
Bachelor’s Degree in Computer Science and Engineering

2017/2018

Bachelor Thesis

RECOGNITION OF GESTURES
THROUGH ARTIFICIAL

INTELLIGENCE TECHNIQUES

Rubén Rodríguez Maximiano

Supervisor

Raquel Fuentetaja Pizán

Leganés, July 2th 2018

This work is licensed under a Creative Commons

Attribution - Non-Commercial - No-Derivatives

Resumen

El reconocimiento de gestos consiste en la interpretación de secuencias de acciones humanas
captadas por cualquier tipo de sensor, ya sea táctil o no requiera de contacto alguno con el
dispositivo, como una cámara. En las últimas décadas ha experimentado un gran avance debido al
auge de la Inteligencia Artificial y al desarrollo de sensores cada vez más complejos y precisos.

Un ejemplo concreto ha sido la publicación y el mantenimiento de un SDK oficinal de Microsoft
Kinect, con el que los desarrolladores han podido acceder a las capacidades de esta cámara para crear
interfaces de usuario más naturales e intuitivas. También se ha incentivado el uso de aplicaciones
que van más allá de la industria del entretenimiento, como aquellas que asisten en los cuidados
médicos o que permiten la automatización de tareas rutinarias.

Es por ello que en este proyecto hemos desarrollado un conjunto de herramientas para la
generación de modelos de aprendizaje capaces de reconocer gestos personalizados para la Kinect
v2. El conjunto de herramientas que se ha diseñado e implementado está orientado a facilitar la
tarea completa de reconocimiento para cualquier gesto, comenzando con la captura de los ejemplos
de entrenamiento, continuando con el pre-procesado y el tratamiento de los datos, y finalizando con
la generación de modelos de aprendizaje mediante técnicas de aprendizaje automático.

Finalmente, para evaluar el funcionamiento de la plataforma se ha propuesto y ejecutado
una experimentación con un gesto sencillo. Los resultados positivos motivan el empleo de las
herramientas desarrolladas para incorporar reconocedores de gestos en cualquier aplicación que
utilice el sensor Kinect v2.

Palabras clave Kinect, Reconocimiento de gestos, Aprendizaje Automático, Modelos Ocultos de
Markov, Algoritmos de clasificación, Interacción Hombre Máquina

ii

Abstract

The gesture recognition consists of the interpretation of sequences of human actions captured by
any type of sensor either touchable or non-touchable like a camera. It has experimented a high
progress in the last decades, due to the rise of the Artificial Intelligence and the development of
more complex and precise sensors.

One example of this advances was the publish and maintenance of an official SDK of Microsoft
Kinect, which were used by developers to access to the capabilities of this camera, so they could
create more natural and intuitive applications. This has motivated the use of applications that go
beyond the entertainment industry, like those which assists in healthcare or automate routine tasks.

For that reason, this project develops a set of tools for the generation of learning models that
are able to recognize personalized gestures for Kinect v2. The set of designed and implemented
tools is oriented to ease the task of the recognition of any gesture, starting in the capturing of
training examples, continuing with the pre-processing and the treatment of data, and ending with
the generation of the recognition models trough machine learning techniques.

Finally, in order to test the functionality of the complete system, an experimentation with
a simple gesture has been proposed and executed. The positive results motivate to use the set of
developed tools to incorporate gesture recognizers in any application that uses the Kinect v2 sensor.

Key words Kinect, Gesture recognition, Machine Learning, Hidden Markov Models, Classifica-
tion algorithms, Human-Computer Interaction

iii

Acknowledgments

Gracias a mi familia y amigos por el apoyo recibido durante tantos años, siempre estaré en deuda
con vosotros.

Gracias a mis compañeros, que al final amigos, hemos pasado noches de fatiga y estrés pero
disfrutado aún más la recompensa del trabajo acabado.

Gracias a mi pareja por irrumpir en mi vida, por soportar los peores momentos e inmortalizar
los mejores. Te quiero.

Muchas gracias a mi tutora Raquel por la oportunidad dada, su paciencia y sus buenos consejos.

iv

Acronyms

• AI: Artificial Intelligence

• API: Application Programming Interface

• GUI: Graphical User Interface

• HCI: Human-Computer Interaction

• HMM: Hidden Markov Models

• IR: Infra-red

• KNN: K-Nearest Neighbor

• LOPD: LEY ORGÁNICA 15/1999, DE PROTECCIÓN DE DATOS DE CARÁCTER
PERSONAL

• ML: Machine Learning

• MVP: Most Valuable Professional

• PSF: Python Software Foundation

• PUI: Perceptual User Interfaces

• RBF: Radial Basis Function

• SDK: Software Development Kit

• SVM: Support Vector Machines

• UI: User Interface

• UX: User Experience

• VR: Virtual Reality

• WPF: Windows Presentation Foundation

v

Glossary

• Application: term used also as ’tool’ indistinctly, is a software program designed, developed
and used for a certain purpose.

• Biometric: related with human body and behavior characteristics.

• C: programming language.

• CSV: file extension containing comma separated values.

• C++: programming language.

• Data pre-processing: transformations over a set of data.

• Dotnet: software framework, sometimes written as ".NET".

• Gesture: human action involving one or more joints of the body.

• Go: programming language.

• Java: programming language.

• Joint: articulation of the human body.

• Kinect: camera sensor created by Microsoft. Term used also to refer to the Kinect v2, the
second version of the sensor.

• Python: programming language.

• Tool: term used also as ’application’ indistinctly, is a software program designed, developed
and used for a certain purpose.

vi

Contents

Resumen ii

Abstract iii

Acknowledgments iv

Acronyms v

Glossary vi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document structure . 3

2 State of the Art 4
2.1 Gesture recognition . 4

2.1.1 Similar projects . 6
2.2 Machine Learning . 7

2.2.1 ML Library . 8
2.3 Kinect sensor . 10

3 Requirements and user stories 13
3.1 Epics . 15
3.2 Themes . 16
3.3 User stories . 22

4 Development 40
4.1 Development environment . 40
4.2 Interaction between applications . 41
4.3 Recording application . 42

4.3.1 Functionality and guide of use . 42
4.3.2 Implementation details . 51
4.3.3 Gesture data . 51

vii

4.3.4 Generation of training data for evaluation . 54
4.4 Data pre-process application . 54

4.4.1 Normalization and center translation . 55
4.4.2 Segmentation . 56
4.4.3 Functionality and guide of use . 56
4.4.4 Input data . 58
4.4.5 Output data . 58
4.4.6 Analysis of the transformations over the training dataset 58

4.5 Machine learning application . 62
4.5.1 Classification . 62
4.5.2 Clustering . 63
4.5.3 Implementation details . 63
4.5.4 Functionality and guide of use . 64
4.5.5 Input data . 65
4.5.6 Output data . 65

4.6 Experimentation . 66

5 Conclusions and future lines 70
5.1 Future lines . 70

6 Project organization and management 72
6.1 Methodology . 72

6.1.1 Trello . 73
6.1.2 Version control system . 73

6.2 Planning . 73

7 Regulation frame 75
7.1 Legislation analysis . 75
7.2 Technical standards . 76
7.3 Intellectual property . 76

8 Socio-economic environment 79
8.1 Socio-economic impact . 79
8.2 Budget . 79

9 Appendix A: Data pre-process application guide of use 82

10 Appendix B: Machine learning application guide of use 86

References 90

viii

List of Tables

3.1 User story template. 14
3.2 Epic E-01. 15
3.3 Epic E-02. 15
3.4 Epic E-03. 16
3.5 Theme T-01. 16
3.6 Theme T-02. 17
3.7 Theme T-03. 17
3.8 Theme T-04. 17
3.9 Theme T-05. 18
3.10 Theme T-06. 18
3.11 Theme T-07. 18
3.12 Theme T-08. 19
3.13 Theme T-09. 19
3.14 Theme T-10. 20
3.15 Theme T-11. 20
3.16 Theme T-12. 20
3.17 Theme T-13. 21
3.18 Theme T-14. 21
3.19 Theme T-15. 21
3.20 User story U-01. 22
3.21 User story U-02. 22
3.22 User story U-03. 23
3.23 User story U-04. 23
3.24 User story U-05. 23
3.25 User story U-06. 24
3.26 User story U-07. 24
3.27 User story U-08. 25
3.28 User story U-09. 26
3.29 User story U-10. 26
3.30 User story U-11. 27
3.31 User story U-12. 27
3.32 User story U-13. 27

ix

3.33 User story U-14. 28
3.34 User story U-15. 28
3.35 User story U-16. 28
3.36 User story U-17. 28
3.37 User story U-18. 29
3.38 User story U-19. 29
3.39 User story U-20. 29
3.40 User story U-21. 30
3.41 User story U-22. 30
3.42 User story U-23. 30
3.43 User story U-24. 31
3.44 User story U-25. 31
3.45 User story U-26. 31
3.46 User story U-27. 32
3.47 User story U-28. 32
3.48 User story U-29. 32
3.49 User story U-30. 33
3.50 User story U-31. 33
3.51 User story U-32. 34
3.52 User story U-33. 34
3.53 User story U-34. 34
3.54 User story U-35. 35
3.55 User story U-36. 35
3.56 User story U-37. 36
3.57 User story U-38. 36
3.58 User story U-39. 37
3.59 User story U-40. 37
3.60 User story U-41. 38
3.61 User story U-42. 38
3.62 User story U-43. 39

4.1 Feedback message Feed-01. 48
4.2 Feedback message Feed-02. 48
4.3 Feedback message Feed-03. 48
4.4 Feedback message Feed-04. 48
4.5 Feedback message Feed-05. 48
4.6 Feedback message Feed-06. 48
4.7 Feedback message Feed-07. 49
4.8 Feedback message Feed-08. 49
4.9 Feedback message Feed-09. 49
4.10 Feedback message Feed-10. 49

x

4.11 Feedback message Feed-11. 49
4.12 Feedback message Feed-12. 49
4.13 Feedback message Feed-13. 49
4.14 Feedback message Feed-14. 50
4.15 Feedback message Feed-15. 50
4.16 Feedback message Feed-16. 50
4.17 Feedback message Feed-17. 50
4.18 Feedback message Feed-18. 50
4.19 Feedback message Feed-19. 50
4.20 Feedback message Feed-20. 50
4.21 SVM experimentation results. 67
4.22 KNN experimentation results. 68

8.1 Human resources costs . 80
8.2 Hardware costs . 80
8.3 Direct cost summary . 80
8.4 Total cost summary . 81

9.1 Pre-process filter template. 83
9.2 Pre-process filter PPF-01. 83
9.3 Pre-process filter PPF-02. 83
9.4 Pre-process filter PPF-03. 84
9.5 Pre-process filter PPF-04. 84
9.6 Pre-process filter PPF-05. 84
9.7 Pre-process filter PPF-06. 84
9.8 Pre-process filter PPF-07. 84
9.9 Pre-process filter PPF-08. 85
9.10 Pre-process filter PPF-09. 85
9.11 Pre-process filter PPF-10. 85

10.1 Machine learning parameter template. 86
10.2 Machine learning parameter MLP-01. 87
10.3 Machine learning parameter MLP-02. 87
10.4 Machine learning parameter MLP-03. 87
10.5 Machine learning parameter MLP-04. 88
10.6 Machine learning parameter MLP-05. 88
10.7 Machine learning parameter MLP-06. 88
10.8 Machine learning parameter MLP-07. 88
10.9 Machine learning parameter MLP-08. 88
10.10Machine learning parameter MLP-09. 89
10.11Machine learning parameter MLP-10. 89

xi

List of Figures

2.1 Gesture recognition patent categorization . 6
2.2 Kinect v2 sensor. 11

4.1 Interaction between applications. 41
4.2 WPF application with information points. 43
4.3 WPF application at the beginning of the execution. 44
4.4 Lasso gesture[61]. 45
4.5 WPF application execution flow. 47
4.6 Skeleton positions relative to the human body [62]. 52
4.7 Dataset depth space coordinates with normalization. 59
4.8 Dataset depth space coordinates without normalization. 60
4.9 Dataset depth space coordinates with normalization but less instances. 61

6.1 Gantt chart . 74

xii

Chapter 1

Introduction

This chapter provides an introduction to the project, describing the motivation points and the main
objectives.

Both regulation frame (7) and socio-economic environment (8) have their own chapter later.

1.1 Motivation

Considering the concept definition of ’Gesture recognition’ in several technology sites [1] [2] [3] , we
can define the term as the mathematical interpretation of human motions by a computer.

The communication between users and computers is called Human-Computer Interaction (HCI)
[4], and the interface defines the way this communication is experimented. From the first interfaces
based on the use of shell commands, through the combination with keyboard and mouse in Graphical
User Interfaces (GUI), interfaces have evolved to ones that focus more on usability and natural
interaction. These interfaces have been grouped under the term of Perceptual User Interfaces
(PUI) [5], sometimes denominated as Natural User Interfaces (NUI), which purpose is to improve
this experience so that the interaction with the system is completely intuitive. The less that the
users have to think about how the interface works, the more they are implied in the task they are
performing [6]. E.g. if the application verses about editing 3D figures, having the experience of
"feeling" that shapes and sizes change with precise hand gestures is more intuitive than using any
GUI.

Gesture recognition, as other similar tasks like facial recognition or pose recognition, suppose
an ideal component for a natural interaction. Every application that uses NUI has to deal with
specific usability domain problems, like sensors and any device that the user has to manage. There
will always be learning gaps between users and interfaces, but NUI arise to understand and improve
how people communicate with each other and interact with the real world, so it can be applied in
the communication with computers.

Any gesture can be defined as a set of rules that describes its path or performance, with a
threshold for each step of the trajectory. Though this can be easy for some simple gestures, e.g.
hand wave [7], complex gestures involving numerous joints imply defining a complicated set. If

1

CHAPTER 1. INTRODUCTION 2

instead of recognizing a gesture, a developer wants to recognize an activity (that implies a sequence
of gestures), the problem can become even more difficult. Accuracy is also important when motions
from different persons have different values, so thresholds and manual rules may not contemplate
every scenario of use. For this reason, using an automatic approach like implementing the models
with Machine Learning (ML) can save a lot of time to developers, being possible to adapt fast to
different scenarios of use.

1.2 Objectives

This project has the purpose of using Kinect v2 to generate the data for the gesture recognition
problem, and then learn models with a Python machine learning library: Scikit-learn. Kinect v2.0
is an upgraded version of the original Kinect sensor, allowing more precision in data capture and
adding new hand joints, making even easier to recognize hand gestures. Despite many applications
focus on hand and facial gestures, this project considers a general perspective where any gesture
can be recognized.

The first step is to record the gestures using Kinect so a gesture dataset is generated.
Secondly, the dataset is processed following the recommendations of Easy gesture recognition for

Kinect paper [8]. This paper affords the task of creating a gesture recognition tool so developers can
include gesture recognizers in their applications. This tool uses two different approaches, Dynamic
Time Warping and Hidden Markov Models, and make transformations to normalize and center every
joint of every gesture. Otherwise, the same gesture in different positions can be misunderstood
if the actors performing the gestures are in different positions or have different heights. These
transformations will be analyzed and applied in the current project.

Finally, different classification algorithms will be trained using the gesture dataset: Support
Vector Machine (SVM) and K Nearest Neighbors (KNN). The classification will be simplified so
the learning models only have to classify between good or bad examples of a concrete gesture.
An experimentation planning will be defined so the complete system is tested and both the data
pre-processing and the classification algorithms are analyzed.

In order to get a better experimentation and analysis in all the steps of the process, the case
study will be simplified as a single joint gesture recognition problem: the dataset will be formed
by several instances of a simple gesture, formed by just one body joint. The chosen gesture is a
complete clockwise circle performed by right hand.

The complete cycle of generation of the learning models will be approached with the development
of the following applications:

• An application to store datasets of gestures generated by Kinect v2, where users can define and
perform personalized gestures. The data stored by the application must contain the complete
information tracked by the Kinect sensor, so it is possible to have broad experimentation.

• An application to process the datasets according to Easy gesture recognition for Kinect paper
[8] recommended transformations. The results of applying these transformations have to be
analyzed so they are reliable.

CHAPTER 1. INTRODUCTION 3

• An application to generate learning models using classification algorithms. Different
algorithms have to be applied so the experimentation can support the decision of which
algorithm fits better for this problem.

Thus, the main objective of this project is to design, develop and evaluate those three
applications, and connect them so that the result is a tool useful for performing the full cycle
of gesture recognition.

1.3 Document structure

The document of the project is structured into ten chapters, including two annexes, and the list
with the consulted references.

The first chapter includes the introduction of the project, describing the motivation, objectives
and the current description of the structure of the document.

The second chapter includes the state of the art where the applicable technologies and solution
alternatives are contemplated.

The third chapter includes the complete requirement specifications.
The fourth chapter includes a complete description of the development of the project in addition

to the experimentation planning and its results.
The fifth chapter includes both conclusions and future lines of the project.
The sixth chapter includes the organization and management followed throughout the

development and the planning as too.
The seventh chapter includes the regulation frame applicable to the project regarding the

legislation, technical standards, and the intellectual property.
The eighth chapter includes the socio-economic environment where both the socio-economic

impact and the project budget are described.
Nine and tenth chapters include appendixes of the applications developed in the project.

Chapter 2

State of the Art

This chapter describes the state of the art of several topics that are fundamental for the project.
Firstly, gesture recognition task is explained with some of the most common applications.

The current project is compared with similar existing ones, arguing the value added with the
implemented option.

Machine learning is shortly described, giving an insight of the algorithms implied in this project
and the machine learning libraries alternatives that were contemplated.

Finally, the Kinect V2.0 is proposed as the sensor to generate the dataset of gestures, but also
being compared with other motion sensors.

2.1 Gesture recognition

As it was described in Motivation (see section 1.1), gesture recognition is the interpretation of
human motions by a computer. Some definitions of gesture recognition do not include that the
interpretation of interactions in touch interfaces is also considered gesture recognition, but it is, as
far as users perform gestures with some physical device that the computer has to understand.

A large number of investigations and projects have demonstrated that gesture recognition can
benefit HCI and automate tasks that cost a lot of time and effort to professionals. Despite a huge
number of applications have emerged from video game industry, more and more applications, not
focused on entertainment has appeared. A short summary of them is mentioned next:

• Security authentication in healthcare systems: combined with face recognition and
biometric systems, makes authentications faster and sterile because any touchable action is
required [9].

• Assistance in medical operations and processes: not only the sterility is granted with
some NUI, but precision in 3D environments so surgeons can operate telematically as they
were in the operations room [10]. Surgeons can also manipulate and manage images of the
operation performing hand gestures [11].

4

CHAPTER 2. STATE OF THE ART 5

• Robot interaction: combined with face and voice recognition, users can give orders to
robots to interact with objects of reality or just start some tasks [10].

• Biometrics based on behavior: to identify the person by habits manners like gait or
ordinary gestures [12].

• Analysis of video content: in order to classify which type of activity is performed in videos.
[12].

• Security and surveillance: security cameras can track what is happening at any moment
and check if current activities need to be watched. This application can be assisted with the
recognition of persons based on their behavior [12].

• Video conference using 3D virtual avatars: miming face expressions and gestures.
Also, higher aspirations on this direction try to create a virtual conference and video chat
environment where anyone can see the rest as remotely as they were talking in the same space
[13].

• Rehabilitation assistance for physiotherapists: storing and analyzing patients
progression of their mobility problems. Kinect can support automating several steps of the
process so professionals can focus more on results and recovering process [14].

• Sign language communication between human and computer [15]

• Control above driving habits: adjust vehicle mirrors, audio system, and phone calls can
be done with simple hand gestures, avoiding the distraction of the driven task itself [16] [17].

This is just a short list of implemented applications and study cases of gesture recognition. Sites
like Kinect Hacks [18] demonstrate that the developer community has been active since Kinect was
open to experimentation and progression [13].

In order to have a broader awareness of the gesture recognition applications, a report about
trends of gesture recognition has been consulted. This report has studied patents over 5386 records
of patents all over the world, and they take from 2003 to 2017 [19].

Figure 2.1 shows the number of patents about gesture recognition applications.
It can be observed that most of the patents verse its application for entertainment purposes,

but an important percentage of them is dedicated to automobile and healthcare.
Considering the progress in gesture recognition, gestures cannot be interpreted only as a sequence

of raw images but also as a sequence of frames with different representations of data. Microsoft
Kinect combines Infra-red (IR) and RGB-D (Depth sensor [20]) to afford the recognition task. It
also provides frameworks to get a high-level representation of data: gestures can be described as a
sequence of skeleton or body models, where each model have information about joints of the human
body.

