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Abstract

We approximate probabilistic forecasts for interval-valued time series by offering alternative ap-
proaches. After fitting a possibly non-Gaussian bivariate VAR model to the center/log-range
system, we transform prediction regions (analytical and bootstrap) for this system into regions
for center/range and upper/lower bounds systems. Monte Carlo simulations show that bootstrap
methods are preferred according to several new metrics. For daily S&P500 low/high returns, we
build joint conditional prediction regions of the return level and volatility. We illustrate the useful-
ness of obtaining bootstrap forecasts regions for low/high returns by developing a trading strategy
and showing its profitability when compared to using point forecasts.

Key Words: Bootstrap, Constrainted Regression, Coverage Rates, Logarithmic Transformation,
QML estimation.

JEL Classification: C01, C22, C53



1 Introduction

Data sets in interval format are common in economics and finance. First, in some instances,

intervals could be the only data available to the researcher. For example, when data is sensitive to

privacy concerns, the records must be aggregated and measured as intervals. Wealth and income

are measured as intervals in the Health and Retirement Study (HRS) and Current Population

Survey (CPS), respectively; see Manski and Tamer (2002). Also, in bond markets, traders report

bid/ask intervals; see Pascual and Veredas (2010) and Bien et al. (2011). Interval data also appears

in contingent valuation surveys that aim to elicit the willingness to pay of respondents for some

good not currently marketed; see, for instance, Fernández et al. (2004). In energy markets, the

US Energy Information Administration provides min/max retail prices of electricity at the state

level; see Garcı́a-Ascanio and Maté (2010) for an application to electric power demand. The US

Department of Agriculture also provides daily low and high prices on agricultural commodities and

livestock; see Lin and González-Rivera (2016) and Xiong et al. (2015) for applications. Second,

interval data can also appear when dealing with big data sets to reduce dimensionality. For

example, in stock markets, when intra-day prices are available, one could analyze daily intervals of

low/high asset prices; see, for example, Rodrigues and Salish (2015). One advantage of analyzing

low/high stock prices intervals instead of all available intra-day returns is that problems related to

irregular temporal spacing, strong diurnal patterns, microestructure noise or complex dependences,

are avoided; see Engle and Russell (2010) for the problems associated to high frequency data.

Additionally, interval prices obviously have more information than one-point prices. High and

low prices have jointly information about both level and volatility. Thus, we expect more efficient

estimation by using interval-valued data; see, among others, Xiong et al. (2017) for the advantages

of high/low prices when compared to one-point prices.

In this paper, we focus on interval-valued times series defined as a collection of interval realizations

ordered over time, i.e., {(yl,t, yu,t)} for t = 1, ...T , where yl,t is the lower bound and yu,t is the upper
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bound of the interval at time t, such that yl,t ≤ yu,t for all t. An equivalent representation is given

by {(Ct, Rt)} where Ct = (yl,t + yu,t)/2 and Rt = yu,t − yl,t ≥ 0, are the center and range of

the interval, respectively. Most of the econometric analysis in this area has focused on model

estimation and inference and, though it is possible to construct point forecasts based on a given

model or algorithm, the question of constructing probabilistic forecasts for interval data has not

been addressed yet. This is the main question that we aim to analyze in this paper. There are

several routes to construct probabilistic forecasts for interval valued time series, which involve

some trade-offs between estimation and prediction decisions.

When dealing with lower/upper bounds systems, one needs to incorporate the constraint yl,t ≤ yu,t

into the estimation.1,2 Alternatively, dealing with the center/range system, one needs to incorporate

the constraint Rt ≥ 0.3 In this paper, we follow Tu and Wang (2016) who overcome this restriction

by log-transforming the range, and estimating the center/log-range system without imposing any

distributional assumptions. However, forecasting the center/range or lower/upper bounds will be

more complicated. First, for point forecasts, one needs the inverse transformation, i.e. Rt =

exp[logRt], which itself introduces non-trivial econometric issues. Second, for a density forecast,

a joint distributional assumption for the center and range or for the upper and lower bounds is

required. Consequently, we propose constructing prediction regions for the center/log-range system

using not only the bivariate normality assumption but also bootstrap procedures that do not require

any specific assumption on the forecast error distribution; see Fresoli et al. (2015) for the bootstrap

procedure. Based on the prediction regions of the center/log-range system, we construct prediction

regions for the center/range system and for the upper/lower bounds system by implementing both

analytical and numerical approaches. An important advantage of our approach is that, by focusing

1González-Rivera and Lin (2013) propose two-step estimators based on assuming a truncated bivariate normal
density of the errors of the lower/upper bounds. The estimation of the system is complex but, if the distributional
assumption is adequate, it is possible to construct a direct bivariate density forecast for the upper/lower bounds.

2Han, Hong and Wang (2016) propose the conditional interval (ACI) model that is based on the concept of
“extended” interval for which the left bound needs not to be smaller than the right bound.

3Lima Neto and De Carvalho (2010) impose non-negative constraints on the parameters of the range equation,
which are unnecessarily too restrictive and complicate the estimation of the system.
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on prediction regions rather than on point forecasts, we avoid the biases associated with the exp-

transformation of point forecasts of log-transformed variables. Note that we estimate only one

unconstrained system, the center/log-range system, but our objective is the prediction regions of

the center/range or upper/lower bounds system. However, if the researcher is interested just on

the dynamics of these constrained systems, she needs to take into account the constraint in the

estimation of the systems.

We assess the finite sample out-of-sample performance of the prediction regions considered and

compare their performance according to several metrics. There is a rather extense literature on

the evaluation of point multivariate forecasts; see, for example, Komunjer and Owyang (2012).

Also, recently, several authors have proposed different evaluation criteria for multivariate fore-

cast densities; see Diebold et al. (1998), Clements and Smith (2002), Gneiting et al. (2008),

González-Rivera and Yoldas (2011) and González-Rivera and Sun (2015). However, the literature

on evaluating multivariate prediction regions is rather thin.4 The most basic required property is

coverage so that regions are reliable when the empirical and nominal coverages are close. To our

knowledge, there is one additional metric that brings the volume of the region to interact with its

coverage (Golestaneh et al., 2017). In this paper, we also contribute to this literature by introduc-

ing several new measures that account for (i) the location of out-of-the-region points with respect

to a central point of the region, (ii) the tightness of the intervals that result from projecting the

two-dimensional region into one-dimensional intervals, and (iii) the distance of the also projected

out-of-the-region points to the projected one-dimensional interval. These new measures bring a

notion of risk associated with the prediction region. In addition, we also provide a description of

the distribution of the out-of-the-region points around the region to measure whether the region

is probability-centered. We show that, even for Gaussian systems, bootstrap methods deliver the

best performance, mainly when the estimation sample is small and estimation uncertainty is most

relevant. For non-Gaussian systems, bootstrap regions are preferred regardless of the sample size.

