
Bachelor's Degree in Audiovisual System

Engineering

Academic course 2017/2018

Bachelor Thesis

Music composition based on

Arti�cial Neural Networks

A proof of concept on melody improvisation

Clara Luis Mingueza

Tutor

Carmen Peláez Moreno

19th June 2018

This work is licensed under Creative Commons

Attribution � Non Commercial � Non Derivatives

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288501536?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Music composition based on Arti�cial
Neural Networks

Acknowledgment

I would like to thank my parents for always letting me go ahead with my dreams.

That is, by far, what makes me the happiest.

Thanks to Axel, my constant and support.

Thanks to Nerea, my sister, best friend and con�dent.

Thanks to Carmen, for always being the guiding light that leads the project and for

trusting in me even at the hardest moments. I feel very grateful for having you as

a tutor.

Thanks to the T3chFest family and to the Student Union for being a shelter when-

ever I needed it.

Thanks to Ruth, María, Patri and Carmen for making the day-to-day in the career

a little happier.

Thanks, sincerely, to all the people that completed the online listening test. It is

daunting to receive so many responses, social media support and even wishes for

knowing the results. It has been amazing to know that a hard task as music gener-

ation has had some good results.

2

Music composition based on Arti�cial
Neural Networks

Abstract

In the recent years, research on Arti�cial Intelligence has ushered in a new

phase of technology evolution. Autonomous systems such as voice assistants or

self-driving cars are a present reality as �rst commercial systems have been already

launched to the market.

New applications emerge each year as huge amounts of generated data and

computational capabilities make the development of accurate and expert systems

plausible. This evolution is optimizing processes of many core �elds such as agricul-

ture, telecommunications or medicine.

A quite technological �eld such as music is also beginning to notice changes,

as recommendation engines, synthesizers and music generation are attractive �elds

of research with some preliminary results.

With this project, we intend to contribute to ease the process of music

creation making it more accessible to people. The subject of this project is the

design, development and experimentation of an AI engine to generate music. A

simple, but pleasant to hear arti�cially generated melody could serve as a base for

people to compose more complex pieces of music.

At the same time, the project sheds some light to the nuts and bolts of

novel techniques for music composition, as the Long Short Term Memory network

selected.

The system processes MIDI �les and extracts relevant information for train-

ing the network. The extracted data has been selected by analyzing the main aspects

used in the �eld of Music Information Retrieval.

An online listening test taken by subjects of di�erent musical backgrounds

is designed to measure the quality of the arti�cial composer. The �nal results prove

that pleasant to hear melodies have been composed.