Kinect device, firstly launched as a gaming peripheral device, has supposed a foster to gesture
recognition and similar tasks like posture recognition and facial recognition. It was possible due
the sensor was hacked, but also because Microsoft published an official Software Development Kit
so developers could access easily to Kinect capabilities.

CHAPTER 2. STATE OF THE ART 6

Figure 2.1: Gesture recognition patent categorization

From the Machine Learning perspective, gesture recognition usually implies prediction and
classification tasks. Algorithm requirements and data transformations are very dependent on the
sensor technology. However, the number of machine learning libraries have grown, implementing
a large number of algorithms and facilities. That makes easier to apply machine learning in any
application so developers can improve their productivity and focus on the specific characteristics of
the problem.

2.1.1 Similar projects

The current project can be compared with others available solutions. Here I present a short list
with some of them:

• Vitruvius: created by LightBuzz, is a framework to speed up and facilitates the development of
Kinect projects [21]. Its source code is published in Github and its Application Programming
Interface (API) offers a natural abstraction of Kinect tracked data and capabilities [22].
Between all the framework capabilities, is worth mentioning the control of 3D avatars though
body motions, a wide collection of mathematics transformation over the tracked gestures,
access to detailed data of the face and a collection of predefined gestures (mainly involving
arms and hands joints). Vitruvius can be used as a gesture recognizer generator, taking
advantage of the simple access to Kinect data. It also offers a detailed documentation and
blog dedicated to informing about tutorials and advances on the framework. Blog articles
are written by Vangos Pterneas, co-founder of Lightbuzz and granted with the title of Most
Valuable Professional (MVP) due to his contributions to Kinect open source community. He
also has a dedicated blog for Kinect technology and Hololens, helping new developers to make

CHAPTER 2. STATE OF THE ART 7

familiar with Kinect application development [23].

• GesturePak: created by Carl Franklin, Microsoft Regional Director for Connecticut and MVP,
consists of an application that can record customized gestures using Kinect v2.0. Those
gestures can be edited and then recognized by the application so it brings feedback to the
user about the matching of the gesture performance. The gestures are defined with the 25
joints that Kinect v2.0 is able to track [24].

• Gesture Recognition Toolkit: developed by Nick Gillian, the lead of Project Soli in Google’s
Advanced Technology and Projects group, is an application to train customized gestures. It
can be used as a C++ API or as a GUI. This application offers a more generic approach for
the gesture recognition problem because the input is independent of any technology sensor
[25] [26].

• Visual Gesture Builder: one of the NUI tools that come with Kinect for Windows SDK 2.0,
generates recognition models by input XEF files, that describe information of the tracked
gesture. With those files, Visual Gesture Builder, using AdaBoostTrigger or RFRProgress,
generates a database of models that applications can consult to check if the input action from
a user matches with the recognition model [27]. XEF files can be recorded by another tool
from the SDK, called Kinect Studio [28].

• EasyGR: is a development tool for the creation of gestures models using machine learning.
Its purpose is to help developers to introduce gesture recognition in the application. First
developers have to construct the gesture model through a GUI, then export the model to a file,
and then call EasyGR library to control the recognition task, so actions can be triggered when
the defined gesture is performed. It is compatible with C#. This project has supposed an
inspiration for the current one, because of the approach of normalization and center translation
of body joints that are tracked through Kinect [8].

Despite the capabilities offered by these alternatives, creating a personalized tool offers the
possibility to study deeper the efficiency between ML algorithms and the recognition task. The
application is designed to add more learning modules in the future, so it can reused in future
investigations.

2.2 Machine Learning

Machine Learning is sometimes confused with the term Artificial Intelligence (AI), but indeed they
are different concepts, being AI a broader field of study of computer science, and ML an area of
AI. AI objective is to create machines that can act and think like humans, miming the human
intelligence. That covers different types of problems like learning, representation of the knowledge
or planning. ML focus on the learning task, teaching machines to learn the process of solving
tasks by themselves, or just to learn a concrete process. Most of today ML applications have
emerged because this field has progressed overwhelmingly thanks to statistics and computer science

CHAPTER 2. STATE OF THE ART 8

combination. Teaching a program on how to understand the process of human communication
between humans can be the most scalable solution [29].

Some of the tasks that ML can afford are:

• Classification: given a set of data with label information, a model decides which labels
correspond to the new data.

• Regression: given a set of data with continuous values, a model decides which continues values
correspond to the new data.

• Clustering: given a set of data without any additional information, a model group this data
regarding its characteristics.

• Diagnosis: given a set of observations of one system, a model can discover in which state the
system is. The main difference with classification is that data is unlabeled and the output
results may be complex.

Machine learning tasks can be categorized into two groups, supervised and unsupervised learning.
The input data of the supervised learning is labeled (classification and regression task), while the
input data of the unsupervised is unlabeled (clustering and diagnosis).

Gesture recognition may be understood as a classification task, in which the computer has to
decide if a certain example represents a specific gesture or not. But it also may be understood as
a diagnosis task, in which the input is analyzed so the type of gesture can be deducted. In the
case of this project, gesture recognition is proposed as a classification task where the label or class
indicates if a gesture is a good or bad example of its execution.

The classification algorithms applied in this project are the Support Vector Machines and the
K Nearest Neighbors. The subsection Classification (see subsection 4.5.1) describes the motivation
and details of this algorithms for the classification problem of the project. Figure 2.1 shows that
both algorithms are included in the list of the most used gesture classification algorithms, being
SVM one of the most used.

2.2.1 ML Library

Gesture recognition can be faced with several ML libraries that implement learning algorithms,
data transformations, and data representation. Here is presented the list of several libraries and
tools that have been taken into account before starting the development of the project:

Python machine learning libraries

• SciPy: library which has algorithms and tools for scientific, technical and mathematical
problems. It is a good starting point to know packages that are useful for data representation
(NumPy, pandas) and machine learning solutions (Scikit-learn). [30].

• Mlpy: Python module with machine learning algorithms that can be used for supervised and
unsupervised problems. It is based on NumPy and SciPy [31].

CHAPTER 2. STATE OF THE ART 9

• Orange: a framework with algorithms for machine learning and data mining. It can be used
as a GUI or as a module for Python [32].

• TensorFlow: library with algorithms for mathematics and machine learning, more focused on
Deep Learning. It maintains APIs for several languages: Python, C, C++, Java and Go [33].

• Seqlearn: library for sequence classifiers that can operate with Scikit-learn, NumPy, and SciPy.
It implements supervised learning with Hidden Markov Models (HMM) and a structured
perceptron [34].

• PyStruct: library with machine learning algorithms oriented to structural learning, e.g. SVM,
Conditional Random Fields, and Markov Random Fields. Structural learning propose an
alternative perspective for problems like classification and regression: they can be modeled
as sequence structures or values that have to be predicted [35].

• Scikit-learn: machine learning library for Python that implements algorithms of machine
learning, data mining and data analysis. Based on SciPy and NumPy. [36].

.Net/C# machine learning libraries

• numl: library for .NET that includes supervised and unsupervised machine learning
algorithms [37].

• AForge.NET: open source framework in C#, used for several areas of AI and Computer Vision
[38].

• Accord.NET: framework for .NET oriented to solve audio and video processing problems.
Merged with AForge.NET, it offers machine learning algorithms [39].

• Encog: framework with machine learning algorithms for supervised and unsupervised
problems (e.g. SVM, HMM, Genetic Programming). It also offers data transformation and
processing algorithms and a GUI to make experimentation easier. It can be used with C#
and Java [40].

Other frameworks and tools

• Machine Learning Studio (Azure): service to experiment with machine learning solutions in
the cloud, being also possible to transform data [41].

• Weka: a collection of algorithms for machine learning and data mining. It can be used as an
external tool or called by Java code [42].

Data representation and transformation

• NumPy: library to represent data as N-dimensional arrays, with functions for transformation
and analysis. Several mentioned libraries accept this structure for the input data of the
algorithms: Scikit-learn, Seqlearn, Mlpy [43].

CHAPTER 2. STATE OF THE ART 10

• Pandas: similar to Numpy, used to make richer representation of data, more flexible and more
abstract, and also to make analysis and transformations over it. It can be used in Scikit-learn
for the input data [44].

The main reason to consider .NET and C# libraries is that the application that extracts and
records the gestures from Kinect is written in Windows Presentation Foundation (WPF): a system
for Windows-based applications based on graphical user interfaces that forms part of the .NET
framework [45]. The application in charge of data transformation and machine learning task can
be integrated with the WPF application easier if they all bellow the same ecosystem.

By another hand, Python offers a broad range of possibilities of libraries for the project purpose.
Considering the availability of tutorials and documentation, as the good the good synchronization
with Numpy and Scipy, I have selected Scikit-learn as the library for the machine learning
application [46]. But also PyStruct and Seqlearn are proposed as alternatives that contemplate
structured prediction and have similarities with Scikit-learn API. As far as the machine learning tool
encapsulates the interaction with Scikit-learn API, adding new algorithms from different libraries
is not an impediment.

2.3 Kinect sensor

Video game industry has always been experimenting with new interfaces, and especially those which
try to make a more immersed experience. Following the success of engineering investigations, the
game industry has introduced kinetics gloves, camera sensors and even motion controllers to define
the game interaction. The popularization of Wii motion has introduced new groups of users that
usually never played games. This shows that the use and improvement of NUIs can decrease the
learning gap to start playing. Motion recognition has to focus more on velocity but maintaining good
levels of accuracy, so users perceive a real-time system reaction and maintain the game experience.
[10].

Wii Remote, the controller of Nintendo Wii console, was hacked in 2007 by reverse engineering,
opening the path for developers to build their own applications and games. This community has
grown considerably so sites like WiiBrew has emerged as a wiki of homebrew development of the Wii
console [47] [48]. A project to recognize gestures with Wii Remote tackle the problem using wiigee
(developed and published by the authors), designed to capture and data specifically performed by
the Wii controller, so customized gesture can be modeled [49] [50].

As Nintendo and Microsoft offered their own natural interaction device (Wii motion and
Kinect), Sony launched PlayStation Move for PlayStation 3, allowing users to play through
motions with a physical device, similar to Wii remote. PlayStation announced Move.me, a server
application that allows developers to access the data captured by PlayStation Move controller
[51]. This can be bought by PlayStation Store nowadays [52] , but dedicated official site
(www.us.playstation.com/move-me) is not accessible. After that, PlayStation 4 continued the
support and the development of PlayStation Move, then Sony acquired Softkinetic company,
which offered solutions for gesture recognition problems with time-of-flight cameras technology [53].
Currently, Sony offers several libraries for gesture recognition using that technology. One of then,

www.us.playstation.com/move-me

CHAPTER 2. STATE OF THE ART 11

Depthsense HTlib, using PlayStation Camera, is designed to track motion and body information of
users (maximum tracking of 4 users at the same time). But it is not public, being a request needed
to start using the library [17].

Microsoft launches Kinect sensor in 2010, a beta SDK in 2011, and a stable API in 2012 (also
known as Kinect for Windows). This SDK tracks information of 21 body joints, accessing to
position and rotation data and allows face recognition. In 2013 a new version of the camera
is announced, allowing 25 body joints (adding more joints of hands), improving reliability and
allowing the maximum of 6 users being tracked at the same time. This new version was followed
by a new version of the SDK [54] (see Figure 2.2).

Figure 2.2: Kinect v2 sensor.

Leap Motion, Inc. has developed a hand tracking sensor with high accuracy and sensibility.
Based on IR and LEDs technology, does not require any contact with users and it is being used
for Virtual Reality (VR) applications. It offers SDKs for several languages and technologies, e.g.
Unity, C++, Python, and a Beta upgraded version of the previous API [55] [56] [57].

The uSens company offers Fingo, a peripheral for hand tracking that can be used in VR games
and applications. It offers a well-documented SDK for Unity, covering the recognition of around 25
hand gestures, but gives also access to bones rotations and relative positions (in relation with close
bones) [58].

Nuitrack has several sensors for body tracking: VicoVR and Orbbec Astra, both using the
Nuitrack SDK. The SDK allows developers to afford gesture recognition tasks, communication with
Unity and Unreal, and also link with many devices: Kinect v1, Asus Xtion, Orbbec Astra, Orbbec
Persee and Intel RealSense [59] [60].

CHAPTER 2. STATE OF THE ART 12

Considering the range of devices to choose in order to develop a tool for gesture recognition,
Kinect v2 is the selected device due the price, the well-documented SDK and precise sensors. Other
reasons to discard some of the other devices are:

• Wii motion can be discarded because it does not offer an official library or SDK.

• PlayStation Move does not offer a free SDK.

• Leap Motion and uSens only track hands information.

Nuitrack seems to be the best alternative to Kinect, due the similar technical specifications shared
between the compatible devices. But the scope of this project is to create a tool to generate
recognizer models, so using Kinect SDK reduce the problem to one single device.

Even though there are many SDKs for Kinect, this project uses the Microsoft supported Kinect
for Windows SDK 2.0 [54].

Chapter 3

Requirements and user stories

The project has followed an iterative and incremental development, combined with Personal Kanban
Agile framework, described in Project organization and management (see chapter 6). To synchronize
with this methodology, requirements has been replaced by user stories. A user story is a requirement
representation that permits an easy conversation of the requirements described inside.

User stories can be defined in different levels of detail, being common the following taxonomy:

• Epic: big user story with high level of abstraction, usually defined at the beginning of the
development. In this project, epics focus on the three main applications required to complete
the gesture recognition process.

• Theme: user story that arises from the details of epics. Here the themes describe the
functionality of each application.

• User story: most detailed type of user story, that appears when themes are detailed. Non-
functional requirements are included in this category since they refer to low level details in
the abstraction hierarchy. To avoid confusion, this user stories will also be called "little user
stories".

One advantage of using this approach is that each application is developed after the previous one,
avoiding to define every specific requirement at the beginning of the process. With user stories, epics
can be defined at the beginning, and then epics can arise when the development of each application
starts. This postponed specification offers more flexibility when changes and issues appear.

Once user stories are defined, they can be added to the backlog: a pile of pending tasks that
each user story needs to be completed. This concept is well explained in Methodology (see section
6.1).

Table 3.1 describes the elements of every user story, independently of its level of detail (epic,
theme or little user story)

13

CHAPTER 3. REQUIREMENTS AND USER STORIES 14

ID X-NN

Title
-

Description -
Priority -
Acc. criteria -
Parent -

Table 3.1: User story template.

Next the meaning of each field is described:

• X-NN: is the identifier of the user story. X indicates the category of user story through the
following values:

– E: epic.

– T: theme.

– U: little user story.

NN identifies the user story inside the group of user stories of the same category, adopting
a numerical value of two digits. This numerical value will be 01 for first user story of the
category and is incremented with the next consecutive number for the next user stories, e.g.
E-01, T-02, U-03 (First epic, second theme, and third user story).

• Title: short name of the user story.

• Description: formal definition of the user story, following the format: "As a <user role>,
I <want,/need/can/etc...><goal>, so that <reason/benefit/value>". With this predefined
clause, each description indicates who is the user implied, which is the intention of the story
and what value is obtained with its realization.

• Priority: level of priority of the user story, with the following values: High, Medium, Low.

• Acc. criteria (Acceptance criteria): list with the details of the user story, specifying what is
need to consider the user story as done. It also helps to create the depending user stories
with a low level of abstraction and define the tests cases for the current user story.

• Parent: identify the user story that has generated the current one, being the parent a higher
story in terms of details and abstraction. Obviously, epics do not have any parent since they
are the most generic user stories.

CHAPTER 3. REQUIREMENTS AND USER STORIES 15

3.1 Epics

This section includes the epics definitions.

ID E-01
Title Record dataset
Description As a user, I want to record a dataset of gestures, so that I can

create a gesture recognizer.
Priority High
Acc. criteria

• Isolated user interface application

• Gestures are recorded with the user gesture performance

• Any gesture can be defined

• Gestures are stored in a local folder

• Dataset is formed by the recorded gestures stored in a local
folder

• Gesture recording can represent a good or bad example of
the gesture

Parent None

Table 3.2: Epic E-01.

ID E-02
Title Pre-process dataset
Description As a user, I want to pre-process a dataset of gestures, so that the

dataset is ready to serve as training set for ML algorithms.
Priority High
Acc. criteria

• User can select the filters to apply

• User can decide the input of the filters

• User can store the results of the filters

• Create a command-line program

Parent None

Table 3.3: Epic E-02.

CHAPTER 3. REQUIREMENTS AND USER STORIES 16

ID E-03
Title Train ML algorithm
Description As a user, I want to train a ML algorithm with the pre-processed

training data, so that I have a gesture recognizer.
Priority High
Acc. criteria

• Use a machine learning library implementing the machine
learning algorithms

• User can apply clustering over the dataset

• User can apply classifiers over the dataset

• User can decide the input dataset

• User can store the results of training

• Create a command-line program

Parent None

Table 3.4: Epic E-03.

3.2 Themes

This section includes the themes definitions.

ID T-01
Title User Interface
Description As a user, I want to use a user interface application to record a

dataset of gestures, so that the dataset recording is intuitive.
Priority High
Acc. criteria

• Create a WPF application from a Kinect for Windows
sample

• Give feedback of the state of the recording process

• User cannot start recording the gesture until the gesture is
selected

• User can see a model of its body joints miming the real-life
performance

• Each gesture is recorded individually

Parent E-01

Table 3.5: Theme T-01.

CHAPTER 3. REQUIREMENTS AND USER STORIES 17

ID T-02
Title Gesture name
Description As a user, I want to define the name of the gesture, so that I can

train personalized gestures.
Priority Medium
Acc. criteria

• The name can be written by the user

• The name can be selected by a gesture list

• The name can be stored in a gesture list

• User cannot edit the gesture name while Kinect is aware

• Kinect is aware when it is ready to start recording, so the
user can start recording with a control gesture

• Kinect is unaware when it not ready to start recording, so
any control gesture of the user can trigger the recording

Parent E-01

Table 3.6: Theme T-02.

ID T-03
Title Saving path
Description As a user, I can select the saving path of the dataset, so that I

have control of its location.
Priority Low
Acc. criteria

• The path can be selected with a window dialog, avoiding the
use of non-existing paths

• The selected path has to be visible in the user interface

• User cannot edit the saving path while Kinect is aware

Parent E-01

Table 3.7: Theme T-03.

ID T-04
Title Gesture class
Description As a user, I want to select the class of the gesture that is going to

be recorded, so that I can define its class.
Priority High
Acc. criteria

• The class must be ’Good’ or ’Bad’

• ’Good’ class will be selected by default

• User cannot edit the gesture class while Kinect is aware

Parent E-01

Table 3.8: Theme T-04.

CHAPTER 3. REQUIREMENTS AND USER STORIES 18

ID T-05
Title Pre-process dataset application
Description As a developer, I need to implement a command-line program, so

that users can pre-process a dataset and automate experimenta-
tions.

Priority High
Acc. criteria

• Use Python to develop a dedicated application

Parent E-02

Table 3.9: Theme T-05.

ID T-06
Title Select filters
Description As a user, I want to select the filters to apply over the dataset, so

that I can experiment with several combinations of pre-process.
Priority High
Acc. criteria

• Use a system to read input arguments

• The input arguments are filters flags, with a short text
identifying the filter, preceded by a "-" and followed by a list
of the arguments of each filter (if the filter has arguments)

Parent E-02

Table 3.10: Theme T-06.

ID T-07
Title Input dataset
Description As a user, I want to select which dataset is going to pre-processed,

so that I can experiment with any dataset.
Priority Medium
Acc. criteria

• Users can indicate the files that are part of the dataset

• Users can indicate the dataset through one or more folders
containing the gestures.

Parent E-02

Table 3.11: Theme T-07.

CHAPTER 3. REQUIREMENTS AND USER STORIES 19

ID T-08
Title Pre-process results
Description As a user, I want to store the results of the filters, so that the

pre-processed dataset can be analyzed and I can decide where the
results are stored.

Priority High
Acc. criteria

• User can indicate the folder where results are going to be
stored

• Results must be stored in CSV format, but with information
regarding the arguments of the pre-process execution that
have generated these results

Parent E-02

Table 3.12: Theme T-08.

