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The objective of this work is to model the heat transfer coef-

ficient between an immersed surface and fixed and bubbling

fluidized beds of granular phase change material (PCM).

The model consists of a two-region model with two different

voidages in which steady and transient conduction problems

are solved for the fixed and fluidized bed cases, respectively.

The model is validated with experimental data obtained un-

der fixed and fluidized conditions for sand, a common mate-

rial used in fixed and fluidized beds for sensible heat storage,

and for a granular PCM with a phase change temperature of

approximately 50◦C. The superficial gas velocity is varied to

quantify its influence on the convective heat transfer coeffi-

cient for both materials.

The model proposed for the PCM properly predicts the

experimental results, except for high flow rates, which cause

the contact times between the surface and particles to be very

small and lead the model to over-predict the results.

Nomenclature

A heat transfer area [m2]
Ar Archimedes number [-]

a submerged area of the probe [m2]
aw parameter that depends on experimental condi-

tions [-]
cp specific heat [J·kg−1·K−1]



Dt heat transfer probe diameter [m]
dp particle diameter [m]
H height of the bed [m]
h mean heat transfer coefficient [W·m−2·K−1]

hw convective heat transfer coefficient from the bed

to the inner surface of the bed [W·m−2·K−1]
i enthalpy [J]
k thermal conductivity [W·m−1·K−1]
ls effective length of the solid particles [m]
lv effective length of the fluid film near the stagna-

tion point of two neighboring particles [m]
m mass [kg]
n number of contact points between two neighbor-

ing particles [-]
fw bubble frequency at the height of the surface [s−1]

Nu Nusselt number [-]
Pr Prandtl number [-]
Q̇ heat flux [W]
q̇ heat flux per area [W·m−2]
q power of the resistance probe [W]
R radius of the particle [m]

Rp particle radius [m]
Re Reynolds number [-]
R equivalent resistance of the heat transferred

[m3·K·W−1]
T temperature [◦C]
t time [s]
t time the solids are in contact with the surface [s]

Um f minimum fluidization velocity [m·s−1]
V̇ flow rate [m3·s−1]

Greek symbols

α thermal diffusivity [m−2·s−1]
β ratio of the distance between the center of two ad-

jacent particles to the particle diameter [m]
ρ density [kg·m−3]

σd p standard deviation of the mean particle diameter

[m]
θ angle [rad]
ξ Rsinθ

ε voidage [-]
δ bubble fraction at the wall location [-]

∆T temperature difference [K]
∆x effective length between the center of two neigh-

boring particles [m]
κ = ks/kg

φ = lv/dp

γ = ls/dp

η = x/(2
√

α t)

Subscripts

0 ambient/initial
ap apparent

b bed
c contact point
e effective/equivalent

exp experiments
g gas phase

pc phase change
s solid phase

w wall
∞ far from the surface wall

Superscripts

0 motionless fluid

1 Introduction

Extensive research has been conducted evaluating the

convective heat transfer coefficient in fixed and fluidized

beds [1–8]. In many industrial processes, it is necessary

to cool or heat packed or fluidized beds, and this proce-

dure is usually accomplished by the insertion of heat trans-

fer tubes carrying cooling or heating fluids into the bed. The

heat transfer occurs between the particle/gas medium and the

submerged tube surface (often referred to as the walls). A

knowledge of basic mechanisms of heat transfer in beds with

immersed heat exchange walls is crucial for producing an

optimum design for these systems.

In fluidized beds, the heat transfer coefficient of an im-

mersed surface is several times greater than that for a single-

phase gas convection exchanger [9]. Mickley and Fairbanks

[10] proposed one of the first models, the so-called “packet

theory”, for the heat transfer coefficient between a fluidized

bed and a surface. This model treated the heat transfer from

surfaces to fluidized beds as the result of the non-steady-

state conduction of particle packets at the bed temperature,

assuming uniform physical properties. The model success-

fully explained the role played by the particles in heat trans-

fer processes. However, the model did not account for the

non-uniform porosity near the solid wall and predicted in-

finitely large values of the heat transfer coefficient when



the particle contact time on the heat transfer surface de-

creased. This model was later improved and developed by

considering an additional time-independent resistance near

the walls [11, 12]. This additional resistance was treated ei-

ther as a contact resistance or a gas film with a thickness

of 0.1− 0.33dp by Flamant and Menigault [13]. Kunii and

Broughton [4] adopted the packet theory but included a vari-

able property boundary layer to take into account the vari-

ation of properties in the packet near the surface due to the

porosity variation. Most models required a degree of empiri-

cism to agree with experimental data.

