter without reducing the frame size or the frame
rate has been proposed by Johkio et al. [28]. Transcoding
only a portion of a video to reduce the transcoding time [29],
[30] and distributed video transcoding in the cloud to en-
hance efficiency [31], [32] have also been studied. Amazon
has also recently introduced an elastic transcoder [33].

In all the above research works, MEC is considered
a promising solution for handling video services, al-
though mainly focusing on streaming, caching and compres-
sion techniques. The computationally-intensive transcoding
functionality has been generally proposed to be treated on
traditional clouds, with the exception of the work of Beck et
al. [34], who study video transcoding at the edge for a Voice
over Long Term Evolution (VoLTE) service.

2.3 5G slicing
There is wide consensus that 5G mobile network technolo-
gies will be more than new radio access schemes [35], [36],
with network programmability and flexible service compo-
sition being some of their key characteristics. 5G will of-
fer the opportunity to dynamically build and manage end-
to-end network slices [37]. A slice can be considered as
an autonomous network service instance, encompassing all
service-specific functionality as well as the respective re-
source management [38]. Slices coexist over the same phys-
ical infrastructure by means of Cloud, NFV and SDN tech-
nologies. Resource management per slice, but also per par-
ticipating network entity is a critical aspect. Li et al. [39]
therefore differentiate between vertical and horizontal slices
and the resource management aspects therein. The vertical
case refers to resource sharing among different end-to-end
services and applications, while the horizontal case focuses
on resource sharing among network nodes and devices typ-
ically at the edge (e.g., nearby devices sharing computation
capacity).

Network slices are built by combining various reusable
network functions implemented as software components. In
this direction, Nikaein et al. [40] propose a service-oriented
network architecture, introducing the term of a network store,
which serves Mobile Network Operators, enterprises, and
over-the-top third parties as a repository of such network
functions and network slice templates.

Various types of value added services can be delivered
over network slices. We focus on content delivery and, to the
best of our knowledge, this work is the first to deal in depth
with this application case in this 5G slicing context.

2.4 Our prior work
In our prior work, we presented architectures for the pro-
vision of generic services on top of a telco cloud. One such
service could involve CDN functionality on demand. In par-
ticular, we presented the design of an Anything-as-a-Service
scheme for 5G networks [41], as well as an architecture for
on-demand virtual CDN deployment over a telco cloud [42].
However, in the former case, we did not expand on the
very technologies, algorithms and mechanisms for CDNaaS

provision, while the latter design was tailored to a single
telecom operator and did not consider the particularities
of a mobile network; as such, it is not directly applicable
to multi-domain 5G settings where services are deployed
at the mobile edge cloud and/or to multi-cloud cases. We
should note that elastic compute resource management (§ 5)
and dynamic video transcoding functionality (§ 7) have been
treated independently in our prior work [43], [19]. In this
article, we address them jointly, integrating them in our
CDNaaS architecture. We improve their design, and present
new models and algorithms, fine-tuning their operation. Im-
portantly, the work presented in § 4-6 builds on a measure-
ment methodology and experimental results on video QoE
and its dependence on service workload that we presented
in [42]. Here, we derive empirical models of QoE as a func-
tion of workload out of these experimental data, and use
them as a basis for our algorithms for compute resource
allocation and elastic resource management, thus demon-
strating a practical use case for them. Finally, in another line
of relevant work, we focused on VNF placement algorithms
for CDNaaS [2], a subject outside the scope of this article.

3 A 5G-ORIENTED ARCHITECTURE TO SUPPORT
MULTI-DOMAIN CDN SLICES

3.1 Features
We propose an architecture tailored to 5G network settings,
which allows the dynamic creation and management of
CDN slices, automatically reserving the necessary comput-
ing, networking, storage, and other resources across a feder-
ated cloud infrastructure, and dynamically scaling them fol-
lowing changes in user demand and the network conditions,
as the latter are detected via service and infrastructure level
monitoring. The distinctive characteristics of our approach
are the following:
• Mobile CDN slice resources can be allocated over infras-

tructures across multiple domains, thus potentially man-
aged by different parties. These infrastructures include
5G radio access nodes, edge clouds of mobile network
operators, and global-scale Infrastructure-as-a-Service
(IaaS) providers (e.g., Amazon, Azure, and RackSpace).

• Resource management follows a measurement-driven
approach: At the compute level, we use empirical mod-
els of the relationship between video QoE and service
workload for CPU resource allocation and scaling. At
the RAN level, per user video QoE estimates, potentially
coupled with (per user and aggregate) network state
information exposed by MEC-level services, are utilized
for on-the-fly content transcoding decisions to match
current radio conditions and optimize user experience.

• Our architecture is aligned with the recent ETSI NFV
MANO [7] and MEC [6] standards, and the design
choices we have opted for are particularly targeted to
multi-domain settings.

Such a service can be offered by a MNO, combining its
own centralized and edge cloud with other federated cloud
resources. However, with the availability of MEC-level APIs
and the ability to deploy arbitrary virtual services at the edge
according to specific Service-Level Agreements (SLAs) with
the network operator, third parties could offer the CDNaaS
functionality and manage mobile CDN slices.
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3.2 Design components

3.2.1 CDNaaS Orchestrator (CDN-O)
The CDNaaS Orchestrator is responsible for generating an
abstract representation of a CDN slice instance. Each slice is
composed of a set of primitive VNF instances (e.g., stream-
ing servers, caches, and transcoders) appropriately chained
together to form a service instance. These instances, their
actual placement at specific points in the underlying cloud
infrastructures (e.g., edge cloud compute nodes) [2], connec-
tivity properties, as well as the necessary resources to be al-
located to them are encoded in an abstract way in the form of
a Service Instance Graph (SIG). The SIG is transformed to an
actual slice deployment by interfacing with cloud controllers
managing the underlying federated cloud.

Much of the resource allocation intelligence is provided
by the CDNaaS orchestrator, since this is the component that
will have to decide the amount of resources to be reserved
per VNF instance (i.e., virtual CPUs, storage, memory), op-
timize VNF placement and allocate adequate network ca-
pacity vertically across the networking technologies that are
involved (i.e., RAN and core network level).

The CDN-O exposes a northbound REST API to offer
an entry point to customers (content providers) to request
the setup of a CDN slice with specific performance require-
ments and dimensioning information (e.g., maximum ex-
pected number of streams per region), as well as handling
pricing and SLA-related procedures.

From an implementation perspective, an aspect that in-
creases the complexity of the CDN-O is the requirement to be
able to communicate with heterogeneous clouds. At its cur-
rent version, our software prototype supports OpenStack,
AWS, and Microsoft Azure.

Performance-wise, in our implementation, the initial cal-
culation of the amount of CPU resources to assign to cover a
specific demand can be executed very fast, in 3 simple steps,
as described in § 4.3. How to distribute these resources to
VNFs and how to place the latter at edge or other hosts, a
topic that has received significant research attention, is not
within the scope of this article. In our prototype, we have ex-
perimented with simple and very fast to execute placement
schemes, but also with more sophisticated algorithms, such
as the ones proposed in our prior work [2]. These algorithms
have been shown to run in the order of a few seconds or less
for large problem instances.

Eventually, the time to serve a virtual CDN instantia-
tion request critically depends on the size of the deploy-
ment in terms of VNF instances. As we have experimen-
tally shown [42] (albeit on a different environment, service
architecture, and implementation), this time is dominated
by the time it takes to launch the VNF instances (which
includes also the time to copy the VM images from the
Virtualized Infrastructure Manager (VIM)’s image store to
the selected compute nodes); the delay due to the execution
of API calls over the customer-facing northbound API or to
communicate with the underlying VIMs on the southbound
is negligible.

3.2.2 CDNaaS Slice Coordinator (CDN-SC)
Each slice needs to be autonomously monitored and man-
aged, particularly given their heterogeneous performance

requirements. CDN-service-level functionality is imple-
mented here. For example, the number of video streaming
sessions per slice is monitored by specific tools available
by the CDN-SC and decisions to scale up to more CPU
resources to sustain the desired video QoE according to the
slice SLA are taken by this component. The CDN-SC may
need multi-level information to optimize the operation of a
CDN slice. For example, it may need RAN-level information
from a specific macro-cell or VNF CPU load information
from the edge cloud, which can be retrieved by using specific
MEC APIs via communicating with specific edge manage-
ment components.