ID T-09
Title Apply filters
Description As a user, I want to apply transformation filters over a dataset,

so that the dataset is pre-processed.
Priority High
Acc. criteria

• The available filters to apply are:

– Normalization and center translation

– Filter by feature

– Remove frames with lasso gesture

– Filter by joint, selecting the joints to be ignored for
every gesture

– Filter by joint, selecting the joints to be included in
every gesture

– Unify gestures to a common length, using real frame
values

– Unify gestures to a common length, using average
values

• The filters arguments are introduced as program arguments

Parent E-02

Table 3.13: Theme T-09.

CHAPTER 3. REQUIREMENTS AND USER STORIES 20

ID T-10
Title Train dataset application
Description As a developer, I need to implement a command-line program, so

that users can train a dataset and automate experimentations.
Priority High
Acc. criteria

• Use Python to develop a dedicated application

Parent E-03

Table 3.14: Theme T-10.

ID T-11
Title Clustering
Description As a user, I want to use clustering over the dataset, so that I can

experiment with grouped values.
Priority High
Acc. criteria

• The clustering algorithm to apply is K Means

• K Means has to be applied using Scikit-learn library

• User can define the number of clusters

• User can store the clustering results

Parent E-03

Table 3.15: Theme T-11.

ID T-12
Title Classifiers
Description As a user, I want to train the dataset with different classifiers,

so that I can generate a gesture recognizer and compare between
models.

Priority High
Acc. criteria

• The classification algorithms to apply are SVM and KNN

• SVM and KNN hast to be applied using Scikit-learn library

• User can define training parameters for each classification
algorithm

Parent E-03

Table 3.16: Theme T-12.

CHAPTER 3. REQUIREMENTS AND USER STORIES 21

ID T-13
Title Input dataset
Description As a user, I want to select the input dataset, so that I have control

of the experimentation.
Priority Medium
Acc. criteria

• User can indicate the folders that are part of the dataset

Parent E-03

Table 3.17: Theme T-13.

ID T-14
Title Training results
Description As a user, I want to store the results of the training, so that I

complete the experimentation and select a gesture recognizer.
Priority High
Acc. criteria

• User can indicate the folder where train results are going to
be stored

• Results are generated by the train performance of the
classification algorithm used in the execution

Parent E-03

Table 3.18: Theme T-14.

ID T-15
Title Select algorithms
Description As a user, I want to select an algorithm to apply over the dataset,

so that I have control of the experimentation.
Priority Medium
Acc. criteria

• Use a system to read input arguments

• The input arguments are flag parameters of the algorithms,
with a short text identifying the parameter of the algorithm,
preceded by a "-" and followed by a list of the values required
for that parameter

• The program will not execute if there are parameters of
different algorithms at the same time, giving a feedback
message

Parent E-03

Table 3.19: Theme T-15.

CHAPTER 3. REQUIREMENTS AND USER STORIES 22

3.3 User stories

This section includes the user stories definitions.

ID U-01
Title User Interface application
Description As a developer, I need to implement a user interface application to

record a dataset of gestures, so that the user can record a dataset
intuitively

Priority High
Acc. criteria

• Create a WPF application analyzing Kinect for Windows
samples

• Copy body tracking functionality from BodyBasics-WPF,
removing everything not related with tracking functionality

• Copy user interface window from ColorBasics-WPF, adapt-
ing to mockup (TODO: add reference to mockup)

Parent T-01

Table 3.20: User story U-01.

ID U-02
Title Play button
Description As a user, I want to press a "Play" button, so that Kinect is aware

that I want to record a gesture
Priority High
Acc. criteria

• User cannot start recording the gesture until the gesture is
selected

• When Play button is pressed the Kinect status changes to
aware

• When Play button is pressed, the Play button is hidden and
the Stop button is visible

Parent T-01

Table 3.21: User story U-02.

CHAPTER 3. REQUIREMENTS AND USER STORIES 23

ID U-03
Title Stop button
Description As a user, I want to press a "Stop" button, so that Kinect does

not have to record any gesture
Priority High
Acc. criteria

• When Stop button is pressed the Kinect status changes to
unaware

• When Stop button is pressed, the Stop button is hidden and
the Play button is visible

Parent T-01

Table 3.22: User story U-03.

ID U-04
Title Start with hand lasso
Description As a user, I want to start recording a gesture making a lasso

gesture with both hands at the same time, so that I can control
when the gesture recording starts, without moving from camera
vision

Priority High
Acc. criteria

• When the lasso gesture with both hands at the same time
is performed, Kinect status changes to recording

Parent T-01

Table 3.23: User story U-04.

ID U-05
Title Finish with hand close
Description As a user, I want to stop recording a gesture through closing both

hands at the same time, so that I can control when the gesture
recording finishes, without moving from camera vision

Priority High
Acc. criteria

• When the close gesture with both hands at the same time
is performed, Kinect status changes to aware

• If the user delays more than 30 seconds, gesture recording
will stop.

Parent T-01

Table 3.24: User story U-05.

CHAPTER 3. REQUIREMENTS AND USER STORIES 24

ID U-06
Title Feedback
Description As a user, I want to receive feedback of the system telling me if

I am recording or not, so that I know if the gesture recording is
working fine or not

Priority High
Acc. criteria

• Text messages appear in the top of the window

• An information button appears in the position of Play/Stop
button when no gesture is selected, indicating that the user
must select a gesture

• Time duration in seconds appears at the top right of the
window, indicating the number of seconds that the current
gesture is lasting or has been lasted (in case the recording
finished). At the right side of this value there is the amount
of frames.

• Amount of frames appears at the top right of the window,
indicating the number of frames that the current gesture is
lasting or has been lasted (in case the recording finished).
At the left side of this value there is the amount of frames.

• A text must indicate the name of the gesture that is ready
to be recorded, with an explanatory text at the top gesture
name.

Parent T-01

Table 3.25: User story U-06.

ID U-07
Title Real time representation
Description As a user, I want to see a real-time representation of my body

when I am using the user interface application, so that I know
what is my position regarding the camera

Priority Medium
Acc. criteria

• This functionality is inherited from BodyBasics-WPF

Parent T-01

Table 3.26: User story U-07.

CHAPTER 3. REQUIREMENTS AND USER STORIES 25

ID U-08
Title Gesture information
Description As a user, I want to record all the information available of a

gesture, so that I have all this information available for pre-
processing, learning and experimenting

Priority High
Acc. criteria

• The gesture information is stored in one single CSV file.

• Gesture information: name of the gesture, class of the
gesture, number of frames that the tracking process has
needed, number of seconds that the tracking process has
needed, maximum duration (in seconds) allowed for the
tracking process, control value to check if the tracking
process has finished because it was manually stopped or
because the time deadline was reached, and information of
every frame.

• Frame information: frame identifier, second when frame
was recorded, left hand confidence, left hand state, right
hand confidence, right hand state, value indicating if the
gesture is restricted in that frame, number of joints of the
tracked body, lean vector of the body in that frame, tracking
state of body lean model, auto-generated identifier of the
tracked body, location of the window edge that is clipped,
and information of every joint

• Joint information: type of joint, tracking state of the joint,
depth space position vector, camera space position vector,
orientation vector

• Each file has information of the parameters of the execution
that has generated this file.

Parent T-01

Table 3.27: User story U-08.

CHAPTER 3. REQUIREMENTS AND USER STORIES 26

ID U-09
Title Gesture information format
Description As a user, I want to select the level of detail of the gesture data

that is going to be stored, so that I can have data with or without
labels that describes the values of the gestures

Priority High
Acc. criteria

• Selecting the use of labels in data has to be implemented
with a checkbox with the name "Raw Data", checked by
default.

• Checked value indicates that the data is going to be stored
without labels.

• Non-checked indicates that the data is going to be stored
with labels, adding a header with the label information at
the top of each gesture file.

Parent T-01

Table 3.28: User story U-09.

ID U-10
Title Gesture name typed
Description As a user, I can write the name of the gesture by typing it, so

that I can define new personalized gestures
Priority Medium
Acc. criteria

• Use an spell checking

• An explanatory text of the field appears at the top of the
gesture name

• The gesture name must be implemented as a text box

Parent T-02

Table 3.29: User story U-10.

CHAPTER 3. REQUIREMENTS AND USER STORIES 27

ID U-11
Title Gesture name selected
Description As a user, I can select the name of the gesture from a list of

existing ones, so that I can choose a previous defined gesture
Priority Medium
Acc. criteria

• Use a predefined hardcoded list of common gestures,
involving hands and/or arms

• An explanatory text of the field appears at the top of the
list

• The list must be implemented as a combo box

Parent T-02

Table 3.30: User story U-11.

ID U-12
Title Adding gesture name to list
Description As a user, I can introduce a new gesture in a list with existing

gestures, so that the new gesture does not need to be defined
again

Priority Low
Acc. criteria

• The content of the list must persist between different
executions of the application.

Parent T-02

Table 3.31: User story U-12.

ID U-13
Title Change current gesture
Description As a user, I want to change the current gesture that is going to

be recorded, so that I can record different gestures in the same
application execution

Priority Medium
Acc. criteria

• The change of the current gesture can be made from the
written gesture or the picked from the gesture list

Parent T-02

Table 3.32: User story U-13.

CHAPTER 3. REQUIREMENTS AND USER STORIES 28

ID U-14
Title Saving path dialog
Description As a user, I can select the saving path through a window dialog,

so that I have control of a real location
Priority Low
Acc. criteria

• Default path: Windows system desktop

• An explanatory text of the field appears at the top of the
path text

Parent T-03

Table 3.33: User story U-14.

ID U-15
Title Saving path feedback
Description As a user, I can see the selected saving path, so that I know where

the dataset is going to be stored
Priority Low
Acc. criteria -
Parent T-03

Table 3.34: User story U-15.

ID U-16
Title Class values
Description As a user, I want to select if the recording is going to be a ’Good’

or ’Bad’ representation of the gesture, so that I can define its class
Priority High
Acc. criteria

• The class selection must be implemented with radio buttons.

• An explanatory text of the field appears at the top of the
radio buttons

Parent T-04

Table 3.35: User story U-16.

ID U-17
Title Good value by default
Description As a user, I do not want to select the ’Good’ class every time I

start the application, so that I avoid a repetitive task
Priority Medium
Acc. criteria -
Parent T-04

Table 3.36: User story U-17.

CHAPTER 3. REQUIREMENTS AND USER STORIES 29

ID U-18
Title Pre-process dataset application in Python
Description As a developer, I need to implement a command-line program

in Python, so that users can pre-process a dataset and automate
experimentations

Priority High
Acc. criteria -
Parent T-05

Table 3.37: User story U-18.

ID U-19
Title Filter flag
Description As a user, I want to select the filter using a flag argument, so that

I can automate experimentations with a script
Priority Medium
Acc. criteria

• Each flag argument is preceded by a "-" character and
followed by the list of the filter arguments (if the filter has
arguments)

• Program will not execute if the user introduces a non-
existing flag, giving a feedback message

Parent T-06

Table 3.38: User story U-19.

ID U-20
Title Filter flag arguments
Description As a user, I want to select each filter argument, so that I can

experiment with each filter
Priority Medium
Acc. criteria

• Arguments are introduced after the filter flag, separated by
spaces

• If the user introduces arguments for a filter that does not
have arguments, the program will not execute, giving a
feedback message

Parent T-06

Table 3.39: User story U-20.

CHAPTER 3. REQUIREMENTS AND USER STORIES 30

ID U-21
Title Select input files
Description As a user, I want to select the files to pre-process, so that I can

experiment with single or few gestures
Priority Low
Acc. criteria

• User has to indicate this type of input with a flag argument

• The flag argument must be followed by a list of paths of
files, containing gestures definitions

• Program will not execute if any path does not exist, giving
a feedback message

Parent T-07

Table 3.40: User story U-21.

ID U-22
Title Select input folders
Description As a user, I want to select the folders to pre-process, so that I can

experiment with entire datasets
Priority Medium
Acc. criteria

• User has to indicate this type of input with a flag argument

• The flag argument must be followed by a list of paths of
folders, containing files with the gestures definitions inside

• Program will not execute if any path does not exist, giving
a feedback message

Parent T-07

Table 3.41: User story U-22.

ID U-23
Title Select output folder
Description As a user, I want to select the output folder where the results of

the filters are going to be stored, so that I have control of the
pre-processing result

Priority Medium
Acc. criteria

• User has to indicate the output folder with a flag argument

• The flag argument must be followed by the path of the folder

• Program will not execute if the path does not exist, giving
a feedback message

Parent T-08

Table 3.42: User story U-23.

CHAPTER 3. REQUIREMENTS AND USER STORIES 31

ID U-24
Title Results
Description As a user, I want to store the results of the filters in CSV format,

so that I can train a processed dataset
Priority High
Acc. criteria

• The results have a header with information regarding the
arguments of the pre-process execution that have generated
these results

• The results are new files, where each file is the processed
version of the original one that has been introduced in the
program as an input

• The file names are the same that the original ones, but
having a "processed.csv" label at the end

Parent T-08

Table 3.43: User story U-24.

ID U-25
Title Center translation filter
Description As a user, I can translate the positions of each gesture to the center

of the camera, so that the positions of all gestures are comparable
Priority High
Acc. criteria

• Implement normalization filter, being executed in first place

• No arguments

• Follow the formulas defined in Easy gesture recognition for
Kinect paper [8]

Parent T-09

Table 3.44: User story U-25.

ID U-26
Title Normalization filter
Description As a user, I can normalize the positions of each gesture to a

common body size, so that the sizes of all gestures are comparable
Priority High
Acc. criteria

• Implement with Center translation filter, being executed in
second place

• No arguments

• Follow the formulas defined in Easy gesture recognition for
Kinect paper [8]

Parent T-09

Table 3.45: User story U-26.

CHAPTER 3. REQUIREMENTS AND USER STORIES 32

ID U-27
Title Features filter
Description As a user, I can filter any feature for all the gestures, so that

non-relevant features are ignored
Priority High
Acc. criteria

• Arguments: list with the features names

• Show a help text in case of the user introduces a wrong
feature name, indicating all the possible values

Parent T-09

Table 3.46: User story U-27.

ID U-28
Title Lasso filter
Description As a user, I can filter the frames where both hands are performing

lasso gesture at the same time, for all gestures, so that non-
relevant frames are ignored

Priority High
Acc. criteria

• Start removing frames from the beginning of each gesture
and stops checking when the lasso condition does not match.

• No arguments

Parent T-09

Table 3.47: User story U-28.

ID U-29
Title Exclude joint filter
Description As a user, I can select any joint to not be included for all the

gestures, so that non-relevant joints are ignored
Priority High
Acc. criteria

• Arguments: list with the joints names

• Show a help text in case of the user introduces a wrong joint
name, indicating all the possible values

• Maintain the joints that has to be used in Center translation
and Normalization filters, until the end of the execution.

• Program will not execute if both Exclude and Include joint
filters are selected, giving a feedback message

Parent T-09

Table 3.48: User story U-29.

CHAPTER 3. REQUIREMENTS AND USER STORIES 33

ID U-30
Title Include joint filter
Description As a user, I can select any joint to be included for all the gestures,

so that I choose the relevant joints
Priority High
Acc. criteria

• Arguments: list with the joints names

• Show a help text in case of the user introduces a wrong joint
name, indicating all the possible values

• Maintain the joints that has to be used in Center translation
and Normalization filters, until the end of the execution.

• Program will not execute if both Exclude and Include joint
filters are selected, giving a feedback message

Parent T-09

Table 3.49: User story U-30.

ID U-31
Title Same length with original values filter
Description As a user, I can change the length of all the gestures to a common

length, where frames for each gesture are picked through a certain
frequency, so that all gesture have the same length and its original
values

Priority High
Acc. criteria

• Arguments: positive numerical value indicating the target
size

• Program will not execute if both Same length filters are
selected, giving a feedback message

• Show a help text in case of the user introduces a numerical
value, indicating that a positive numerical value has to be
introduced

Parent T-09

Table 3.50: User story U-31.

CHAPTER 3. REQUIREMENTS AND USER STORIES 34

ID U-32
Title Same length with average values filter
Description As a user, I can change the length of all the gestures to a common

length, where frames for each gesture are averaged through a
certain frequency, so that all gesture have the same length and
average values

Priority High
Acc. criteria

• Arguments: positive numerical value indicating the target
size

• Program will not execute if both Same length filters are
selected, giving a feedback message

• Show a help text in case of the user introduces a numerical
value, indicating that a positive numerical value has to be
introduced

Parent T-09

Table 3.51: User story U-32.

ID U-33
Title Train dataset application in Python
Description As a developer, I need to implement a command-line program

in Python, so that users can train a dataset and automate
experimentations

Priority High
Acc. criteria -
Parent T-10

Table 3.52: User story U-33.

ID U-34
Title K Means
Description As a user, I want to use clustering over the dataset using K Means,

so that I can experiment with grouped values
Priority High
Acc. criteria

• K Means has to be applied using Scikit-learn library

• Clustering is applied before training the dataset

• Arguments: positive numerical value indicating the number
of clusters

Parent T-11

Table 3.53: User story U-34.

CHAPTER 3. REQUIREMENTS AND USER STORIES 35

ID U-35
Title Clustering results
Description As a user, I want to store the clustering results, so that I can

analyze the clustering experimentation
Priority Medium
Acc. criteria

• Clustering results to store:

– Clusters centroids

– Distances between gestures and centroids

– Predicted cluster for each gesture

– Score based on distances

– Graphics representing the gestures grouped by clusters,
when gesture data is bi-dimensional

Parent T-11

Table 3.54: User story U-35.

ID U-36
Title SVM
Description As a user, I want to train the dataset using SVM, so that I can

generate a gesture recognizer
Priority High
Acc. criteria

• SVM has to be applied using Scikit-learn library

• Program will not execute if KNN is also selected, giving a
feedback message

• Arguments:

– Type of SVM: c, nu or linear

– Type of Kernel: linear, poly, rbf, sigmoid or pre-
computed

– Training dataset distribution in percentages for the
sub-datasets: traning, test and validation (optional)

• Arguments are not mandatory

Parent T-12

Table 3.55: User story U-36.

CHAPTER 3. REQUIREMENTS AND USER STORIES 36

ID U-37
Title KNN
Description As a user, I want to train the dataset using KNN, so that I can

generate a gesture recognizer
Priority High
Acc. criteria

• KNN has to be applied using Scikit-learn library

• Program will not execute if SVM is also selected, giving a
feedback message

• Arguments:

– Number of neighbors (numerical positive value)

– Training dataset distribution in percentages for the
sub-datasets: traning, test and validation (optional)

• Arguments are not mandatory

Parent T-12

Table 3.56: User story U-37.

ID U-38
Title Select input folder
Description As a user, I want to select the folder of the dataset to be trained,

so that I can experiment with any dataset
Priority Medium
Acc. criteria

• User has to indicate the input folder with a flag argument

• The flag argument must be followed by the paths of the
folder, containing files with the gestures definitions inside

• Program will not execute if the path does not exist, giving
a feedback message

Parent T-13

Table 3.57: User story U-38.

CHAPTER 3. REQUIREMENTS AND USER STORIES 37

ID U-39
Title Select output folder
Description As a user, I want to select the output folder where the results of

the training are going to be stored, so that I have control of the
training experimentation

Priority Medium
Acc. criteria

• User has to indicate the output folder with a flag argument

• The flag argument must be followed by the path of the folder

• Program will not execute if the path does not exist, giving
a feedback message

Parent T-14

Table 3.58: User story U-39.

ID U-40
Title SVM results
Description As a user, I want to store the results of the training using SVM,

so that I complete the experimentation of SVM
Priority High
Acc. criteria

• SVM results to store:

– Classification scores over each of the sub-datasets:
training, test and validation (optional)

– Classification score over the complete dataset

– Confusion matrix over the complete dataset

– Cross-validation score over the complete dataset

– Leave-one-out score over the complete dataset

– SVM parameters used in the execution

Parent T-14

Table 3.59: User story U-40.

CHAPTER 3. REQUIREMENTS AND USER STORIES 38

ID U-41
Title KNN results
Description As a user, I want to store the results of the training using KNN,

so that I complete the experimentation of KNN
Priority High
Acc. criteria

• KNN results to store:

– Classification scores over each of the sub-datasets:
training, test and validation (optional)

– Classification score over the complete dataset

– Confusion matrix over the complete dataset

– Cross-validation score over the complete dataset

– Leave-one-out score over the complete dataset

– KNN parameters used in the execution

Parent T-14

Table 3.60: User story U-41.