One of the most efficient methods of heat recovery from

packed and fluidized beds utilizes horizontally immersed

tubes. Information regarding heat transfer to cylinders in a

packed bed is sparse when applied to small cylinder sizes

(i.e., 1-10 mm). Penny et al. [14] examined heat transfer to

cylinders immersed in packed beds in size ranges appropriate

for steel wire heat-treating applications and developed an ap-

propriate correlation and an empirical correlation that relates

the Nusselt number to relevant physical variables, such as

the particle and sample diameters, effective thermal conduc-

tivity, and fluid velocity. In another study Penny et al. [15]

reported the heat transfer to flat strips immersed in a fluidized

bed and the effect of different parameters. Their results are

comparable to studies utilizing small cylinders. A number

of experimental and numerical investigations have been re-

ported on the measurement of the heat transfer rate between

a horizontal tube and fluidized beds [16–25].

The heat transfer coefficient depends on several param-

eters of the system, such as the size and properties of bed

particles, properties of the heat transfer surface (e.g., its ge-

ometry, surface finish and orientation within the bed) and the

distributor design. Operating parameters, such as tempera-

ture, pressure, and fluidizing velocity, also influence the heat

transfer process. Di Natale et al. [26] estimated the parti-

cle convective heat transfer coefficient in fluidized beds for

a broad range of operating conditions and provided a cor-

relation between heat transfer coefficient and surface void

fraction. Doherty et al. [19] studied the heat transfer from

immersed horizontal tubes of different diameters in gas-

fluidized beds. For smooth horizontal tubes, the heat transfer

coefficient hw decreased as the tube diameter increased. This

is explained based on the concept that solid particles remain

in the vicinity of the heat transfer tube longer as the diame-

ter increases. They found that in all cases, hw increases with

increasing flow rate until a maximum and thereafter slowly

decreases. Also they concluded that hw decreased with in-

creases in the solid particle diameter for the same fluidizing

velocity. This trend is in agreement with reported findings in

the literature [24, 27–31]. Recent investigations of the heat

transfer between horizontally immersed tubes and fluidized

beds have focused on larger tubes, i.e., Dt > 2.5 cm [32–34].

Few studies have investigated heat transfer from horizontal

tubes in the size range of 1−8 mm [35].

Several researchers have evaluated the use of phase-

change materials (PCMs) for thermal storage [36–39] due

to their ability to store a large amount of energy in a small

volume. Trp [40] worked on an experimental and numeri-

cal investigation of transient heat transfer phenomena during

paraffin melting and solidification in a shell-and-tube latent

thermal energy storage unit to provide guidelines for evaluat-

ing the system performance and for the design optimization.

Experimental and theoretical studies have demonstrated that

convection coefficients in fluidized beds are dependent on the

energy storage capacity of fluidized particles [41–43]. For

this reason, an encapsulated PCM in granular form is ex-

pected to enhance the heat transfer rate due to its ability to

store large quantities of energy in latent form. Only Brown

et al. [44] and Izquierdo-Barrientos et al. [45] measured the

heat transfer coefficient in a PCM fluidized bed, however

none of them proposed a model to estimate that coefficient.

Brown et al. [44] evaluated several types of microencapsu-

lated products as heat transfer media in fluidized beds and

observed heat transfer enhancements of 30%. Izquierdo-

Barrientos et al. [45] measured the heat transfer between

a heated surface immersed in fixed and fluidized beds and

granular PCM. They observed that the heat transfer coeffi-

cient when there was a phase change in the fluidized PCM



was twice the coefficient when there was no phase change.

In this work, heat transfer coefficients between an im-

mersed horizontal surface and a fixed or fluidized bed with

a granular PCM are modeled. The model is also valid for

a conventional granular material without PCM. The model

of the heat transfer coefficient for a fixed bed is developed

according to Yagi and Kunii [46], whereas the model of the

heat transfer coefficient for a fluidized bed is developed ac-

cording to Kunii and Levenspiel [47]. The effective thermal

conductivity is a common parameter for both models and is

a key parameter in the proper prediction of the heat transfer

coefficient. The calculation of this effective thermal conduc-

tivity is first attempted. Then, models for heat transfer coeffi-

cients in the fixed and fluidized beds are described. Finally, a

comparison between the proposed models and experimental

results is performed.

2 Model for hw between a surface and a bed of particles

Schwartz and Smith [48] indicated that the void fraction

near the wall surface of a packed bed was larger than in the

core of the bed; one particle has only one contact point with

the wall surface. Yagi and Kunii [7] concluded that the re-

gion of the bed where the voidage is affected by the pres-

ence of the wall is extended to a distance of dp/2. Yagi

and Kunii [46] and Benenati and Brosilow [49] observed

that the voidage in a fixed bed remained constant beyond

this distance with a typical value of εb = 0.4. Kubie and

Broughton [4] proposed a voidage profile near the surface

where the voidage varied between 1 at the surface and 0.4 at

x = 0.5dp. Consequently, it might be reasonable to assume a

heat transfer model in which two zones are differentiated by

the voidage ε. This model is illustrated in Figure 1.