3.2.3 Mobile Edge Orchestrator (MEO)

We are targeting multi-domain scenarios, where different
MNOs contribute their resources at the mobile edge in a
federated cloud. Each MNO therefore operates its own Mo-
bile Edge Orchestrator (MEO) component, and the CDN-
O and CDN-SC need to interface with multiple MEOs for
slice deployment and management. Each edge node may be
hosting VNF instances belonging to different slices. It is the
role of the MEO to maintain an overall view of the edge
hosts that it manages and the underlying cloud resources
(via communicating with the respective edge cloud VIMs),
and expose specific APIs to the CDN-SC and the CDN-O
to instantiate slice components (as virtual machines on top
of edge hosts) [5]. The ETSI MEC framework and refer-
ence architecture [6] identify specific management reference
points where these interfaces are implemented. In § 3.3, we
provide further details on how our design complies with this
standard and how our components interact with the mobile
edge system and platform.

3.3 Standards compliance and extensions

3.3.1 Mapping to the ETSI NFV MANO and MEC reference
architectures

Fig. 1 presents a simplified view of the MEC and MANO
frameworks and shows how our main architectural com-
ponents map to them. Since our architecture is designed to
operate in a cross-domain fashion, the CDN-O rests outside
the MANO and MEC domains, and, depending on the de-
ployment scenario, can be considered either as part of the
network operator’s Operations Support System (OSS) or as
a separate third-party entity. It communicates with the NFV
Orchestrator (NFVO) and the MEO over the Os-Ma-nfvo and
the Mm1 interfaces, respectively.

Service-level components of a slice (e.g., cache or
transcoder virtual instances) can be instantiated as VNFs,
Mobile Edge (ME) applications (equivalent to VNFs, in the
MEC terminology), and/or virtual instances on top of third-
party, non-MANO-compatible infrastructures. In the latter
case, the CDN-O uses the cloud provider’s APIs to deploy
them (e.g., OpenStack or Amazon EC APIs).

The CDN-SC functionality is implemented in the VNF
Manager (VNFM) component of the MANO framework. To
manage a CDN slice’s life-cycle, it interacts with cloud VIMs,
but also monitors and manages slice components running
as ME applications. Specific services running at the Mobile
Edge Platform (MEP), e.g., the Radio Network Information
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Fig.1.OurdesigninthecontextoftheETSINFVMANOandMECreferencearchitectures.Thefigureincludessomeoftheirbuildingblocksand
standardizedinterfacesbetweenthem,andthecomponentsofourarchitecture.

Service(RNIS)[44](see§5.1),canprovideinputforrun-
timeadaptations.Notethattheuseof Mm2toaccessthe
MEPManager(MEPM)fromoutsidetheMECdomainisnot
strictlycomplyingwiththeMECstandard.However,since
MEPM–CDN-SCcommunicationisnecessaryinourcase,
weproposetore-purposethisinterfacebyopeningittothe
VNFMthesamewaythatitisaccessibletotheOSS/BSS.

3.3.2 CDNdeploymentfortrafficdeliveryfromtheedge

CDNtrafficinourcaseisdeliveredusingDNSredirection
techniques.WhenthereisnoMECcoverage,auserisserved
bythecachetowhichitsrequestforcontentisresolved,be
itatacentralizedcloudinfrastructure(e.g.,Amazon)orata
nearbyNFVI,e.g.,attheclosestoperator’sPointofPresence.
Whenauserisattachedtothemobilenetworkandthere
is MECsupportatitslocation,thelocal MEPDNSserver
isusedtorespondtotheuser’squeries,andtraffic may
beterminatedatalocalMEapplication.Inourimplemen-
tation, MECcloudsareorganizedinregions.Eachregion
correspondstoaspecificsetof MEChosts,andone MEO
maymanagemultipleregions.Therequiredstepsforspecific
mobileusertraffictobedeliveredviatheappropriate ME
applicationfollow:
Step1: Applicationpackagepreparation.The CDN-O,
whichreceivestheCDNdeploymentrequest,preparesfor
onboardingtheCDNcomponents(e.g.,videocache)tobe
deployedattheedge.Itcreatesanapplicationpackage,
whichincludesanApplicationDescriptor(AppD)[45]with
theresourcerequirementsoftheapplicationinstances,a
pointertotheVM/containerimagedata,and,importantly,
trafficandDNSrules(appTrafficRuleandappDNSRule

informationelementsoftheAppD),sothatDNSrequests
foraspecificnameareresolvedtotheIPaddressoftheedge
cacheapplicationinstance,andCDNtrafficisservedfromit.
Step2: Onboarding.TheCDN-O,dependingon where
thecustomer wishestodeploytheservice,accessesa
MEO’spackageonboardingendpoint(HTTPrequestwith
theAppDandotherinformationasitsbody,asspecified
inETSI MEC010-2[45]).Theregionisdesignatedina
RegionIDfieldwhichwehaveaddedtotheoriginalstan-
dardspecificationoftheApplicationPackageOnboarding
message;basedonthat,theMEOthenselectstheresponsible
localedgeVIMstoonboardthepackage.
Step3:Instantiation.TheCDN-Ocreatestheapplicationin-
stanceviatheMEO’sinstantiationAPIendpoint.Theregion
identifierisincludedintherequest,sothattheMEOdecides
whichedgeVIMshouldhosttheinstanceandlocatestheAPI
endpoint(Mm5referencepoint)oftheresponsibleMEPM.
Aftersuccessfulcreationoftheinstance,the MEOnotifies
the MEPMoftheDNSandtrafficrulestobeadded;the
MEPMthenreconfigurestheMEP’sDNSservicetoresolve
userqueriesforspecificdomainnamesindicatedinthe
AppDtotheinstance’sIPaddress,and,optionally,interacts
withthedataplanetoapplyfurthertrafficsteeringrules(in
ourcase,dataplanetrafficattheedgeishandledusingSDN,
byinterfacingwithanOpenFlow-capablevirtualswitch).

3.3.3 SupportforMEC-in-NFVdeployments

OurdesigntreatsMANOandMECastwodistinctdomains.
ItistheresponsibilityoftheCDN-OandCDN-SCtohan-
dlethedeploymentand managementofCDNaaSservice
componentsseamlesslyacrossedgeandcentralizedcloud
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infrastructures. Our design does not preclude operation in
a MEC-in-NFV environment, where the MEP/MEPM are
deployed as virtual instances and their instantiation and
lifecycle management, as well as those of ME applications,
are delegated to an NFVO. The interplay between MEC and
NFV is currently under study by ETSI MEC 017 [46], and in
parallel research efforts [14].

VNFs and ME applications have some distinct differ-
ences, which are reflected in the structure of their descrip-
tors: An AppD, beyond the information included in a VNF
descriptor (VNFD), also provides information about MEC
services consumed and exposed by the ME application, and
specific DNS rules and traffic steering directives. In a MEC-
in-NFV scenario, to deploy a CDN component at the edge,
the CDN-O would request the MEO (or, MEAO, standing
for ME Application Orchestrator, in ETSI MEC-in-NFV par-
lance) to instantiate the ME application, and the ME(A)O
would create a network service descriptor (NSD) for the
application to pass on to the NFVO, which would eventually
create the instances. However, the definition of the NSD
according to ETSI NFV-MAN 001 [7] does not include AppD
references. On the other hand, a VNFD on its own cannot
capture the requirements of ME applications and the NFVO
does not know how to handle them. This is an issue already
acknowledged by ETSI.

In our approach, it is transparent to the CDN-O if MEC
is implemented in the standalone or the in-NFV version.
The integration of MEC in NFV is a matter of a set of
implementation choices, to which the CDN-O is agnostic;
the latter need only prepare the application component for
deployment either at the edge (application package on-
boarded to the ME(A)O over Mm1) or at generic NFVIs
(NSD including VNFD references onboarded to the NFVO
via Os-Ma-nfvo). In our solution, the NFVO is left un-
modified, while the ME(A)O, which receives an applica-
tion package from the CDN-O, is responsible for extracting
the MEC-specific elements from the AppD, translating it
to a standards-compliant NSD with references to VNFDs
for NFVO onboarding and instantiation, and handling all
the MEC-specific functionality itself. A critical aspect is the
interface with the data plane for traffic steering. We opted for
a solution where the Mp2 reference point is maintained as a
MEC-internal, proprietary interface, to which NFV MANO
is agnostic. (The other option would require the ME(A)O to
translate traffic rules to a Network Forwarding Path (NFP),
and pass it to the NFVO to apply it at the VIM. We did not
select this option due to its additional complexity for the
ME(A)O.) Finally, regarding the communication of the CDN-
SC with the MEPM (e.g., to update traffic rules) and the
ME applications running as VNFs, the new Mv2 and Mv3
reference points can be used, respectively.