ID U-42
Title Select algorithm flag
Description As a user, I want to select an algorithm to apply over the

dataset, using a flag argument, so that I have control of the
experimentation

Priority Medium
Acc. criteria

• Each algorithm is automatically selected when one of its
parameters appears

• The program will not execute if there are parameters of
different algorithms at the same time, giving a feedback
message

Parent T-15

Table 3.61: User story U-42.

CHAPTER 3. REQUIREMENTS AND USER STORIES 39

ID U-43
Title Select parameter algorithm flag
Description As a user, I want to select any parameter of an algorithm, using

a flag argument, so that I can experiment with each algorithm
Priority Medium
Acc. criteria

• A parameter is defined as a short text identifying the
parameter of the algorithm, preceded by a "-" and followed
by a list of the values required for that parameter (if requires
any)

Parent T-15

Table 3.62: User story U-43.

Chapter 4

Development

This section gives an overview of the solutions of the project. It also resumes the development
environment and the interaction between the applications.

In order to afford the task of creating an application to support the creation of gesture recognition
models (also called recognizers), the functionality has been distributed between three applications:

• An application in WPF to record personalized gestures.

• An application in Python to pre-process the recorded data.

• An application in Python to train machine learning algorithms to generate gesture recognition
models using the pre-processed data.

Then one section is dedicated for every application, detailing its design, implementation, and
experimentation.

4.1 Development environment

Hardware requirements The WPF application to record the gestures uses the Kinect v2
sensor and an adapter to communicate with a computer: Kinect Adapter for Windows. Since
the application uses Kinect for Windows SDK 2.0, the computer where this application was
developed follows the Microsoft system requirements recommendations. The conditions fulfilled
by the computer are:

• Windows 8.1 (x64).

• 64 bit (x64) processor.

• 8 GB Memory.

• I7 2.30 GHz, despite I7 3.1 GHz or higher is required.

• Built-in USB 3.0 host controller (Intel chipset).

• DX11 capable graphics adapter: GeForce 820M, despite is not indicated in the recommended
list.

40

CHAPTER 4. DEVELOPMENT 41

Software requirements The following software was installed to develop the WPF application:

• Visual Studio 2015 Community version, despite Microsoft recommends hat Kinect applications
should be developed by Visual Studio 2012 or Visual Studio 2013.

• Microsoft .NET framework 4.6 SDK.

• Kinect for Windows SDK v2.0.

In the case of Python applications, the required software was:

• Python 3.6.3.

• Scikit-learn library: to apply ML algorithms like classification and clustering.

• NumPy library: to create data structures.

4.2 Interaction between applications

Though WPF, pre-process and machine learning applications are isolated, Figure 4.1 shows a
diagram of the inputs and outputs of each of them.

Figure 4.1: Interaction between applications.

To summarize:

• WPF application generates dataset files that are consumed by the pre-process application.
The data is recorded by the Kinect sensor and configured with the parameters introduced by
the user in the WPF interface.

• Data pre-process application process the dataset and generate dataset files that are consumed
by the machine learning application.

• Machine learning application train classification algorithms and generate learning models that
are maintained inside the application.

CHAPTER 4. DEVELOPMENT 42

4.3 Recording application

The first step to generate gesture recognition models is to generate the training dataset. A dataset
is an aggregate of data of the same type, in this case, human gestures. Microsoft Kinect v2 is the
sensor used in this project to generate the dataset, because the sensor is able to track the positions
and orientations of body joints in real-time, among other body features.

I have developed a WPF application based on a UI that allows users to record any type of
gesture. The application was named Kinect Gesture Reader.

4.3.1 Functionality and guide of use

The main functionality of Kinect Gesture Reader is to record personalized gestures defined by the
users. This is possible because the Kinect tracks joints of the full body and users only have to
perform the gestures by themselves in front of the camera.

In addition to this, users can manage some features of the gestures before the recording process
starts:

• Name of the gesture.

• Class of the gesture. There are two possible classes, a positive class, representing a good
example of the gesture, and a negative class, representing an example of a different gesture
which is a bad example of the gesture to recognize.

• The path where the recorded gesture is stored.

• Gesture list, where users can add gestures names so they can be used in the future.

• The format of the stored dataset (see subsection 4.3.3).

The Figure 4.2 shows the UI application with numbers indicating its components.

CHAPTER 4. DEVELOPMENT 43

Figure 4.2: WPF application with information points.

Here there is the explanation that match with the number points of Figure 4.2:

• 1: Informative text about the state of the system: gives feedback of the Kinect availability
and the recording process.

• 2: Screen with a real-time model of the tracked body.

• 3: Informative text about the number of seconds that the gesture recording is lasting.

• 4: Informative text about the number of frames that the gesture recording is lasting.

• 5: Text box to write the name of the gesture.

• 6: Button to change the gesture that can be recorded with the typed name in the Text box.

• 7: Button to add the gesture name to the list of gestures.

• 8: Combo box with the list of stored gestures.

• 9: Button to change the gesture that can be recorded with the selected in the Combo box.

CHAPTER 4. DEVELOPMENT 44

• 10: Path where the gesture can be stored.

• 11: Button to change the path where the gesture can be stored.

• 12: Name of the gesture that can be recorded.

• 13: Radio buttons to select the class of the gesture that can be recorded.

• 14: Checkbox to indicate in which format the gesture can be recorded.

• 15: Play/Stop button to start and end the gesture recording.

At the beginning of the application execution, there is no gesture selected to be recorded, and
the Play/Stop button has the aspect shown in Figure 4.3. This figure also shows the scenario where
Kinect sensor is not connected. The gesture recording cannot start if no gesture is selected, so the
user has to select it by typing it or selecting it from the gesture list. Figure 4.2 shows the application
when one gesture has been selected and the Play button has been pressed, so the recording can
start.

Figure 4.3: WPF application at the beginning of the execution.

CHAPTER 4. DEVELOPMENT 45

The application differentiates between four states of the Kinect sensor:

• Non-available: it may be not connected or not available because of other reason.

• Is aware: the Kinect sensor is able to start recording a gesture. The sensor can react only to
the "Start control gesture", a gesture to indicate that the recording must start.

• Is unaware: the Kinect sensor is not able to record. The sensor receives information but is
discarded.

• Is recording: the Kinect sensor is recording a gesture. The sensor receives information and
stores it.

The main reason for using this classification is because the application is designed to be used
by a single person. A way of achieving this functionality is by the use of control gestures. Control
gestures allow the control of the recording process without having to click the buttons of the UI,
so the user that performs the gesture is placed in the right position since the first moment. When
a user selects a gesture, he/she can press the Play button and place in front of the camera and
perform the ’Start control gesture’: a lasso gesture with both hands at the same time (Figure 4.4).

Figure 4.4: Lasso gesture[61].

When this event occurs the Kinect starts recording the actions performed by the user, that can
finalize when the user performs the ’Stop control gesture’: both hands closed at the same time.
Then the recorded gesture is stored in the saving path defined previously (Windows system Desktop
by default).

Noise data However, there is a drawback with this control system. The first moments of the
gesture have both hands in lasso position, adding noise to the data. This issue has been considered
and a transformation algorithm for reducing that noise is implemented in the pre-process application
(see section 4.4).

CHAPTER 4. DEVELOPMENT 46

Unexpected behaviors There are some scenarios that can affect the normal behavior of the
system. They are described in the following points with the appropriate action applied.

• In order to prevent the application taking much memory from the computer, a limit of 30
seconds, has been designated as the maximum time that any gesture recording can last. This
is considered as an ample time to perform even long gestures. If this maximum time is reached,
the recording process is interrupted by a ’Time deadline event’.

• Another scenario that was taken into account was a user trying to change the gesture data
(name, class, saving path, format) when the Kinect sensor is aware or recording. This
action has been restricted so data corruption or undesirable behavior is avoided, though
this application is designed for one user, there is the possibility that a second person could
modify the data while the first one is in front of the camera.

• When the user disappears while the recording process has not finished (neither ’Stop control
gesture’ nor ’Time deadline event’), the recording process is interrupted, the gesture data is
removed and Kinect pass to the unaware state.

Consecutive recordings In order that the gesture recording becomes a fast process, the
application allows to start recording a new gesture just after the finalization of the previous one,
i.e. the user performs the ’Stop control gesture’ to record the gesture so it is stored in a CSV file,
and then performs the ’Star control gesture’ to initiate a new gesture.

Flow diagram Figures 4.5 helps to visualize all the possible scenarios and the execution flow
of the system. Circles represent states of the systems, being the red circle the initial point when
the system starts, and the green circle the state when a gesture has been stored in the predefined
path. The texts next to each arrow indicate the actions that trigger the transition between states.
The green arrow indicates the transition from a gesture being saved and the state where Kinect
is aware and the user start recording again. The red arrow indicates the transition from a state
where Kinect is recording and the user disappears from the Kinect view, so the recording process
is aborted and Kinect is unaware.

CHAPTER 4. DEVELOPMENT 47

Figure 4.5: WPF application execution flow.

CHAPTER 4. DEVELOPMENT 48

The transition between states is always accompanied with a feedback message update. Tables
4.1 to 4.20 include a list of all the feedback messages used by the application (note that some of this
feedback messages are not shown in the recording flow because they give feedback of the gesture
management or other issues that the system must afford):

ID Feed-01
Message Kinect lost the body tracking, press Play button to start

the gesture again
Scenario User disappeared so Play button must be pressed again to start

recording a gesture

Table 4.1: Feedback message Feed-01.

ID Feed-02
Message Failed to save gesture to <save location>. There was no

tracked content
Scenario By some reason, tracking buffer had not any value. The tracking

buffer is used internally to add the frames while Kinect is recording

Table 4.2: Feedback message Feed-02.

ID Feed-03
Message Failed to save gesture to <save location>, error occurred

while writing
Scenario Gesture is not stored because an error occurred while writing

Table 4.3: Feedback message Feed-03.

ID Feed-04
Message You can’t manage the gesture configuration while Kinect

is aware
Scenario Kinect sensor is aware so the user cannot change any data until

it is unaware again

Table 4.4: Feedback message Feed-04.

ID Feed-05
Message Gesture changed with success
Scenario Gesture changed from the list of gestures

Table 4.5: Feedback message Feed-05.

ID Feed-06
Message Gesture added to collection with success
Scenario Gesture added to the list of gestures

Table 4.6: Feedback message Feed-06.

CHAPTER 4. DEVELOPMENT 49

ID Feed-07
Message Gesture changed with success
Scenario Gesture changed from the text box

Table 4.7: Feedback message Feed-07.

ID Feed-08
Message You must select a gesture first
Scenario User tries to change the gesture from the list of gestures but any

gesture from that list was selected

Table 4.8: Feedback message Feed-08.

ID Feed-09
Message You must write the gesture first
Scenario User tries to change the gesture from the text box but any gesture

was written

Table 4.9: Feedback message Feed-09.

ID Feed-10
Message Path edited with success
Scenario Saving path was changed with success

Table 4.10: Feedback message Feed-10.

ID Feed-11
Message Repeated gesture in the collection, please add a different

one
Scenario User tries to add an existing gesture to the gesture list but it is

not allowed

Table 4.11: Feedback message Feed-11.

ID Feed-12
Message Kinect is running
Scenario Kinect sensor is running and unaware

Table 4.12: Feedback message Feed-12.

ID Feed-13
Message Saved gesture to <save location> because of the time

deadline. Make a lasso gesture with both hands to start
a new gesture. Press Stop button to stop recording

Scenario Time to record expired so the gesture is saved automatically

Table 4.13: Feedback message Feed-13.

CHAPTER 4. DEVELOPMENT 50

ID Feed-14
Message Saved gesture to <save location>. Make a lasso gesture

with both hands to start a new gesture. Press Stop
button to stop recording

Scenario Gesture recorded with success. User made both hands closed
gesture to stop recording and save the gesture. The user can
start a new gesture or change Kinect to unaware by pressing the
Stop button

Table 4.14: Feedback message Feed-14.

ID Feed-15
Message Kinect is not available!
Scenario Kinect sensor is not available

Table 4.15: Feedback message Feed-15.

ID Feed-16
Message Make a lasso gesture with both hands to start the gesture
Scenario Kinect is aware and the user is in front of the Kinect. The user

has to make a lasso gesture with both hands to start recording,
or press Stop button to change Kinect to unaware

Table 4.16: Feedback message Feed-16.

ID Feed-17
Message Put yourself in front of the Kinect and make a lasso

gesture with both hands to start the gesture
Scenario Kinect is aware but user have to be placed in front of the Kinect

Table 4.17: Feedback message Feed-17.

ID Feed-18
Message You interrupted the tracking process manually
Scenario User is recording a gesture but the Stop button is pressed to stop

recording

Table 4.18: Feedback message Feed-18.

ID Feed-19
Message You stopped the Kinect recording. Press Start Recording

to start a new gesture
Scenario User pressed stop button while Kinect is aware. Now the user

has to press the Play button so Kinect is aware and can start
recording. Now the user can manage the gesture properties too

Table 4.19: Feedback message Feed-19.

ID Feed-20
Message Close both hands to finish and save the gesture.Press

Stop to interrupt the recording
Scenario Kinect is recording a gesture so the user can stop recording the

gesture with both hands closed. The gesture would be saved in
the CSV file when this is done

Table 4.20: Feedback message Feed-20.

CHAPTER 4. DEVELOPMENT 51

4.3.2 Implementation details

Prior to the implementation of Kinect Gesture Reader, the Kinect for Windows SDK 2.0 was
analyzed, in order to find reusable projects that could afford the same or similar functionality than
the desired for the application. A set of samples of Kinect applications, called SDK Browser
v2.0 (Kinect for Windows), is installed with the SDK. This set has Kinect samples that use
different frameworks of the Kinect SDK, like DepthFrameReader (access to depth tracked data)
or FaceFrameReader (access to tracked characteristics of the face). There was found that the
BodyBasics-WPF sample uses the BodyFrameReader to obtain and visualize the body frames
captures by the Kinect sensor. In another hand, ColorBasics-WPF sample has a Screenshot button
to store images, so it was useful to understand how to store data with WPF. The entire tracking part
of the BodyBasics-WPF functionality is reused in Kinect Gesture Reader, leaving more capacity to
focus on the UI changes and the recording logic (BodyBasics-WPF tracks the information but it is
not stored in any buffer).

4.3.3 Gesture data

As mentioned before, Kinect Gesture Reader communicates with Kinect sensor to store the
information that Kinect tracks while the user is performing a gesture. The data tracked in this
process is composed by a sequence of frames with information of the human body and general
information of the tracked body itself. Each frame contains specific information of the body in that
frame, including data from the 25 joints of the human body that Kinect is able to track.

All this information is stored in CSV files, with the following problematic: all the information
regarding frames is a sequence of frames with the same information, but the general gesture
information only appears at the beginning of the CSV file. So it is not possible to follow a proper
definition of a CSV file.

In order to facilitate the processing of this files by the pre-process application (see section 4.4),
some control characters (: % $ #) have been placed between the general gesture information and
frames information, and even between frames information.

Figure 4.6 shows an overview of the positions of the 25 joints tracked by the Kinect v2.

CHAPTER 4. DEVELOPMENT 52

Figure 4.6: Skeleton positions relative to the human body [62].

The list of all the features that are recorded for every gesture is the following [63]:

General gesture data

• Name of the gesture.

• Class of the gesture.

• Number of frames of the gesture.

• Number of seconds that the gesture recording lasted.

• Maximum duration (in seconds) allowed for the recording.

CHAPTER 4. DEVELOPMENT 53

• Control value to check if the recording process finished because of the ’Stop control gesture’
or the ’Time deadline event’.

Frame data for every recorded frame of the gesture

• Identifier of the frame in the sequence of frames that conform the gesture.

• Time (in seconds) when the frame was recorded.

• Left-hand confidence. Possible values: High (hand is tracked), Low (hand is not tracked).
When Kinect states that some joint is not tracked it means that it is not visible for the
sensor.

• Left-hand state. Possible values: Closed, Lasso, NotTracked, Open and Unknown (used when
the hand is not making any gesture but is tracked).

• Right-hand confidence. Same values as the left-hand confidence.

• Right-hand state. Same values as the left-hand state.

• Is Restricted: indicates if the tracked information is complete or partially tracked because of
the application that tracks this information.

• Number of joints of the tracked body. In this case, Kinect sensor counts joints even if they are
inferred and not tracked. Inferred is a tracking state of the joints when they are not visible
but its information can be inferred by the data of the visible joints.

• Lean vector of the body, having coordinates X and Y. It indicates in which grade the body is
leaning right, left, back or front.

• Tracking state of the body. Possible values: Inferred, NotTracked, Tracked.

• Identifier of the tracked body randomly generated when the body appears in front of the
Kinect.

• Location of the window edge that is clipped. This is the edge where the body is interrupted
and do not filled in the window space. Possible values: None (any edge is clipped), Right,
Left, Top, Bottom.

Joint data

• Type of joint. Possible values: AnkleLeft, AnkleRight, ElbowLeft, ElbowRight, FootLeft,
FootRight, HandLeft, HandRight, HandTipLeft, HandTipRight, Head, HipLeft, HipRight,
KneeLeft, KneeRight, Neck, ShoulderLeft, ShoulderRight, SpineBase, SpineMid, SpineShoul-
der, ThumbLeft, ThumbRight, WristLeft, WristRight.

• Tracking state of the current joint. Same possible values of Tracking state of the Lean body
model.

CHAPTER 4. DEVELOPMENT 54

• Depth space position vector, having coordinates X and Y. Named 2D space vector in Data
Pre-Process and Machine Learning applications. It unit measure are the pixels (see subsection
4.4.6).

• Camera space position vector, having coordinates X, Y, and Z. Named 3D space vector in
Data Pre-Process and Machine Learning applications. It unit measure are the meters (see
subsection 4.4.6).

• Orientation vector, having coordinates W, X, Y, and Z. This vector is known as the quaternion
representation of the joint orientation (named Vector4 in the Kinect documentation).

Data format As mentioned before, there is the possibility of storing the gesture data in different
formats: ’Raw data’ and ’Non-raw data’. ’Raw data’ is just the data tracked by the Kinect, stored
in the CSV files. ’Non-raw data’ is the data tracked by the Kinect plus a header on the top of the
CSV file with the names of the characteristics stored in the file. These names appear in the same
order that the data tracked have so they help to have an overview of the gesture.

4.3.4 Generation of training data for evaluation

In order to test and analyze every phase of the gesture recognition, an easy gesture has been used
to generate the dataset for the experimental part of the project (see section 4.6). The gesture is a
clockwise circle performed by the right hand. The advantage of using that gesture is that it only
involves one joint, in this case, the right wrist, is that it allows focussing more on the analysis of
the data in every step of the learning path.

The training dataset is composed of 100 instances of the gesture that were performed by the
author of the memory. 50 instances are ’Good’ examples of the gesture, while the other 50 are bad
examples. The bad examples consist of random movements with the right hand, so they have very
different values than the 50 good instances.

In order to have more diversity between good instances of the gesture, it has been performed
in different positions in front of the camera, with different amplitudes and durations. As far as
the Kinect sensor captures data at the speed of 30 frames per second, gestures that last the same
amount of seconds probably have different numbers of frames. This is the case of the dataset, where
every gesture is different in terms of frames longitude.

4.4 Data pre-process application

Once the dataset is generated it is needed to apply the appropriate transformations so data can
be used to train machine learning algorithms. This set of transformations is also called "pre-
process" or "data pre-process" because they are transformations that process the data before the
training phase. The main objective of the pre-processing is to apply the transformations proposed
in Easy gesture recognition for Kinect paper [8], and analyze its results. However, assuming that
classification algorithms only accept inputs of the same length, additional transformations must be
added to achieve a dataset with gestures of the same length.

CHAPTER 4. DEVELOPMENT 55

The pre-process functionality has been implemented using a Python application, which is
explained in the following subsections, as well as the input, the output data, and the analysis
of the transformations over the dataset.

4.4.1 Normalization and center translation

Considering that users can record the same gesture in different positions in front of the Kinect
sensor, and these users may have different heights, it is needed to apply some transformation to
normalize the data that is tracked. The paper Easy gesture recognition for Kinect paper [8] deals
with this problem using two transformations:

• Moving the positions of the tracked bodies to the center of the Kinect sensor. In this project,
this transformation is called ’Center translation’.