[Fig. 1 about here.]

In the same manner, the effective thermal conductiv-

ity can be separated into two effective thermal conductivity

terms: in the bed and in the region adjacent to the surface.

Several correlations are proposed in the literature to deter-

mine the equivalent conductivity of a packed bed of par-

ticles [46, 50–56]. Among these models, equations of the

model proposed by Kunii et al. [46,50,51] were chosen. This

model is based on the assumption that the total heat transfer

through the bed of particles can be divided into two compo-

nents that flow in parallel

Q̇ = Q̇g + Q̇s, (1)

where Q̇g is the fraction of the heat flux through the gas phase

and Q̇s is the fraction of the heat flux through the solid phase.

The radiative heat transfer is neglected for low temperatures.

Figure 2 shows a scheme of the thermal circuit of the

heat transfer model where

q̇g =
Q̇g

A
=−kg εb

∂T
∂x

= kg εb
∆T
∆x

(2)

and

q̇s =
Q̇s

A
= ks (1− εb)

∆Ts

ls
= kg (1− εb)

∆Tc

lv
. (3)

Here, ks and kg are thermal conductivities of the solid

and gas phases, respectively, and ∆T is the temperature dif-

ference for each thermal resistance.

In Figure 2, Rg represents the equivalent resistance of

the heat transferred through the gas phase, whereas Rs and

Rc represent equivalent resistances for conduction through

the solid phase and for conduction through the stagnant fluid

near the contact points, respectively.

[Fig. 2 about here.]

The resistances of the thermal circuit are obtained from

Equations (2) and (3), yielding

Rg =
∆x

kg εb
, Rs =

ls
ks (1− εb)

, Rc =
lv

kg (1− εb)
, (4)



where ∆x is the effective length between the center of two

neighboring particles in the direction of the heat flow, ls is the

effective length of solid particles and lv is the effective length

of the fluid film near the stagnation point of two neighboring

particles [50, 51].

The equivalent resistance of the thermal circuit shown in

Figure 2 is

Req =
∆x
k0

e,b
=

(
1

Rg
+

1
Rs +Rc

)−1

. (5)

By introducing different resistances in the previous equation,

an expression for the equivalent thermal conductivity of the

bed with motionless fluid is obtained

k0
e,b

kg
= εb +

βb (1− εb)

φb + γb
1
κ

, (6)

where κ = ks/kg, φb = lv/dp, γb = ls/dp and βb = ∆x/dp

represent ratios of distances between centers of adjacent par-

ticles to particle diameters, which, according to Kunii and

Smith [50], can be assumed to equal one.

The scheme of two neighboring particles is shown in

Figure 3 where the area defined by the radius ξ0 corresponds

to the contact point between the two particles.

[Fig. 3 about here.]

The heat flow through the solid phase is

Q̇s =
∫

ξ0

0
dQ̇s, (7)

where

dQ̇s = 2πξdξ
∆T

2Rp cosθ

ks
+

2Rp (1− cosθ)

kg

. (8)

In Equation (8), the area defined by dξ is dA = 2πξdξ, ∆T

is the temperature difference between the center of the two

particles and Rp = dp/2 is the particle radius. Taking into ac-

count that ξ = Rb sinθ, the integration of Equation (8) yields

Q̇s =πRb kg ∆T
(

κ

κ−1

)2

[
ln(κ− (κ−1)cosθ0)−

κ−1
κ

(1− cosθ0)

]
.

(9)

For the thermal model described in Figure 2, the heat

flux through the solid phase can also be expressed as

Q̇s =
π(Rb sinθ0)

2
∆T

ls
ks

+
lv
kg

. (10)

To solve the system of Equations (9) and (10), where there

are 3 unknowns, (ls, lv and Q̇s), Kunii and Smith [50] as-

sumed that ls was the length of a cylinder with the same vol-

ume as one particle; therefore, γ= 2/3 and ls =(2/3)dp. The

expression for φb is [50]

φb =
lv
dp

=
1
2

(
κ−1

κ

)2 sin2
θ0

ln(κ− (κ−1)cosθ0)−
κ−1

κ
(1− cosθ0)

− 2
3

1
κ
.

(11)

Equation (11) is represented in Figure 5(a) as a dashed line.