3.3.4 MEC support for network slicing
Full MEC support for network slicing is not yet there. The
ETSI MEC 024 work item [47] has recently been established
to study this issue, providing some early use cases and re-
quirements [48]. Especially in a MEC-in-NFV environment,
multiple virtual MEP/MEPM instances might coexist, each
handling a different slice or set of slices. An issue that then
emerges is how to discover the MEP instance responsible for
an application at instantiation time.

We have implemented extensions to offer basic MEC
slicing support. To manage the logical grouping of ME ap-
plications and other instances that are part of a slice, and to
give hints to the ME(A)O on how to handle special types of
instances (e.g., virtualized MEP/MEPM), we exploit place-
holder fields in the information model specified in ETSI
MEC 010-2 for the MEO-OSS interface; this way, we limit
the impact of our extensions on the standard. At package
onboarding, we use the userDefinedData field of the Ap-
plication Package Onboarding Request to signal the MEO
that the package contains a virtualized MEP. Then, at ap-
plication instantiation, we use the selectedMEHostInfo
element to add slice identification information and to define
the regional data center where the instance is to be deployed.
The MEO then uses the slice ID to select the appropriate
virtualized MEP/MEPM instance, and communicates with
it to discover the API endpoints of its services, register the
application, configure traffic steering rules, etc.

4 MEASUREMENT-DRIVEN COMPUTE RESOURCE
ALLOCATION

A critical aspect in the deployment of a CDN slice is to
provision it with adequate compute resources to sustain the
customer’s desired end-user QoE levels. This decision has
direct implications for the CDNaaS operator regarding the
cost of the slice deployment, since this is a function of the
cloud resources leased. It is also directly related with the SLA
between the customer (content provider) and the system
operator and with service pricing: The price of a service
instance is a function of the amount of resources used, and
the latter (and their elastic management) are important to
provide the customer with service-level guarantees.

In order to decide on the optimal amount of compute re-
sources to allocate to a slice given customer-defined demand
and QoE specifications, we follow a measurement driven
approach. In our prior work [42], considering specific tech-
nologies at the VIM and the CDN service levels, we carried
out testbed experiments where we measured how QoE for a
virtualized video service is affected by service workload. In
this article, based on these experimental results, we derive
an empirical model of QoE as a function of this workload,
which we apply to (i) decide on an initial resource dimen-
sioning, i.e., how many compute resources to dedicate to
VNF instances composing a CDN slice, (ii) dynamically scale
these resources in real time, so that the target QoE levels are
attained, and (iii) be able to identify, based on data from
real-time slice monitoring, what is the root cause in case
of service quality degradation and act appropriately (i.e.,
identify whether QoE degradation is due to CPU load or
reduced network capacity). We provide a brief overview of
our experimental methodology, before we present how the
results of our tests are utilized in this work.

4.1 Measurement methodology

We focus on a video streaming service where video con-
tent is delivered using Dynamic Adaptive Streaming over
HTTP (DASH) [49]. The use of HTTP is typical for delivering
mobile video over CDN infrastructures nowadays. Under
DASH technologies, the client receives a Media Presentation
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Description (MPD) file with information on the available
representations (different qualities) of the same video, which
is segmented in chunks. Afterwards, the client proceeds to
download the video chunk-by-chunk, potentially switching
among the available qualities (and thus bit-rates) to better
adapt to the network conditions.

To quantify the relationship between server load and user
experience, we measure the performance capabilities of a
standard NGINX HTTP server [50] hosted on a KVM [51]
virtual machine, pinned to a single CPU, and in the presence
of multiple parallel video sessions. We selected KVM since it
is the default hypervisor in OpenStack.1 We use the terms
virtual CPU (vCPU) and CPU core interchangeably; in a
cloud setup, this corresponds to a 1:1 CPU allocation ratio.

Our QoE metric is the Mean Opinion Score (MOS), i.e.,
the expected rating that a panel of users would give to the
quality of the transmitted video in the 1-5 (poor-excellent)
scale. To estimate it, we apply the Pseudo-Subjective Quality
Assessment (PSQA) approach [53]. PSQA consists in train-
ing a Random Neural Network (RNN) based on experiments
with physical subjects under controlled conditions, where
a set of parameters affecting quality is monitored and the
ratings of users are recorded. The trained RNN classifier
can then be applied in real time and output the expected
MOS for specific values of the input parameters. Singh et
al. [54] have applied PSQA to estimate QoE for H.264/AVC-
encoded video delivered over HTTP, and we have used their
tool in our experiments. PSQA receives as input playout
interruption statistics and the average value of the Quantiza-
tion Parameter (QP) across all picture macroblocks in a QoE
measurement window, which corresponds to 16 s of video.
QP is an indication of picture quality (the higher the QP, the
lower the video bit-rate and quality). More details on our
experimental methodology can be found in [42].

4.2 Empirical model of QoE as a function of service
workload

With the aim of empirically associating video server load (in
terms of parallel video streams) and user experience, we var-
ied the number of parallel video sessions from 2000 to 12000.
Fig. 2 presents the average MOS value observed across all
16 s video samples for each case. We observe that a vanilla
NGINX server can sustain up to more than 5000 parallel
HD video sessions with an excellent quality. For loads of
6000 parallel users or more, video interruptions start to take
place and this reduces QoE, especially as load grows. The
duration and the frequency of such playout interruptions
follow an increasing trend with server workload, reaching,
on average, more than 7 s and 2.5 per minute respectively
when the number of parallel streams is 12000 [42].

We then fitted a quadratic function to our measurement
results. We found that the following expression reasonably
describes our data (the coefficient of determination is R2 =
0.9265) and approximates the average QoE as a function

1. In [42], we also ran experiments to compare the performance of
KVM and containerization technologies (Docker [52]) for video and
generic HTTP services and found the latter to achieve superior per-
formance. Such a comparison is outside the scope of this work; our
methodology and algorithms are directly applicable to Docker as well.
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Fig. 2. Average QoE as a function of the number of parallel HD video
streams on a web server hosted in a KVM VM using 1 CPU core. Each
point is the mean of a few hundreds of QoE samples (MOS values),
presented with 95% confidence intervals. A quadratic function has been
fit to the empirical data.

of the number of parallel video streams on a single-vCPU
HTTP server virtual instance:

Q(x) = 5− 1.046× 10−8x2, (1)

where Q(x) is the expected QoE of a user expressed in MOS
terms when there are x parallel video streams delivered by
the same virtualized server.

Our experiments also revealed the linear performance
scalability as the number of vCPUs allocated to a virtualized
HTTP server instance grows: We found that by adding one
more vCPU to the instance, it could handle double the num-
ber of parallel video streams with no interruptions.

We also report on the CPU utilization ratio as service
workload grows. Fig. 3 shows that for more than 6000 par-
allel streams (1 vCPU case), CPU utilization in the virtual
machine that hosts the video server approaches 100%. This
is the point when playout interruptions start to take place.
It should be noted that with 2 vCPUs, we did not manage
to saturate the VM, since we were hitting network-level
bottlenecks before processor-level ones. This result suggests
that CPU load can be used as a further indication of QoE
and can be used as an additional metric when taking CDN
slice resource scaling decisions. We propose such scaling
mechanisms in § 5 and § 6.

4.3 CDN slice compute resource calculation
Using the northbound REST API of the CDN-O, the cus-
tomer provides the desirable maximum demand in terms
of the number of parallel video streams and the target QoE
level, among other information. During the operation of the
slice, end users will be served content by the optimal video
server, which is reasonable to assume that it will be their
local cache.2 The number of vCPUs to be allocated to the
cache VNF instances of a slice is then calculated in a straight-
forward way using the following procedure:

2. In our implementation of a CDNaaS scheme, requests for video
content are served by caches acting as user proxies towards origin video
servers, from which they retrieve content if they do not have it stored
locally.
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Fig. 3. CPU utilization as a function of video service workload (parallel
number of streams). Each point is the mean of a few hundreds of QoE
samples (CPU load values), presented with 95% confidence intervals.

Step 1: Get customer demand in terms of the maximum
number of streams (n), and the minimum tolerable QoE
threshold (qmin).
Step 2: Find the maximum number of streams a vCPU can
handle with a QoE value greater than or equal to qmin. To
derive this value, we use the inverse function of Eq. (1),
which gives us a number of parallel streams (n∗) for the
given qmin value. In our empirical model, calculating the
inverse of Q(x) is straightforward.
Step 3: The number of vCPUs to allocate for a slice is
v = dn/n∗e. Namely, we divide the total demand by the
maximum number of streams a vCPU can sustain with a
given QoE.