4See Rodrigues and Salish (2015) for accuracy measures of interval-valued point forecasts.
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Finally, we construct forecast regions for a time series of daily low/high S&P500 returns. In

addition to illustrating the procedures described in this paper, this empirical application has

interest on its own. As mentioned above, daily low/high return intervals are more informative

than just daily one-point measurements (end-of-day return) as they have simultaneous information

about the level and volatility and, at the same time, they avoid some of the problems often

associated with high frequency intra-daily observations. Several authors show that range-based

measures of volatility may be prefered to other alternative measures based either on one-point

returns or high-frequency intra-day returns; see Parkinson (1980), Rogers and Satchell (1991),

Rogers et al. (1994), Alizadeh et al. (2002), Brand and Diebold (2006) and Suh and Zhang (2006),

among others. Furthermore, it is also important to measure the uncertainty of the volatility itself;

see Vorbrink (2014), Blasques et al. (2016) and Ji and Shi (2018) for the relevance of measuring the

uncertainty of volatility in the context of financial models. In addtition, when computing forecast

intervals for future returns and volatilities, one should take into account that both quantities are

usually correlated. For example, Cheung et al. (2009) point out that a proper specification of the

range using only its own history may be inferior to a model that jointly describes the behaviour

of high and low prices. In the interval approach described in this paper, we forecast jointly future

low/high return intervals and construct prediction regions of the center and range of the interval

at any desired horizon that do not require parametric distributional assumptions. The forecast

regions incorporate the dependence between returns and volatilities when building joint forecast

regions for the center/log-range or low/high systems. Overall, the main advantage of the proposed

approach is that it allows for the modeling of the joint conditional density of the level and volatility

of returns, which in our sample are contemporaneous and negatively correlated, and consequently

allows for the construction of bivariate density forecasts. We also carry out a trading strategy

that illustrates the economic advantages of taking into account the probabilistic forecasts of the

interval returns instead of point forecasts.

The organization of the paper is as follows. Section 2 establishes notation by describing the

4



VAR model for the center/log-range system and the construction of forecast regions both with

and without the normality assumption. Section 3 shows how to construct forecast regions for the

center/range and upper/lower bounds systems, starting from the forecast regions of the center/log-

range system. Section 4 proposes several new metrics to evaluate the performance of prediction

regions while Section 5 reports Monte Carlo simulations carried out to compare the performance

of the proposed procedures to construct forecast regions. Section 6 constructs prediction regions

for S&P500 low/high return intervals as the basis for implementing profitable trading strategies.

Section 7 concludes.

2 Forecasting the center/log-Range system

2.1 Point forecasts

Let us call yc,t ≡ Ct, yr,t ≡ logRt and Yt ≡ (yc,t, yr,t)
′. We start by fitting the following VAR(p)

model for the center/log-range system

Yt = A+

p∑︂
i=1

BiYt−i + εt (2.1)

where A and Bi are parameter matrices restricted to satisfy the usual stationarity conditions5 and

εt is a bivariate white noise process with covariance matrix Ω. The estimation of the parameters

proceeds by LS, which is consistent and asymptotically normal under standard assumptions.6

Given Y1, ..., YT , if the loss function is quadratic, optimal h-step-ahead point forecasts of YT+h are

given by

YT+h|T = A+

p∑︂
i=1

BiYT+h−i|T (2.2)

5Note that the VAR(p) model is not subject to further restrictions as we are log-transforming the range.
6Tu and Wang (2016) used the estimator of Yao and Zhao (2013) that relies on kernel estimates of the likelihood.

This estimator is computationally more demanding than LS and depends on the choice of tuning parameters. Their
empirical results suggest that both estimators are very similar and, consequently, we focus on the LS estimator.
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where YT+h−i|T = YT+h−i for i ≥ h. The forecast error covariance matrix is given by Wh =

Ω +
∑︁h−1

i=1 ΨiΩΨ
′
i where the matrices Ψi come from the MA(∞) representation of Yt. In practice,

consistent LS estimates are plugged in YT+h|T and Wh to obtain the estimated h-step-ahead point

forecasts and their estimated covariance matrices, denoted by ŶT+h|T and Ŵh, respectively.

2.2 Forecast regions under normality

If the center/log-range system is bivariate normal, pointwise bivariate density forecasts can be

obtained as follows

YT+h → N(ŶT+h|T , Ŵh), (2.3)

and h-step-ahead forecast ellipses for YT+h with coverage 100× (1− α)% are given by

NET+h =
[︁
YT+h such that (YT+h − ŶT+h|T )

′Ŵ−1
h (YT+h − ŶT+h|T ) ≤ q1−α

]︁
, (2.4)

where q1−α is the (1− α) quantile of the chi-square distribution with 2 degrees of freedom.

As proposed by Lutkephol (1991), we could also construct forecast regions by using Bonferroni

rectangles (BR), which are simpler and rather popular among practitioners. A BR with (at least)

100× (1− α)% coverage has the following sides

[︁
bc,α/4, bc,1−α/4

]︁
≡

[︁
ŷc,T+h|T − zα/4

√︂
Ŵh,11, ŷc,T+h|T + zα/4

√︂
Ŵh,11

]︁
(2.5)[︁

br,α/4, br,1−α/4

]︁
≡

[︁
ŷr,T+h|T − zα/4

√︂
Ŵh,22, ŷr,T+h|T + zα/4

√︂
Ŵh,22

]︁
, (2.6)

where zα/4 is the α/4-quantile of the standard normal distribution. To include the contemporaneous

linear correlation between the center and log-range, the BR can be modified as in Fresoli et al.
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(2015). The corners of the modified rectangle are as follows

[bc,α/4, br,α/4 + phbc,α/4], [bc,α/4, br,1−α/4 + phbc,α/4], (2.7)

[bc,1−α/4, br,α/4 + phbc,1−α/4], [bc,1−α/4, br,1−α/4 + phbc,1−α/4]

where ph = Ŵh,21/Ŵh,11. Although the area of the modified Bonferroni rectangle (MBR) is the same

as that of the BR, their coverage may be slightly different depending on the quantiles associated

with the modified terms, e.g., br,α/4 + phbc,α/4, which in turn depend on the magnitude and sign of

ph. Simulation results will provide some information on the coverage rate of the MBR.