For values of κ less than 10−1, i.e., for thermal conductivi-

ties of the particles less than that of the gas, Equation (11)

predicts very high values of φb. Equivalent lengths lv of hun-

dreds (or even thousands) of factors of the particle diameter

are not physically realistic.

Instead of considering the length ls equal to the length

of one cylinder with the same volume of the particle [50],

it seems more reasonable to assume that the sum of both

lengths, ls and lv, is equal to the particle diameter. With this

approach, a new model to determine the two lengths ls and lv



is presented, where

lv + ls = dp (12)

and thus,

φb + γb = 1. (13)

Under these statements and following a similar line of rea-

soning as Kunii and Smith [50], a new expression for φb is

obtained

φb =
lv
dp

=
1
2

(
κ−1

κ

)
sin2

θ0

ln(κ− (κ−1)cosθ0)−
κ−1

κ
(1− cosθ0)

− 1
κ−1

.

(14)

This expression is plotted in Figure 5(b). In this case,

the value of φb is less than one, i.e., lv < dp, for any value of

κ.

To obtain the required φb, the angle θ0 must be deter-

mined. This angle is related to the number of contact points

n between two neighboring particles and follows the expres-

sion [50]

sin2
θ0 =

1
n
. (15)

To estimate n, two particle arrangements should be consid-

ered: one for the most open packing and one for close pack-

ing [50]. It was assumed that actual packed beds with particle

size distributions may be composites of both packing states.

Thus, the correct value for φb is an additive function between

φ1 and φ2

φb = φ2 +(φ1−φ2)
εb− ε2

ε1− ε2
, (16)

where φ1 is obtained for the less packed bed with n1 = 1.5;

ε1 = 1− π/6 and φ2 are obtained for the close packed bed

with n2 = 4
√

3; and ε2 = 1−
√

2π/6.

To obtain the equivalent thermal conductivity in the re-

gion adjacent to the heat transfer surface, a similar line of

reasoning as that used for Equation (6) is followed, which

yields

k0
e,w

kg
= εw +

βw (1− εw)

φw + γw
1
κ

, (17)

where the subscript w indicates that all variables are evalu-

ated in the region adjacent to the wall surface. As stated in

Yagi and Kunii [46], the region of the bed where the voidage

is affected by the presence of the wall is extended to a dis-

tance of dp/2. As a consequence, for a thickness of dp/2,

βw = 1/2.

The heat flux through the particles near the wall sur-

face can be calculated following a similar line of reasoning.

When the particles touch the surface, it is assumed that the

angle θ0, which defines the region of contact, is equal to π/2,

i.e., ξ0 = dp/2, and extends to a region of length dp/2 (see

Figure 4).

[Fig. 4 about here.]

Given these premises, then

Q̇s =
∫

ξ0

0
2πξdξ

∆T
Rp cosθ

ks
+

Rp (1− cosθ)

kg

=πdp kg ∆T
(

κ

κ−1

)2 [
lnκ− κ−1

κ

]
.

(18)



The heat flux can also be expressed as

Q̇s =

π

4
d2

p ∆T

ls,w
ks

+
lv,w
kg

, (19)

where ls,w and lv,w are the effective length of solid particles

and the fluid film at the wall surface, respectively.

Combining Equations (18) and (19), the expression of

φw is

φw =
lv,w
dp

=
1
4

(
κ−1

κ

)2 1

lnκ− κ−1
κ

− 1
3

1
κ
. (20)

Figure 5(a) shows the variation of φw with κ according

to the previous equation. For values of κ less than 10−1,

Equation (20) results in negative values, which are physically

unrealistic.

As before, an alternative model for determining the two

lengths ls,w and lv,w is applied

ls,w + lv,w = ∆xw = dp/2, (21)

and thus,

γw +φw = βw = 1/2. (22)

Equation (21) indicates that the lengths of the two

branches of the thermal circuit shown in Figure 2 are equal to

half of one diameter, which is the distance from the surface

where a different voidage is assumed.

Thus, the expression of φw is

φw =
lv,w
dp

=
1
4

(
κ−1

κ

)
1

lnκ− κ−1
κ

− 1
2(κ−1)

. (23)

Figure 5 shows variations of φb and φw with κ for the two

models. The original equations proposed by Yagi and Kunii

[46,51], with γb = 2/3 and γb,w = 1/3, predict values greater

than one or negative for φb,w, which is physically unrealistic.

For the model, we propose that these values are less than one,

i.e., lv and lv,w are less than the particle diameter.

[Fig. 5 about here.]

2.1 Fixed Bed

As stated by Yagi and Kunii [7], the convective heat

transfer coefficient between a wall surface and a packed bed

hw can be expressed as

hw dp

kg
=

h0
w dp

kg
+aw RePr, (24)

where kg is the thermal conductivity of the gas, h0
w is the wall

film coefficient with a motionless fluid and Re and Pr are the

Reynolds and Prandtl numbers, respectively. The parameter

aw depends on flow conditions, the Reynolds number and

particle sizes; its value varies, depending on the material and

experimental conditions.

