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First-order Wedge Wetting Revisited

C. Rascón,a J. Pausch,b and A.O. Parry,b

We consider a fluid adsorbed in a wedge made from walls that exhibit a first-order wetting transi-tion and revisit the argument 
as to why and how the pre-filling and pre-wetting coexistence lines merge when the opening angle is increased approaching 
the planar geometry. We clarify the nature of the possible surface phase diagrams, pointing out the connection with 
complete pre-wetting, and show that the merging of the coexistence lines lead to new interfacial transitions. These occur 
along the side walls and are associated with the unbinding of the thin-thick interface, rather than the liquid-gas interface 
(meniscus), from the wedge apex. When fluctuation effects, together with the influence of dispersion forces are included, 
these transitions display strong non-universal critical singularities that depend on the opening angle itself. Similar phenomena 
are also shown to occur for adsorption near an apex tip.

1 Introduction
The equilibrium phases of a fluid in a restricted geometry of-
ten depend crucially on the wetting properties of the confining
walls1. This means that rather rich phase diagrams can be pro-
duced from the interplay between wetting and new phase transi-
tions induced by even simple substrate shapes. In this paper, we
illustrate this by revisiting the problem of fluid adsorption in a
wedge, for systems exhibiting first-order wetting transitions2–5.
Here, the richness of the phase diagram arises because, away
from bulk two-phase coexistence, the wedge-fluid interface ex-
hibits not only a line of pre-wetting transitions but also a line
of pre-filling transitions. In general, these lines are separate;
however, for sufficiently shallow wedges they must merge at two
points before eventually becoming identical when the wedge is
opened to recover the planar geometry, as first shown by Rejmer,
Napiorkowski and Dietrich2. Here, we clarify the nature of the
phase diagram and stress the connection with continuous or com-
plete pre-wetting transitions which has not been understood pre-
viously6,7. In particular, we show that the merging of the pre-
filling and pre-wetting lines leads necessarily to additional first-
order and continuous interfacial unbinding transitions occurring
along the side walls of the wedge.

We begin by determining the phase diagram for fluid adsorp-
tion in a shallow wedge at mean-field level, using a very simple
interfacial model of wetting and filling. Here, the merging of
the pre-filling and pre-wetting lines can be demonstrated analyt-
ically (following2,3) using graphical techniques similar to those
used in the original Cahn square-gradient theory of wetting8,9.

a GISC, Department of Mathematics, Universidad Carlos III Madrid, Madrid, Spain;
E-mail: carlos.rascon@uc3m.es
b Department of Mathematics, Imperial College London, London SW7 2AZ, UK

Then, we go beyond mean-field a nalysis, s tressing w hat transi-
tions remain and what transitions are rounded when interfacial 
fluctuation effects are included. In particular, for fluids with long-
ranged dispersion-like forces, we show that the new unbinding 
transitions occurring along the side walls may be characterised 
by highly non-universal critical singularities. These depend sen-
sitively on the value of the opening angle itself and are related to 
the fluctuation theory of 2D wetting with marginal interactions10. 
Similar phenomena are also shown to occur for adsorption near 
an apex tip, where the role of pre-filling is replaced by unbending 
transitions11.

2 Wetting and Pre-Wetting, Filling and Pre-
Filling

2.1 Wetting and Pre-Wetting at a Planar Wall

Consider a planar wall in contact with a vapour at sub-critical
temperature T and pressure p (or chemical potential µ) close to
the bulk two-phase coexistence curve psat(T ). We suppose that,
along the bulk coexistence curve, the wall-vapour interface ex-
hibits a wetting transition at temperature Tw at which the con-
tact angle θ(T ) vanishes - for comprehensive reviews see for ex-
ample12–15. Further, we suppose that the wetting transition is
first-order in character so that the adsorption of liquid changes
discontinuously from a microscopic to a macroscopic value at Tw.
In three dimensions, first-order wetting is also associated with a
line of pre-wetting transitions, extending tangentially away from
bulk coexistence in the (T,∆p = psat− p) plane. Along this line,
two phases with different microscopic adsorptions, referred to as
"thin" and "thick", are in coexistence. The pre-wetting line ends at
a pre-wetting critical point, where the thin and thick phases are
no longer distinguishable. A simple way of modelling first-order
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Fig. 1 Phase diagram for first-order wetting showing the wetting tem-
perature Tw and pre-wetting line (green) ending at the pre-wetting critical
point. Dashed lines refer to mean-field spinodals. Liquid-gas coexistence
corresponds to ∆p = 0 (red line). The wall-vapour interface is completely
wet by liquid for T ≥ Tw (thick part of the red line) up to the bulk critical
temperature Tc. The qualitative shape of the binding potential W (`) be-
low, at, and above the wetting transition, along the pre-wetting line and at
the spinodals is also shown in the insets.

wetting and pre-wetting transitions at mean-field level is based
on the minimization of a binding potential W (`). This potential
corresponds to the excess free-energy (per unit area) of a liquid
wetting layer of uniform thickness `. The precise form of W (`)

depends on the specific wall-fluid and fluid-fluid intermolecular
forces, but for first-order wetting and pre-wetting it must neces-
sarily exhibit a barrier between local and global minima, repre-
senting the thin and thick wetting layers. The phase diagram for
first-order wetting is shown in Fig. 1, which also illustrates the
qualitative features of the binding potential near wetting along
the pre-wetting line and near the spinodals.