To illustrate the shapes of the three forecast regions described above, Figure 1 (top panel) plots

the one-step-ahead 95% NE, BR and MBR together with 1000 realizations of YT+1 generated by

a VAR(4) model with Gaussian errors and a contemporaneous correlation of -0.24. The forecast

regions have been obtained after estimating the parameters using T=1000 observations. We observe

that both the NE and MBR regions are able to capture the negative correlation between the center

and the log-range while the BR cannot inform about this correlation. Note that the BR has large

empty areas without any realization of YT+1.

2.3 Forecast regions under non-normality

Often the normal distribution is not a good approximation for the distribution of the center/log-

range system. In this case, we can obtain bootstrap point-wise forecast densities that incorporate

parameter uncertainty without relying on any specific forecast error distribution. Note that even

in the Gaussian case, if the estimation sample is not very large, the effect of parameter estimation

on the forecast uncertainty may not vanish, and so the use of bootstrap forecast densities may be

desired. In this paper, we implement the asymptotically valid bootstrap algorithm of Fresoli et al.

(2015) to obtain bootstrap replicates of Y
∗(b)
T+h|T , for b = 1, ..., B.
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The bootstrap replicates can be used to obtain the following point-wise bootstrap ellipse with

100× (1− α)% coverage

BET+h =
[︁
YT+h|[YT+h − Ȳ ∗

T+h|T ]
′SY ∗(h)−1[YT+h − Ȳ ∗

T+h|T ] ≤ q∗1−α

]︁
, (2.8)

where Ȳ ∗
T+h|T is the sample mean of the B bootstrap replicates Y

∗(b)
T+h|T , SY ∗(h) is the corresponding

sample covariance matrix and q∗1−α is the (1 − α) quantile of the empirical distribution of the

quadratic form [Y
∗(b)
T+h|T − Ȳ ∗

T+h|T ]
′SY ∗(h)−1[Y

∗(b)
T+h|T − Ȳ ∗

T+h|T ].

Point-wise bootstrap prediction regions for the center/log-range system can also be constructed

as BR with at least 100 × (1 − α)% coverage with corners obtained from the marginal bootstrap

distributions of the center and the log-range and denoted as BBR. These BBR regions can be

correct for the contemporaneous correlation between the center and the log-range as in (2.7).

Note that, when the joint distribution of the center/log-range system is not symmetric, neither the

BE nor the BBR need to be probability-centered; see, for example, Beran (1993) for the desirable

properties of multivariate forecast regions. In this case, the BE and BBR regions will only be

approximations to the true shape of the bootstrap forecasts. Alternatively, probability-centered

forecast regions can be constructed using the convex hull peeling method of Tukey (1975) that

consists of constructing a series of convex prediction polygons. Given a data cloud, the first layer

of the Tukey convex hull is the convex polygon formed by the boundary of the data. It continues

by peeling the first layer off and finding the second layer for the remaining data. This process is

repeated until no convex polygon can be constructed any more. Given the two-dimensional boot-

strap data cloud, Y
∗(b)
T+h|T , we construct the Tukey nonparametric region by choosing the polygon

that provides the closest coverage to the desired nominal coverage rate.

As an illustration of the bootstrap regions, Figure 1 (top panel) plots the 95% BE, BBR and

BMBR regions for YT+1 generated as described in the previous section. These regions are based on
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B=4000 bootstrap replicates. Recall that the estimation sample size is T = 1000 and, consequently,

the uncertainty due to parameter estimation is negligible. Therefore, the normal and bootstrap

ellipses have identical shapes. The Tukey hull follows very closely these ellipses. The BBR are also

very similar to their normal counterparts.

3 Regions for center/range and lower/upper systems

When forecasting interval-valued time series, often the interest is not the center/log-range system

but either the center/range or the lower/upper systems. In this section, we describe analytical and

numerical methods to construct prediction regions for these systems.

First, under bivariate normality of center/log-range, the bivariate density of the center/range

system can be estimated as follows

f(yc,T+h, RT+h) =
1

2π

√︂
|Ŵh|

1

RT+h

exp[−1

2
(YT+h − ŶT+h|T )

′Ŵ−1
h (YT+h − ŶT+h|T )]. (3.1)

Since the center and the range are linear combinations of the upper and lower bounds, it is easy

to see that that the conditional bivariate density of the lower/upper bounds is also given by (3.1).

Analytical contours for the center/range (or lower/upper bounds) system can be constructed by

horizontally cutting the bivariate density in (3.1) at a value determined by the nominal coverage and

obtained by numerical simulation. Figure 1 (bottom panel) plots 1000 realizations of (CT+1, RT+1)

based on the same system described above, together with the 95% forecast region obtained using

the analytical density in (3.1). We observe that, as expected, the region is not an ellipse.

Second, note that any of the prediction regions constructed for the center/log-range system can be

directly transformed into a prediction region for the center/range system. For instance, consider

the NE region with 100 × (1 − α)% probability coverage. Its boundary is the (1 − α) bivariate
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quantile. The boundary points (center, log-range) can be transformed into another boundary of

points (center, exp(log-range)) of a prediction region for the center/range system, that is,

T-NET+h =
{︁[︁
(yc,T+h, exp[logRT+h])

′] such that (YT+h− ŶT+h|T )
′Ŵ−1

h (YT+h− ŶT+h|T
)︁
= q1−α

}︁
.

(3.2)

The new region will not preserve the shape of an ellipse but will have the same coverage because

the exponential function is a monotonic transformation. Furthermore, the transformation has the

advantage of delivering strictly positive values for the range.7

In Figure 1 (bottom panel), we illustrate the shape of the T-NE regions using the same simulated

example considered before. The transformed shape is similar to the analytical although they are

not identical.

Similarly, the BR and MBR regions can be transformed by taking the exponential transformation

of the log-range intervals in (2.6) and (2.7), respectively. Figure 1 (bottom panel) illustrates the

shapes of the transformed BR and MBR regions. As expected, while the transformed MBR region

shows the correlation between center and range, the transformed BR region does not and some

portions of its area are empty.

It is important to note that the transformation of the forecast regions constructed for the center/log-

range system is not feasible when constructing prediction regions for the lower/upper bounds sys-

tem because there is not a monotonic transformation from the boundary points of the center/log-

range region to the boundary points of the lower/upper bounds region.

Finally, if one avoids the normality assumption of the center/log-range system and wishes to con-

struct bootstrap forecast regions for the center/range system, the regions can also be transformed.