• Normalizing the heights of the tracked bodies. In this project, this transformation is called
just ’Normalization’.

Obviously, both transformations only apply for joint position data, ignoring joints rotation and
other features available from Kinect.

The center translation consists of the reduction of the positions of every joint using the centroid
of the trajectory of the corresponding joint (see equation 4.1).

(xi, yi, zi) = (xi − x̄, yi − ȳ, zi − z̄) (4.1)

Equation 4.1 components:

• i: frame identifier.

• (xi, yi, zi): position vector of a joint in a concrete frame.

• (x̄, ȳ, z̄): centroid vector of a joint.

This centroid is calculated with the average of the positions of the joint over the trajectory (see
equation 4.2).

(x̄, ȳ, z̄) =

n∑
i=1

(xi, yi, zi)

n
(4.2)

Equation 4.2 components:

• n: number of frames.

• i: frame identifier.

• (x̄, ȳ, z̄): centroid vector of a joint.

• (xi, yi, zi): position vector of a joint in a concrete frame.

CHAPTER 4. DEVELOPMENT 56

The normalization transformation divides every position between the difference between neck
and the spine base joints.

(xi, yi, zi) = (
xi

(xi,spine − xi,neck)
,

yi
(yi,spine − yi,neck)

,
zi

(zi,spine − zi,neck)
) (4.3)

Equation 4.3 components:

• i: frame identifier.

• (xi, yi, zi): position vector of a joint in a concrete frame.

• (xi,s, yi,s, zi,s): position vector of the spine base joint in a concrete frame.

• (xi,n, yi,n, zi,n): position vector of the neck joint in a concrete frame.

These transformations can be applied in any order, but in this project they are both applied as
a complete normalization transformation, being center translation executed firstly.

Equations 4.1 and 4.2 are the same that appear on Easy gesture recognition for Kinect paper
[8]. Equation 4.3 is proposed in the paper but not detailed.

4.4.2 Segmentation

In order to have a training dataset with the same length for every gesture, it is needed to transform
each gesture to a common length. The approach that has been followed is to segment each gesture
in the same number of parts, where each part has the same amount of frames (it can vary in one
frame depending on the length parity). These parts have been processed using two alternatives:

• Frame values being contained in the concrete part are averaged so a frame with average values
is generated. The numerical values are averaged but the nominal values (like tracking state,
confidence, etc) are selected using the most common value of the frames of the gesture part.

• The first frame of the part is selected and the rest of that part are discarded. This alternative
conserves the original values of the frame in a sequence where frames close to the selected one
have similar values due to the changes between frames are not so abrupt.

Both alternatives are considered as a good approach to obtain gestures with frames that
summarize the content of the original gestures, therefore both are included in the experimentation
of the project (see section 4.6).

4.4.3 Functionality and guide of use

As it was mentioned before, not only normalization transformations are important to improve the
quality of the dataset, but also other transformations for this concrete problem. Transformations
are also called as ’Filters’.

Here is the complete set of the filters that are available to be used with the application:

CHAPTER 4. DEVELOPMENT 57

• Features filter: remove any gesture feature indicated in the filter arguments. As far as the
gesture is composed in a structural way (general information, frames, and joints), removing a
feature can trigger the deletion of the dependent features. This filter can target any feature
of a gesture (see subsection 4.3.3) except the gesture class, the number of frames of the
gesture because of these values are used in the machine learning application to implement the
functionality (see section 4.5). It is internally called ’Useless filter’ because it is supposed to
be used to remove the gesture features that are considered useless for the training phase.

• Lasso filter: remove frames which have both hands state with the value ’Lasso’. It starts
deleting from the first frame and advances reading the following ones. When the removing
condition does not match again, the filter does not check the remaining frames. E.g. frames
1 to 5 contains both hands in lasso pose, but 6 to 10 (last frame) have one hand or none in
lasso pose, so 1 to 5 frames are removed.

• Normalization filter: apply both center translation and normalization transformation
described above.

• Include joint filter: removes the data of the joints (of every frame, see subsection 4.3.3) that
are not specified in the filter arguments. The joints that are specified are not removed, being
"included" in the gesture while the not specified joints are "excluded" from the gesture. It is
internally called ’Joint type filter’.

• Exclude joint filter: removes the data of the joints (of every frame, see subsection 4.3.3)
that are specified in the filter arguments. The joints that are specified are removed, being
"excluded" from the gesture while the not specified joints are "included" in the gesture. It
is internally called ’Joint type filter reverse’ because is the opposite functionality that the
exclude joint filter.

• Segmentation filter with original values: apply the segmentation transformation described
above where a gesture is composed of frames with values of the original gesture. It is internally
called ’Original segmentation filter’.

• Segmentation filter with average values: apply the segmentation transformation described
above where a gesture is composed of frames with averaged values of the original gesture. It
is internally called ’Average segmentation filter’.

In addition, users can decide the input dataset (indicating the location of files and the location
of folders) and the location where the output dataset is generated after the transformations.

The Python application is designed to be used as a command-line program: executed in a shell
with input arguments to control the execution of the transformations. Users can run this application
with the transformations that they consider as appropriate, but the only specification required is
the location of the input and output datasets.

A complete guide of use of this application is described in Appendix A: Data pre-process
application guide of use (see chapter 9).

CHAPTER 4. DEVELOPMENT 58

4.4.4 Input data

Since this application has to be executed after the Kinect Gesture Reader, the input data of the
data pre-process application is specified in Gesture data (see subsection 4.3.3) and Generation of
training data for evaluation (see subsection 4.3.4).

4.4.5 Output data

The output data of the pre-process of the dataset is just the same dataset but with several data
transformation over it. This dataset is stored in the form of CSV files, each containing the definition
of a gesture.

In order to have an evidence of where the dataset comes from, a little header is introduced in
the top of each file, with the information of the parameters that were used in the pre-processing.
After that information, there is a sequence of labels indicating the name of the features that the
file contains, and also following the same order that the features have along the file.

Here there is the similar problem of using the name ’CSV file’, that is that is not a real CSV
one due to the header before the sequential data.

4.4.6 Analysis of the transformations over the training dataset

The normalization filter has been analyzed in order to know the reliability of these transformations.
To achieve this, two scatter charts have been made using Microsoft Excel 2013, plotting the
components of the depth space vector of the right wrist over 50 instances of the circle gesture
performed by the right hand in clockwise direction. The 50 instances are labeled with the ’Good’
class, being good examples of the performing of the gesture.

The depth space vector is the bi-dimensional representation of the depth image captured by the
Kinect sensor. The image is mapped to a virtual screen so it unit measure are the pixels. The
documentation indicates that the vector (0, 0) represents the top left corner of the screen, but
looking at Figure 4.8 this vectors are located in the bottom left corner. This does not suppose any
problem as far as the circle gesture looks the same upside down [64].

An alternative of analysis for the transformed data would be the camera space vector, that
represents the 3D real positions captured by the Kinect [65].

Figure 4.7 shows the dataset when the normalization filter (center translation and normalization
transformations) are applied.

CHAPTER 4. DEVELOPMENT 59

Figure 4.7: Dataset depth space coordinates with normalization.

CHAPTER 4. DEVELOPMENT 60

Figure 4.8 shows the dataset when the normalization filter is not applied.

Figure 4.8: Dataset depth space coordinates without normalization.

Obviously, both graphs look very different, but the axes values of the normalized dataset increase
abruptly in the case of X component and reach negatives values for the Y component. Though X
component has high values in few cases, that could be considered as noise instances, this turns
common to the Y component, where values are restricted between 0 and -1,5. If some of the
gestures are removed from the dataset (Figure 4.9) the global figure looks more like a circle than
Figure 4.7, but if it is compared with the aspect of Figure 4.8 it can be observed that normalization
impact in a way that the dataset gets dirty.

However, the problem requires a normalization of the dataset so the models are independent of
the heights and positions of the tracked bodies. For this reason, the experimentation contemplates
both approaches, using and not using the normalization filter, to understand if this graphical
representation is a good evidence of a bad normalization technique in this problem (see Section
4.6).

CHAPTER 4. DEVELOPMENT 61

Figure 4.9: Dataset depth space coordinates with normalization but less instances.

CHAPTER 4. DEVELOPMENT 62

4.5 Machine learning application

As the last step of the process, gesture recognition models are generated using machine learning
algorithms. To achieve this step a Python application has been developed to apply all the algorithms
so the experimentation can be done by using the three applications (see section 4.6). To avoid
confusion, in this section the Python application can be also referred as ’the machine learning
application’.

This section also describes the classification and clustering algorithms involved in the training
process.

4.5.1 Classification

The classification is the task that recognition models have to afford in order to discriminate between
Good and Bad examples of the recorded gesture (see subsection 4.3.4).

Scikit-learn library offers a large number of classification algorithms that can be used with few
lines of code. In order to decide which algorithms are good to be applied to this problem, the
algorithm cheat-sheet of Scikit-learn has been reviewed [66]. It recommends to use a Linear SVC if
the dataset has more than 50 samples, the task is to predict a category (class), the instances of the
dataset have a class (supervised learning), and the dataset has less than 100000 samples. If that
classifier does not offer good results, the cheat-sheet recommends to use the K Neighbors classifier
if the dataset does not have text data, or to use Naive Bayes in the case that the dataset has text
data.

Nevertheless, the cheat-sheet has to be considered as a support tool to decide which of the
algorithms is good to apply, so its proposals have to be analyzed previously.

Support Vector Machines Each gesture of the dataset can be represented in a space n

dimensional (Rn) and a SVM classification algorithm can separate the gestures using a hyperplane
n−1 dimensional. The better this hyperplane separates the gestures that are from a different class,
the better a SVM performs the classification task. They usually work well with data with a large
number of parameters, so experimentations with the complete set of features of a gesture could be
afforded without so much cost [67]. However, SVM is only able to deal with numerical data, so
previous data transformations are taken into account (see subsection 4.5.3).

They are considered as a good alternative because they are designed to be used for two class
classifications, and Scikit-learn library offers a huge set of parameters to experiment with this
algorithms. It is also possible to use different types of SVM regarding the kernel function: linear,
polynomial, radial basis and sigmoid. Kernel functions are used to compare the elements of the
dataset and decide the similitude between them.

K Nearest Neighbors KNN classification algorithms are also used to discriminate the class
between instances that can be represented in a space n dimensional (Rn). The main difference
with SMVs is that here the classification is made by checking the most common class between the
k instances closest to the instances that are being classified, using the Euclidean distance to know

CHAPTER 4. DEVELOPMENT 63

which are these closest instances. This algorithm is included in the group of instance-based learning
because of it highly dependent on the dataset instances and does not try to generalize instead of
remembering the instances that were used for training [68].

KNN is considered as a good approach for the problem because the algorithm does not have to
compute a lot considering the small size of the dataset and the number of classes.

Like SVM, a transformation of the non-numerical data is required so distances between points
can be compared (see subsection 4.5.3). Scikit-learn gives a large number of configuration
parameters too.

4.5.2 Clustering

The clustering algorithm groups the dataset instances following some defined criterion like a distance
measure between instances parameters. Each of these groups is called ’cluster’, determined by a
point of specific values in the space n dimensional (Rn). This representative point is called ’centroid’.

The input of the clustering algorithm is the complete set of frames of all gestures, which are
grouped considering the contained characteristics. The grouping results into a set of clusters, defined
by the centroid, representing a group of common values between frames. Then the algorithm assigns
a cluster for each frame based on the distances and similarity between the frame and the centroid
characteristics. Therefore the output is a set of gestures defined by sequences of clusters identifiers
that classifiers can interpret simpler than the long sequences of features of the original gestures.

The algorithm selected to implement a clustering over the dataset is K-Means because it is
one of the most used clustering algorithms across machine learning applications [69]. It is also
recommended for this problem following the Scikit-learn cheat-sheet: the number of classes is
known and the dataset is formed by less than 10000 instances [66].

The K-Means algorithm can be applied over the dataset but is not mandatory, so not using
it is also contemplated in the experimentation (see section 4.6). Though is a ML technique, the
application in this project could be considered as part of the pre-processing since it is applied to
transform the training data before the classification task.

Like SVM and KNN, a transformation of the non-numerical data is required so distances between
points can be compared (see subsection 4.5.3).

4.5.3 Implementation details

Numpy arrays Numpy arrays have been used in the Python application to represent the dataset
structures so it is easier to be used by the classification and clustering algorithms [43].

Non-numerical data Considering that both clustering and classification algorithms need to
handle numerical data, some of the gesture features defined in Gesture data (see subsection 4.3.3)
need to be treated so they can be used in the machine learning application. One of the approaches
that have been implemented is the One Hot Encoder transformation, which converts numerical
integers into a sequence of 0s and 1s representing each value [70].

CHAPTER 4. DEVELOPMENT 64

E.g. Given the following values for a certain feature: 0, 1, 2. Value 0 is replaced by 1, 0, 0, 1 is
replaced by 0, 1, 0 and 2 is replaced by 0, 0, 1.

Nevertheless, that implies that non-numerical data, like the states of a hand (which uses the
values: Closed, Lasso, NotTracked, Open and Unknown) has to be transformed to an integer number
before applying the One Hot Encoder transformation. With the example of the states of the hand,
the output vector of possible values would be 0 for Closed, 1 for Lasso, 2 for NotTracked, 3 for
Open and 4 for Unknown.

The One Hot Encoder transformation is only triggered when the machine learning application
detects that the input dataset has some feature that is non-numerical.

4.5.4 Functionality and guide of use

The Python application allows the configuration of a training planning over the dataset, with a
series of parameters defined as input arguments (see chapter 10). The planning allows the use of
the following algorithms:

• K-Means: apply clustering using K-Mean algorithm mentioned above. It is possible to select
the number of clusters to be used in the algorithm. When K-Means is selected it is applied
at the beginning of the application execution [71].

• SVM: apply classification using SVM algorithm mentioned above. With this algorithm it is
possible to decide which type of SVM to be applied, having the option to use the C-Support
Vector, the Linear Support Vector or the Nu-Support Vector [72] [73] [74]. The difference
between Linear Support Vector with the rest is that the kernel function is linear and is
based on a different SVM library, that supports large datasets. Nu-Support Vector offers
more flexibility using the configuration of the vectors that define the hyperplane. It is also
possible to define which type of kernel function to be used with the SVM, having the following
alternatives: linear, polynomial, Radial Basis Function (RBF), sigmoid and precomputed.

• KNN: apply classification using KNN algorithm mentioned above. Users can define the
number of neighbors of KNN, the k parameter [75].

Despite there is not a study of the consequences and implications of all the parameters of the
algorithms that the machine learning application offers, some of them can be defined and then be
used to study and analyze them deeply.

To extend the experimentation possibilities, users can divide the input dataset into three sub-
datasets, training, test and validation, defining which percentage of the original dataset should each
sub-dataset have. Training is used to train the classification algorithms so the generated models
can be tested over test and validations datasets. Validation can be considered as a second test sub-
dataset, since it is used to check how well the models work at the beginning of an experimentation.
If the user does not assign any percentage, they will be 0% for validation, 80% for training and 20%
for the test.

In addition, users can decide the input dataset (indicating the location of files and the location
of folders) and the location where the results of the training and test process are stored.

CHAPTER 4. DEVELOPMENT 65

The Python application is designed to be used as a command-line program: executed in a shell
with input arguments to schedule the training process. Users can decide which algorithm has to be
applied. It is also possible to apply clustering and not classification if the user wants to investigate
further the clustering results. The only specification required is the location of the input dataset
and the results.

A complete guide of use of this application is described in Appendix B: Machine learning
application guide of use (see chapter 10).

4.5.5 Input data

Since this application has to be executed after the pre-processing application (see section 4.4), the
input data is specified in Gesture data (see subsection 4.3.3) and Output data (see subsection 4.4.5).

4.5.6 Output data

The machine learning application generates different results depending on which algorithm is
executed.

K-Means results When K-Means is executed, the application stores the following data:

• Prediction values for each of the instances, i.e. the sequence of clusters that K-Means generate
assigning each frame to a cluster.

• Values of the centroids of the generated clusters.

• Distance values between each gesture and all the centroids.

Classifiers results In order to compare both classifiers, SVM, and KNN, some prediction score
values are generated and stored. Considering that the dataset defined in Generation of training
data for evaluation (see subsection 4.3.4) has a small size of 100 instances, it may be a wrong
approach to decide which is the best classifier considering the score prediction over a test sub-
dataset. Small changes in the definition of the training and test sub-datasets affect strongly to the
test prediction scores. Using cross-validation and leave-one-out scores are more reliable over small
datasets because they operate with a large number of mutations of the training and test datasets,
and then the average of this score indicates how good the classification operates in general over all
the dataset.

Cross-validation divides the dataset into k groups, and iterate k times (each iteration is usually
called ’fold’) so each iteration trains with the k−1 parts and test over the missing part. Completing
all the iteration generates a vector of scores over testing. Leave-one-out is a specific of cross-
validation where the k has the value of the length of the dataset.

Nevertheless, the machine learning application is designed to be used with datasets of different
sizes, so the score data over test datasets are kept in the results of the classification.

Here is the complete list of the classification results that are generated and stored:

CHAPTER 4. DEVELOPMENT 66

• Cross validation values: cross-validation is executed with 10 folds, so the application stores
the vector with the 10 predictions values, the mean between those prediction values, and its
standard deviation.

• Leave-one-out values: leave-one-out is executed and the application stores the vector with
all the prediction values (depending on the size of the dataset), the mean between those
prediction values, and its standard deviation.

• Prediction score over the test sub-dataset: the algorithm train with the training sub-dataset
and then is tested against the test dataset. The scores of this testing are stored.

• Confusion matrix over the complete dataset: the algorithm train with the training sub-dataset
and then is tested against the complete dataset. The matrix confusion of this testing is stored.

4.6 Experimentation

Once the three applications are developed, it is possible to make an experimentation planning to
select which configuration of parameters fits better to create a recognizer for the clockwise circle
gesture performed by the right hand.

As Generation of training data for evaluation defines (see subsection 4.3.4), the dataset is formed
by 100 instances of the gesture, being 50 ’Good’ instances and 50 ’Bad’ instances. Considering that
the gesture implies mainly the right hand, the dataset is pre-processed by removing all its joints
except the Right Wrist (Right-Hand joint could have been selected too). In this case, the rotation
does not seem to be an important feature because the gesture does not require to turn the hand
in any direction. For this reason, pre-process application removes all the data except the position
information, i.e. Depth space vector and Camera space vector (see subsection 4.4.6).

Regarding that it is also possible two use two types of segmentation so classification can be
applied (see subsection 4.4.2), normalization must be tested (see subsection 4.4.5), there are two
different positions vector and there are two classification algorithms (SVM and KNN) to be tested,
the experimentation consists of the combinations of the following alternatives:

• Classification algorithm: SVM or KNN (2 values).

• K-Means execution with 8 clusters: used or not (2 values).

• Gestures attributes schemes: Depth space vector (2D), Camera space vector (3D), or its
combination (3 values).

• Normalization filter: used or not (2 values).

• Segmentation type with length 8: chosen or average (2 values).

These combinations trigger the following number of configurations:

2 ⋆ 2 ⋆ 3 ⋆ 2 ⋆ 2 = 48

CHAPTER 4. DEVELOPMENT 67

Both the number of clusters and the length of the segmentation have been assigned with an
8 because seems to be a reasonable segmentation of a circle gesture. This parameters can be
investigated further in the case that experimentation shows bad results for all the configurations.