It is assumed that particles in contact with the wall sur-

face are surrounded by stagnant, motionless fluid [46].

According to Yagi and Kunii [46], the heat transfer co-

efficient between a surface and a packed bed with a stagnant

fluid h0
w can be obtained

−k0
e,w

∂T
∂x

∣∣∣∣
x=0

=−k0
e,b

∂T
∂x

∣∣∣∣
b
= h0

w (Tw−Tap) , (25)

where k0
e,w and k0

e,b are the aforementioned equivalent ther-

mal conductivities (i.e., Equations (6) and (17), respec-

tively), Tw is the wall temperature, Tap is the extrapolation

of the temperature profile within the bed to x = 0 (i.e., the

apparent temperature), ∂T/∂x|x=0 represents the tempera-

ture slope in the region close to the surface (x < dp/2) and

∂T/∂x|b represents the variation of the temperature in the

bed, far from the influence of the heat transfer surface.



From Figure 1, partial derivatives of Equation (25) can

be computed as follows

k0
e,w

Tw−Tb

dp/2
= k0

e,b
Tap−Tb

dp/2
= h0

w (Tw−Tap) . (26)

Solving the system, the expression obtained is

2
dp h0

w

kg

=
1

k0
e,w

kg

+
1

k0
e,b

kg

. (27)

Equation (27) calculates h0
w if the equivalent thermal conduc-

tivity in the bed k0
e,b and the equivalent thermal conductivity

near the wall surface k0
e,w are known. The model can be used

whether the granular material contains PCM or not.

2.2 Fluidized Bed

The classical concepts of two phases (i.e., emulsion and

bubble) and packet renewal ( [10]) are used in this model be-

cause the model is considered a bubbling gas-solid fluidized

bed [57]). In this way, the average heat transfer coefficient

between an immersed surface and fluidized particles can be

expressed as [58]

hw = δ h̄g +(1−δ) h̄s, (28)

where δ is the bubble fraction at the wall location and h̄g and

h̄s account for the convection for the period when the surface

is bathed by bubbles and for the period when the surface is

bathed by emulsion packets, respectively. Radiation contri-

butions are neglected due to low temperatures.

The convective component h̄g can be obtained from

Baskakov et al. [59]

h̄g = 0.009
kg

dp
Ar0.5 Pr0.33, (29)

where Ar is the Archimedes number. This correlation has

been accepted by many researchers as a good estimation of

the gas convective coefficient over a wide range of fluidizing

conditions [24, 60–65]. The contribution from the gas phase

will be low due to the lower thermal conductivity of the gas

phase compared to the dense phase.

When a group of particles touches a heated surface, a

transient heat transfer occurs between the surface at Ts and

the group of particles that are initially at the temperature of

the bed Tb. The group of particles, following the model of

heat transfer through packed beds presented earlier, can be

studied as a two-region model. One region has a thickness

dp/2 and a voidage εw adjacent to the surface; a second re-

gion exists at a distance larger than dp/2 from the surface

and has a voidage εb. Therefore, to determine the heat trans-

ferred from the surface to the dense phase, a one-dimensional

conduction problem through two regions with different prop-

erties has to be solved (see dashed-profiles in Figure 1). The

equation to solve is

∂T
∂t

= α
∂2T
∂x2 , (30)

where T is the temperature and α is the equivalent thermal

diffusivity, which is equal to

αx≤dp/2 =
k0

e,w

(ρcp)w
, (31)

αx>dp/2 =
k0

e,b

(ρcp)b
. (32)

Variables with the subscript w are evaluated with εw, and

variables with the subscript b are evaluated with εb. Under

typical fluidization conditions with air, the volumetric heat

capacities of solids are several orders of magnitude larger

than that of air, such that their expressions can be approxi-

mated as



(ρcp)w ≈ (1− εw) (ρcp)s, (33)

(ρcp)b ≈ (1− εb) (ρcp)s. (34)

To solve Equation (30), it is convenient to introduce a

change of variable

η =
x

2
√

α t
, (35)

which transforms the partial differential equation (30) into

an ordinary differential equation

d2T
dη2 =−2η

dT
dη

. (36)

The solution of this equation is in the form [66]

Tx≤dp/2 =C1

√
π

2
erf(ηw)+C2, (37)

Tx>dp/2 =C3

√
π

2
erf(ηb)+C4, (38)

where ηw and ηb are variables defined in Equation (35) eval-

uated near and far from the surface, respectively. Bound-

ary conditions necessary to obtain constants Ci=1...4 and their

values are presented in Appendix A.