For example, by transforming the points (center, log-range) sitting on the boundary of (2.8) to

7Note that, by focusing on prediction regions rather than on point forecasts, we avoid the biases associated with
the exp-transformation of point forecasts of log-transformed variables, for which corrections are necessary; see, for
example, Granger and Newbold (1976) and Guerrero (1993).
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points (center, exp(log-range)), we obtain the following transformed bootstrap ellipse

T-BET+h =
{︁[︁
(yc,T+h, exp[logRT+h])

′] such that (YT+h−Ȳ ∗
T+h|T )

′SY ∗(h)−1(YT+h−Ȳ ∗
T+h|T ) = q∗1−α

}︁
(3.3)

Similarly, we obtain the transformed bootstrap Bonferroni and modified Bonferroni rectangles for

the center/range system. Finally, we also construct the Tukey nonparametric region for the data

cloud of bootstrap realizations of center and range (ŷ
∗(b)
c,T+h|T , exp(ŷ

∗(b)
r,T+h|T ))

′. Figure 1 (bottom

panel) plots the transformed bootstrap forecast regions of the center/range system for the same

simulated system considered above.

Third, recall that the direct transformation of the boundaries of the regions for the center/log-range

system cannot be implemented when constructing forecast regions for the upper/lower bounds

system. This is why, for this system, we construct the following bootstrap ellipse

BEUL
T+h =

[︁
Y UL
T+h| [Y UL

T+h − Ȳ UL∗
T+h|T ]

′SUL
Y ∗ (h)−1[Y UL

T+h − Ȳ UL∗
T+h|T ] ≤ qUL∗

1−α

]︁
(3.4)

where Y UL
T+h = (yu,T+h, yl,T+h)

′ and Ȳ UL∗
T+h|T and SUL

Y ∗ (h) represents the mean vector and variance

covariance matrix, respectively, of the bootstrap upper/lower bound realizations given by y
∗(b)
u,T+h =

ŷ
∗(b)
c,T+h|T + 1

2
exp(ŷ

∗(b)
r,T+h|T ) and y

∗(b)
l,T+h = ŷ

∗(b)
c,T+h|T − 1

2
exp(ŷ

∗(b)
r,T+h|T ), respectively.

Finally, a Tukey nonparametric region can be constructed for the data cloud of bootstrap realiza-

tions of upper and lower bounds (y
∗(b)
u,T+h, y

∗(b)
l,T+h))

′. Note that for this system, we do not construct

Bonferroni rectangles because they may contain unfeasible subregions of points where the lower

bound is greater than the upper bound.
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4 Out-of-sample evaluation of prediction regions

Suppose that we construct h-step ahead prediction regions with nominal coverage 100× (1−α)%,

from t = 1, ..., N and want to evaluate them. As in the case of loss functions, it is only the

objective of the forecaster that will define which criterium is the most appropriate. At the most

basic level, the forecaster will aim for reliability, that is, those prediction regions that provide the

closest coverage to the nominal. The average coverage rate is defined as follows

C(1−α) =
1

N

N∑︂
t=1

I
(1−α)
t (4.1)

where I
(1−α)
t is an indicator variable that is equal to 1 if the observed outcome falls within the

prediction region and 0 otherwise. Furthermore, following Golestaneh et al. (2017), we combine

reliability with sharpness, a preference for regions with small volume. The forecaster would prefer

a lower average coverage-volume score given by

CV(1−α) =
⃓⃓ 1
N

N∑︂
t=1

[︁
I
(1−α)
t − (1− α)

]︁
×

[︁
V

(1−α)
t

]︁ 1
2
⃓⃓

(4.2)

where V
(1−α)
t is the volume of the prediction region at time t.

Another aspect to the evaluation of forecast regions is to consider the observations outside of the

region and to assess how far they are from a central point within the prediction region. We propose

the following average outlier distance

O(1−α) =
1

G

N∑︂
t=1

[︁
1− I

(1−α)
t

]︁
×D(yt,Mt) (4.3)

where G is the number of observations outside the region, D is a distance measure (e.g. Euclidean

distance) of each outside-the-region outcome, yt, from Mt, which is the median of the realizations

generated within the region at each time t. To obtain Mt, we implement the definition of median
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in a multi-dimensional setting introduced by Zuo (2003), known as ‘projection depth median’. The

outside-the-region observations can be considered ‘risk’ that the forecaster has to bear and, in this

sense, he would like to minimize O(1−α). For two regions with similar coverage, the forecaster will

choose that with a lower average outlier dispersion.

We also evaluate the prediction region by the sharpness or tightness of the intervals that result from

projecting the two-dimensional region into one-dimensional intervals. We draw a large number of

directions, which are given by the lines drawn from the zero origin of the unit circle to any point in

its boundary. For each direction, we find the two bounding tangent lines to the prediction region

that are perpendicular to that direction. We calculate the length of the projected interval bounded

by the tangent lines; see Figure 2 (top panel) for a graphical representation. Denote di ∈ Υ as the

ith direction in Υ, where Υ is the set of all directions, and let D be the number of directions. The

average length of the projected intervals associated with the prediction region is

P(1−α) =
1

N

N∑︂
t=1

Pt (4.4)

where Pt is the average projection length over all directions at time t given by Pt =
1
D

∑︁D
i=1(udi−ldi)

with udi and ldi being the upper and lower bounds of the projected interval in the ith direction. The

forecaster would prefer prediction regions that deliver tight projected intervals. We also consider

the realized data points over the prediction period in conjunction with the projected intervals.

The average distance of the projected outliers associated with the prediction region is

OP(1−α) =
1

N

N∑︂
t=1

OPt (4.5)

where OPt is the average distance of the projected outliers to the projected interval given by OPt =

1
D

∑︁D
i=1[(ldi − xdi)I(xdi < ldi) + (xdi − udi)I(xdi > udi)] with xdi being the coordinate of the data

point projected on the ith direction and I(•) being an indicator function. The forecaster prefers
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prediction regions with projected outliers close to the projected intervals. Finally, if the length of

the projected interval is large, we expect the distance of the projected outliers to the interval to

be smaller. To take into account this trade-off, we propose a combined criteria POPt = Pt ×OPt

so that, over the prediction sample, the average trade-off associated with the prediction region is

POP(1−α) =
1

N

N∑︂
t=1

POPt (4.6)

A smaller POP(1−α) would be preferred by the forecaster.