Figure 4.21 shows the experimentation for the SVM algorithm:

Cross validation Leave one out
K-Means Attributes Normalization Segmentation Test Mean Std. dev. Mean Std. dev.
Yes 2D Yes Chosen 0,55 0,68 0,09797959 0,65 0,4769696
Yes 2D Yes Average 0,65 0,64 0,18 0,64 0,48
Yes 2D No Chosen 0,85 0,9 0,04472136 0,9 0,3
Yes 2D No Average 0,95 0,95 0,05 0,94 0,23748684
Yes 3D Yes Chosen 0,6 0,72 0,11661904 0,71 0,45376205
Yes 3D Yes Average 0,6 0,65 0,10246951 0,65 0,4769696
Yes 3D No Chosen 0,95 0,92 0,06 0,92 0,2712932
Yes 3D No Average 1 0,94 0,08 0,94 0,23748684
Yes Both Yes Chosen 0,45 0,66 0,12 0,64 0,48
Yes Both Yes Average 0,45 0,68 0,16 0,67 0,47
Yes Both No Chosen 0,9 0,93 0,0781025 0,94 0,23748684
Yes Both No Average 0,95 0,92 0,06 0,92 0,2712932
No 2D Yes Chosen 0,35 0,6 0,04472136 0,04 0,19595918
No 2D Yes Average 0,45 0,59 0,08306624 0,57 0,49507575
No 2D No Chosen 0,35 0,5 0 0 0
No 2D No Average 0,5 0,51 0,03 0 0
No 3D Yes Chosen 0,45 0,5 0 0,02 0,14
No 3D Yes Average 0,45 0,52 0,04 0,02 0,14
No 3D No Chosen 1 0,99 0,03 0,99 0,09949874
No 3D No Average 1 0,97 0,06403124 0,97 0,17058722
No Both Yes Chosen 0,35 0,51 0,03 0 0
No Both Yes Average 0,5 0,5 0 0 0
No Both No Chosen 0,4 0,5 0 0 0
No Both No Average 0,5 0,51 0,03 0 0

Table 4.21: SVM experimentation results.

CHAPTER 4. DEVELOPMENT 68

Figure 4.22 shows the experimentation for the KNN algorithm:

Cross validation Leave one out
K-Means Attributes Normalization Segmentation Test Mean Std. dev. Mean Std. dev.
Yes 2D Yes Chosen 0,75 0,66 0,14282857 0,68 0,46647615
Yes 2D Yes Average 0,7 0,58 0,14 0,55 0,49749372
Yes 2D No Chosen 0,85 0,92 0,09797959 0,95 0,21794495
Yes 2D No Average 0,9 0,82 0,1077033 0,84 0,36660606
Yes 3D Yes Chosen 0,8 0,69 0,05385165 0,72 0,44899889
Yes 3D Yes Average 0,65 0,66 0,10198039 0,66 0,47370877
Yes 3D No Chosen 0,75 0,95 0,09219544 0,95 0,21794495
Yes 3D No Average 0,75 0,86 0,14282857 0,85 0,35707142
Yes Both Yes Chosen 0,5 0,64 0,12806248 0,61 0,48774994
Yes Both Yes Average 0,45 0,68 0,13266499 0,66 0,47370877
Yes Both No Chosen 0,9 0,86 0,0663325 0,85 0,35707142
Yes Both No Average 0,9 0,88 0,06 0,88 0,32496154
No 2D Yes Chosen 0,8 0,78 0,1077033 0,77 0,42083251
No 2D Yes Average 0,8 0,75 0,08062258 0,74 0,43863424
No 2D No Chosen 0,95 0,96 0,04898979 0,96 0,19595918
No 2D No Average 0,85 0,96 0,0663325 0,97 0,17058722
No 3D Yes Chosen 0,8 0,71 0,12206556 0,73 0,44395946
No 3D Yes Average 0,65 0,75 0,10246951 0,76 0,42708313
No 3D No Chosen 1 0,98 0,04 0,99 0,09949874
No 3D No Average 1 0,99 0,03 0,99 0,09949874
No Both Yes Chosen 0,9 0,74 0,12 0,73 0,44395946
No Both Yes Average 0,9 0,76 0,11135529 0,71 0,45376205
No Both No Chosen 1 0,97 0,04582576 0,96 0,19595918
No Both No Average 0,9 0,97 0,04582576 0,97 0,17058722

Table 4.22: KNN experimentation results.

The test score is obtained after training the classification algorithm over the 80% of the dataset
and testing the model over the other 20%. All the scores having more than 90% has been colored
so they are easier to be found.

Considering the results of both experimentations, we can conclude that there a lot of
configurations with great accuracy and low values of standard deviation, indicating that good
results are not just a coincidence. As it was mentioned before (see subsection 4.5.6), having a small
dataset to train the models can highly bias the classification results, so separating between the
training and test datasets is not the better approach. This fact is illustrated by observing that the
accuracy results over the test dataset are more irregular.

Cross-validation, applied with 10 folds, and leave-one-out experimentations offers more
confidence in the classification results, being leave-one-out the most reliable.

The experimentation illustrates the following facts about the configuration:

• Not using K-Means shows a huge negative impact in the accuracy of SVM, while KNN has
its better results with that configuration.

• The scheme of data and the segmentation choice does not seem to affect since the results
between different values of that configurations are quite similar.

CHAPTER 4. DEVELOPMENT 69

• The best leave-one-out results never apply the normalization transformation, so it can be
considered as a bad transformation for this problem.

The best experiment of SVM shows a 99% mean accuracy of leave-one-out for the configuration:

• Do not use K-Means.

• 3D for data scheme.

• Do not use normalization

• Use the chosen segmentation

KNN shows two experiments with a 99% mean accuracy of leave-one-out, being one of them
the same configuration of the best result for SVM. The other configuration only varies in the
segmentation type choice.

Despite there are good results for several configurations, this configuration seems to fits better
for this problem and this algorithm. Both algorithms can be considered as good alternatives to
generate the recognition model but SVM seems to suffer more the impact of not using the clustering
with K-Means.

Chapter 5

Conclusions and future lines

Considering the work that has been done, the three developed applications comply with the proposed
functionality that is needed to generate models for gesture recognition.

The WPF application, Kinect Gesture Reader can be used through a UI to record customized
gestures. It has been used to generate the dataset of the experimentation.

Secondly, the pre-processing application is able to apply transformation over the dataset so it can
be used in the classification algorithms. The normalization and center translation transformations
proposed in Easy gesture recognition for Kinect paper [8] are also available and has been analyzed
with the generated dataset. However an overview analysis of the data (see subsection 4.4.6) and the
experimentation results (see section 4.6) evidence that there is a problem with the transformation
that needs additional investigation, otherwise there is only possible to make conjectures of its reason.

The machine learning application allows the generation of learning models through the
classification algorithms like SVM and KNN. Also, K-Means is available to generate datasets
of grouped data. The experimentation shows that using this clustering algorithm improves the
accuracy in general and specially for the SVM results.

To sum up, the completion of the experimentation and the positive results obtained aims to
use the complete set of developed applications to build gesture recognition models. Even so the
normalization and translation formulas does not seem to fit too well in this problem, the data
pre-process application is useful to apply other transformations that are essential for the training
process.

5.1 Future lines

This project can be understood as a proof of concept of a future application that offers the same
functionality as a whole system. For this reason, the short term future lines will be:

• Add a module for HHM in the ML tool, considering libraries like Seqlearn and Pystruct [34]
[35]. This will skip the requirement of applying the segmentation filter over the dataset, as
HMM is able to handle gestures with different lengths.

• Add more ML modules of classification and clustering algorithms.

70

CHAPTER 5. CONCLUSIONS AND FUTURE LINES 71

• Add more parameters for every algorithm so they can be investigated further.

• Experiment with gestures that involves a higher number of joints.

• Improve the User Experience (UX) and the User Interface (UI) of the WPF application.

• Export the learning models so they can be used in any application.

• Unify the Python applications with the WPF application, so they are used as a GUI. One
possible implementation would be the use of tabs to differentiate between functionalities.

• Use databases to store the datasets and their transformations over the pre-processing process.

• Investigate the normalization results of the experimentation (see section 4.6 and subsection
4.4.6) since the current experimental results are not conclusive.

All the same, in October of 2017, Microsoft announced the end of the Kinect sensor
manufacturing, maintaining the support on the Xbox console and the SDK. Though Kinect
technology has been applied and evolved in other Microsoft devices like Hololens or Cortana voice
assistant, and Microsoft recommends the Intel’s RealSense depth cameras as an alternative of
Kinect device, the production discontinuation affects highly to any developer of Kinect application
[54] [76]. Despite this project may not be so interesting for commercial purposes, it may support
investigations over algorithms for gesture recognition.

Chapter 6

Project organization and

management

This chapter describes the organization and management policies that has been followed throughout
the development of the project.

6.1 Methodology

The project has been organized in three phases, regarding the three main objectives of project
(see section 1.2). I have considered that avoiding a waterfall development can suppose a benefit to
prevent a big effort on redefining and re-scheduling in the middle of the development process. The
followed methodology that has been used is a combination of Incremental and Iterative Development
[77]. To understand this methodology is important to know the meaning of each of the development
approaches implied:

• Incremental: consists of developing different parts of a system in different states and assembly
all of them when they are finished.

• Iterative: consists on reviewing the current work in order to improve it.

This development approach can be applied in different manners, being possible to dedicate more
effort to incremental, to iterative, or both in a balanced way.

In this project I have defined three main cycles of development:

• Data capture application cycle.

• Data pre-process application cycle.

• Machine learning application cycle.

Each application is developed when the previous is finished, and the complete process can be
tested when the last application is finished (Incremental development). Depending on the number
of requirements, each application has different incremental cycles where each requirement can be

72

CHAPTER 6. PROJECT ORGANIZATION AND MANAGEMENT 73

tested after being added (Incremental development), and then the complete application can be
reviewed and improved (Iterative development).

Each single application cycle has been developed following the Personal Kanban framework, a
derivative of Kanban agile framework, but focused on little teams or one single person teams [78]. It
also brings more sense to this project because being one single person always generate bottlenecks
between development, testing or any other phase. Personal Kanban consists of a simple board with
three columns: To do, Doing, Done. To do column is also known as "Backlog", a common term in
Agile frameworks referring to a stack of pending tasks. The resolution of each task increments the
value of the product.

The way to fill this backlog is also important. Considering that each application was developed
in order, the backlog has been filled with the tasks needed to complete the requirements (user
stories) of the application that was in progress at that moment. When the backlog is empty the
current application may iterate again, adding tasks to improve the application, or it may be finished
so the next application can add items to the backlog.

User stories verification The tasks that are used to complete the user stories are generated
with the specifications defined in the acceptance criteria of the user stories. When one of these tasks
is finished it means that it has been developed and tested. Completing all the tasks of the user
story state that user story as done because all its acceptance criteria has been accomplished. This
logic also applies for themes and epics, e.g. if the user stories of a theme has been completed, the
theme can be considered as done, because all its acceptance criteria has been completed. This has
been considered the alternative of the classic testing plan after the development, complementing
the methodology described here.

6.1.1 Trello

Trello has been used as the tool to follow Personal Kanban, due to its facility and natural
presentation of a Kanban board [79]. It also offers a feature of adding a color label to each item,
so is easier to specify categories between requirements.

6.1.2 Version control system

Github has been used as the version control system, but only for backup purposes, since there has
been just one development pipeline [80].

6.2 Planning

Figures (6.1) represent the Gantt chart of the project, including the time distribution of every phase
of the project. The high level design consists of the definition of the epics and themes (3.2, 3.1).
It is important to indicate that Experimentation phase involves the three applications and not just
the Machine Learning application.

CHAPTER 6. PROJECT ORGANIZATION AND MANAGEMENT 74

Despite the time gap between the first month of work and the last one is a complete year, the
project was developed in 210 days of part time, 4 hours per day, resulting in a total of 840 hours
worked in this project. The budget of the project (see section 8.2) contemplates the real working
months resulted by these number: 210days

30dayspermonth = 7months.

2017 2018

06 07 08 09 10 11 12 01 02 03 04 05 06

Bibliography search

Analysis: Kinect SDK

Analysis: ML library

Analysis: Kinect for Windows SDK

High level design

Gesture recording app

Gesture recording app doc

Data Pre-Process app

Data Pre-Process app doc

Machine Learning app

Machine Learning app doc

Experimentation

Final documentation

Figure 6.1: Gantt chart

Chapter 7

Regulation frame

This chapter describes the different regulations that have been contemplated and applied in the
development of the project.

7.1 Legislation analysis

Privacy Since the release of Kinect sensor on Xbox 360 and then the upgraded version in Xbox
One, the lack of vulnerability of user privacy has been a concern that Microsoft had to clarify.
Nowadays, the Kinect and Xbox One privacy are well defined in Microsoft website. [81] [82] Users
can configure which level of privacy and security they want for the Kinect experience in Xbox,
being also possible to turn off the Kinect into a state which the sensor only waits for the command
voice "Hey Cortana, Xbox on" to start working. Photo and video recording is available but only
with the consent of the user, being also configurable which application can store data. There is
another scenario where Kinect can keep user information: session data. This data is used to control
applications and games, and even to improve the gaming experience. But this data, consisting of
numerical values and not image or video, is stored only in the console and is removed when the
gaming session finished. Kinect can also identify a user by the face points distances to sign-in into
the Xbox Live system, but it is stored in the console too. Regardless, this face data cannot be used
to generate a real image of the face of the user.

Though these privacy statements clarify that user privacy is not violated, they only apply when
the Kinect sensor is being used with the Xbox and are not applicable using Kinect for Windows. It
is necessary to check the License Terms for Microsoft Kinect for Windows v2 Software Development
Kit (SDK), accepted when SDK (available in [54]) is downloaded. The document of the license
terms is downloaded together with the SDK itself, having the file name ’SDKEula.rf’ [83]. The
only privacy agreement stated in the license terms is the collection of Telemetry Data of the device
using the application, but as far as the software is acquired outside the United States, Spanish law
applies in the use of SDK and the developed application.

Spanish laws LEY ORGÁNICA 15/1999, DE PROTECCIÓN DE DATOS DE CARÁCTER
PERSONAL (LOPD) and Real Decreto 1720/2007, that contemplates the European Regulation

75

CHAPTER 7. REGULATION FRAME 76

General Data Protection Regulation (GDPR), has been reviewed in order to protect user personal
information.

Complaining with LOPD, any user of this application must know that:

• The software stores the joint positions and angle rotation of the tracked body.

• The information is stored for the purpose of being analyzed, transformed and used to generate
learning models of gesture recognition.

• The information does not contain any personal data, not even image, audio or video of the
gesture performance.

• The information can be consulted, rectified and removed by the user request.

Ethical responsibilities Concerning ethical uses of the application distribution, License Terms
indicates "that developers include Distributable Code in malicious, obscene, deceptive or unlawful
programs;". So the same use applies to the use and distribution of the current project. The License
Terms for the SDK also indicates that a Kinect application is not licensed to be used as a High-Risk
Use application, due sensor and software is not designed to assure that any failure cannot happen.
The project is proposed as a support tool to generate recognizers, so in case of use or distribution,
this tool must not be a warranty of High-Risk Use application.

Risk of use Because of the WPF tool induces physical movements from the user, the
responsible of the application using this tool must give instructions and recommendations of gesture
performances, due being possible to suffer problems like overexertion or have an accident if space is
not appropriate. This information is accessible in Kinect for Windows v2 Support site [84] , accessing
Product warranty and safety information section and downloading the document KINECT FOR
WINDOWS V2 PRODUCT GUIDE [85].

7.2 Technical standards

The WPF application development divides into the presentation part using XAML, and the back-
end using C#. On May 19, 2017, the XAML Standard and .NET Standard were introduced to unify
several frameworks of .NET. Given the recent state and the pending work of unification (WPF was
not targeted as one of the first frameworks to adapt to the new standard), it has been considered
that is better not to use this standard [86]. Nevertheless, C# back-end has been code following the
coding conventions defined in Microsoft documentation [87].

The Pre-Process and the Machine Learning tools have been developed as Python scripts, so the
codification has followed the Pep 8 style guide, defined in Python Developer’s Guide [88].

7.3 Intellectual property

The purpose of this project is to serve as a tool to improve the development of systems with gesture
recognition with Kinect v2, but it can be used as an investigation support tool. Considering that

CHAPTER 7. REGULATION FRAME 77

the project consists of two types of tools, WPF and Python script, it is necessary to check the
licenses applied over each of that tools so a compatible license is designed for this project.

WPF application uses the Microsoft Kinect for Windows Software Development Kit (SDK) 2.0
so its License Terms have to be considered, besides the Microsoft .NET Library License Terms [89]
[54].

Python programs use the following third party libraries:

• Scikit-learn: 3-Clause BSD license (being also called as "New BSD License" or "Modified
BSD License") [90].

• NumPy: Copyright only [91].

Python code is distributed under Python Software Foundation (PSF) license.
Regarding all this licenses, the most restrictive about distribution is the Microsoft Kinect for

Windows SDK 2.0 License Terms, stating that sample code can be modified, copied and distributed.
This applies for the WPF application, due to it was developed through one the Kinect code samples.
However, this license terms also states that the SDK software must not be published or transfered,
so it has to be downloaded, installed and accessed only by the official sites available by Microsoft.

License Copyright <YEAR> <COPYRIGHT HOLDER>
Permission is hereby granted, free of charge, to any person obtaining a copy of this software

and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Any person obtaining a copy of this software must respect the following License Terms of
Microsoft Kinect for Windows SDK 2.0:

3. SCOPE OF LICENSE. The software is licensed, not sold. This agreement only gives you
some rights to use the software. Microsoft reserves all other rights. Unless applicable law gives you
more rights despite this limitation, you may use the software only as expressly permitted in this
agreement. In doing so, you must comply with any technical limitations in the software that only
allow you to use it in certain ways. You may not:

• access or use, or attempt to access or use, features of the Kinect v2 Sensor that are not exposed
or enabled by the software;

CHAPTER 7. REGULATION FRAME 78

• distribute Kinect v2 Applications for use with any sensor other than the Kinect v2 Sensor or
its associated drivers and runtime software;

• use the software or any Kinect v2 Applications in any High-Risk Use;

• work around any technical limitations in the software;

• reverse engineer, decompile, or disassemble any part of the software not provided in source
code form, except and only to the extent that applicable law expressly permits, despite this
limitation;

• publish the software for others to copy;

• rent, lease, or lend the software;

• transfer the software or this agreement to any third party; or

• use the software for commercial software hosting services

The software is under licenses:

• NumPy, Copyright c⃝ 2005-2018, NumPy Developers. All rights reserved.

• Scikit-learn, 3-Clause BSD.

• Kinect for Windows SDK 2.0, Kinect for Windows SDK 2.0 License Terms

• .NET, Microsoft .NET Framework Redistributable EULA

Chapter 8

Socio-economic environment

This chapter describes the socio-economic environment of the project, considering the socio-
economic impact of the developed applications and its implications on the market. Finally, the
budget needed to develop the complete project is detailed.

8.1 Socio-economic impact

The set of applications developed in this project serves as a support system for developers who want
to create applications for Microsoft Kinect, but it is not planned to be sold, though the Microsoft
Kinect for Windows Software Development Kit (SDK) 2.0 License Terms allows its commercial use
(see section 7.3). The socio-economic impact can be considered as null, but indirectly it can be
used to generate recognition models that can be implemented in any application that uses Kinect
v2 sensor. The state of the art of this document (see section 2.1) illustrates several application
fields where this technology can be exploited.

As it is mentioned in the Futures lines of the document (see section 5.1), the Kinect production
stopped recently. Once the Kinect commercial stock is empty, developers and customers will only
be able to get second-hand cameras and it may be possible that they do not trust on these sensors,
being forced to consider other alternatives. This fact decreases the motivation of using the set of
application of the project and limits its scope to investigation purposes.

8.2 Budget

The budget for the project is divided into direct and indirect costs.

Direct cost The direct cost concern the human resources and the hardware and software needed
to complete the project.

Regarding human resources, the project was developed by two persons, one of them assuming
the role of a data scientist and the other the roles of a development manager, a software engineer
and a test engineer. The costs of these roles are indicated in Table 8.1. As it is indicated in

79

CHAPTER 8. SOCIO-ECONOMIC ENVIRONMENT 80

planning (see section 6.2), the project was developed in 210 days (7 months) working 4 hours per
day, resulting in a total of 840 hours.

Role Salary/hour (e) Work percentage Worked hours Total salary (e)
Development Manager 20,00 20 168 3.360,00
Data scientist 25,00 20 168 4.200,00
Junior Software Engineer 15,00 50 420 6.300,00
Junior Test Engineer 15,00 10 84 1.260,00
Total cost 15.120,00

Table 8.1: Human resources costs

So the total cost of the human resources of the project is 15.120,00 e.
The hardware needed includes the Kinect v2 sensor, its adapter so the sensor can be used

with a computer, and a computer compatible with the required hardware specifications detailed
in Development environment section (see section 4.1). Table 8.2 shows the complete information
of the hardware used in this project, besides other components that eased the development itself.
The implicit cost of each component considers its amortization based on the duration of the project
(number of months).