The instantaneous heat transfer coefficient on the sur-

face when the solids are in contact can be determined as

−kw
∂T
∂x

∣∣∣∣
x=0

= hs (Tw−T∞) . (39)

By introducing the derivative of the temperature profile in

the above Equation (37), an expression for the instantaneous

heat transfer coefficient is obtained

hs =
−Akw

√
παw t

[
erf
(

ηbx=dp/2

)
− erf

(
ηwx=dp/2

)
A−1

] , (40)

where erf is the error function and

A =
kb

kw

√
αw

αb
exp
(

erf
(

ηbx=dp/2

)
− erf

(
ηwx=dp/2

))
(41)

is a function that varies with time. The average heat transfer

coefficient during the time ts that solids are in contact with

the surface is expressed as

h̄s =
1
ts

∫ ts

0
hs(t)dt, (42)

which has to be computed numerically. The time ts can be

estimated as

ts =
1−δ

fw
, (43)

where fw is the bubble frequency at the height of the sur-

face. Small variations in the contact times strongly affect

mean values of the heat transfer coefficient. Most correla-

tions found in the literature for the contact time of a packet

with a surface refer to vertical walls. The bubbling frequency

inside the bed is larger than that in a vertical wall, so the time

ts is smaller. For our experimental conditions, we have ob-

served that the evolution of the packed residence time with

the superficial gas velocity follows the correlation proposed

by Lu et al. [5], proposed for vertical walls, with an approx-

imate difference of 0.1s. So, we have calculated ts by the

correlation of Lu et al. [5] minus 0.1s.

The numerical integration of Equation (42) is not easy

to compute because hs approaches infinity as the time ap-

proaches zero. An alternative approach to compute hs is to

define the instantaneous Nusselt number

Nus =
hs
√

παw t
kw

, (44)

where
√

παw t is the characteristic length of the problem.



Hence, the average Nusselt number is

Nus =
h̄s
√

παw ts
kw

. (45)

From Equation (42), the average Nusselt number can be ex-

pressed as

Nus =
1
ts

∫ ts

0

√
παw ts
kw

hs(t)dt. (46)

Introducing the change of variable

β =
√

παw t, (47)

the average Nusselt number can be computed as

Nus =
2
βs

∫
βs

0
Nus(t)dβ, (48)

where the integral

∫ √
παw ts

0
Nus(t)dβ =

=

∫ √
παw ts

0

−A[
erf
(

ηbx=dp/2

)
− erf

(
ηwx=dp/2

)
A−1

] dβ

(49)

is easier to compute numerically as Nus approaches one and

Nus approaches two as time approaches zero. Once the av-

erage Nusselt number is obtained, the average heat transfer

coefficient h̄s can be obtained from Equation (45).

Figure 6(a) shows the instantaneous and mean heat

transfer coefficients calculated using the theoretical model

for the sand as a function of the flow rate. Figure 6(b)

presents corresponding contact times for the same flow rates.

The higher the flow rate, the greater the heat transfer coeffi-

cient and the quicker the contact time.

[Fig. 6 about here.]

2.3 Fluidized bed with granular material with PCM

If the solid phase is filled with a PCM, the governing

equation of the heat transfer process is

∂is
∂t

=
k
ρ

∂2T
∂x2 , (50)

where k = k0
e,w and ρ = ρw if x ≤ dp/2, k = k0

e,b and ρ = ρb

if x > dp/2 and is is the enthalpy of the PCM (represented

graphically in Figure 8), which is a non-linear function of

temperature during the phase change process, as it is ex-

plained later in Section 3. This equation has an analytical

solution if the phase change process occurs at constant tem-

perature. Solutions for different geometries can be found

in [67]. If the phase change takes place over a range of

temperatures, the equation should be solved numerically. In-

deed, because the phase change occurs over a temperature

range, the equation is numerically solved using an explicit

finite difference scheme. A uniform spatial step of ∆x = 25

µm and a time step of ∆t = 6.5 · 10−5 s are used. Once the

non-steady-state problem is solved, the heat transfer coeffi-

cient can be computed according to Equation (39), and the

mean value over the time ts can be found by Equation (42).

The heat transfer coefficients obtained through the

model for the PCM as a function of the flow are depicted in

Figure 7(a), and corresponding contact times for each flow

are also shown in Figure 7(b).

[Fig. 7 about here.]