Our final assessment of prediction regions is whether they are probability-centered. We check

whether the points outside of the prediction region are evenly distributed around the region R. In

this case, we expect the following statistic to be close to zero

S(1−α)(Mt) =
1

D

D∑︂
i=1

|Cu(di,Mt))− Cl(di,Mt)| (4.7)

where D is the number of directions that pass through Mt, Cu(di,Mt)) = {#x|(x ∈ Rc) ∩ (x ∈

Hu(di,Mt))} and Cl(di,Mt) = {#x|(x ∈ Rc) ∩ (x ∈ Hl(di,Mt))} with Hu(di,Mt) being the half-

plane above the line generated by the direction di, Hl(di,Mt) being the half-plane below the

same line and Rc the complementary region to R; see Figure 2 (bottom panel) for a graphical

representation. Note that S(1−α)(Mt) will not be feasible with real data (we will have only one

realized observation at time t that could be in or out of the prediction region). However, in a

simulated environment, we will be able to assess whether each prediction region is probability-

centered.

5 Monte Carlo Simulations

In this section, we perform Monte Carlo simulations to evaluate the prediction regions for interval

valued time series according to the criteria described in Section 4. We report just one case for
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small samples here and extensive simulation cases in the supplementary material.

We generate R = 500 replicates of the center/log-range system from a VAR(4) with T = 50

observations and its parameters chosen to replicate the dynamics of S&P500 interval returns. The

center and log-range errors are distributed according to a Skewed-Student-t with 5 degrees of

freedom and asymmetry parameter -0.5 and a normal distribution, respectively.8 Note that the

distributional assumptions are on the marginal densities of the errors of each equation and we

do not know the exact bivariate densities. For the system to have the desired marginal density

functions and the stated correlation structure, we have generated bivariate errors from a Gaussian

copula and re-transform the PITs of the corresponding univariate normal variates according to the

Student-t, to obtain the new error variates, which need to be adjusted to have the desired mean and

variance. We construct one-step-ahead prediction regions with 95% nominal coverage and simulate

1000 future values of the required vector at time T + 1, i.e. center/log-range, center/range, and

upper/lower bounds. The empirical coverage is calculated as the proportion of these values that

falls within the constructed prediction regions. The number of bootstrap samples is B = 2000,

and the number of directions to calculate the average length of the projected intervals and outliers

is D = 100.9

Table 1 reports the evaluation criteria for the Monte Carlo experiments when the prediction regions

are constructed by all procedures described in Section 2 for the three systems (center/log-range,

center/range and upper/lower bounds). First, note that regardless of the particular system being

forecast, the regions based on the normality assumption for the center/log-range system have cov-

erages below the 95% nominal and their coverage-volume scores, CV, are nearly double than those

of the regions based on bootstrap procedures. Therefore, it seems that in cases of small samples

and/or non-Gaussian interval data, bootstrap procedures should be used instead of relaying on

normality. Comparing the alternative bootstrap regions considered, we can observe that bootstrap

8The Skewed-Student distribution is defined as proposed by Hansen (1994).
9The parameters of the VAR(4) model are reported in the Supplementary material available online. Results for

other VAR models, error distributions and sample sizes are also reported in the Supplementary material.
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ellipsoid have minimum coverage-volume scores, although the differences among them are very

small. However, the average outlier distance, O, is lower for the Tukey regions than for the other

bootstrap regions. When constructing the regions for the upper/lower bounds, the Tukey convex

hull has also smaller trade-off between sharpness and risk, POP and centeredness. Therefore, it

seems that in the presence of asymmetric distributions as that considered in this paper, the Tukey

convex hull provide adequate regions for interval data.

6 Prediction regions for S&P500 low/high returns

In this section, we construct joint prediction regions for the center (level) and log-range (volatility)

of daily S&P500 return intervals that take into account their interaction without making particular

assumptions on their joint distribution.

6.1 Joint modeling of returns and volatilities

Several authors propose modeling the interaction between volatility and asset returns fitting bi-

variate models to returns and realized variances. Among them, Takahasi et al. (2009) propose

an Stochastic Volatility model in which both returns and realized variances depend on a latent

volatility. The presence of this latent volatility force the authors to estimate the models and ex-

tract the volatility using computationally intensive Bayesian procedures. Shephard and Sheppard

(2010) also propose modeling returns and realized volatilities by fitting a VAR model called High-

frequency-based-volatility (HEAVY) and obtain the entire predictive distribution of returns based

on drawing with replacement pairs from the joint distribution of standardized returns and realized

volatilities. More recently, Catania and Proietti (2019) propose bivariate score driven models for

returns and realized volatilities.

The methodology proposed in this paper has several advantages with respect to bivariate models

for returns and realized volatilities. First, we avoid issues related to microstructure noise associated
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with the construction of realized volatilities. As mentioned in the Introduction, several authors

advocate using the range as a measure of volatility. Second, using bootstrap prediction regions,

we avoid potential unrealistic assumptions about the joint distribution of returns and volatilities;

see, for example, Catania and Proietti (2019) who assume that returns and log-volatilities have

a joint Student-t distribution with ν degrees of freedom implying that the marginal univariate

distributions of returns and volatilities are both Student-t with ν degrees of freedom. Third, the

proposed methodology is a natural framework to incorporate other stylized facts as, for example,

the effect of past volatilities on returns. Last but not least, the proposed methodology is com-

putationally less intensive than alternative approaches and thus, it allows for a straightforward

implementation and can be easily extended to other models for the center/log-range system as

VARMA or cointegrated systems.

6.2 Model estimation

We collect intervals of low/high S&P500 prices, (PL
t , P

U
t ) observed daily from January 2, 2009 to

April 20, 2018 for a total of 2341 observations. Since prices are non-stationary, we construct daily

stationary intervals of low/high returns, (yLt , y
U
t ) by calculating the daily minimum and maximum

return with respect to the closing price of the previous day, i.e. yLt = PL
t −PC

t−1 and yUt = PU
t −PC

t−1,

where PC
t is the closing price at day t. Figure 3 (top panel), which plots a kernel estimate of the

bivariate unconditional density of the center and the range, shows that the center exhibits fat tails

and it is slightly skewed to the left. Furthermore, according to the sample descriptive statistics

reported in the Supplementary material, we can observe that the log-range is only slightly skewed

to the right and has a coefficient of kurtosis of about 3. The correlation between the center and

log-range is about -0.10. With respect to temporal dependence, as expected, the Q-statistics

for the center indicate no autocorrelation while those for the range and log-range indicate high

autocorrelation mimicking the autocorrelations often observed in the end-of-the day returns and

in their squared returns, respectively.
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We split the total sample into an estimation sample from January 2, 2009 to December 31, 2016

(2014 observations) and a prediction/evaluation sample from January 1, 2017 to April 20, 2018

(327 observations). Using the estimation sample, we obtain the following LS estimates of the

(significant) parameters of a VAR(6) model as selected by the SIC criteria (robust standard errors

in parenthesis)10

Ĉt = 0

logR̂t = −0.17
(0.013)

Ct−1 − 0.09
(0.014)