Component Cost (e) Implicit cost (e)
Microsoft Kinect Sensor v2 147,00 21,00
Microsoft Kinect Adapter 49,99 7,14
MSI CX61 2QC-1661XES computer 699,00 99,8
Nacon GM-105 Optic mouse 16,00 2,29
Logitech H110 20,00 2,86
Total cost 133,14

Table 8.2: Hardware costs

The total cost of the hardware components is 133,14 e.
On the other hand, the Kinect for Windows SDK 2.0 and the python libraries are free of charge,

and the license for Visual Studio 2015 was obtained without cost through the agreement made
between the Computer Science and Engineering Department of Universidad Carlos III de Madrid
and Microsoft. So the total cost of the software components is 0,00 e.

The summarize of the direct cost is described in Table 8.3:

Concept Cost (e)
Human resources 15.120,00
Hardware 133,14
Software 0,00
Total cost 15.253,14

Table 8.3: Direct cost summary

The total direct cost is 15.253,14 e.

Indirect cost The indirect cost contemplated in this project is 15%, referring to any type of
expense or cost that were not contemplated (risk cost).

CHAPTER 8. SOCIO-ECONOMIC ENVIRONMENT 81

Table 8.4 shows the total cost of the project considering the indirect cost.

Concept Cost (e)
Direct cost 15.253,14
Risk cost 2.287,97
Total cost 17.541,11

Table 8.4: Total cost summary

So the total cost of the project would be 17.541,11 e.

Chapter 9

Appendix A: Data pre-process

application guide of use

This appendix contains the guide of use for the data pre-process application (see section 4.4). It is
a Python command-line program that can be executed from a shell. Here there is an example of
how it should be run:

python main.py -id input/ds_0 -od output/ds_0 -fuseless gesture_name total_time hand_right_confidence

orientation_w -flasso -fjointtype WristRight -fsegchosen 8 -fnormal

This example indicates to apply the following actions:

• Use input/ds_0 as the input dataset.

• Use output/ds_0 as the output dataset.

• Remove the following features from all the gestures: the gesture name (gesture_name), the
time that the gesture lasts (total_time), the right-hand confidence (hand_right_confidence)
of every frame, and the W component of the orientation vector of every joint (orientation_w).

• Apply lasso filter.

• Remove all joints from every gesture except the right wrist (WristRight).

• Segment the gesture in 8 parts, using the original frame values of the gesture.

• Apply normalization filter.

The information of how to select the transformations to apply over the input dataset through
the input arguments is presented in the Tables 9.2 to 9.8. In this appendix there are also included
the arguments needed to indicate the input dataset and the output dataset locations (Figures 9.9,
9.10 and 9.11), though these actions are not considered as filters or transformations.

Those tables follow the Figure 9.1 format:
The meaning of each field is explained in this list:

82

CHAPTER 9. APPENDIX A: DATA PRE-PROCESS APPLICATION GUIDE OF USE 83

ID PPF-NN
Filter name -
Flag -
Arguments -
Add. information -

Table 9.1: Pre-process filter template.

• PPF-NN: is the identifier of the filter. PPF stands for Pre-Process Filter and NN identifies
the filter in a sequence of all the possible filters, adopting a numerical value of two digits.
This numerical value will be 01 for the first filter and is incremented with the next filter, e.g.
PPF-01, PPF-02, PPF-03 (First, second and third pre-process filter).

• Filter name: name of the filter, following the description in Functionality and guide of use
(see subsection 4.4.3).

• Flag: a string that has to be used in the Python program to apply the filter.

• Arguments: description of the arguments used in the filter.

• Add. information: gives the additional information required to understand the purpose of the
filter.

ID PPF-01
Filter name Features filter
Flag -fuseless
Arguments Features identifiers separated by commas. Allowed

values: gesture_name, total_frames, total_time,
time_counter_max_limit, is_time_expired, frame_list,
time_counter, hand_left_confidence, hand_left_state,
hand_right_confidence, hand_right_state, is_restricted,
joints_count, lean_x, lean_y, lean_tracking_state, track-
ing_id, clipped_edges, joint_list, joint_type, tracking_state,
depth_space_point_x, depth_space_point_y, position_x, posi-
tion_y, position_z, orientation_w, orientation_x, orientation_y,
orientation_z

Add. information None

Table 9.2: Pre-process filter PPF-01.

ID PPF-02
Filter name Lasso filter
Flag -flasso
Arguments None
Add. information None

Table 9.3: Pre-process filter PPF-02.

CHAPTER 9. APPENDIX A: DATA PRE-PROCESS APPLICATION GUIDE OF USE 84

ID PPF-03
Filter name Normalization filter
Flag -fnormal
Arguments None
Add. information None

Table 9.4: Pre-process filter PPF-03.

ID PPF-04
Filter name Include joint filter
Flag -fjointtype
Arguments Joints identifiers separated by commas. Allowed values:

SpineBase, SpineMid, Neck, Head, ShoulderLeft, ElbowLeft,
WristLeft, HandLeft, ShoulderRight, ElbowRight, WristRight,
HandRight, HipLeft, KneeLeft, AnkleLeft, FootLeft, HipRight,
KneeRight, AnkleRight, FootRight, SpineShoulder, HandTipLeft,
ThumbLeft, HandTipRight, ThumbRight

Add. information Cannot be used at the same time that Exclude joint filter.

Table 9.5: Pre-process filter PPF-04.

ID PPF-05
Filter name Exclude joint filter
Flag -fjointtyperev
Arguments Joints identifiers separated by commas. Allowed values:

SpineBase, SpineMid, Neck, Head, ShoulderLeft, ElbowLeft,
WristLeft, HandLeft, ShoulderRight, ElbowRight, WristRight,
HandRight, HipLeft, KneeLeft, AnkleLeft, FootLeft, HipRight,
KneeRight, AnkleRight, FootRight, SpineShoulder, HandTipLeft,
ThumbLeft, HandTipRight, ThumbRight

Add. information Cannot be used at the same time that Include joint filter.

Table 9.6: Pre-process filter PPF-05.

ID PPF-06
Filter name Segmentation filter with original values
Flag -fsegchosen
Arguments Segmentation size.
Add. information The segmentation size must be a positive integer number. Cannot

be used at the same time that Segmentation filter with average
values.

Table 9.7: Pre-process filter PPF-06.

ID PPF-07
Filter name Segmentation filter with average values
Flag -fsegaverage
Arguments Segmentation size.
Add. information The segmentation size must be a positive integer number. Cannot

be used at the same time that Segmentation filer with original
values.

Table 9.8: Pre-process filter PPF-07.

CHAPTER 9. APPENDIX A: DATA PRE-PROCESS APPLICATION GUIDE OF USE 85

ID PPF-08
Filter name Input dataset by file names paths
Flag -f
Arguments Files path, separated by spaces.
Add. information Each file path has to be indicated regarding the location of the

Python program. Each file contains the information of a single
gesture. The purpose of this filter is to analyze transformation
over little datasets. All the files compose the input dataset for the
Python program. It is possible to use just one file.

Table 9.9: Pre-process filter PPF-08.

ID PPF-09
Filter name Input dataset by directory names paths
Flag -id
Arguments Directories paths, separated by spaces.
Add. information Each directory path has to be indicated regarding the location of

Python program. Each of these directories has files containing the
information of a single gesture. All the files compose the input
dataset for the Python program. It is possible to use just one
directory.

Table 9.10: Pre-process filter PPF-09.

ID PPF-10
Filter name Output dataset by folder name path
Flag -od
Arguments Directory path.
Add. information The directory path has to be indicated regarding the location of

the application. The pre-processed dataset (also known as output
dataset) is be saved in this directory.

Table 9.11: Pre-process filter PPF-10.

Chapter 10

Appendix B: Machine learning

application guide of use

This appendix contains the guide of use for the machine learning application (see section 4.4). It
is a Python command-line program that can be executed from a shell. Here there is an example of
how it should be run:

python main.py -id input/ds_0 -od output/ds_0 -knn-num 5 -train 0.8 -test 0.2

This example indicates to apply the following actions:

• Use input/ds_0 as the input dataset.

• Use output/ds_0 as the output location for the results.

• Apply KNN with 5 neighbors (k parameter), using the 80% of the dataset for training, and
the 20% of the dataset for testing.

The information of how to specify the parameter of the algorithms to apply over the input
dataset through the input parameter is presented in the Tables 10.2 to 10.8. In this appendix
there are also included the parameters needed to indicate the input dataset and the output results
locations (Figures 10.9, 10.10 and 10.11), though these actions are not strictly related with the
machine learning task.

Those tables follow the Figure 10.1 format:

ID MLP-NN
Parameter name -
Flag -
Arguments -
Add. information -

Table 10.1: Machine learning parameter template.

The meaning of each field is explained in this list:

86

CHAPTER 10. APPENDIX B: MACHINE LEARNING APPLICATION GUIDE OF USE 87

• MLP-NN: is the identifier of the parameter. MLP stands for Machine Learning Parameter and
NN identifies the parameter of the application in a sequence of all the possible parameters,
adopting a numerical value of two digits. This numerical value will be 01 for the first parameter
and is incremented with the next parameter, e.g. MLP-01, MLP-02, MLP-03 (First, second
and third parameters).

• Parameter name: name of the parameter, following the description in Functionality and guide
of use (Subsection 4.5.4).

• Flag: a string that has to be used in the Python program to use the parameter.

• Arguments: description of the arguments used in the machine learning parameter. This
may seem confusing because in some contexts argument and parameter mean the same, but
here the argument is understood as the argument of a parameter of the machine learning
application.

• Add. information: gives the additional information required to understand the purpose of the
parameter.

ID MLP-01
Parameter name Number of clusters of K-Means
Flag -cluster-num
Arguments Number of clusters of K-Means
Add. information The number of clusters must be a positive integer number. The

clustering algorithm, in this case, K-Means is applied before any
classification algorithm.

Table 10.2: Machine learning parameter MLP-01.

ID MLP-02
Parameter name Type of the SVM.
Flag -svc-type
Arguments Type of SVM classifier to be used as the classification algorithm.

Allowed values: c, nu, linear.
Add. information Cannot be used if a KNN parameter is also defined.

Table 10.3: Machine learning parameter MLP-02.

ID MLP-03
Parameter name Kernel of the SVM.
Flag -svc-kernel
Arguments Type of kernel function to be used in the SVM. Allowed values:

linear, poly, rbf, sigmoid, precomputed.
Add. information Cannot be used if a KNN parameter is also defined.

Table 10.4: Machine learning parameter MLP-03.

CHAPTER 10. APPENDIX B: MACHINE LEARNING APPLICATION GUIDE OF USE 88

ID MLP-04
Parameter name Number of neighbors of KNN
Flag -knn-num
Arguments Number of neighbors of KNN (k parameter)
Add. information The number of neighbors must be a positive integer number.

Cannot be used if a SVM parameter is also defined.

Table 10.5: Machine learning parameter MLP-04.

ID MLP-05
Parameter name Training percentage
Flag -train
Arguments Training percentage
Add. information The training percentage must be a positive float number, between

0 and 1. Percentages sum of training, test and validation
percentages must be 1.

Table 10.6: Machine learning parameter MLP-05.

ID MLP-06
Parameter name Test percentage
Flag -test
Arguments Test percentage
Add. information The test percentage must be a positive float number, between

0 and 1. Percentages sum of training, test and validation
percentages must be 1.

Table 10.7: Machine learning parameter MLP-06.

ID MLP-07
Parameter name Validation percentage
Flag -valid
Arguments Validation percentage
Add. information The validation percentage must be a positive float number,

between 0 and 1. Percentages sum of training, test and validation
percentages must be 1.

Table 10.8: Machine learning parameter MLP-07.

ID MLP-08
Parameter name Input dataset by file names paths
Flag -f
Arguments Files path, separated by spaces.
Add. information Each file path has to be indicated regarding the location of the

Python program. Each file contains the information of a single
gesture. The purpose of this parameter is to analyze training over
little datasets. All the files compose the input dataset for the
Python program. It is possible to use just one file.

Table 10.9: Machine learning parameter MLP-08.

CHAPTER 10. APPENDIX B: MACHINE LEARNING APPLICATION GUIDE OF USE 89

ID MLP-09
Parameter name Input dataset by directory names paths
Flag -id
Arguments Directories paths, separated by spaces.
Add. information Each directory path has to be indicated regarding the location of

Python program. Each of these directories has files containing the
information of a single gesture. All the files compose the input
dataset for the Python program. It is possible to use just one
directory.

Table 10.10: Machine learning parameter MLP-09.

ID MLP-10
Parameter name Output dataset by folder name path
Flag -od
Arguments Directory path.
Add. information The directory path has to be indicated regarding the location of

the application. The results of the training and test process are
saved in this directory.

Table 10.11: Machine learning parameter MLP-10.

References

[1] Gesture recognition Definition from PC Magazine Encyclopedia. [Online]. Available: https:
/ / www . pcmag . com / encyclopedia / term / 43756 / gesture - recognition (visited on
05/25/2018).

[2] What is Gesture Recognition? - Definition from Techopedia, en. [Online]. Available: https:
//www.techopedia.com/definition/618/gesture-recognition (visited on 05/25/2018).

[3] What is gesture recognition? - Definition from WhatIs.com, en. [Online]. Available: https:
//whatis.techtarget.com/definition/gesture-recognition (visited on 05/25/2018).

[4] What is Human-Computer Interaction (HCI)?, en. [Online]. Available: https : / / www .

interaction-design.org/literature/topics/human-computer-interaction (visited
on 05/25/2018).

[5] M. Turk, “Perceptual User Interfaces”, en, in Frontiers of Human-Centered Computing, Online
Communities and Virtual Environments, Springer, London, 2001, pp. 39–51, isbn: 978-1-4471-
1069-9 978-1-4471-0259-5. doi: 10.1007/978-1-4471-0259-5_4. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-1-4471-0259-5_4 (visited on 05/25/2018).

[6] R. Watson, “A Survey of Gesture Recognition Techniques”, en, Trinity College Dublin,
Department of Computer Science, Technical Report, Jul. 1993. [Online]. Available: http:
//www.tara.tcd.ie/handle/2262/12658 (visited on 05/27/2018).

[7] V. Pterneas, Implementing Kinect gestures, en-US, Jan. 2014. [Online]. Available: https:
//pterneas.com/2014/01/27/implementing-kinect-gestures/ (visited on 05/30/2018).

[8] R. Ibañez, Á. Soria, A. Teyseyre, and M. Campo, “Easy gesture recognition for Kinect”,
Advances in Engineering Software, vol. 76, pp. 171–180, Oct. 2014, Restringed access, issn:
0965-9978. doi: 10.1016/j.advengsoft.2014.07.005. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0965997814001161 (visited on 05/16/2018).

[9] Touchless Multifactor Authentication (MFA) for Healthcare, en. [Online]. Available: https://
www.intel.com/content/www/us/en/healthcare-it/solutions/documents/touchless-

multifactor-authentication-healthcare-paper.html (visited on 05/27/2018).

[10] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan, “Vision-based Hand-gesture Applications”,
Commun. ACM, vol. 54, no. 2, pp. 60–71, Feb. 2011, issn: 0001-0782. doi: 10.1145/1897816.
1897838. [Online]. Available: http://doi.acm.org/10.1145/1897816.1897838 (visited on
05/27/2018).

90

https://www.pcmag.com/encyclopedia/term/43756/gesture-recognition
https://www.pcmag.com/encyclopedia/term/43756/gesture-recognition
https://www.techopedia.com/definition/618/gesture-recognition
https://www.techopedia.com/definition/618/gesture-recognition
https://whatis.techtarget.com/definition/gesture-recognition
https://whatis.techtarget.com/definition/gesture-recognition
https://www.interaction-design.org/literature/topics/human-computer-interaction
https://www.interaction-design.org/literature/topics/human-computer-interaction
http://dx.doi.org/10.1007/978-1-4471-0259-5_4
https://link.springer.com/chapter/10.1007/978-1-4471-0259-5_4
https://link.springer.com/chapter/10.1007/978-1-4471-0259-5_4
http://www.tara.tcd.ie/handle/2262/12658
http://www.tara.tcd.ie/handle/2262/12658
https://pterneas.com/2014/01/27/implementing-kinect-gestures/
https://pterneas.com/2014/01/27/implementing-kinect-gestures/
http://dx.doi.org/10.1016/j.advengsoft.2014.07.005
http://www.sciencedirect.com/science/article/pii/S0965997814001161
http://www.sciencedirect.com/science/article/pii/S0965997814001161
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/touchless-multifactor-authentication-healthcare-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/touchless-multifactor-authentication-healthcare-paper.html
https://www.intel.com/content/www/us/en/healthcare-it/solutions/documents/touchless-multifactor-authentication-healthcare-paper.html
http://dx.doi.org/10.1145/1897816.1897838
http://dx.doi.org/10.1145/1897816.1897838
http://doi.acm.org/10.1145/1897816.1897838

REFERENCES 91

[11] G. a. S. T. N. F. Trust, First for touchless technology in vascular surgery, en. [Online].
Available: https://www.guysandstthomas.nhs.uk/Home.aspx (visited on 05/29/2018).

[12] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine Recognition of Hu-
man Activities: A Survey”, IEEE Transactions on Circuits and Systems for Video Technology,
vol. 18, no. 11, pp. 1473–1488, Nov. 2008, http://www.public.asu.edu/ pturaga/papers/sur-
vey_final.pdf, issn: 1051-8215. doi: 10.1109/TCSVT.2008.2005594.

[13] Z. Zhang, “Microsoft Kinect Sensor and Its Effect”, en, IEEE Multimedia, vol. 19, no. 2,
pp. 4–10, Feb. 2012, issn: 1070-986X. doi: 10.1109/MMUL.2012.24. [Online]. Available:
http://ieeexplore.ieee.org/document/6190806/ (visited on 05/28/2018).

[14] Kinect in Physiotherapy - Home. [Online]. Available: https://i.cs.hku.hk/fyp/2012/
fyp12013/index.html (visited on 05/28/2018).

[15] S. Mitra and T. Acharya, “Gesture Recognition: A Survey”, IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 3, pp. 311–324, May
2007, issn: 1094-6977. doi: 10.1109/TSMCC.2007.893280. [Online]. Available: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.6243&rep=rep1&type=pdf.

[16] R. Schiavullo, SoftKinetic: Depth sensor, camera and modules for VR human body tracking
for gaming and Car Infotainment Gesture Control, en-GB, Nov. 2017. [Online]. Available:
http://twittertechnews.com/virtualreality/softkinetic-depth-sensor-camera-

and- modules- for- vr- human- body- tracking- for- gaming- and- car- infotainment-

gesture-control/ (visited on 05/29/2018).

[17] Sony Depthsensing Solutions > Depthsense > Depthsense Middleware. [Online]. Available:
https://www.sony-depthsensing.com/DepthSense/DepthSenseMiddleware (visited on
05/29/2018).

[18] Kinect Hacks - Supporting the Kinect Hacking news and community, en-US. [Online].
Available: http://www.kinecthacks.com/ (visited on 05/29/2018).

[19] patseer, Patent Landscape Report Hand Gesture Recognition PatSeer Pro, en-US. [Online].
Available: https://patseer.com/2017/10/patent-landscape-report-hand-gesture-
recognition-patseer-pro/ (visited on 05/29/2018).

[20] What is RGB-D Camera (Depth Sensor) | IGI Global. [Online]. Available: https://www.
igi-global.com/dictionary/human-motion-analysis-and-simulation-tools/50427

(visited on 06/05/2018).

[21] Vitruvius | Create stunning Kinect apps in minutes, en-US. [Online]. Available: https://
vitruviuskinect.com/ (visited on 06/05/2018).

[22] Vitruvius: A set of easy-to-use Kinect utilities that will speed-up the development of your
projects, original-date: 2013-12-03T14:57:05Z, May 2018. [Online]. Available: https : / /

github.com/LightBuzz/Vitruvius (visited on 06/05/2018).