Note that v refers to the sum of the compute resources
of the slice. These have to be allocated to VNF instances
and the slice has to make sure using the appropriate CDN
components (i.e., load balancers and redirection servers) that
simultaneous requests for video content at a VNF instance
with a specific number of vCPUs will not exceed its pro-
cessing capacity, to guarantee the desired QoE threshold. It
is reasonable to assume that the customer will be able to
submit a CDN deployment request with a different target
demand per region (as defined, e.g., by the coverage area
of a macro-cell or a regional data center; the granularity of
a region is up to the service operator to define). Then, the
above procedure can be executed once per such region.

5 SLICE MONITORING AND ELASTIC RESOURCE
MANAGEMENT

Real-time slice resource management decisions require
multi-level service monitoring. In this section, we detail the
monitoring-related components of our architecture, and how
they can be used to dynamically and elastically adjust the
allocated resources to meet the desired performance criteria.

We identify two major types of resources that affect user
experience in a video content delivery setting: cloud and
network related ones. In the first case, we focus on compute
resources, while in the second case, we are mostly interested
in the conditions in the mobile edge (RAN level) and attempt
to adjust the delivered video bit-rate on a per user basis

to address network capacity and link quality changes. We
introduce the following components at the CDN-SC level:
Resource Usage Monitor, Quality Assessor and Elasticity
Decision Maker.

5.1 Resource Usage Monitor (RUM)
This component is responsible for monitoring resource us-
age for all VNF instances of a slice. Such information can
be provided by the VIM. For example, if OpenStack is used
as the VIM platform, as in our implementation, resource
usage information per VM can be provided by OpenStack’s
Ceilometer module. RUM periodically monitors every in-
stance’s CPU and RAM utilization (other parameters are
monitored too, but are not considered in the methods we are
describing in this work) and communicates this information
to the Elasticity Decision Maker.

The RUM is also responsible for collecting network-level
information. For mobile users and in regions where CDN
components are deployed as ME applications, the RUM has
access to information on the radio network conditions via
the RNIS [44]. Our implementation includes a standards-
compliant RNIS (see [55] for details on its internals), which
allows ME applications to subscribe to radio information at
different granularity (i.e., per user or per cell), and receive
them as asynchronous notifications. The RUM can thus, at
any time, be informed of the load of a cell in terms of
connected users, but also of the Channel Quality Indication
(CQI) of each user consuming the CDN service. This infor-
mation can be used in two ways. First, significant changes in
the CQI or cell load values can be quickly detected and can
trigger the initiation of video transcoding. Second, the CQI
values, combined with the cell load, can be used to estimate
the radio capacity per user. This, in turn, can drive the video
transcoding process. This estimation can be achieved by
mapping CQI values to achievable throughput for different
cell loads via experiments, or using information provided
in the standards. The 3GPP TS 36.213 specification [56] pro-
vides a mapping of CQI values to modulation and coding
schemes (MCS) that a base station uses for transmitting data
to users, as well as a translation of the MCS to achievable
throughput for a specific amount of radio resources allocated
to a user. Combining this value with the number of coex-
isting users can provide a rough estimate of a user’s radio
capacity.

Note that from an architectural viewpoint, applications
running outside the edge computing environment cannot
directly subscribe to MEC services, nor have direct access
to the MEPM. A potential solution is to expose the MEPM
Mm2 interface to specific external entities such as the RUM,
which is part of the CDN-SC (VNFM-level functionality).
Otherwise, the RUM can operate a monitoring component as
a ME application authorized to consume the RNIS and relay
the collected radio information to the RUM. This approach
extends to other types of monitoring information which are
not directly accessible by external entities via MEC APIs.
Although the first approach necessitates to re-purpose the
Mm2 interface, it is simpler to implement.

5.2 Quality Assessor (QA)
System level information is important for resource manage-
ment decisions, but it does not offer a feel about how users
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perceive the CDN service. We are interested in having a user-
centric view about the experience of the end-users of the
CDN slice and, in turn, perform QoE-aware management
decisions. To this end, we have introduced the Quality As-
sessor component, which can estimate the CDN slice per-
formance in QoE terms. Our proposed scheme thus decides
on whether to scale resources or not also based on the QoE
perceived by users, as estimated and reported by the QA.

The QA has two parallel operation modes. First, it oper-
ates as a QoE probe and its purpose is to get an overall view
of the QoE that can be delivered by a VNF instance from a
compute perspective. Namely, the probe’s purpose is to de-
tect any degradation related with heavy workloads and not
individual user characteristics (e.g., link quality) or network
capacity issues. As such, it can be launched in the same host
or data center as the monitored VNF instance(s) (to minimize
network-related effects) and emulate a user which receives
a video stream from the specific monitored VNF instance.
The probe records QoE-relevant parameters, uses the PSQA
model to calculate a QoE estimate (MOS value), and reports
it to the Elasticity Decision Maker. A simpler, less accurate
implementation option is to monitor the number of parallel
video streams served by the instance and use the model of
QoE vs. workload derived in § 4 to estimate a MOS value.

The second mode has to do with individual user QoE
monitoring. It works under the assumption that at the user
end there is the appropriate functionality in place to record
the relevant input parameters for QoE calculations and re-
port them to the QA.3 The QA receives real-time information
of the service status from the client. The status includes the
ID of the last downloaded segment and of the playing seg-
ment, the playback interruption count and duration, and the
QP value of the video playing at the end-user device. Con-
sidering these parameters, the PSQA model is used again
to generate a MOS estimate in real-time in an automatic
manner for a specific user. If the MOS value is below the
target threshold set by the customer, the QA needs to verify
that this is an individual user issue, or that this is due to
heavy load. This information is available by the RUM. In
case resource utilization is within the acceptable thresholds,
the QA triggers the CDN-O to initiate the video transcoding
service. The latter then communicates with the MEO of the
edge network serving the specific user to instantiate the ap-
propriate transcoder VNF at the edge cloud. The transcoding
process is presented in detail in § 7. In a different case, this is
a problem that affects all users served by a VNF instance and
will be tackled by the Elasticity Decision Maker by scaling up
the CDN slice.

5.3 Elasticity Decision Maker (EDM)
The main EDM functionality consists in deciding when
to trigger the CDN-O to enforce the elasticity operation
on an instance, indicating what resources should be allo-
cated for the instance, while preventing service interruption.

3. In practice, much of the video nowadays is delivered via web-based
players. Technologies such as the HTML5 media source extensions,
which are becoming widely supported, facilitate the development of
custom web players for HTTP video (see, e.g., the DASH Industry
Forum reference client, a pure Javascript/HTML5 MPEG-DASH client
implementation [57]). This may make the requirement for additional
client-level monitoring functionality easier to satisfy.

The EDM periodically receives monitoring information from
both the RUM and QA. Based on that, it identifies the appro-
priate amount of resources to (re)allocate to an instance to
meet the required service level objectives in terms of QoE,
also avoiding cloud resource under-utilization. The EDM
employs a Multi Attribute Decision Making (MADM) algo-
rithm using multiple inputs, such as the resources allotted
for an active instance, those in use, maximum resources that
can be allocated for the service, instance flavor size,4 the
available flavor types/sizes, and the MOS of the running
VNF instance as reported by the QA. The thresholds of each
of these inputs are preset for variable flavors and are tuned
offline taking into account the results of our experiments (see
§ 4), ensuring optimal operating conditions.

When EDM takes a resource re-allocation decision, it
triggers up-/down-scaling of a running instance specifying
its new size/flavor. Scaling refers to increasing or decreasing
the resources in terms of CPU, RAM, and storage. It can
be either vertical or horizontal. Through vertical scaling,
the CDN-O increases the computing power on a running
instance, while horizontal scaling adds computing power
by adding more virtual instances. Whilst horizontal scaling
is relatively straightforward, it is costly as it involves more
VMs and is more complex from a management perspective.
Furthermore, horizontal scaling requires load balancers to
be more effective. In contrast, vertical scaling exhibits less
operation cost but is more complex from an implementation
perspective. In this work, we report on results obtained in
the case of vertical scaling, as its horizontal counterpart is
relatively easier to implement.

The EDM compares the CPU usage and RAM usage
(RUM output), and the MOS estimate (QA output) against
their respective threshold values, and decides on how to
elastically adjust the allocated resources as follows:

1) If resource usage exceeds the maximum defined thresh-
old and the MOS score is below the optimal value, the
EDM initiates a vertical scale-up.