2.2 Filling and Pre-Filling Near a Wedge

Now consider that the wall is sculpted to the shape of a wedge
with opening angle ψ. We suppose that the wedge is translation-
ally invariant along the y axis so that the height of the wall above
the z = 0 plane (say) is described by the function zw = |x| tanα.
We will refer to α = (π −ψ)/2 as the tilt angle of the wedge. At
two phase coexistence, a wedge-vapour interface necessarily un-
dergoes a filling transition at a temperature Tf < Tw satisfying the
thermodynamic condition16–18

θ(Tf ) = α (1)

WETTING LAYER

OPENING
ANGLE     

TILT
ANGLE

Fig. 2 Schematic illustration of an interfacial configuration in a shallow
wedge showing the mid-point height `w and planar wetting film thickness
`π . Translational invariance is assumed along the y-axis of the wedge.

close to psat ; we will return to this at the end of our paper.

At mean-field level, filling and pre-filling transitions can be eas-
ily studied using a simple free-energy functional incorporating the
surface tension σ and the binding potential. For shallow wedges,
on which our study focuses, the free-energy per unit length along
the y-axis can be written as3

F [`] =
∫

dx

(
σ

2

(
d`
dx

)2
+W

(
`−α|x|

))
(2)

where `(x) represents the local height of the interface above the
plane, and we have assumed translational invariance along the
wedge. A schematic section of the wedge geometry is shown
in Fig. 2. The first term in (2) represents the free-energy cost
of increasing the area of the interface, induced by the geometry,
while the final term allows for the intermolecular forces, assum-
ing that these can be modelled using the same binding potential
constructed for a planar wall. This local functional is not appro-
priate for studying filling in acute wedges but for most purposes
is legitimate, provided the wedge is shallow and we can approx-
imate tanα ≈ α. The model (2) was studied in2 and3, where
the authors showed how the filling phase diagram can be under-
stood using simple graphical methods. We repeat this here, since
the finer details and their implications for the phase diagram at
mean-field level and beyond were not fully appreciated.

Minimization of (2) leads to the Euler-Lagrange equation for
the equilibrium interfacial configuration

σ ῭=W ′(`−α|x|) (3)

where we have abbreviated ῭ ≡ d2`/dx2, while the prime de-
notes differentiation w.r.t. `. This must be solved subject to the
boundary conditions ˙̀(0) = 0 and that `−α|x| → `π as |x| → ∞,
where `π denotes the equilibrium wetting layer thickness at a
planar wall, i.e. corresponding to the global minimum of W (`).
The first integral of (3) determines the relative interfacial height
η(x)≡ `(x)−α|x|. For x < 0, this satisfies

η̇ =

√
2∆W (η)

σ
(4)

and similarly for x > 0, but with a change of sign by symmetry.

so that for T > Tf the wedge is completely filled w ith liquid. 
For wedges made from walls showing strong first-order wetting 
transitions (i.e. with a prominent activation barrier in W (`)), the 
filling transition is also anticipated to be fi rst-order2,3. Thus, the 
change from a microscopic to a macroscopic adsorption of liquid
occurring at Tf is discontinuous. By analogy with first-order 
wetting, we also expect that first-order filling is associated with a
line of pre-filling transitions extending tangentially away from Tf

in the (T,∆p) plane and terminating at a pre-filling critical point. 
This represents the line of coexistence between adsorptions of 
small and larger amounts of liquid near the wedge bottom for 
p < psat . Beyond mean-field l evel, p re-filling tr ansitions are 
rounded by fluctuations, although this rounding is very small
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Fig. 3 Graphical construction for the equilibrium mid-point height `w at different points of the phase diagram: a) For a first-order filling transition at
bulk coexistence. The intersection of

√
2∆W (`)/σ with the horizontal line at height α determines `w. For α < θ , only one solution exists. For θ = α,

corresponding to the filling transition phase boundary, microscopic and macroscopic adsorptions of liquid in the wedge coexist. b) At a point along the
pre-filling line for which phases with different filling heights `

(−)
w and `

(+)
w coexist. The orange regions have equal areas. c) At a pre-filling critical point.

An equal areas construction is no longer possible when the function ∆W (`) has a point of inflection implying that the pre-filling point lies necessarily on
the line of spinodals for the pre-wetting transition. These graphical constructions can also be interpreted as phase-portraits (η , η̇).

Here, ∆W (`) ≡W (`)−W (`π ) is a shifted binding potential which
has a global minimum at `π so that ∆W (`π ) = 0. Substituting (4)
into (2), and subtracting unimportant constant terms, it follows
that the excess wedge free-energy (per unit length) of an equilib-
rium configuration is given by

τ = 2σ

∫ `w

`π

d`

(√
2∆W (`)

σ
−α

)
(5)

where `w ≡ `(0) is the mid-point interfacial height, which is itself
obtained via the very simple equation

α =

√
2∆W (`w)

σ
(6)

These equations have a simple interpretation whereby the in-
tersection of a horizontal line at height α with the graph of√

2∆W (`)/σ determines the value of `w and, hence, the phase
portrait (η , η̇) of the equilibrium profile. Consider, for example,
the situation at bulk coexistence and T < Tw (see Fig. 3a), for
which the graph

√
2∆W (`)/σ is zero at `π , has a potential barrier

and a horizontal asymptote at height θ . The latter follows from
Young’s equation W (`π ) = σ(cosθ−1), which in the present small
angle approximation is consistently written W (`π ) = −σ θ 2/2. It
follows that the wedge geometry must exhibit a filling transition
at the anticipated thermodynamic boundary θ = α since there
are then microscopic and macroscopic solutions for the mid-point
height `w.