Ct−2 − 0.06
(0.014)

Ct−3 − 0.04
(0.014)

Ct−4+

+ 0.17
(0.023)

logRt−1 + 0.22
(0.023)

logRt−2 + 0.16
(0.023)

logRt−3 + 0.09
(0.023)

logRt−4 + 0.1
(0.023)

logRt−5 + 0.11
(0.022)

logRt−6

As expected, all regressors (lagged center and lagged log-range) in the equation for the center are

not statistically significant. On the contrary, the equation for the log-range presents interesting

dynamics. The center Granger-causes the log-range so that the lagged centers are negatively

correlated with the current log-range, i.e. positive and large changes in the center return today

predict a narrower range tomorrow. This is similar to the leverage effect in a conditional variance

equation. Another relevant aspect, in agreement with the ACF/PACF profiles, is the strong and

statistically significant autoregressive nature of the log-range. The estimated VAR model captures

the main stylised facts often observed in financial returns: i) persistence of volatility; ii) heavy

tails of returns; and iii) negative dependence between volatility and past returns. The goodness

of fit for the log-range equation is high with an adjusted R2 = 0.52. In the Supplementary

Material, we report the results of the residual diagnosis. First, we observe that the residuals are

all clear of any autocorrelation. Furthermore, the center residuals and log-range residuals are

contemporaneous negatively correlated with a correlation coefficient of -0.17. Finally, we formally

test for conditional bivariate normality by implementing the Generalized AutoContouR (G-ACR)

(in-sample) tests based on the Probability Integral Transformations (PIT) of the joint density under

the null hypothesis of bivariate normality (González-Rivera and Sun, 2015). We also report the

results of the t-statistics (tk,α) that canvas the density from the 1% to the 99% PIT autocontours

10Only significant values are reported.
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for lags k = 1, 2, ...5. The null hypothesis is strongly rejected at the 5% significance level for

mostly all but the 10%, 90% and 95% autocontours. The portmanteau test Ck also reinforces

the strong rejection of bivariate normality. Figure 3 (bottom panel) plots the autocontours of the

contemporaneous PITs (centert, log-ranget). Under the correct null hypothesis, the distribution of

the PITs should be uniformly distributed within these autocontour squares. It is obvious that this

is not the case.

6.3 Out-of-sample forecast regions

We evaluate the out-of-sample performance of the one-step-ahead 95% prediction regions from

January 1, 2017 to April 20, 2018 (327 observations). The results are reported in Table 2. For the

system center/log-range, the bootstrap MBR regions offer the best coverage C with empirical rates

of mostly 95% and they are the most reliable with the lowest average coverage-volume scores CV .

They also provide the tightest projected one-dimensional regions measured by POP . However,

the Tukey convex hull regions provide the lowest average outlier distance O. For the system

center/range, we find that the transformed modified bootstrap Bonferroni rectangle is the best

performer according to most metrics C, CV and POP . For the system upper/lower bounds, the

Tukey convex hull offers the best coverage and the lowest scores for O and POP . As expected,

the analytic methods are not reliable as they tend to undercover. On the contrary, the bootstrap

ellipse and its transformed region tend to overcover. All these results are very consistent with the

Monte Carlo findings of the previous section.

In Figures 4 and 5, we plot the one-step-ahead 95% prediction regions for the center/log-range and

center/range systems respectively. We choose six random dates over the prediction sample (March

15, May 11, August 30, December 8, 2017 and February 22, April 6, 2018). In all six dates, the

one-step-ahead realized values of the (center, log-range) and (center, range) fall within the regions;

only the realized values on December 8, 2017 and April 6, 2018 are slightly more extreme and they
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fall towards the boundaries of the prediction regions. For the center/log-range system, the normal

ellipse and the bootstrap ellipse are very similar but in the center/range system, the bootstrap

ellipse tends to be wider adapting to the kurtosis of the center and the asymmetry of the range.

The differences among the Bonferroni rectangles are more obvious in the center/range system. In

the center/log-range system, the Tukey convex hull has a cone shape over all the six dates though

the shape becomes more irregular in the center/range system.

It is important to point out that when using point data, we can obtain a single forecast density for

future returns. However, by using interval data, we are able to provide a wider characterization

of returns by constructing the conditional forecast density of returns conditioning on volatility or

the joint bivariate density of returns and volatilities.

6.4 Trading strategy

Using the bootstrap prediction regions for the daily S&P500 high/low returns obtained in the

previous section, we develop a trading strategy for interval data that extends that proposed by He

et al. (2010) for point forecasts. The proposed trading strategy exploits the probability distribution

of forecasts. Consider the following ratio st =
|Ot−ŷl,t+h|
|ŷu,t+h−Ot| , where Ot is the opening return at day

t, calculated using the opening price at day t with respect to the closing price at day t − 1 and

ŷl,t+h and ŷu,t+h are the low and high return forecasts, respectively. If st < 1, then the return

is more likely to go up than down in the next h days. If this is observed for several days, it is

reasonable to believe that the market is forming an upward trend and a “buy alert signal” should

be generated. A similar argument can be applied to the “sell alert signal”. While He et al. (2010)

compute st using point forecasts of ŷu,t+h and ŷl,t+h, we compare the probability of st > 1 (sell

signal) and st < 1 (buy signal). Figure 6 illustrates the proposed trading strategy. Notice that st

is the absolute value of the slope of any line that connects point A ≡ (Ot, Ot) and any other point

below the 45 degree line. The ellipse represents the h-step-ahead prediction region of the high/low
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returns. The slope of line AB is equal to (minus) one and it is perpendicular to the 45 degree

line. Hence, the area under the 45 degree line is divided into two areas by the line AB into two

areas: st > 1 to the left of line AB, and st < 1 to the right of line AB. Therefore, counting the

bootstrap realizations in the two subareas of the prediction region, we can compare the estimated

probability of st < 1 with that of st > 1 for a given 100× (1− α)% confidence region. Then, the

trading strategy consists of the following steps:

• At day t, plot Figure 6 based on Ot and the h-step-ahead prediction region of high and low

returns. Within the prediction region, if the number of bootstrap realizations (obtained as

in equation (3.4)) on the right hand side of the line AB is larger than that on the left hand

side of the line AB, a “buy alert signal” is generated.

• If Prob(st < 1) > Prob(st > 1) is observed for m consecutive days beginning with day t, buy

the asset on day t+m− 1 using the closing price on that day.

• After buying the asset, on any other day d, watch for the“sell alert signal”, that is, the

number of bootstrap realizations on the left hand side of the line AB should be larger than

that on the right hand side of the line AB within the prediction region. If the “sell alert

signal” is observed for m consecutive days from day d, sell the asset on day d+m− 1 using

the closing price on that day. Otherwise, hold the asset.