2) If resource usage is below a minimum threshold while
MOS is acceptable, the EDM initiates a vertical scale-
down.

3) If resource usage is within the threshold range but the
MOS value is below the optimal value, the EDM iden-
tifies that the root cause of QoE degradation is not due
to increased load; thus, no scaling is decided.

4) If resource usage is within the threshold range but the
MOS value exceeds the optimal value, EDM takes no
action, deeming the system healthy.

It should be noted that scaling decisions should take into
account the capacity constraints of the physical infrastruc-
ture. At a low level, such capacity information is available
by the VIMs and is passed on to the EDM by the RUM. The
interactions between the RUM, QA, EDM, and the rest of
our CDNaaS architecture are shown in Fig. 4 following the
algorithm proposed in § 6. Fig. 5, on the other hand, focuses
on individual user monitoring by the QA, and how the latter
interacts with a MEO to initiate the transcoding service (§ 7).

4. We use the term flavor as in OpenStack, to represent a block of fixed
resources in terms of CPU, RAM, storage, ephemeral disk and swap
memory. When a flavor is allocated to an instance, a certain amount of
resources that remain fixed during its operation are assigned to it.
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6 EDM ALGORITHM

The EDM component monitors the virtual resources of
all VNFs composing a CDN slice. In case of under/over-
utilization, it triggers the CDN-O to enforce the elasticity
operation, specifying the new resources allocated for it (i.e.,
vertical scaling) or adding new VNF instances (i.e., hori-
zontal scaling) to ensure the desired QoE. The underlying
EDM resource allocation algorithm aims to ensure a bal-
anced session load over different instances and to guarantee
the highest QoE required by the slice end-users, while mini-
mizing the cost in terms of pricing (e.g., reducing the number
of created VNF instances). The EDM periodically receives
monitoring information from both (i) the RUM component,
that monitors every instance’s CPU and RAM utilization and
communicates this information to the EDM, and (ii) the QA
that estimates the CDN slice performance in terms of QoE.
Hence, the EDM algorithm can perform elastic management
decisions based on load and QoE awareness.

6.1 Mathematical modeling of the EDM algorithm

The proposed EDM algorithm is fed with the aforemen-
tioned information in order to identify the appropriate
amount of resources to (re)allocate to an instance to meet the
required service level objectives in terms of QoE and cost,
and to also avoid cloud resource under-/over-utilization. In
this section, we model the physical network representing the
cloud infrastructure of a CDN slice. In this regard, we define
ϑ = {v1, v2 . . . vn} as the set of running VNF instances
hosted on different public and private IaaS clouds. We define
ξ = {ζ1, ζ2 . . . ζK} as the set of all available cloud domains.

TABLE 1
Summary of notation

Notation Description
ϑ Set of running VNF instances. ϑ = {v1, v2, vi . . . vn}
F Set of all available flavors across all cloud domains.

F = {f1, f2 . . . , fj . . . fp}
fj,cpu,
fj,ram,
fj,cost

Number of CPU cores, memory capacity and the cost
($/hour) on the cloud provider of flavor fj ∈ F ,
respectively.

xij Binary variable indicating a possible assignment of fla-
vor fj to a VNF instance vi.

ξ Set of all available cloud domains.
T Time period.
f∗ij∗ Initial flavor of the VNF instance vi.
l∗ij∗ Initial percentage value representing the average re-

source usage in the VNF instance vi during a period
T.

Q∗
ij∗ Initial QoE value collected for the VNF instance vi.

cij Estimated cost in $/hour while using a potential flavor
fj .

lij Estimated load of the instance vi while using a poten-
tial flavor fj .

Qij Estimated quality of experience of the instance vi while
using a potential flavor fj .

Qmin Minimum QoE required in a CDN slice.

lmin,
lmax

Minimum load and maximum load, respectively, for
a VNF instance to be considered using optimally its
resources.

Cmaxζk

Maximum capacity of a cloud provider ζk ∈ ξ. It is
considered as the available virtual resources on the
cloud.

η Normalization function.
ρi Average number of parallel video sessions in the VNF

instance vi during a time period T.
σ Impact of the cost of the flavor on QoE. σ varies from 0

to 1.

We denote by F = {f1, f2 . . . fp} the set of available flavors
across all cloud domains, whereby fi,cpu, fi,ram, and fi,cost
denote, respectively, the number of CPU cores, memory ca-
pacity and the cost ($/hour) of flavor fi. In other words, each
cloud domain ζi ∈ ξ has a set of flavors {fζi,1, fζi,2 . . . fζi,ki}
where

⋃
ζi∈ξ
{k ∈ [1, ki], fζi,k} = F . Since the QA and RUM

components update the EDM on the basis of a time period
T , each VNF instance vi ∈ ϑ has a set of initial properties. At
the beginning of every period, vi is hosted at a cloud domain
ξ with an initial flavor f∗i . RUM also receives the average
number of parallel streaming sessions ρi and the initial load
l∗i representing the average resource usage in a VNF instance
vi during the time period T . QA provides the estimated QoE
Q∗i from the perspective of the end-users of the CDN slice.
For an optimal flavor assignment over VNF instances, we
solve the problem using a branch and bound method. For
each potential assignment xij of a flavor fj to a VNF instance
vi, we define a set of values in terms of cost, load and QoE.
A possible assignment xij of flavor fj to VNF instance vi
represents the following information:

• The price cij in $/hour of the allocated flavor.
• The estimated CPU load lij based on the number of

active parallel streaming sessions. The load can be con-
sidered optimal when lij ∈ [lmin, lmax]. In our model,
we estimate lij as (lij =

f∗
j,cpu

fj,cpu
× lij∗).

• The estimated QoE that can be provided if we allocate
the virtual resources fj to vi.
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Under the assumption that performance linearly scales as
the number of vCPUs allocated to a streamer instance
grows,5 we can generalize (1) for every possible assignment
xij of fj ∈ F to vi ∈ ϑ as follows, also attempting to capture
the impact of the cost of a flavor on QoE.

Qij(ρ) = 5− 1.046.10−8 × (
ρ

fj,cpu
)2 + 5σ × η(fj,cost) (2)

In the above expression, we assume that the cost of a
flavor has an impact σ on QoE (e.g., in case of two flavors
with the same virtual resources, the cheaper one will provide
a lower QoE). The rationale behind this decision stems from
the fact that there are aspects that could be influencing QoE
which are not directly captured in our model. For example,
more expensive flavors could come with higher-throughput
network connections, high-availability guarantees for the re-
spective VMs, etc. Setting this value to zero leads our model
to ignore these effects. We normalize the flavor cost function
using the normalization function ηk, where the intention is
to allow the comparison of the impact of the flavor cost in
different clouds in a way that eliminates proportionally the
effect of prices to promote also the expensive IaaS clouds to
a notionally common scale altogether. The normalized value
varies between 0 and 1.0:

etak(fj,cost) =
fj,cost −min(f ∈ ζk)

max(f ∈ ζk)−min(f ∈ ζk)

In our simulations, we ensure that the number of parallel
video sessions does not exceed a maximum value ρmax, so
that QoE does not take negative values.

The aggregate utility minimization Linear Programming
(LP) problem is shown as follows. For the sake of readability,
the notations used throughout the paper are summarized in
Table 1.



min z=
∑
i∈ϑ

∑
j∈F

cijxij

s. t.
∀i ∈ ϑ,

∑
j∈F

xij = 1 (C1)∑
i∈ϑ

∑
j∈F

xij = n (C2)

∀i ∈ ϑ,
∑
j∈F

lijxij ≤ lmax (C3)

∀i ∈ ϑ,
∑
j∈F

lijxij ≥ lmin (C4)

1
n

∑
i∈ϑ

∑
j∈F

Qijxij ≥ Qmin (C5)

∀k ∈ ξ,
kfin∑

j=kinit

fj,cpu
∑
i∈ϑ

xij ≤ Cmaxζk
(C6)

∀i ∈ ϑ, ∀j ∈ F, cij , lij , Qij > 0 (C7)

∀i ∈ ϑ, ∀j ∈ F, xij ∈ {0, 1} , (C8)

(3)

5. We verified this assumption experimentally: By adding one more
vCPU to the instance, it could handle double the number of parallel
video streams with no interruptions, keeping the same QoE level.

The objective aims at reducing the total incurred cost
while ensuring an optimal load and QoE required by end-
users receiving video content from all VNF instances. The
constraints in our LP model ensure the following conditions:

• (C1) & (C2): ensure that each instance will be assigned
one and only one flavor.