A similar graphical analysis determines the pre-filling line off
bulk coexistence. In this case, the expression (5) for the free-
energy leads to a simple equal areas construction for the coexis-
tence of distinct interfacial configurations with different values of
the mid-point thickness `

(−)
w and `

(+)
w which have the same equi-

librium free-energy τ (see Fig. 3b). The pre-filling line necessarily
joins the bulk coexistence line psat(T ) tangentially at Tf because
the difference in the adsorptions of the coexisting phases becomes
macroscopic in this limit13,14. Similarly, the present graphical
construction determines that the pre-filling line terminates at a
point which must lie on the line of spinodals associated with

the pre-wetting line, i.e. when the binding potential W (`) loses
the metastable minimum corresponding to the thicker film (see
Fig. 3c). This means that the temperature of the pre-filling crit-
ical point lies necessarily below that of the pre-wetting critical
point.

3 Pre-Filling versus Pre-Wetting Near a
Wedge

In order to model first-order wetting in systems with long-ranged
dispersion-like forces, we may use the general potential14,19

W (`) =
A
`2 −

B
`3 +

C
`4 +∆p` (7)

where A(T ) > 0 is the Hamaker constant and, similarly, B,C > 0
are constants which may be chosen to alter the depth of the poten-
tial and height of the barrier. The potential W (`) together with the
values of the constants A,B,C may be derived from more micro-
scopic density functional models using, for example, a sharp-kink
or soft-kink approximation for the density profile19. As expres-
sion (7) leads to A(Tw) = B2/4C, and in order to represent the
results in terms of the temperature (rather than A(T )), we as-
sume without loss of generality that A(T )−A(Tw) ∝ T −Tw. For
later purposes, we note that the Hamaker constant may always be
written A = Awf−Aff where Awf > 0 and Aff > 0 are contributions
which are directly proportional to the strength of the wall-fluid
and fluid-fluid intermolecular potentials, respectively.

We have determined the phase diagram for this class of po-
tentials and find that they fall into two categories depending on
whether the tilt angle is smaller or larger than a certain critical
value α∗. In both cases, the filling and wetting transitions are
first-order but the nature of the pre-wetting and pre-filling lines,
and associated phase transitions, are quite different (see Fig. 4a):

3.1 Case α > α∗

If the tilt angle is larger than the critical value, then the pre-filling
and pre-wetting lines do not intersect, as illustrated in Fig. 4b. As
described above, distinct profiles with different mid-point inter-
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Fig. 4 Surface phase diagram for first-order wedge-filling transitions computed numerically using the binding potential (7): a) Pre-filling lines for
different values of the tilting angle α. Each of these lines finishes at a critical point that lies at the (lower) pre-wetting spinodal line. As α decreases, the
pre-filling line moves towards the pre-wetting line (in black). For α > α∗ (blue lines), they do not touch the pre-wetting line. In the limiting case α = α∗,
the pre-filling line touches the pre-wetting line tangentially at a single point, represented by the green circle. For α < α∗ (red lines), the pre-filling lines
consist of two parts that touch the pre-wetting line at two points, one at each side of the green point. b) For α ≈ 4.2α∗, the surface phase diagram
shows separate pre-filling and pre-wetting lines which do not intersect. The lower pre-filling spinodal follows closely the pre-filling line and merges with
it at both ends, in sharp contrast with the lower pre-wetting spinodal, which only merges with the pre-wetting line at its critical point. Three schematic
configurations of the interface at different points of the diagram are also shown. The phase diagram shows two transitions: First-order pre-filling
(blue line) and continuous complete pre-wetting (black line). c) For α ≈ 0.80α∗, the pre-filling lines (solid red) meet the pre-wetting line (solid black)
tangentially at temperatures T ∗1 and T ∗2 . Note that the two parts of the pre-filling lines have common upper and lower spinodal lines (dashed red). The
splitting of the pre-filling and pre-wetting line is shown schematically. There is no metastable continuation of the pre-filling line that joins the two points
at T ∗1 and T ∗2

our final section. We note that, when the pre-wetting line is ap-
proached from above, the phenomenon of complete pre-wetting
does not occur, and the crossing of the pre-wetting line results in
a first-order transition from a thick to a thin layer, similar to that
occurring at a planar wall.