Keywords Arti�cial intelligence; Autonomous systems; Supervised learning; Ma-

chine learning; Arti�cial neural networks; Recurrent neural networks; Computer

generated music: Long Short Term Memory

4

Music composition based on Arti�cial
Neural Networks

Contents

List of Figures 8

List of Tables 10

1 Introduction 12

1.1 Motivation . 13

1.2 Objectives . 14

1.3 Regulatory Framework . 14

1.3.1 Legal analysis in Arti�cial Intelligence 14

1.3.2 MIDI as a technical standard 15

1.4 Socio-economic Environment . 16

1.4.1 Budget . 16

1.4.2 Socio-economic impact . 18

2 State of the Art 19

2.1 MIR Overview . 19

2.2 A brief on music theory . 20

2.2.1 Pitch: Notes . 20

2.2.2 Harmony: Scales and Intervals 21

2.2.3 Temporal: Notes, rests and tempo 23

2.3 Computational music description . 24

2.3.1 Music N (1957 - 1986) and CSound 25

2.3.2 MIDI . 26

2.4 The role of machine learning for music generation 28

2.4.1 Arti�cial Neural Networks . 31

2.4.2 Deep Learning . 33

2.4.3 Recurrent Neural Networks 35

2.4.4 Long Short Term Memory networks (LSTMs) 36

2.5 Related works . 37

2.5.1 Magenta project . 37

2.5.2 Blues improvisation . 38

2.5.3 Konstantin Lackner's Composer 39

3 System design 40

3.1 Initial approach . 40

6

Music composition based on Arti�cial
Neural Networks

3.2 The �nal chosen system . 41

3.2.1 Programming Language . 42

3.2.2 Frameworks . 43

3.2.3 Dataset . 45

3.2.4 Network architecture . 47

4 Experiments and Results 49

4.1 Preliminary experiments . 49

4.1.1 General observations . 50

4.2 Final music generations . 51

4.3 Online Listening Test . 52

4.3.1 Bach-like generation . 53

4.3.2 The Beatles-like generation 55

5 Conclusions and further work 56

5.1 Conclusions . 56

5.1.1 Accomplished or partially accomplished objectives 56

5.1.2 Pending objectives . 56

5.2 Further work . 57

References 58

7

List of Figures

2.1 Relation between notes and frequencies and their position in a key-

board. The �rst row of name-frequency pairs represents black keys,

while the second row represents white keys. Source: https://newt.

phys.unsw.edu.au/jw/graphics/notes.GIF 20

2.2 Grades: diatonic tones in a C Major scale. Source: https://www.

earmaster.com/images/misc/diatonicscale.gif 23

2.3 Note and rest symbols and duration in beats. Source: https://dannywalker9.

files.wordpress.com/2013/06/06notevalues.png?w=650 24

2.4 Music N releases structured in a tree of predecessors. Source: http://

www.musicainformatica.org/wp-content/uploads/2011/09/music_

n1.png . 25

2.5 Note codes in MIDI. Source: https://i.pinimg.com/564x/73/1f/77/

731f7741cd7a26e3be6a131044592446.jpg 27

2.6 Note resolution in MIDI. Source: http://mido.readthedocs.io/en/

latest/_images/midi_time.svg . 28

2.7 Gradient descent of a mean square error function (MSE) through

4 iterations. Source: https://cdn-images-1.medium.com/max/800/

1*UUHvSixG7rX2EfNFTtqBDA.gif . 30

2.8 A simple perceptron. Source: https://cdnpythonmachinelearning.

azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.

png?x31195 . 31

2.9 Sigmoid and tanh activations (soft) versus sign activation (hard).

Source: https://www.researchgate.net/figure/shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_

fig3_285458781 . 33

2.10 Multi-layer perceptron (MLP). Source: https://www.researchgate.

net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/

AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.

ppm . 34

2.11 Recurrent Neural Network. The right image represents an unrolled

representation. Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

img/RNN-unrolled.png . 35

https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF
https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF
https://www.earmaster.com/images/misc/diatonicscale.gif
https://www.earmaster.com/images/misc/diatonicscale.gif
https://dannywalker9.files.wordpress.com/2013/06/06notevalues.png?w=650
https://dannywalker9.files.wordpress.com/2013/06/06notevalues.png?w=650
http://www.musicainformatica.org/wp-content/uploads/2011/09/music_n1.png
http://www.musicainformatica.org/wp-content/uploads/2011/09/music_n1.png
http://www.musicainformatica.org/wp-content/uploads/2011/09/music_n1.png
https://i.pinimg.com/564x/73/1f/77/731f7741cd7a26e3be6a131044592446.jpg
https://i.pinimg.com/564x/73/1f/77/731f7741cd7a26e3be6a131044592446.jpg
http://mido.readthedocs.io/en/latest/_images/midi_time.svg
http://mido.readthedocs.io/en/latest/_images/midi_time.svg
https://cdn-images-1.medium.com/max/800/1*UUHvSixG7rX2EfNFTtqBDA.gif
https://cdn-images-1.medium.com/max/800/1*UUHvSixG7rX2EfNFTtqBDA.gif
https://cdnpythonmachinelearning.azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png?x31195
https://cdnpythonmachinelearning.azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png?x31195
https://cdnpythonmachinelearning.azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png?x31195
https://www.researchgate.net/figure/shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_fig3_285458781
https://www.researchgate.net/figure/shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_fig3_285458781
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