• (C3) & (C4): ensure that all selected flavors can handle a
load between lmin and lmax, so as to avoid under/over-
utilization of cloud resources.

• (C5): ensures that the average QoE in the new resource
allocation satisfies the customer’s requirement. The av-
erage QoE of a CDN slice is defined as the mean QoE
experienced over all VNF instances composing the CDN
slice.

• (C6): A cloud domain ζk ∈ ξ has a maximal capacity
of resources Cmaxζk

, which represents the total number of
CPU cores available at its physical hosts. The constraint
guarantees that the maximum capacity is not exceeded
when allocating the flavors. We must also clarify that
flavors are imported in order by cloud where kinit is
considered as the index of the first flavor of the cloud
ζk, and kfin represents the index of the last flavor in that
cloud.6

• (C7): ensures that the incurred cost, QoE and load pa-
rameters are valid values.

• (C8): shows binary variables whereby

xij =

{
1 if flavor fj is assigned to VNF vi
0 otherwise

6.2 Algorithm operation

The EDM algorithm is executed periodically after receiving
updates from the RUM and the QA regarding the resource
usage and QoE status, respectively. It derives an optimal
assignment xoptij of flavors to active VNF instances using the
model (3). In case an optimal solution is found, EDM will
simply make scaling decisions by increasing or reducing the
virtual resources in the running VNF instances. However, in
case the LP model is infeasible, we aim to figure out which
constraints make the solution not possible. We assume that
we cannot relax the QoE-related constraint (C5), since main-
taining a minimum average QoE is a strict requirement for
the satisfaction of end-users. We therefore relax the model
only from the load perspective and start by setting the maxi-
mal load lmax to 100 in constraint C3. If an optimal resource
allocation is found, this means the slice will be over-utilizing
its resources in order to ensure the minimum QoE required.
Thus, EDM decides to add a new VNF instance to the CDN
slice and runs again the algorithm with the (n + 1) VNF
instances. Then, we also relax the model from the other side
and set the minimal load lmin to 0 in constraint C4. If a
solution is found, this means that the slice will be under-
utilizing its resources. Thus, EDM decides to remove some
existing instances ensuring the minimal QoE required and

6. In our implementation, we import the clouds and their flavors from
a JSON file. For each cloud, we know the number of available flavors.
Then we make sure that the vector F = {f1, . . . , fp} respects exactly
the order of flavors retrieved from an ordered set of clouds. Thus, kinit
is considered as the index of the first flavor of the cloud ζk , and kfin
represents the index of the last flavor in that cloud.
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the load range of [lmin, lmax]. Algorithm 1 describes more
precisely the EDM functionality for an elastic allocation and
re-allocation of virtual resources for a running CDN slice
consisting of multiple VNFs. To summarize, the main fea-
tures of the algorithm consist in two main decisions: (i) EDM
scales up and down the instances in terms of resources when
the optimal solution is found; otherwise, (ii) it scales in and
out the slice in case the LP model is infeasible.

Algorithm 1 Elasticity Decision Maker Algorithm
Require: ϑ a set of running instances. ξ a set of available

cloud domains. F a set of flavors. In a time period T .
while Time period T do

Receive QoE information from QA.
Receive monitoring and resource usage from RUM.
Run linear programming model (3): find an optimal
allocation of flavors to running VNF instances.
while Model is infeasible do

Remove constraint (C3).
Check if an optimum is found with a load ≥ lmax.
if Yes: possible optimization with over-utilization of
resources then

Scaling out actions: add new VNF instance.
Repeat the algorithm considering the newly added
VNF instance.

end if
Restore constraint (C3).
Remove constraint (C4).
Check if an optimum is found with a load ≤ lmin.
if Yes: possible optimization with under-utilization of
resources then

Scaling in actions: remove an existing VNF in-
stance.
Repeat the algorithm considering the newly re-
moved VNF instance.

end if
end while
Scaling up/down actions: Contact VIM(s) for new re-
source re-allocation to existing instances.

end while

6.3 Efficiency and scalability of the EDM algorithm

6.3.1 Experiment setup

To evaluate our proposed solution, we implemented the
EDM algorithm in Python. The linear programming model
(3) is implemented using the Gurobi Optimization tool and
is evaluated using the following metrics: (i) Mean cost per
unit representing the average price paid in dollars per in-
stance for its virtual resource allocation; (ii) QoE-aware re-
source allocation representing the performance when users
require a minimal QoE to be ensured; (iii) execution time,
representing the time required for the EDM algorithm to take
an optimal decision. The optimization problem is solved for
varying numbers of VNF instances in a CDN slice and other
parameters related to the slice owner or user requirements,
including the open sessions load and the minimum QoE
required. In our simulations, we consider 45 cloud domains
and 1,417 flavors in total with their respective pricing in

$/hour. This information is collected from real IaaS plat-
forms such as AWS service, Microsoft Azure and Rackspace.
Hence, using real data reflects accurate and meaningful find-
ings in our final simulation results. For the sake of simplicity,
the total number of available CPU cores Cmax in each cloud
domain is set to 20, and the impact of the flavor cost on QoE
of a single instance is set to σ = 0.1. Finally, we run the
simulations varying the number of VNF instances from 10 to
300 with a step of 10. Every instance is defined by an initial
flavor selected uniformly at random from the set of 1,417
flavors, and a number of active parallel streaming sessions is
chosen such that the MOS estimated by 2 is non-negative. In
our simulation results (i.e., Fig. 6 and 7), each plotted point
represents the average of 35 executions.

6.3.2 Performance with QoE and load awareness

Fig. 6.a shows the performance of our EDM algorithm in
terms of mean cost of flavor per deployed VNF instance.
In this experiment, we set the average session load in a
CDN slice to 0.7, and run the EDM algorithm to find the
optimal assignment xoptij of flavors to VNF instances with the
objective of minimizing the total deployment cost. Fig. 6.a
shows that the mean cost per unit is much reduced when
a lower QoE is required. For a QoE exceeding 3.5, the de-
ployment of 200 VNF instances will cost 24.1$ per month for
each instance. However, it will cost only 15.4$ per month in
case the minimal QoE required is 2.5. Additionally, Fig.. 6.b
shows an intuitive result that the mean cost per unit is much
higher in case of an over-loaded system. For a system load
greater than 50%, the deployment of 200 VNF instances will
cost 71.7$ per month for each instance. However, it will cost
nearly 142.2$ per month in case the minimal load required is
80%. Fig. 6.a and 6.b also show an increasing mean cost per
unit when increasing the size of the CDN slice. This is due
to the limitations at the hosting cloud domain in terms of
the amount of available resources and the maximum session
load an instance can handle.

Based on the obtained results, the EDM algorithm is able
to take reverse decisions. When the end-users require a low
QoE and the slice owner has a budget limitation, the EDM al-
gorithm can reversely propose the maximal number of VNF
instances that can be deployed in a CDN slice respecting the
owner’s specified budget.

6.3.3 Scalability of the EDM algorithm

Fig. 6.c presents the execution times of the proposed EDM al-
gorithm for different sizes of the target CDN slice. As shown,
for a fixed number of flavors, the execution time is roughly
linear to the number of VNF instances. The execution time
increased from 1.5 s in a CDN slice of 30 instances to 16 s for
a slice of 300 instances. Hence, for large slices, our proposed
EDM algorithm does not exceed 20 s to find the optimal
resource allocation out of the available 1,417 flavors. We got
similar results when changing other parameters, including
the minimum quality of experience required by users in a
CDN slice (Qmin), the minimum and maximum allowed
loads on a VNF instance (lmin, lmax), the maximal capacity
in cloud infrastructures (Cmax) and other key parameters.
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Fig. 6. Mean cost per unit and the EDM algorithm’s execution time as a
function of the CDN slice size. The algorithm is running on a KVM VM
with 16 CPU cores.