3.2 Case α < α∗

If the tilt angle is smaller than the critical value, then the pre-
filling and pre-wetting lines merge at two points (see Fig. 4c).
Within the graphical construction, this simply means that the
equal areas condition (pre-filling) occurs when the binding po-
tential has coexisting minima (pre-wetting) - see Fig. 6. Using
the binding potential (7), we have determined the pre-wetting
line and the value of α for which the equal areas criterion also
applies. The resulting curve α̃(T ) is shown in Fig. 7. The critical
value α∗ simply corresponds to the maximum of this curve. For

facial heights `w, but identical wetting layer thickness (far from 
the bottom) `π , coexist along the pre-filling l ine. However, some-
thing very different occurs as we approach the pre-wetting line 
from below, by increasing the pressure (decreasing ∆p) along an 
isotherm, say. In this case, there is no substantive change in the 
mid-point height `w. Rather, the interfacial profile develops a long 
shoulder of the metastable thicker pre-wetting phase along each 
wall. As the pre-wetting line is approached, the length h of this 
shoulder increases continuously and becomes macroscopic at the 
pre-wetting line (see Fig. 5). Thus, when approached from be-
low, the pre-wetting line serves to induce a line of continuous 
surface transitions in the wedge. This phenomena is conveniently 
referred to as complete pre-wetting, since a film o f t he thicker 
pre-wetting phase intrudes between the wedge bottom and the 
thin pre-wetting phase. Similar phenomena occur on steps, on 
patterned walls and in capillaries6,20. The nature of this transi-
tion and the exponents that characterise it will be considered in
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Fig. 5 Interfacial profiles in the approach to a complete pre-wetting
transition as the pre-wetting line is approached from below (green arrow
in inset). On approaching the pre-wetting line, the profile develops a large
shoulder of the thicker pre-wetting film which intrudes between the wedge
apex and the thin pre-wetting layer. The length h of this complete pre-
wetting layer diverges continuously as the pre-wetting line is approached.

EQUAL
AREAS

Fig. 6 Equal areas construction determining the merging of the pre-filling
and pre-wetting lines (see text for details). This construction is equivalent
to that determining the location of a first-order wetting transition within the
Cahn theory of wetting for the case of zero surface enhancement 8,9.

the potential (7), we have determined this as

α
∗ ≈ 0.10873

√
B4

16C3 σ
(8)

where B4/16C3 is a natural unit of energy per unit area for this
potential. Using values for B and C as determined by a micro-
scopic sharp-kink approximation19, we estimate that the critical
value α∗ is small – of the order of a few degrees.

For α > α∗, we have already noted that there are no intersec-
tions and the pre-wetting and pre-filling lines do not cross. For
α < α∗, on the other hand, there are two intersections at T ∗1 and
T ∗2 which, for very shallow wedges, occur near Tw and T c

pw re-
spectively. The function α̃(T ) vanishes at the wetting tempera-
ture Tw and at the pre-wetting critical point for different reasons.
Recall that, on approaching Tw, the thickness `

(+)
π of the thick

pre-wetting layer diverges, which means that α̃(T ) must be very
small in order to balance the areas in the graphical construction,
due to the long tail in W (`). Our numerical calculations indi-
cate that, close to the wetting temperature, the curve behaves
as α̃(T ) ∝ (T −Tw)

1/2 with multiplicative logarithmic corrections,
for the present case of dispersion-like forces. On the other hand,
near the pre-wetting critical point, where ∆W (`) can be approx-
imated reliably as a quartic function, a simple calculation deter-

Fig. 7 The curve α̃(T ) computed numerically for the potential (7). For
a given tilt angle α < α∗, the intersection of a horizontal line with this
curve determines the temperatures T ∗1 and T ∗2 at which the pre-wetting
and pre-filling lines merge.

TILT
ANGLE

UNBENDING
Coexisting Phases

Fig. 8 Schematic illustration of an interfacial configuration near an apex
showing the reduction of the local adsorption of liquid near the tip. Inset:
Coexisting interfacial profiles at an unbending transition.

mines that α̃(T ) ≈ (`
(+)
π − `

(−)
π )/ξ‖. Here, as before, `(+)

π (thick)

and `
(−)
π (thin) are the coexisting wetting film thicknesses, while

ξ‖ =

√
σ/W ′′(`(+)

π ) is the correlation length along the wall. This
means that the curve α̃(T ) vanishes linearly on approaching the
end of the pre-wetting line as α̃(T ) ∝ (T c

pw−T ).
A representative phase diagram for the case α < α∗ is shown in

Fig. 4c), along with a schema for purposes of illustration. The lat-
ter shows a number of different sections and associated interfacial
phase transitions. The pre-filling line consists of two sections, la-
belled PF1 and PF2, which meet the pre-wetting line tangentially
at the two temperatures; T ∗1 and T ∗2 . Crossing the lines PF1 and
PF2 results in a first-order pre-filling transition similar to the one
described for α > α∗: the local interfacial height `w jumps, while
the wetting height far from the apex remains constant. The pre-
wetting line has the same location as that occurring at a flat wall
p = ppw(T ) but must be regarded as comprising three sections.
On approaching the sections PW1 or PW2 (from below), a con-
tinuous complete pre-wetting transition is induced, i.e. the wetting
films along the side walls develop a shoulder of the thicker pre-
wetting film phase `

(+)
π , the length of which h grows continuously

as the phase boundary is approached (similar to those in Fig. 5).
This aspect of the phase diagram was not identified correctly in2.
However, in the middle section of the pre-wetting line, PWM,
stretching from T ∗1 to T ∗2 , no such complete pre-wetting occurs.
Crossing this line results in a first-order phase transition in which
both the mid-point height `w and wetting film height `π jump

5
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Fig. 9 Representative graphical constructions determining the surface phase diagram for fluid adsorption near an apex tip: a) equal areas construction
for an unbending transition showing coexisting profiles with different thin (`(−)a ) and thick (`(+)

a ) mid-point heights, b) an unbending critical point occurring
off bulk liquid-gas coexistence, c) simultaneous occurrence of unbending and pre-wetting. Moving along the pre-wetting line, this latter construction is
used in the determination of ᾱ(T ).

from their respective thin to thick values, and becomes identical
to the usual pre-wetting transition on a planar wall as α → 0. In
this limit, the sections PW1 and PW2 (for which the pre-wetting
transition is continuous) shrink to zero. Note that crossing any of
the three sections of the pre-wetting line from above, results in a
first-order transition from a thick to a thin layer on the side walls,
as described in the previous case (α > α∗).