3 Comparison of the model with experimental results

The experiments carried out by Izquierdo-Barrientos et

al. [45] for the commercial PCM GR50 Rubitherm and the

sand are used to validate the proposed model. The PCM is

available in two particle sizes. A coarser size is used in the



fixed bed because its minimum fluidization is above the 1000

l/min flow rate; a finer size is used in the fluidized bed. Table

1 presents several properties of the sand and PCM, such as

the density ρ, thermal conductivity k, mean diameter of the

particles dp with its standard deviation σd p and the approxi-

mate mass m used for each experiment.

The enthalpy evolution with temperature for the PCM

GR50 is presented in Figure 8. The data shown in this figure

is obtained by differential scanning calorimetry (DSC) with a

slow heating rate of 0.5◦C/min [36,68]. The phase change of

the PCM is distinguished at approximately 50◦C, which is its

phase change temperature Tpc. These data are used to evalu-

ate Equation (50). Thus, for each time step, values for is are

calculated, and then the temperature is determined from the

calculated enthalpy using the function presented in Figure 8.

[Table 1 about here.]

[Fig. 8 about here.]

The experimental apparatus used for the heating exper-

iments is the same used by Izquierdo-Barrientos et al. [45],

which consists of a cylindrical tube with an internal diameter

of 200 mm filled with particles. The air flow that enters the

column can be heated by electrical heaters. Type K thermo-

couples are placed along the axis to measure the bed temper-

ature at different heights, T∞. In the same locations, the heat

transfer probe can be introduced, which consists of a cylin-

drical variable resistance of 200 W with three thermocouples

distributed around its surface. This probe is similar to the

one used by Masoumifard et al. [24]. The three thermocou-

ples permit the measurement of the mean temperature of the

resistance surface, Tw.

The bed temperature is uniform and equal to the ambient

temperature T0 ' 18◦C at the beginning of every experiment.

The air is introduced into the column at the desired rate and

once the bed reaches steady state, the heat transfer probe is

heated to a temperature higher than the phase change temper-

ature of the PCM Tpc. For these conditions, the temperatures

at different heights of the bed and the probe temperature are

measured over a 1-min period at a frequency of 1 Hz.

The experimental heat transfer coefficient is calculated

following the expression

hw =
q

a(Tw−T∞)
, (51)

where a is the submerged area of the probe and q is the heat

rate transferred by the probe. The heat rate supplied to the

probe is varied during the experiments to obtain a tempera-

ture difference of Tw−T∞ ≈ 20◦C, where T∞ ≈ 35◦C.

3.1 Fixed bed

Figure 9 displays the experimental results from

Izquierdo-Barrientos et al. [45] and the model results for

the sand and the PCM in the packed bed. The experimental

data for the heat transfer coefficient are plotted in the form

of the Nusselt number, Nu = (hw · dp)/kg, as a function of

the product between the Reynolds and Prandtl numbers, us-

ing Equation (24). The slope of the linear regression cor-

responds to the parameter aw. For aw = 0.29 for the sand

and aw = 0.25 for the PCM, the model reasonably predicts

the value of Nusselt number and therefore, the heat trans-

fer coefficient. The stagnant fluid model result for the Nus-

selt number, Nu0 = (h0
w ·dp)/kg, obtained by Equation (27),

yields 4.18 for the PCM and 4.20 for the sand, which agrees

with the experimental results (see Figure 9). The wall sur-

face used in experiments by Izquierdo-Barrientos et al. [45]

is a small-diameter cylindrical wall. A larger voidage at the

wall is expected due to the curved profile of the probe and the

small ratio between the probe and particle diameter, Dt/dp.

Therefore, the voidage affected by the presence of the wall is

εw = 0.9.

[Fig. 9 about here.]

3.2 Fluidized bed

Figure 10(a) shows the total heat transfer coefficients

obtained for the sand from the experiments by Izquierdo-

Barrientos et al. [45] and from the model of a fluidized bed.

The minimum fluidization velocity of the sand, Um f , is 0.33



m/s, which corresponds to 622 l/min. Therefore, all selected

flow rates are above this value [45]. As observed for the fixed

bed case, the heat transfer coefficient increases when the

flow rate increases. The proposed model (continuous line)

predicts trends similar to the results observed in the experi-

ments, with approximately constant differences. These dif-

ferences can be attributed to uncertainties in the value of the

equivalent thermal conductivity [4]. Kubie and Broughton

[4] observed similar differences in their experimental data.

Figure 10(a) shows that a reduction of 20% of the equiv-

alent thermal conductivity at the wall results in decreased

heat transfer coefficient, getting a better agreement with the

experiments. There are various parameters that influence on

the final value of the equivalent thermal conductivity, such

as: the solid conductivity of the material, the voidage, the

grade of packing of the particles, etc.