6.3.4 QoE behavior against system load
Fig. 7 presents the average QoE experienced by end-users
of a CDN slice of different sizes and that is under different
loads. Fig. 7.a shows the correlation between load and QoE
when the minimum system load and the minimum desired
QoE are set to 50% and 4, respectively. Fig. 7.b shows the
same in case of a higher system load (greater than 70%) and a

higher QoE (greater than 4.5). Both Fig. 7.a and Fig. 7.b show
that with less system load, the CDN slice performs better and
exhibits better QoE values, exceeding always the minimum
QoE value.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

4.49

4.5

4.51

4.52

4.53

0.8

0.8

0.81

0.81

0.82

Number of VNF instances

Q
u
a
lit
y
o
f
E
x
p
e
ri
e
n
c
e

L
o
a
d

QoE > 4.0 and Load > 0.5

(a) Average QoE behavior vs. average load variation,
when minimizing the deployment pricing cost with

minimum requirements: minimal QoE = 4 and minimal
load = 0.5.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

0 50 100 150 200 250 300

4.75

4.76

4.77

4.78

4.79

0.9

0.9

0.91

0.91

0.92

Number of VNF instances

Q
u
a
lit
y
o
f
E
x
p
e
ri
e
n
c
e

L
o
a
d

QoE > 4.5 and Load > 0.7

(b) Average QoE behavior vs. average load variation,
when minimizing the deployment pricing cost with

minimum requirements: minimal QoE = 4.5 and minimal
load = 0.7.

Fig. 7. Average QoE behavior vs. average load variation in a CDN slice
when increasing the number of VNF instances.

7 ON-THE-FLY TRANSCODING

In case quality degradation is detected for a user based on
significant changes in MOS values, and as soon as the QA
identifies that this quality degradation is not due to increased
compute load on the VNF instance that serves the user,
it triggers the initiation of a video transcoding service. In
particular, QA notifies the CDN-O, which in turn triggers
the MEO to instantiate the appropriate functionality on the
edge cloud. This service can also be triggered when the
available network capacity in the RAN decreases or the cell
load increases. This information is available via the RUM
and can be exploited as described in § 5.1.

Each slice contains an edge transcoding service deployed
as a MEC application by the MEO upon request from the
CDN-O (see Fig. 1). It is used to transcode the source media
format to another deliverable format with a different bit-
rate. Once the required operation is finished and the target
QoE level is achieved, the virtual transcoder instance can
be terminated and removed from the edge node to release
resources.
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For the purpose of demonstration, let us consider that
the streaming server stores HLS content with a bit-rate of R1
(high bit-rate). As explained earlier, we assume that client-
side functionality for recording and communicating to the
QA playout status information is available. To start accessing
the video service, a user connects to the edge and sends an
HTTP GET request to the server to fetch the media descrip-
tion file (playlist or manifest file). Upon receiving the file, the
end-user device starts sending HTTP GET requests to fetch
the media segments sequentially as specified in the media
description file. Once the initial necessary playout buffer
level is achieved, the player starts displaying the video. At
the end of every segment played, the reporter sends QoE-
related information about the segment’s playout to the QA.
Based on this input, the QA periodically calculates a QoE
estimate (MOS value). If the estimated QoE value is above
the optimal, no further action is required. On the other hand,
if the value decreases, the QA signals the CDN-O to spin up
the transcoding function.

The virtual transcoder instance is launched by the MEO
using an image stored at the edge cloud’s image store, as
specified in the CDNaaS slice description template. The
video bit-rate is reduced to R2 (R2 < R1), one step lower
than the current bit-rate. When the transcoder signals the
end of its task, a mixer service is used, which uses infor-
mation on the last downloaded segment ID to replace the
segments not yet fetched by the client with the newly en-
coded ones. Once the operation is finished and if the MEO
does not receive any other transcoding requests for a given
time interval, it terminates the virtual transcoder instance
(container or VM). However, if the QoE estimated by QA
remains low, the same operation is triggered again, reducing
the video bit-rate to R3 (R3 < R2). This stepwise recurring
operation continues until a target optimal QoE is achieved at
the client end.7

This transcoding approach has some advantages. De-
pending on the storage capacity at the edge, storage over-
head can be reduced, as multiple pre-transcoded versions of
the same content are not required from the beginning and are
generated on-demand. On the other hand, if storage capacity
is adequate, the original and the transcoded video chunks
can be maintained by the cache VNF instance and reused
in the future, thus avoiding the computationally intensive
transcoding process for future requests for the same video
content. Moreover, by serving the content locally (i.e., from
the edge), the solution ensures reduction in core network
traffic and reduced end-to-end latency.

Given these last points, further enhancements are possi-
ble for the virtual transcoding service. Considering a mobile
network, where network conditions are dynamically chang-
ing due to user mobility, high sensitivity towards transient
events may lead to a “ping pong” effect, where transcoding
will be initiated every now and then following the variations
in the conditions of the network. Instead, transcoding should
be triggered only if the network conditions have actually
degraded. However, still the tradeoff between responsive-

7. To speed up the convergence of this procedure, the initial value for
R2 can be selected considering an estimate of the maximum attainable
throughput as a function of the user’s CQI value reported by the RNIS,
as described in Section 5.1. The stepwise procedure might still have to
be carried out, since the initial estimate might not be fully accurate.

ness and avoiding this effect exists. Maintaining a sliding
window of QoE scores to decide on whether to initiate
transcoding based on a running average of the MOS (within
that window) can help address this issue.

Various further performance enhancements are also pos-
sible. For example, the cross-layer mobility, bandwidth [58],
and QoE [59] prediction mechanisms that we have studied
in our prior work in similar contexts can be applied to this
end. Such an ability to predict the conditions at the client
end can assist in identifying the optimal time to initiate
transcoding. Depending on the resource availability at the
edge host, the transcoding service can be initiated in parallel
to support multiple end-user requests. Considering it as a
compute-intensive task, and in case of limited resources in
the serving edge, it is the MEO’s responsibility to select
another nearby edge host (taking into account response time
and resource availability) to perform the transcoding-only
operation, building on the shared infrastructure concept of
MEC. Edge host selection algorithms are outside the scope
of this work, but also of that of the ETSI MEC standard.

8 TESTBED EXPERIMENTS

We carried out two sets of testbed experiments to evaluate
the performance of our dynamic slice resource management
mechanisms. First, we focus on the performance of our
QoE- and load-aware elastic compute resource management
scheme. We then present experimental results on the use of
the virtual transcoding service.

8.1 Elastic cloud resource management

To evaluate our cloud resource management scheme, we
set up a testbed using an Ubuntu 14.04.03 LTS desktop
workstation with 8 CPU cores and 16 GB RAM. The cloud
environment was built using OpenStack (DevStack Juno
version) inside a VirtualBox Ubuntu server with dedicated
4 vCPUs and 8 GB RAM. The setup consists of an all-in-
one OpenStack environment with the controller, compute,
Heat and Neutron components running on the same node.
Heat was used to orchestrate the initial setup of a round-
robin load balancer (LB) and a single instance within the
LB pool with a built-in NGINX server for streaming a pre-
loaded video file. HTTP-based live network streaming (i.e.,
progressive streaming) was used. For load generation we
used ApacheBench and a modified version of the wrk tool,
while we used the VLC media player with our modifications
to record interruptions and video quality parameters (the
same software we used in the experiments of § 4), so that
we can directly calculate QoE (MOS) at the user end.

VNF instances were created from an Ubuntu cloud image
using a customized flavor with either 1 vCPU and 512 MB
RAM (Flavor 1) or 2 vCPUs and 2 GB RAM (Flavor 2). The
RUM, QA and EDM modules were executed in the same
node as the cloud controller. At the RUM, resource usage
information was monitored and fed into the EDM every 60 s.
To introduce high load in the VM hosting the video service
(i.e., busy CPU and exhausted RAM), 2000 concurrent con-
nections (a total of 100000 HTTP requests/s) were launched
towards the server.

Following our experiments of § 4, as Fig. 2 and Fig. 3
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indicate, when CPU load approaches full utilization, inter-
ruptions start to take place and QoE drops. Therefore, we set
resource usage thresholds to 90% for both CPU and RAM as
the upper limit to trigger a scale up operation. As for scaling
down, the thresholds were set to 25% and 65% for CPU and
RAM, respectively. These thresholds were selected also with
the intention to keep the system responsiveness in enforcing
elasticity (i.e., particularly scaling up) within a reasonable
range; if the system takes too long to respond, the service
will be totally disrupted before even scaling up the relevant
instance.

To demonstrate elastic CDN slice resource management,
a VNF instance is created using Flavor 1 and once its re-
source usage reaches the upper thresholds, EDM triggers
Heat (i.e., the Openstack orchestration engine implement-
ing some CDNaaS service orchestration functionality in our
tests) to launch a new instance using Flavor 2 and assign
it to the same load balancer pool. Once the second instance
becomes active, the first one is released ensuring the service
is uninterrupted. Scaling down was also carried out in a sim-
ilar fashion. Notably, since the instances were active, resize
or update operations were not performed, as they would
suspend the image, thus disrupting the video streaming ser-
vice.

Fig. 8. An example of a scale up operation. (s: elasticity trigger time; e:
VM migration end time; c: VM actual changeover time).