The merging of the pre-filling and pre-wetting lines gives rise to
two new interfacial phase transitions occurring at T ∗1 and T ∗2 . Sup-
pose that we sit in the middle section (PWM) of the pre-wetting
curve at pressure p = ppw(T )−. Now, while remaining on the pre-
wetting line, we increase the temperature towards T ∗2 . Exactly
at T ∗2 , two different interfacial profiles coexist: One for which
the equilibrium position of the thin-thick shoulder on the side
walls is microscopically close to the wedge mid-point, the other
for which the shoulder is macroscopically far away. The same
also happens as the temperature is decreased towards T ∗1 . In both
cases, the discontinuous unbinding of the shoulder between the
thin and thick pre-wetting phases is equivalent to a first-order
wetting transition, but now occurring along the walls (i.e. in two-
dimensions). These transitions correspond to the intrusion of a
macroscopic layer of the thick pre-wetting film between the liq-
uid nucleated near the wedge bottom and the thin pre-wetting
film far from it, i.e. the discontinuous divergence of the length
h. At mean-field level, these transitions must be first-order since
the graphical construction for the interfacial profile is equivalent
to the Cahn construction for wetting with zero surface enhance-
ment8,9,21. Viewed this way, it is clear why the pre-filling lines
PF1 and PF2 must meet the pre-wetting line tangentially: for the
same reason that the pre-wetting line meets the bulk coexistence
curve tangentially.

4 Pre-Wetting and Unbending Near an apex
tip

ing transition between phases with thin and thicker adsorptions of
liquid near the tip (see inset). This transition occurs because the
thin phase reduces the liquid-gas interfacial area, while the thick
phase avoids the penalty cost in the free energy arising from the
repulsive barrier in the binding potential, present for substrates
that exhibit first-order wetting. The unbending transition, and
in particular its relation with pre-wetting, can be analysed using
the simple interfacial model (2) and similar graphical approach.
However, the mid-point height at an apex `a = `(0) is smaller than
the planar wetting film thickness `π . This means that phase tran-
sitions now occur above the pre-wetting line (i.e. when the pla-
nar wetting film is the "thicker" phase). Representative graphi-
cal constructions are shown in Fig. 9. The final figure (Fig. 9c)
is an equal areas condition which determines a curve ᾱ(T ) (see
Fig. 10), analogous to the earlier α̃(T ). Using this approach, we
can see that the unbending transition necessarily occurs above
the pre-wetting line, and that the line of unbending transitions in
the (T,∆p) plane always ends at a critical point lying on the up-
per pre-wetting spinodal line. This is analogous to the location of
the pre-filling critical point, which lies on the lower pre-wetting
spinodal for the wedge.

The location of the unbending line in relation to pre-wetting
is determined by the angle α, defined by zw = −|x| tanα (so that
α > 0). There are three scenarios as shown in Fig. 11. For large
values of α > α††, no unbending transition exists. The critical
value is determined by α†† =

√
2∆W/σ , where ∆W is evaluated

at its inflexion point and at the crossing of the upper spinodal
and the liquid-gas coexistence line. In turn, for sufficiently small
values α < α† , the unbending line meets the pre-wetting line
tangentially at a temperature T ∗3 determined by the intersection of
α with the curve ᾱ(T ). Note that α†≡ ᾱ(0)> 0, since the thin pre-
wetting film thickness does not diverge at Tw. For intermediate
values α† < α < α††, the pre-wetting and unbending lines are
separate. For the potential (7), we find that α††/α∗ ≈ 4.2242
and α†/α∗ ≈ 2.7127 where, recall, α∗ is given by (8) and is itself
estimated to be a few degrees.

Similar to the wedge geometry, the apex induces a complete
pre-wetting transition along the side walls, but now occurring
when the pre-wetting line is approached from above (i.e. p→

When the tilt angle is negative, the substrate forms the shape of 
an infinite apex tip rather than a  wedge (see Fig. 8 ). Adsorption 
near an apex has been studied previously but the interplay with 
pre-wetting has not been considered22,23. Quite generally, an 
apex does not have a filling transition, but may exhibit an unbend-
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Fig. 11 Surface phase diagram for first-order wetting near an apex tip computed numerically using the binding potential (7): a) α > α††, for which no
unbending line exists, b) α† < α < α††, for which the unbending (blue) and pre-wetting (black) lines are separate, and c) α < α†, where the unbending
(red) and pre-wetting (black) lines merge tangentially at T ∗3 . The dashed lines represent the corresponding spinodals.