We evaluate this trading strategy over the out-of-sample period (Jan. 1, 2017 to Apr. 20, 2018)

using the bootstrap ellipse and Tukey Convex Hull prediction regions with a 95% nominal cover-

age. For the implementation, the choice of m should not be too small because it will introduce

substantial noise in trading but it should not be too large either because we could miss profitable

trades. We consider m = 1, 2, 3, 4 and h = 1, 2, 3. We apply a transaction cost of 0.1%, and we

annualize the profit/loss for each trade because each trade will have a different holding period.

The annualized return is calculated as ARt = (
yc,t+j−yc,t

yc,t
−0.001)(365

j
) where yc,t and yc,t+j, (j > 0),

are the closing prices for the buying and selling days, respectively. The investor can buy the asset
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again before the previous bought asset is sold. At the end of the evaluation period, if there are still

assets that have not been sold, these assets will not be considered when calculating the profits.

Table 3 reports the average and the max and min of ARt together with the percentage of trades

with positive returns for all cases. HKW is the trading strategy in He et. al. (2010) based on

point forecasts of the high/low returns. For all cases but two, the averaged annualized returns are

positive. The choice of m is very relevant because the gap between the max and min annualized

returns narrows as m increases for all h. A large m means that the investor is looking for a

stronger signal and, though she may miss some trades with extreme positive returns, she will also

avoid those extreme negative returns that can be catastrophic. There is also a monotonic positive

relation between m and the percentage of trades with positive returns. For average annualized

returns, the performance of BE is better than that of TH in most cases, and the performance of

BE or TH is better than HKW in particular when m = 4.

7 Conclusions

Often time series interval measurements offer a more complete description of a data set because

each observation has joint information on the level and the dispersion of the process under study.

However, statistical analysis of interval-valued data requires that the natural order of the interval is

preserved. Though there are several works that consider the problem of estimation with constraints,

we are not aware of any work that considers the construction of probabilistic forecasts for interval-

valued data satisfying the natural constraint in each period of time. Our contribution lies on

approximating a probabilistic forecast of an interval-valued time series by offering alternative

approaches to construct bivariate prediction regions of the center and the range, or the lower and

upper bounds, of the interval.

To overcome the positive constraint of the range, we estimate a Gaussian bivariate system for

the center/log-range system, which delivers QML properties for our estimators. However, the
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interest of the researcher is not the prediction of the center/log-range but the center/range or

upper/lower bounds of the interval. By implementing either analytical or bootstrap methods

we directly transform the prediction regions for the center/log-range system into those for the

center/range and upper/lower bounds systems. It is important to remark that we do not focus on

point forecast purposely. By focusing on prediction regions rather than on point forecasts, we avoid

the biases associated with the exp-transformation of the point forecasts of log-transformed variable.

A prediction region for the center/log-range does not need any bias correction when transformed

into a prediction region of the center/range system because the quantile is preserved under a

monotonic transformation like the exp-transformation. These transformed prediction regions can

have very irregular shapes even in the most straightforward scenario of bivariate normality of

the center/log-range system. If a central point forecast is of interest, the researcher can always

calculate the centroid of the region.

Beyond the standard coverage rate, we propose several new metrics to evaluate the performance

of prediction regions. We introduce a notion of risk to the evaluation of the regions by considering

the location of the out-of-the-region outcomes with respect to some central point in the region.

The researcher would like to minimize risk once the empirical coverage of the region is close to

the nominal coverage. We have considered Gaussian and non-Gaussian systems and our recom-

mendation leans towards bootstrap methods, even for Gaussian systems. Bootstrap ellipses and

their transformed are best when the joint distribution of the center/log-range system is symmet-

ric. If it is not, then bootstrap Tukey hull regions will be preferred. In summary, we find that

simulation-based methods are the most reliable.

We analyze a time series of the daily low/high return intervals of the S&P500 index. We model

and predict the joint conditional density of the return level and volatility. We show that the

bootstrap regions have best properties. Furthermore, we carry out a trading strategy to illustrate

the economic advantages of taking into account the probabilistic forecast of the low/high returns
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instead of point forecasts.
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EVALUATION CRITERIA

CENTER/log-RANGE C V 1/2 CV O P OP POP S

Normal ellipse 0.851 1.999 0.190 1.529 2.219 0.018 0.037 0.081
Bonferroni rectangle 0.861 2.098 0.177 1.541 2.641 0.010 0.026 0.075
Modified Bonferroni rectangle 0.862 2.098 0.176 1.539 2.674 0.010 0.025 0.075
Bootstrap ellipse 0.935 2.543 0.083 1.986 2.824 0.008 0.021 0.036
Bootstrap Bonferroni rectangle 0.937 2.705 0.086 1.844 3.420 0.004 0.012 0.037
Modified Bootstrap Bonferroni rectangle 0.937 2.705 0.086 1.839 3.466 0.004 0.011 0.038
Tukey convex hull 0.914 2.412 0.105 1.732 2.834 0.008 0.020 0.050

CENTER/RANGE system C V 1/2 CV O P OP POP S

Analytical method 0.851 2.081 0.194 1.656 2.446 0.022 0.049 0.084
T-Normal ellipse 0.851 2.136 0.202 1.635 2.518 0.020 0.047 0.081
T-Bonferroni rectangle 0.861 2.256 0.190 1.649 2.899 0.013 0.034 0.075
T-Modified Bonferroni rectangle 0.862 2.280 0.191 1.643 3.049 0.012 0.032 0.074
T-Bootstrap ellipse 0.935 2.806 0.091 2.122 3.385 0.009 0.026 0.036
T-Bootstrap Bonferroni rectangle 0.937 3.010 0.096 1.981 3.885 0.005 0.016 0.037
T-Modified Bootstrap Bonferroni rectangle 0.936 3.153 0.104 1.959 4.363 0.004 0.015 0.038
Tukey convex hull 0.914 2.711 0.117 1.851 3.385 0.009 0.026 0.050

UPPER/LOWER system C V 1/2 CV O P OP POP S

Analytical method 0.851 2.081 0.194 1.929 3.033 0.031 0.087 0.088
Bootstrap ellipse 0.936 2.947 0.099 2.675 4.101 0.015 0.055 0.054
Tukey convex hull 0.914 2.712 0.117 2.196 4.052 0.013 0.044 0.048

Table 1: Monte Carlo evaluation of one-step-ahead 95% prediction regions for a VAR(4) model
with Skewed-Student-5 center and normal log-range.
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EVALUATION CRITERIA