Figure 10(b) displays the total heat transfer coefficients

obtained from the experiments and from the model for the

PCM. In the case of the PCM, the minimum fluidization ve-

locity is Um f = 0.13 m/s, which corresponds to a flow rate

of 250 l/min [45]. The selected flow rates for the PCM ex-

periments are above 250 l/min. The model is observed to fit

the experimental data for nearly all selected flow rates. At

higher flow rates, the model does over-predict the transfer

coefficients. Additionally, at these higher rates, the smaller

contact times do not allow the PCM to complete its phase

change. For instance, for a flow rate of 500 l/min, the con-

tact time for the granular PCM is approximately 0.1 s (see

Figure 7(b)). The corresponding characteristic length for

this contact times is
√

παw t ' dp/2 which means that the

heat conduction do not penetrate the whole particle, thus, the

granulate does not completely melt.

[Fig. 10 about here.]

4 Conclusions

The proposed model for the heat transfer coefficient in

packed beds was validated with experiments carried out with

sand and a PCM. The potential benefit of the phase change of

PCM is limited because there is no renovation of the particles

touching the heat transfer surface, which are the ones where

the PCM is in liquid form.

The model of the heat transfer coefficient in a fluidized

bed properly predicts the trend of hw when the sand and the

PCM are fluidized. Only for very short contact times be-

tween the PCM and the wall surface does the model over-

predict heat transfer coefficients. Small deviations of the

model prediction for the sand may be due to uncertainties in

parameters introduced in the model, such as the equivalent

thermal conductivity [4].
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Appendix A

In this appendix, the boundary conditions necessary to

obtain constants Ci=1...4 in Equations (37) and (38) are ex-

plained. The boundary conditions consist of a fixed temper-

ature at the wall surface and continuity in the temperature

and its first derivative at the interface between both mediums.

Additionally, at locations far away from the heat transfer sur-

face, the temperature of the solid phase should be equal to the

initial temperature. In this manner, the boundary conditions

are:

boundary condition at x = 0

T |x=0 = Tw (52)

first boundary condition at x = dp/2

T |x=dp/2− = T |x=dp/2+ (53)



second boundary condition at x = dp/2

q̇x=dp/2 =−kw
∂T
∂x

∣∣∣∣
x=dp/2−

=−kb
∂T
∂x

∣∣∣∣
x=dp/2+

(54)

boundary condition at x→ ∞

lim
x→∞

T = T∞. (55)

Introducing these boundary conditions into Equations (37)

and (38), and after some manipulation, the constants are:

C1 =
2√
π

A
Tw−T∞

erf
(

ηm fx=dp/2

)
− erf

(
ηwx=dp/2

)
A−1

(56)

C2 = Tw (57)

C3 =
2√
π

Tw−T∞

erf
(

ηm fx=dp/2

)
− erf

(
ηwx=dp/2

)
A−1

(58)

C4 = T∞−
Tw−T∞

erf
(

ηm fx=dp/2

)
− erf

(
ηwx=dp/2

)
A−1

. (59)
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Fig. 1. Temperature profile in a packed bed in the region near the wall, where Tw is the wall/surface temperature, Tb is the bed temperature
at a distance dp/2 from the surface, T∞ is the bed temperature far from the wall and Tap is the extrapolation of the temperature profile within
the bed to x = 0 (apparent temperature)
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Fig. 2. Equivalent thermal circuit of the heat transfer model through a bed of particles
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Fig. 5. Graphical representation of φb and φw for two models and different values of κ. The data for φb are calculated for εb = 0.4
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Fig. 6. (a) Evolution of the mean hs and instantaneous hs heat transfer coefficient for the sand as a function of the flow rate. (b) Correspond-
ing contact times for the flow rate
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Fig. 7. (a) Evolution of the mean hs and instantaneous hs heat transfer coefficient for the PCM as a function of the flow rate. (b) Corre-
sponding contact times for the flow rate
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Fig. 8. Enthalpy variation with temperature for the PCM GR50.
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Fig. 9. Evolution of the Nusselt number for (a) the sand and (b) the PCM in the fixed bed as a function of the product between the Reynolds
and Prandtl numbers. Continuous lines are the results for the theoretical model with aw = 0.29 for the sand and aw = 0.25 for the PCM.
εw = 0.9
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reduction of 20% in the equivalent thermal conductivity at the wall.
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Material Bed ρ [kg/m3] k [W/(m·K)] dp±σdp [mm] m [kg]
Sand Fixed 2632.3 4.2 0.91 ± 0.13 13

Fluidized 2632.3 4.2 0.76 ± 0.07 9
GR50 Fixed 1512.8 4.0 1.64 ± 0.20 8

Fluidized 1550.5 4.0 0.54 ± 0.08 5

Table 1. Materials properties.
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