APEX

WEDGE

Fig. 10 The curve ᾱ(T ) computed numerically for the potential (7). For a
given tilt angle α < α†, the intersection of a horizontal line with this curve
determines the temperatures T ∗3 at which the pre-wetting and unbending
lines merge. The curve α̃(T ) for a wedge is shown for comparison.

ppw(T )+). For α > α†, this occurs along the whole pre-wetting
line while. For α < α†, it occurs only for T > T ∗3 . In each case,
on approaching the pre-wetting line from above, a macroscopic
layer of the thinner pre-wetting phase intrudes between the apex
tip and the thick pre-wetting film (i.e. the opposite of the com-
plete pre-wetting transition for the wedge). Representative inter-
facial profiles are shown in Fig. 12. Finally, the merging of the
unbending and pre-wetting lines at T ∗3 corresponds to a 2D wet-
ting transition occurring at the side walls (which is first-order in
the present mean-field approximation), similar to the transitions
ocurring at T ∗1 and T ∗2 in the wedge. In the limit α → 0, T ∗3 tends
to T c

pc, so that one recovers the usual line of first-order pre-wetting
transition.

SU
BS

TR
AT

E

THIN FILM
SHOULDER

THICK FILM

PRE-WETTING
UNBENDING

Fig. 12 Interfacial profiles in the approach to a complete pre-wetting
transition as the pre-wetting line is approached from above (green arrow
in inset). On approaching the pre-wetting line, the profile develops a
large shoulder of the thinner pre-wetting film which intrudes between the
apex tip and the thick pre-wetting layer. The length of this complete pre-
wetting layer diverges continuously as the pre-wetting line is approached.
See Fig. 5 for comparison with the analogous transition occurring for the
wedge.

5 Fluctuation effects and Critical Singulari-
ties

To finish our article, we discuss how the above mean-field con-
siderations are modified when fluctuation effects are included.
As noted in previous work, since the wedge geometry is effec-
tively one dimensional, the pre-filling transition must be rounded
by fluctuations so that the adsorption increases sharply near the
pre-filling line rather than jumping discontinuously2. These are
shown as blurred lines in the schematic phase diagram of Fig. 13.
Standard finite-size scaling arguments24 suggest that the round-
ing of the transition occurs over a narrow range of pressures or

temperatures of order exp(−βσ`
(+)
w

2
), where `

(+)
w is the height of

the "thicker" pre-filling layer. This estimate is based on the Boltz-
mann weight of forming a domain wall between the microscopi-
cally thin and mesoscopically thick pre-filling phases. Near bulk
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Complete Filling
(continuous)

Complete Pre-Wetting
(continuous)

Transverse Interfacial
Unbinding (first-order)

Transverse Interfacial
Unbinding (continuous)

Fig. 13 Schematic phase diagrams for first-order wedge filling, beyond
mean-field for α > α∗ and α < α∗. The blurred lines represent the lo-
cations of sharply rounded, pseudo first-order pre-filling transitions with
respect to the pre-wetting line (black curve). The arrows indicate the
paths along which different interfacial unbinding transitions may occur:
The meniscus unbinds at complete filling (path 1), while the thin-thick in-
terface at the side walls unbinds at complete pre-wetting (path 2). The
paths 3 and 4 along the pre-wetting line approaching T ∗1 and T ∗2 , respec-
tively, represent transverse interfacial unbinding transitions.

coexistence, we anticipate that `w ∝ ∆p−1, so that the rounding
of the transition is negligible. Indeed, the first-order filling tran-
sition itself still persists at the filling temperature Tf . However,
there is certainly no pre-filling critical point beyond mean-field
level.

The phase transitions that remain when fluctuation effects
are included are all different examples of interfacial unbinding.
There are four types:

1. Complete Filling (Paths 1).

The complete filling transition refers to the continuous divergence
of the interfacial height `w on approaching bulk coexistence along
an isotherm for temperatures T > Tf . This transition can be
understood using purely macroscopic arguments since, close to
coexistence, the equilibrium interfacial shape must correspond
to a meniscus of near circular cross-section with Laplace radius
R = σ/∆p which meets the walls at the contact angle25,26. Ele-
mentary calculation then determines that, on approaching bulk
coexistence, the interfacial height diverges as

`w =
σ (secα cosθ −1)

∆p
+ · · · (9)

THICK/THIN
INTERFACE

Fig. 14 Schematic illustration of the interfacial wandering of the thin-
thick interface along the side walls of a wedge, together with the collective
coordinate h(y) appearing in the effective Hamiltonian (10).

2. Complete Pre-Wetting (Paths 2).

As discussed earlier, complete pre-wetting refers to the contin-
uous growth in the equilibrium length h of a shoulder of the
thick pre-wetting layer at each wall, as the pre-wetting line is
approached from below. For α > α∗, this happens along the en-
tire pre-wetting line, while for α < α∗ it occurs along the sec-
tions PW1 and PW2 only. For fixed temperature T , let us denote
δ p= ppw(T )− p as the deviation from the pressure at pre-wetting.
We wish now to determine how the pre-wetting film thickness h
grows as δ p→ 0 . It is straightforward to show from integration
of the profile equation (4) that, according to the simple interfa-
cial model (2), the equilibrium film thickness along the side walls

diverges as h≈−ξ
(+)
‖ lnδ p. Here, ξ

(+)
‖ =

√
σ/W ′′(`(+)

π ) is the par-
allel correlation length defined for the thicker pre-wetting film on
a planar wall. This result emerges for any binding potential W (`),
with a double-well structure used to model pre-wetting. How-
ever, this quantitative prediction is not correct for systems with
long-ranged forces, since the local model (2) fails to account for
the influence of intermolecular forces along the wall.