CENTER/log-RANGE system C V 1/2 CV O P OP POP

Normal ellipse 0.954 2.22 0.009 1.61 2.43 0.004 0.009
Bonferroni rectangle 0.945 2.31 0.011 1.47 2.90 0.002 0.006
Modified Bonferroni rectangle 0.948 2.31 0.004 1.45 2.91 0.002 0.005
Bootstrap ellipse 0.960 2.36 0.025 1.69 2.59 0.003 0.007
Bootstrap Bonferroni rectangle 0.948 2.47 0.004 1.38 3.10 0.001 0.003
Modified Bootstrap Bonferroni 0.951 2.47 0.003 1.36 3.12 0.001 0.002
Tukey convex hull 0.945 2.14 0.010 1.33 2.50 0.002 0.005

CENTER/RANGE system C V 1/2 CV O P OP POP

Analytical method 0.936 1.81 0.032 1.52 2.21 0.009 0.019
T-Normal ellipse 0.954 1.89 0.002 1.71 2.26 0.006 0.013
T-Bonferroni rectangle 0.945 1.98 0.018 1.45 2.58 0.004 0.010
T-Modified Bonferroni rectangle 0.948 1.99 0.013 1.44 2.63 0.003 0.008
T-Bootstrap ellipse 0.960 2.01 0.008 1.85 2.42 0.004 0.010
T-Bootstrap Bonferroni rectangle 0.948 2.19 0.013 1.31 2.87 0.003 0.007
T-Modified Bootstrap Bonferroni 0.951 2.21 0.002 1.24 2.95 0.001 0.004
Tukey convex hull 0.945 2.05 0.025 1.24 2.49 0.004 0.009

UPPER/LOWER system C V 1/2 CV O P OP POP

Analytical method 0.936 1.81 0.032 1.68 3.17 0.008 0.027
Bootstrap ellipse 0.960 2.21 0.021 1.67 3.58 0.005 0.017
Tukey convex hull 0.945 2.05 0.025 1.31 3.61 0.003 0.010

Table 2: Evaluation of one-step-ahead 95% prediction regions for S&P500 returns forecasted from
January 1, 2017 to April 20, 2018.
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m=1 m=2 m=3 m=4

HKW BE TH HKW BE TH HKW BE TH HKW BE TH

h=1

Averaged annualized returns 26.16% 33.12% 33.14% -5.71% 10.89% 5.94% 43.49% 42.52% 38.04% 38.76% 40.25% 40.25%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 155.24% 155.24% 155.24% 85.18% 85.18% 85.18%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 4.64% 4.64% 4.64%

% of trades with positive returns 61.04% 61.54% 61.54% 78.26% 81.48% 80.77% 75.00% 75.00% 75.00% 100% 100% 100%

h=2

Averaged annualized returns 29.86% 30.39% 29.15% 2.02% -1.53% 0.79% 45.44% 48.10% 44.43% 38.76% 38.76% 38.76%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 155.24% 155.24% 129.53% 85.18% 85.18% 85.18%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 4.64% 4.64% 4.64%

% of trades with positive returns 61.54% 62.82% 61.25% 76.00% 76.00% 76.00% 75.00% 71.43% 71.43% 100% 100% 100%

h=3

Averaged annualized returns 29.92% 11.48% 3.37% 4.55% 9.53% 3.22% 42.37% 20.67% 17.26% 43.01% 63.75% 61.42%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 175.56% 175.56% 175.56% 85.18% 102.78% 102.78%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 20.14% 26.47% 26.47%

% of trades with positive returns 62.67% 58.97% 57.69% 80.77% 78.57% 77.78% 88.89% 71.43% 57.14% 100% 100% 100%

Table 3: Trading strategy comparison for S&P500 average annualized returns over the out-of-
sample period from January 1, 2017 to April 20, 2018.
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Figure 1: 95% prediction regions for the center/log-range system (top panel) and center/range
system (bottom panel) obtained from a simulated VAR(4) model with parameters: a1 =

−0.93, b
(1)
11 = 0.34, b

(2)
11 = −0.15, b
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(2)
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0.18, b
(3)
22 = 0.15, b

(4)
22 = 0.08 and Gaussian errors with variances given by σ2

1 = 111.24
and σ2

2 = 0.16 and covariance σ12 = −1.02. The sample size is T = 1000.
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Figure 3: Unconditional bivariate density (top panel) of S&P500 low/high return intervals and
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and log-range VAR(6) model (bottom panel).

32



-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values

Normal ellipse

Bonferroni rectangle

Modified Bonferroni rectangle

Bootstrap ellipsoid

Bootstrap Bonferroni rectangle

Modified Bootstrap Bonferroni rectangle

Tukey Convex Hull

Forecast period: Mar 15, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values

Normal ellipse

Bonferroni rectangle

Modified Bonferroni rectangle

Bootstrap ellipsoid

Bootstrap Bonferroni rectangle

Modified Bootstrap Bonferroni rectangle

Tukey Convex Hull

Forecast period: May 11, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values

Normal ellipse

Bonferroni rectangle

Modified Bonferroni rectangle

Bootstrap ellipsoid

Bootstrap Bonferroni rectangle

Modified Bootstrap Bonferroni rectangle

Tukey Convex Hull

Forecast period: Aug 30, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values

Normal ellipse

Bonferroni rectangle

Modified Bonferroni rectangle

Bootstrap ellipsoid

Bootstrap Bonferroni rectangle

Modified Bootstrap Bonferroni rectangle

Tukey Convex Hull

Forecast period: Dec 8, 2017

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values

Normal ellipse

Bonferroni rectangle

Modified Bonferroni rectangle

Bootstrap ellipsoid

Bootstrap Bonferroni rectangle

Modified Bootstrap Bonferroni rectangle

Tukey Convex Hull

Forecast period: Feb 22, 2018

-4 -3 -2 -1 0 1 2 3 4

Center

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

lo
g

-R
a

n
g

e

SP500 (One step ahead prediction regions)

realized one-step ahead values

Normal ellipse

Bonferroni rectangle

Modified Bonferroni rectangle

Bootstrap ellipsoid

Bootstrap Bonferroni rectangle

Modified Bootstrap Bonferroni rectangle

Tukey Convex Hull

Forecast period: Apr 6, 2018

Figure 4: One-step-ahead 95% prediction regions for the center/log-range system of the SP500 return intervals correspond-
ing to different dates of the out-of-sample period.
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Figure 5: One-step-ahead 95% prediction regions for the center/range system of the SP500 return intervals corresponding
to different dates of the out-of-sample period.
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Figure 6: Buy and sell signals from trading strategy.
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