[23] Vangos Pterneas | Kinect & Hololens, en-US. [Online]. Available: https://pterneas.com/
(visited on 06/05/2018).

https://www.guysandstthomas.nhs.uk/Home.aspx
http://dx.doi.org/10.1109/TCSVT.2008.2005594
http://dx.doi.org/10.1109/MMUL.2012.24
http://ieeexplore.ieee.org/document/6190806/
https://i.cs.hku.hk/fyp/2012/fyp12013/index.html
https://i.cs.hku.hk/fyp/2012/fyp12013/index.html
http://dx.doi.org/10.1109/TSMCC.2007.893280
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.6243&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.107.6243&rep=rep1&type=pdf
http://twittertechnews.com/virtualreality/softkinetic-depth-sensor-camera-and-modules-for-vr-human-body-tracking-for-gaming-and-car-infotainment-gesture-control/
http://twittertechnews.com/virtualreality/softkinetic-depth-sensor-camera-and-modules-for-vr-human-body-tracking-for-gaming-and-car-infotainment-gesture-control/
http://twittertechnews.com/virtualreality/softkinetic-depth-sensor-camera-and-modules-for-vr-human-body-tracking-for-gaming-and-car-infotainment-gesture-control/
https://www.sony-depthsensing.com/DepthSense/DepthSenseMiddleware
http://www.kinecthacks.com/
https://patseer.com/2017/10/patent-landscape-report-hand-gesture-recognition-patseer-pro/
https://patseer.com/2017/10/patent-landscape-report-hand-gesture-recognition-patseer-pro/
https://www.igi-global.com/dictionary/human-motion-analysis-and-simulation-tools/50427
https://www.igi-global.com/dictionary/human-motion-analysis-and-simulation-tools/50427
https://vitruviuskinect.com/
https://vitruviuskinect.com/
https://github.com/LightBuzz/Vitruvius
https://github.com/LightBuzz/Vitruvius
https://pterneas.com/

REFERENCES 92

[24] GesturePak v2.0 for Kinect for Windows 2.0. [Online]. Available: http://www.franklins.
net/ (visited on 06/05/2018).

[25] Gesture Recognition Toolkit — NickGillianWiki. [Online]. Available: http : / / www .

nickgillian.com/wiki/pmwiki.php?n=GRT.GestureRecognitionToolkit (visited on
06/05/2018).

[26] Nick Gillian. [Online]. Available: http://www.nickgillian.com/ (visited on 06/05/2018).

[27] T. M. (LLC), Visual Gesture Builder (VGB), en-us. [Online]. Available: https://docs.
microsoft.com/en-us/previous-versions/windows/kinect/dn785304(v%3dieb.10)

(visited on 06/05/2018).

[28] ——, Kinect Studio, en-us. [Online]. Available: https://docs.microsoft.com/en- us/
previous-versions/windows/kinect/dn785306(v%3dieb.10) (visited on 06/05/2018).

[29] The Discipline of Machine Learning, en. [Online]. Available: https://www.researchgate.
net / publication / 268201693 _ The _ Discipline _ of _ Machine _ Learning (visited on
05/30/2018).

[30] Scientific Computing Tools for Python — SciPy.org. [Online]. Available: https://www.scipy.
org/about.html (visited on 06/05/2018).

[31] Mlpy - Machine Learning Python. [Online]. Available: http://mlpy.sourceforge.net/

(visited on 06/01/2018).

[32] Orange – Data Mining Fruitful & Fun. [Online]. Available: https://orange.biolab.si/
(visited on 06/01/2018).

[33] TensorFlow, en. [Online]. Available: https://www.tensorflow.org/ (visited on 06/01/2018).

[34] Seqlearn: Sequence classification library for Python — seqlearn 0.1 documentation. [Online].
Available: http://larsmans.github.io/seqlearn/ (visited on 06/01/2018).

[35] PyStruct - Structured Learning in Python — pystruct 0.2.4 documentation. [Online]. Available:
http://pystruct.github.io/ (visited on 06/01/2018).

[36] Scikit-learn: Machine learning in Python — scikit-learn 0.19.1 documentation. [Online].
Available: http://scikit-learn.org/stable/index.html (visited on 06/01/2018).

[37] Numl. [Online]. Available: http://numl.net/ (visited on 06/01/2018).

[38] AForge.NET :: Computer Vision, Artificial Intelligence, Robotics. [Online]. Available: http:
//www.aforgenet.com/ (visited on 06/01/2018).

[39] Accord.NET Machine Learning Framework, en. [Online]. Available: http : / / accord -

framework.net/ (visited on 06/01/2018).

[40] Encog Machine Learning Framework. [Online]. Available: https://www.heatonresearch.
com/encog/index.html (visited on 06/01/2018).

[41] Machine Learning | Microsoft Azure, en. [Online]. Available: https://azure.microsoft.
com/en-us/services/machine-learning-studio/ (visited on 06/01/2018).

http://www.franklins.net/
http://www.franklins.net/
http://www.nickgillian.com/wiki/pmwiki.php?n=GRT.GestureRecognitionToolkit
http://www.nickgillian.com/wiki/pmwiki.php?n=GRT.GestureRecognitionToolkit
http://www.nickgillian.com/
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785304(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785304(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785306(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn785306(v%3dieb.10)
https://www.researchgate.net/publication/268201693_The_Discipline_of_Machine_Learning
https://www.researchgate.net/publication/268201693_The_Discipline_of_Machine_Learning
https://www.scipy.org/about.html
https://www.scipy.org/about.html
http://mlpy.sourceforge.net/
https://orange.biolab.si/
https://www.tensorflow.org/
http://larsmans.github.io/seqlearn/
http://pystruct.github.io/
http://scikit-learn.org/stable/index.html
http://numl.net/
http://www.aforgenet.com/
http://www.aforgenet.com/
http://accord-framework.net/
http://accord-framework.net/
https://www.heatonresearch.com/encog/index.html
https://www.heatonresearch.com/encog/index.html
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/

REFERENCES 93

[42] Weka 3 - Data Mining with Open Source Machine Learning Software in Java. [Online].
Available: https://www.cs.waikato.ac.nz/ml/weka/ (visited on 06/01/2018).

[43] NumPy — NumPy. [Online]. Available: http://www.numpy.org/ (visited on 06/01/2018).

[44] Python Data Analysis Library — pandas: Python Data Analysis Library. [Online]. Available:
https://pandas.pydata.org/ (visited on 06/01/2018).

[45] dotnet-bot, Windows Presentation Foundation, es-es. [Online]. Available: https://docs.
microsoft.com/es-es/dotnet/framework/wpf/ (visited on 06/05/2018).

[46] Frequently Asked Questions — scikit-learn 0.19.1 documentation. [Online]. Available: http:
//scikit-learn.org/stable/faq.html#why-did-you-remove-hmms-from-scikit-learn

(visited on 06/05/2018).

[47] WiiBrew. [Online]. Available: http : / / wiibrew . org / wiki / Main _ Page (visited on
06/05/2018).

[48] J. C. Lee, “Hacking the Nintendo Wii Remote”, IEEE Pervasive Computing, vol. 7, no. 3,
pp. 39–45, Jul. 2008, issn: 1536-1268. doi: 10.1109/MPRV.2008.53.

[49] (1) Gesture Recognition with a Wii Controller, en. [Online]. Available: https : / / www .

researchgate . net / publication / 30012906 _ Gesture _ Recognition _ with _ a _ Wii _

Controller (visited on 06/05/2018).

[50] Wiigee - a java-based gesture recognition library for the Wii remote. [Online]. Available: http:
//www.wiigee.com/ (visited on 06/05/2018).

[51] Sony announces Move.me application for researchers and hobbyists, promises improvements
to PlayStation Home, en. [Online]. Available: https://www.engadget.com/2011/03/03/
sony-announces-move-me-application-for-researchers-and-hobbyists/ (visited on
06/05/2018).

[52] [Online]. Available: https : / / store . playstation . com / en - us / product / UP9002 -

NPUO00014_00-MOVEMESERVER0000 (visited on 06/05/2018).

[53] Sony Acquires Belgian Innovator of Range Image Sensor Technology, Softkinetic Systems
S.A., in its Push Toward Next-Generation Range Image Sensors and Solutions, en. [Online].
Available: http://www.sony.net/SonyInfo/News/Press/201510/15-083E/index.html
(visited on 06/05/2018).

[54] Kinect - Windows app development. [Online]. Available: https://developer.microsoft.
com/en-us/windows/kinect (visited on 06/05/2018).

[55] Leap Motion, en-US. [Online]. Available: https : / / www . leapmotion . com/ (visited on
06/05/2018).

[56] Leap Motion Developers. [Online]. Available: https : / / developer . leapmotion . com /

documentation/index.html?proglang=current (visited on 06/05/2018).

[57] Get Started with Our SDK, en-US. [Online]. Available: http://developer.leapmotion.com/
get-started/ (visited on 06/05/2018).

https://www.cs.waikato.ac.nz/ml/weka/
http://www.numpy.org/
https://pandas.pydata.org/
https://docs.microsoft.com/es-es/dotnet/framework/wpf/
https://docs.microsoft.com/es-es/dotnet/framework/wpf/
http://scikit-learn.org/stable/faq.html#why-did-you-remove-hmms-from-scikit-learn
http://scikit-learn.org/stable/faq.html#why-did-you-remove-hmms-from-scikit-learn
http://wiibrew.org/wiki/Main_Page
http://dx.doi.org/10.1109/MPRV.2008.53
https://www.researchgate.net/publication/30012906_Gesture_Recognition_with_a_Wii_Controller
https://www.researchgate.net/publication/30012906_Gesture_Recognition_with_a_Wii_Controller
https://www.researchgate.net/publication/30012906_Gesture_Recognition_with_a_Wii_Controller
http://www.wiigee.com/
http://www.wiigee.com/
https://www.engadget.com/2011/03/03/sony-announces-move-me-application-for-researchers-and-hobbyists/
https://www.engadget.com/2011/03/03/sony-announces-move-me-application-for-researchers-and-hobbyists/
https://store.playstation.com/en-us/product/UP9002-NPUO00014_00-MOVEMESERVER0000
https://store.playstation.com/en-us/product/UP9002-NPUO00014_00-MOVEMESERVER0000
http://www.sony.net/SonyInfo/News/Press/201510/15-083E/index.html
https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://www.leapmotion.com/
https://developer.leapmotion.com/documentation/index.html?proglang=current
https://developer.leapmotion.com/documentation/index.html?proglang=current
http://developer.leapmotion.com/get-started/
http://developer.leapmotion.com/get-started/

REFERENCES 94

[58] Documentation. [Online]. Available: https://developers.usens.com/docs (visited on
06/05/2018).

[59] NUITRACK. [Online]. Available: https://nuitrack.com/.

[60] Nuitrack: Overview. [Online]. Available: http://download.3divi.com/Nuitrack/doc/

Overview_page.html (visited on 06/05/2018).

[61] (1) Master Thesis: SAVKiT: Visualization and Multimodal Manipulation of Stereographic
3-D Objects. en. [Online]. Available: https : / / www . researchgate . net / publication /

309349400_Master_Thesis_SAVKiT_Visualization_and_Multimodal_Manipulation_

of_Stereographic_3-D_Objects (visited on 06/14/2018).

[62] JointType Enumeration. [Online]. Available: https : / / msdn . microsoft . com / en - us /

library/microsoft.kinect.jointtype.aspx (visited on 06/14/2018).

[63] Body Class. [Online]. Available: https://msdn.microsoft.com/en-us/library/microsoft.
kinect.body.aspx (visited on 06/14/2018).

[64] T. M. (LLC), DepthSpacePoint Structure, en-us. [Online]. Available: https : / / docs .

microsoft.com/en-us/previous-versions/windows/kinect/dn758559(v%3dieb.10)

(visited on 06/15/2018).

[65] ——, CameraSpacePoint Structure, en-us. [Online]. Available: https://docs.microsoft.
com/en- us/previous- versions/windows/kinect/dn758354(v%3dieb.10) (visited on
06/15/2018).

[66] Choosing the right estimator — scikit-learn 0.19.1 documentation. [Online]. Available: http:
//scikit-learn.org/stable/tutorial/machine_learning_map/index.html (visited on
06/17/2018).

[67] 1.4. Support Vector Machines — scikit-learn 0.19.1 documentation. [Online]. Available: http:
//scikit-learn.org/stable/modules/svm.html (visited on 06/17/2018).

[68] 1.6. Nearest Neighbors — scikit-learn 0.19.1 documentation. [Online]. Available: http://

scikit-learn.org/stable/modules/neighbors.html (visited on 06/17/2018).

[69] 2.3. Clustering — scikit-learn 0.19.1 documentation. [Online]. Available: http://scikit-
learn.org/stable/modules/clustering.html.

[70] Sklearn.preprocessing.OneHotEncoder — scikit-learn 0.19.1 documentation. [Online]. Avail-
able: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.
OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder (visited on 06/17/2018).

[71] Sklearn.cluster.KMeans — scikit-learn 0.19.1 documentation. [Online]. Available: http://
scikit - learn . org / stable / modules / generated / sklearn . cluster . KMeans . html #

sklearn.cluster.KMeans (visited on 06/17/2018).

[72] Sklearn.svm.SVC — scikit-learn 0.19.1 documentation. [Online]. Available: http://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html (visited on 06/17/2018).

https://developers.usens.com/docs
https://nuitrack.com/
http://download.3divi.com/Nuitrack/doc/Overview_page.html
http://download.3divi.com/Nuitrack/doc/Overview_page.html
https://www.researchgate.net/publication/309349400_Master_Thesis_SAVKiT_Visualization_and_Multimodal_Manipulation_of_Stereographic_3-D_Objects
https://www.researchgate.net/publication/309349400_Master_Thesis_SAVKiT_Visualization_and_Multimodal_Manipulation_of_Stereographic_3-D_Objects
https://www.researchgate.net/publication/309349400_Master_Thesis_SAVKiT_Visualization_and_Multimodal_Manipulation_of_Stereographic_3-D_Objects
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.jointtype.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.body.aspx
https://msdn.microsoft.com/en-us/library/microsoft.kinect.body.aspx
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758559(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758559(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758354(v%3dieb.10)
https://docs.microsoft.com/en-us/previous-versions/windows/kinect/dn758354(v%3dieb.10)
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/neighbors.html
http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/clustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

REFERENCES 95

[73] Sklearn.svm.LinearSVC — scikit-learn 0.19.1 documentation. [Online]. Available: http://
scikit - learn . org / stable / modules / generated / sklearn . svm . LinearSVC . html #

sklearn.svm.LinearSVC (visited on 06/17/2018).

[74] Sklearn.svm.NuSVC — scikit-learn 0.19.1 documentation. [Online]. Available: http : / /

scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.

svm.NuSVC (visited on 06/17/2018).

[75] Sklearn.neighbors.NearestNeighbors — scikit-learn 0.19.1 documentation. [Online]. Available:
http : / / scikit - learn . org / stable / modules / generated / sklearn . neighbors .

NearestNeighbors.html#sklearn.neighbors.NearestNeighbors (visited on 06/17/2018).

[76] M. Wilson and M. Wilson, Exclusive: Microsoft Has Stopped Manufacturing The Kinect, en-
US, Oct. 2017. [Online]. Available: https://www.fastcodesign.com/90147868/exclusive-
microsoft-has-stopped-manufacturing-the-kinect (visited on 06/17/2018).

[77] Using both incremental and iterative development, en. [Online]. Available: https://www.

researchgate.net/publication/296818815_Using_both_incremental_and_iterative_

development (visited on 06/08/2018).

[78] A. Henry, Productivity 101: How to Use Personal Kanban to Visualize Your Work, en-US.
[Online]. Available: https://lifehacker.com/productivity-101-how-to-use-personal-
kanban-to-visuali-1687948640 (visited on 06/08/2018).

[79] Trello. [Online]. Available: https://trello.com (visited on 06/08/2018).

[80] Build software better, together, en. [Online]. Available: https://github.com (visited on
06/08/2018).

[81] Kinect and Xbox One privacy – Microsoft privacy. [Online]. Available: https://privacy.
microsoft.com/en-us/kinect-and-xbox-one-privacy (visited on 06/07/2018).

[82] Xbox camera and privacy. [Online]. Available: https://privacy.microsoft.com/en-us/
xbox-camera-and-privacy (visited on 06/07/2018).

[83] M. Corporation, Microsoft Kinect for Windows Software Development Kit (SDK) 2.0 End
User License Agreement, en-US.

[84] Kinect for Windows v2 | Kinect Support, en. [Online]. Available: https%3A%2F%2Fsupport.
xbox.com%2Fen-US%2Fxbox-on-windows%2Faccessories%2Fkinect-for-windows-v2-

info (visited on 06/07/2018).

[85] ——, KINECT FOR WINDOWS V2 PRODUCT GUIDE.

[86] Introducing XAML Standard and .NET Standard 2.0, en-US, May 2017. [Online]. Available:
https://blogs.windows.com/buildingapps/2017/05/19/introducing-xaml-standard-

net-standard-2-0/ (visited on 06/08/2018).

[87] BillWagner, C# Coding Conventions (C# Programming Guide), en-us. [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-

program/coding-conventions (visited on 06/08/2018).

http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors
http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors
https://www.fastcodesign.com/90147868/exclusive-microsoft-has-stopped-manufacturing-the-kinect
https://www.fastcodesign.com/90147868/exclusive-microsoft-has-stopped-manufacturing-the-kinect
https://www.researchgate.net/publication/296818815_Using_both_incremental_and_iterative_development
https://www.researchgate.net/publication/296818815_Using_both_incremental_and_iterative_development
https://www.researchgate.net/publication/296818815_Using_both_incremental_and_iterative_development
https://lifehacker.com/productivity-101-how-to-use-personal-kanban-to-visuali-1687948640
https://lifehacker.com/productivity-101-how-to-use-personal-kanban-to-visuali-1687948640
https://trello.com
https://github.com
https://privacy.microsoft.com/en-us/kinect-and-xbox-one-privacy
https://privacy.microsoft.com/en-us/kinect-and-xbox-one-privacy
https://privacy.microsoft.com/en-us/xbox-camera-and-privacy
https://privacy.microsoft.com/en-us/xbox-camera-and-privacy
https%3A%2F%2Fsupport.xbox.com%2Fen-US%2Fxbox-on-windows%2Faccessories%2Fkinect-for-windows-v2-info
https%3A%2F%2Fsupport.xbox.com%2Fen-US%2Fxbox-on-windows%2Faccessories%2Fkinect-for-windows-v2-info
https%3A%2F%2Fsupport.xbox.com%2Fen-US%2Fxbox-on-windows%2Faccessories%2Fkinect-for-windows-v2-info
https://blogs.windows.com/buildingapps/2017/05/19/introducing-xaml-standard-net-standard-2-0/
https://blogs.windows.com/buildingapps/2017/05/19/introducing-xaml-standard-net-standard-2-0/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/coding-conventions

REFERENCES 96

[88] PEP 8 – Style Guide for Python Code, en. [Online]. Available: https://www.python.org/
dev/peps/pep-0008/ (visited on 06/08/2018).

[89] Microsoft .NET Framework Redistributable EULA. [Online]. Available: https : / / msdn .

microsoft.com/en-us/library/ms994405.aspx (visited on 06/08/2018).

[90] The 3-Clause BSD License — Open Source Initiative. [Online]. Available: https : / /

opensource.org/licenses/BSD-3-Clause.

[91] NumPy license — NumPy. [Online]. Available: http://www.numpy.org/license.html

(visited on 06/08/2018).

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://msdn.microsoft.com/en-us/library/ms994405.aspx
https://msdn.microsoft.com/en-us/library/ms994405.aspx
https://opensource.org/licenses/BSD-3-Clause
https://opensource.org/licenses/BSD-3-Clause
http://www.numpy.org/license.html

	Resumen
	Abstract
	Acknowledgments
	Acronyms
	Glossary
	Introduction
	Motivation
	Objectives
	Document structure

	State of the Art
	Gesture recognition
	Similar projects

	Machine Learning
	ML Library

	Kinect sensor

	Requirements and user stories
	Epics
	Themes
	User stories

	Development
	Development environment
	Interaction between applications
	Recording application
	Functionality and guide of use
	Implementation details
	Gesture data
	Generation of training data for evaluation

	Data pre-process application
	Normalization and center translation
	Segmentation
	Functionality and guide of use
	Input data
	Output data
	Analysis of the transformations over the training dataset

	Machine learning application
	Classification
	Clustering
	Implementation details
	Functionality and guide of use
	Input data
	Output data

	Experimentation

	Conclusions and future lines
	Future lines

	Project organization and management
	Methodology
	Trello
	Version control system

	Planning

	Regulation frame
	Legislation analysis
	Technical standards
	Intellectual property

	Socio-economic environment
	Socio-economic impact
	Budget

	Appendix A: Data pre-process application guide of use
	Appendix B: Machine learning application guide of use
	References