To handle these correctly, we resort to another interfacial model
designed specifically to model fluctuation effects and interactions
near the complete pre-wetting transition. This second interfacial
model takes the form

F [h] =
∫

dy

(
τ̃

2

(
dh
dy

)2
+V (h)

)
(10)

where h(y) is now the local distance of the thick/thin interface
measured from the wedge bottom at position y along it (see
Fig.14). Here, τ̃ is the line tension associated with the inter-
face between pre-wetting films of heights `

(−)
π and `

(+)
π , which

controls the free-energy cost of undulations in the position of the
thin/thick interface. A mean-field expression for this can be de-
rived from the capillary-wave model (2) yielding

τ̃ = σ

∫ `
(+)
π

`
(−)
π

d`

(√
2∆W (`)

σ
− α

)
(11)

This expression is consistent with the two general expectations:
a) that the line tension vanishes at the pre-wetting critical point,
and b) that it is very large near the wetting temperature, where
it is well approximated by τ̃ ≈ `

(+)
π σ . Recall that the film height

of the thicker pre-wetting layer `(+)
π , and hence τ̃, diverges as we

approach Tw along the pre-wetting curve.

Indeed, the small angle version of this follows immediately 
from solution of the mean-field e quation ( 6). This macroscopic 
result is not influenced b y i nterfacial w andering e ven i n two 
dimensions, where fluctuation e ffects a re s trongest27. Notice 
that the nature of complete filling i s s lightly d ifferent i n the
regions Tf < T < Tw and T > Tw. Above the wetting temperature, 
where we must set θ = 0 in (9), the higher-order terms are 
also singular arising from the divergence of the wetting film
height `π ∝ ∆p−βs

co 
, with βs

co = 1/3 for systems with long-ranged 
dispersion forces28.

8



The potential V (h) accounts for the direct interaction of the
thick/thin interface with the wedge bottom arising from all the
intermolecular forces in the system. For systems with short-
ranged wall-fluid and fluid-fluid forces (e.g. finite-range or expo-
nentially decaying), this potential can be derived from the under-
lying Capillary-Wave model (2) using standard techniques, and
takes the form29

VSR(h) = δ p∆`h + C′e−h/ξ
(+)
‖ + · · · (12)

where C′ > 0 is an unimportant constant and ∆` = `
(+)
π − `

(−)
π is

simply the difference between the two pre-wetting film heights.
The first term of VSR(h) is the thermodynamic cost of having a
large film of the metastable thicker pre-wetting layer near the
wedge bottom. The second term is the repulsion which must
be mediated by the parallel correlation length ξ

(+)
‖ , which con-

trols the decay of order in the thick film region. Minimization of
VSR(h) then recovers the mean-field result h ∝−ξ

(+)
‖ lnδ p, quoted

above. This approach clearly brings out the analogy with (two
dimensional) complete wetting transitions. The expression (10)
is equivalent to the effective Hamiltonian for 2D wetting, which
can be studied exactly using transfer matrix techniques. This
means that, beyond mean-field, fluctuations in the edge of the
unbinding thin/thick interface alter this logarithmic divergence
to h ∝ δ p−1/3 30.

The analogy with 2D complete wetting persists for systems
with long-ranged (algebraically decaying) fluid-fluid and wall-
fluid forces, but here we must work a little harder to construct
the potential VLR(h). The reason for this is that the form of VLR(h)
cannot be determined from the shallow wedge model (2) since
this does not account for long-ranged interactions along the wall.
However, we can construct VLR(h) by appealing to more micro-
scopic models of fluid adsorption in a wedge based on Density
Functional Theory. The task of determining the potential VLR(h)
for the complete pre-wetting transition is made easier because its
form is dominated by the wall-fluid forces. The reason for this is
that the liquid layer adsorbed at the side walls is only pseudo two-
dimensional while the wall has a full 3D volume. This means that
the long-ranged decay of the potential VLR(h) is determined fully
by the external potential arising from the wall-fluid interaction.
For systems with dispersion forces, this is known analytically5

and leads to

VLR(h) = δ p∆`h+
Awf∆` tanα(3+ tan2 α)

8
h−2 + · · · (13)

and recall that Awf > 0 is the wall-fluid contribution to the
Hamaker constant. Minimization of this potential determines the
mean-field position of the thin-thick interface and shows that,
in the presence of long-ranged forces, it diverges as h ≈ δ p−1/3

on approaching the pre-wetting line. This result is only weakly
affected by fluctuation effects, which only alter the amplitude of
the divergence but not the value of the critical exponent30.

3. Transverse interfacial unbinding transitions at T ∗1 and T ∗2
(Paths 3 and 4).

Finally, we turn our attention to the two transitions occurring as

the temperature is increased towards T ∗2 or decreased towards T ∗1
while remaining on the pre-wetting coexistence curve (δ p = 0−).
Recall that these transitions correspond to the unbinding of the
thin-thick interface, and are analogous to 2D wetting transitions.
At mean-field level, these transitions are certainly first-order so
that the value of h jumps discontinuously from a microscopic to
macroscopic value. This means that the appropriate potential
VSR(h) or VLR(h) must have a short-ranged attraction and also a
potential barrier – directly analogous to the form of the poten-
tial W (`) modelling 3D wetting transitions. However, the charac-
ter of these transitions is now strongly influenced by interfacial
fluctuations arising from the wandering of the thin-thick inter-
face. For example, in systems with short-ranged forces the tran-
sitions occurring at T ∗1 and T ∗2 must now belong to the univer-
sality class of 2D short-ranged critical wetting transitions31 (the
strong-fluctuation regime in the general classification of wetting
transitions32). That is, we expect that the distance of the thin-
thick interface from the wedge bottom diverges continuously as
h ≈ (T − T ∗1 )