Fig. 9. An example of a scale down operation (s: elasticity trigger time;
e: VM migration end time; c: VM actual changeover time).

Fig. 8 and Fig. 9 depict the full scale-up and scale-down

operations, respectively. The solid line indicates which in-
stance is in service and how the load balancer takes care of
the switch-over. The solid line at the 80% level indicates that
Flavor 2 is used for streaming and at the 40% level indicates
that Flavor 1 is in use. The pointers ’s’, ’e’, and ’c’ on Fig. 8
and Fig. 9 indicate respectively the elasticity triggering start
time, the end of the scaling operation, and the actual instance
changeover time considering a predefined sleep time set up
for the new instance to ensure service continuity.

These figures show that right after the flavor changeover,
the usage ratios of both RAM and CPU change, although the
injected load is constant in all cases. The figures also indicate
that the LB distributes the service between the two instances
as soon as the new instance is created. However, the com-
plete release of the old instance takes some time as a sleep
time interval was deliberately injected to ensure a smooth
streaming service. It is worth noting that the delay since
triggering vertical scaling until the release of old instance is
merely 15 to 20 s.

8.2 Virtual transcoding service

In this section, we describe our testbed environment which
emulates a CDN slice with streaming and on-demand
transcoding components at the mobile edge. We assume that
the media content for adaptive streaming is already stored at
the MEC streaming server. The experimental environment
mostly focuses on assessing the performance of the edge,
which is emulated by two laptops (running Ubuntu 14.04.3
LTS); one represents the edge node and the other the client.

At the client end, we used our modified VLC video
player. Relevant playout statistics (i.e., interruptions and
quantization parameters) were retrieved by the reporter
component (implemented in python), filtered, and passed on
to the QA, which, in our tests, was running on the edge node
for simplicity. At the edge side, two VirtualBox VMs were
used. VM1 was used as a gateway for the entire network
to access the Internet. DHCP with authentication was also
set up inside VM1 to configure the whole network using a
single subnet (to ease the emulation). VM2 was configured
using the Proxmox Virtual Environment to act as the Mobile
Edge Host. We use OpenVZ containers to host the CDN
slice components as ME Applications at the edge host. The
streaming server functionality was provided by a Ubuntu
cloud minimal image with the NGINX webserver installed,
instantiated as an Openvz container. NGINX was configured
for HLS streaming. The content for initial streaming was
pre-transcoded and prepared using ffmpeg, and the video
codec used was H.264/AVC. The same container is used for
the storage of the media files. The QA was configured to
receive interruption and QP information periodically from
the reporter and appropriately normalize/transform them
to be used as input to the PSQA tool to calculate the ex-
pected MOS values. The same QA module was responsible
for the evaluation of the MOS values and for triggering
the component which was emulating the MEO (also imple-
mented in Python). The MEO was responsible for spinning
up the container which provides the transcoding service.
The transcoding container template was based on a Ubuntu
minimal image and had ffmpeg installed.

Our setup also includes a mixer service responsible for
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replacing the original content with the transcoded one in the
streaming server (this functionality was also built into the
same container). Finally, to ensure that the laptop acted as an
edge access point, its Wi-Fi interface was configured using
hostapd in IEEE 802.11 master mode. The netem and won-
dershaper tools were used to simulate a cellular network
environment.

One desired feature of the on-the-fly transcoding service
is responsiveness, which we define as the measured delay
from the time of triggering the service to the actual QoE en-
hancement time. This responsiveness check was performed
in two ways:

• Case (a): The container is already active with pre-
transcoded media files. Only the mixer functionality is
used, and, thus, taken into account in the delay measure-
ment.

• Case (b): Using the full functionality of on-the-fly
transcoding by triggering the creation of the transcoder
virtual instance as a ME application, initiating the ser-
vice, transcoding the media file and then performing the
mixing.

The media file used for this test was 9m56s long with 298
segments in total, each carrying 2 s of video. The reporter
information was sent after 2 s of video had been played. To
perform the QA operation, the tool requires the information
of 16 s of played video. Therefore, the MOS calculation was
performed only after information of a total of 8 segments
was received. A MOS value below 3.5 was considered low
and was used to trigger the MEO.

Case (a) is represented in Fig. 10, where initially the MOS
value was high. With time, it degraded and as soon as it
reached below the predefined threshold, mixing was initi-
ated. In this scenario, pre-transcoded low bit-rate files were
copied to the streaming server and replaced the existing
ones. To save time, only the segments which were yet to be
downloaded by the client were replaced. The replacement
occurs in a sequential manner. As a result, although the
mixing time was approximately 26 s, QoE started enhancing
as soon as few segments were delivered.

Fig. 10. MOS vs. Time (with pre-transcoded media files). (Ms: mixing
start time; Mc: mixing completion time).

Fig. 11 depicts the full functionality as mentioned in case
(b). “Ti” represents the time when container instantiation
started. The time difference between the QA triggering the

Fig. 11. MOS vs. Time (full functionality). (Ti: transcoding container
initiated; Tc: transcoding completed; Ms: mixing started; Mc: mixing
completed).

MEO and the MEO starting the creation of the container
is in the millisecond range. The container boots up with
the already prepared transcoder image template (within 3 s).
Once it is ready, the MEO signals to start the transcoding
with the specified rate. Having limited resources (2 vCPUs
and 1024 MB RAM), the container performs this total oper-
ation in approximately 70 s. The mixer operation starts as
soon as transcoding is over. In between, the mixer receives
the information on the last downloaded file to identify from
which segment mixing will start. The mixer operation takes
almost similar time as mentioned before (in case (a)) and
depends on the number of segments to be transferred and
replaced.

Fig. 12. Segment buffering time (∆t) vs Segment ID. (Ti: transcoding
container initiated; Tc: transcoding completed; Ms: mixing started; Mc:
mixing completed; when segment buffering time = ’0’, corresponding
segments are not downloaded in advance).

In Fig. 12, the segment buffering time (∆t) is the time
a downloaded segment spends in the buffer waiting for
playout. In other words, it is the time difference between
the instant its playout started and the instant it was fully
downloaded. It is clear that initially the segment buffer-
ing time was high, which indicates that the segments were
downloaded in advance. As a result, the immediate next few
segments were already downloaded and ready before it was
being played. Therefore, there was no buffering delay, and
thus no playout interruptions, hence the MOS was high (if
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compared with Fig. 11). When we introduced a degradation
in network conditions, emulating congestion due to signifi-
cant background traffic, the downloading segment time in-
creased because of a reduction in the available bandwidth.
At a point when the difference (∆t) was almost zero, the
video experienced buffering delays, as it had to wait un-
til the download of a segment is complete. However, after
transcoding to a lower bit-rate video, the segment size, as
well as the segment download time, reduced. Consequently,
adapting video bandwidth demands to the current network
conditions led to timely video segment downloads, and min-
imized playback buffering time. This positively impacted the
overall MOS.

From Fig. 11, it is evident that with the degradation in
network conditions, the MOS value started reducing and
at a certain point it reached 3 (below the acceptable QoE
threshold). In such a situation, if on-the-fly transcoding were
not enforced, the CDN slice end user would have experi-
enced reduced video quality for the entire remaining dura-
tion (486 s). However, instantiating a transcoder at the edge
enabled the client to experience low quality only for a lim-
ited amount of time (from detecting MOS degradation until
the end of transcoding and mixing, i.e., 96 s), after which the
viewing experience of the remaining video (390 s) improved.

9 CONCLUSION

NFV and MEC open new possibilities for innovative ser-
vices for the forthcoming 5G mobile communications era. In
this article, taking advantage of these specific technologies,
we expanded on the architectural and technical aspects of
the dynamic instantiation and elastic management of CDN
slices over shared, multi-domain, edge (and other) cloud
infrastructures. The design and mechanisms we proposed
come with improved QoE awareness. This is valuable both
at service instantiation time, when our empirical models
facilitate informed CDN slice resource dimensioning deci-
sions, but also at run time, when multi-level monitoring in-
formation are applied to resource scaling and video-service-
level adaptations, in order to optimize service quality and
resource utilization. NFV and MEC standards, and the 5G
architecture in general, continue to evolve. Our ongoing and
future work will focus on adapting our design following
these developments, at the same time working on service-
level optimizations. These include more sophisticated re-
source scaling mechanisms, optimized VNF placement al-
gorithms, and more efficient video adaptation schemes. As-
pects related with SLA design and monitoring, as well as
other business-relevant issues including service pricing are
of equal importance for further study.
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