−1 and h ≈ (T ∗2 − T )−1, as T is decreased and in-
creased towards T ∗1 and T ∗2 , respectively, at δ p= 0−. However, the
size of the asymptotic critical regime, where such universal criti-
cal behaviour can be observed, is extremely small due to the tun-
nelling required to penetrate through the potential barrier. Thus,
we anticipate that the transitions occurring at both T ∗1 and T ∗2
would be examples of apparent first-order wetting similar to that
discussed recently in the literature33,34.

For systems with long-ranged forces, something even more
subtle occurs. In this case, a short-ranged attractive term in
VLR(h) competes against the long-ranged repulsion described by
the second-term in (13). The inverse square decay (∝ h−2) is a
marginal interaction for 2D wetting, implying that the two transi-
tions occurring at T ∗1 and T ∗2 must belong to the intermediate-
fluctuation regime of critical wetting10. This regime further
sub-divides into three sub-regimes, depending on the value of
the coefficient of the inverse square decay and the line tension
τ̃. If Awf τ̃ ∆` tanα (1+ 1

3 tan2 α)/(kBT )2 > 1 the thin-thick unbind-
ing transition remains strictly first-order, but is characterised by
strongly non-Gaussian fluctuations. In general, this will be the
case for the unbinding transition occurring at T ∗1 , since the transi-
tion temperature occurs close to Tw – for which both τ̃ and ∆` are
macroscopically large. Thus, the transition occurring at T ∗1 will
be first-order, similar to the predictions of mean-field theory.

However, we can expect more dramatic behaviour for the tran-
sition occurring at T ∗2 , since this temperature is, in general, close
to the pre-wetting critical point, where τ̃ and ∆` are small. Thus,
we can anticipate that Awfβ

2τ̃∆` tanα(1+ 1
3 tan2 α) < 1. In this

case, the transition belongs to sub-regime B of the intermediate
fluctuation regime, corresponding to continuous wetting charac-
terised by non-universal critical exponents10. Thus, for the tran-
sition occurring at T ∗2 , we expect that the distance of the thin-
thick interface from the wedge bottom diverges continuously as
h≈ (T ∗2 −T )−βs with an angle-dependent critical exponent

βs =
1√

1+a tanα(3+ tan2 α)
(14)
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where a = Awf τ̃ ∆`/(kBT )2 is a temperature dependent, non-
universal constant.

Fluctuation effects influence t he p hase t ransitions occurring 
at the apex in a similar manner. The unbending transition is 
always rounded, even more so than the pre-filling transition, 
since the difference in the coexisting adsorptions near the apex 
tip is microscopic. The two phase transitions which are left 
are complete pre-wetting (that occurs all along the pre-wetting
line for α > α† and for T > T3

∗ and α < α†) and the unbind-
ing of the thick-thin interface along the side walls as T → T3

∗ at 
δ p = 0+. The fluctuation effects occurring at these transitions are 
the same as those described above for the wedge. In particular, 
for systems with dispersion forces, the unbinding transition oc-
curring at T3

∗ will belong to fluctuation r egime C  (first-order) if 
Awfβ 2τ̃∆` tanα(1 + 13 tan2 α) > 1, or fluctuation regime B  (contin-
uous with non-universal exponents) otherwise.

6 Discussion
In this paper, we have used simple interfacial Hamiltonian mod-
els to show that rather rich phase diagrams, showing different 
types of interfacial unbinding transitions, may occur for fluids ad-
sorbed near wedges and apexes, when the wall-fluid interface ex-
hibits first-order w etting. These phase diagrams are considerably 
more involved than those predicted for systems with critical wet-
ting due to the interplay of pre-wetting and pre-filling transitions 
(or unbending, in the case the apex)2,3. The possible merging of 
the pre-filling and pre-wetting lines for shallow wedges had been 
noted previously. However, the nature of the associated interfa-
cial unbinding transitions occurring along the side walls had not 
been properly understood. Our predictions for the divergence in 
the adsorption characterising complete pre-wetting can be tested 
in more microscopic Density Functional models similar to recent 
studies of fluids in capped c apillaries20. This would also test the 
semi-quantitative prediction of the present study that the merg-
ing of the pre-filling a nd p re-wetting l ines o ccurs w hen t he tilt 
angle is less than a few degrees, something our simple interfa-
cial model cannot predict with greater accuracy. The most subtle 
aspect of our study concerns the fluctuation-induced angle depen-
dence of non-universal critical exponents characterising the phase
transition at T2

∗ for systems with long-ranged dispersion forces. 
While the experimental observation of such non-universality is 
extremely challenging, it means that, at least in principle, fluctu-
ation effects predicted for the highly exotic intermediate fluctu-
ation regime of 2D wetting do occur in physically accessible sys-
tems. More generally, we hope that the insights gained into the 
richness of the phase diagrams for wedges and apexes can help us 
understand what happens when such geometries are used as the 
building blocks for more complicated nano-patterned substrates.
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