Music composition based on Arti�cial
Neural Networks

2.12 Standard LSTM Cell. The black square indicates a delay of a single

time step. Source: http://www.deeplearningbook.org/contents/

rnn.html . 36

4.1 Train and test loss general curve pro�le 49

4.2 Generated melody matrix with two interleaved notes. 50

4.3 Train and test loss with Dropout: 0.25. 51

4.4 Generated melody matrix with dropout. 52

4.5 Loss when optimizer is changed to Stochastic gradient descent (SGD)

and loss function to Mean Squared Error (MSE). 53

4.6 Count of subjects with and without musical background. 54

4.7 Responses to 'How pleasant the music sounds?' where (A) is a piece

from a human composer and (B) from an AI for Bach's dataset. . . . 54

4.8 Responses to 'How pleasant the music sounds?' where (A) is a piece

from a human composer and (B) from an AI for The Beatles' dataset. 55

9

http://www.deeplearningbook.org/contents/rnn.html
http://www.deeplearningbook.org/contents/rnn.html

List of Tables

1.1 Human resources cost . 16

1.2 Equipment. Direct costs. 17

1.3 Complete project budget . 17

2.1 Conversion between Solfège and Letter notation of the seven main

tones in occidental music . 21

2.2 Common scale patterns centered in C (for simplicity). 22

2.3 Main MIDI Messages.Source: https://www.midi.org/specifications-old/

item/table-1-summary-of-midi-message 27

2.4 MIDI Frameworks in common programming languages. 28

4.1 Experimentation parameters and results 50

4.2 Experimentation parameters and results with dropout 52

4.3 Results for the comparative between Bach's dataset musical pieces. . 55

4.4 Results for the comparative between The Beatles' dataset musical

pieces. 55

https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message

Music composition based on Arti�cial
Neural Networks

1. Introduction

The following document describes the design, development and experimen-

tation made through an autonomous music composition module.

This project aims at exploring a way to ease the music composition process,

by generating a new melody from a dataset of music �les. This approach seems

natural, as a professional would always compose from a set of musical references.

Both human and machine-based techniques have been explored, but there

are a lots of questions yet to be answered when it comes to compositions based on

Deep Learning (DL) techniques.

The project consists on �ve main tasks:

• Pre-processing of MIDI (Musical Instrument Digital Interface) �les to extract

desired events and information.

• Dataset construction using the previous processed MIDI �les.

• Training of an Arti�cial Neural Network (ANN). For the purpose of this

project, a Long Short-Term Memory (LSTM) architecture has been selected.

• Generation of the new composition and storing into a new the MIDI �le.

• Quality testing.

The �rst chapter is divided into two sections. Section 1.1 covers the main

reasons that drove the project. Section 1.2 presents the goals that had been set

in order to consider the project as concluded. Section 1.3 contains a study about

the Regulatory Frame of music composition based on Arti�cial Neural Networks

where a legal analysis and applicable technical standards are discussed. Finally,

section 1.4 contains the budget of the project and Socio-Economic applications where

the implementation of the project could be helpful for the society.

12

Music composition based on Arti�cial
Neural Networks

1.1. Motivation

The motivation underlying this Bachelor Thesis relies in the idea of making

the music creation process easier and more accessible to people.

Learning to compose music might take many years from a formal education

procedure, as it requires several knowledge about music theory and analysis, music

performance, ear training, orchestration and arranging, and music history. However,

music genres as pop rely on some basic rules that can be quickly identi�ed and could

help to simplify the problem by regulating the composition framework.

The core idea is that the composition task could be easier if a simple,

but pleasant to ear melody, would be generated by an autonomous system. The

composer would not need to start the whole process from scratch and could work

on that base melody.

In addition, anyone could enjoy their own compositions even without a solid

musical background and have a quick start on composing and improvising melodies.

If the perfect model of the composition task was de�ned, it would be even possible

to generate the base of a new hit by selecting the appropriate sound tracks. New

possibilities for music are emerging now and maybe music creation could be an

innovative and a highly technologically demanding �eld in the future.

Since 2012, research has proved that complex and abstract problems such

as image and speech recognition are best solved by Deep Learning (DL) techniques.

Generation problems that used to be solved by Markov models can also be solved

now by implementing an Arti�cial Neural Network (ANN) architecture.

Exploring ways to teach a neural network to inference rules beneath music

composition is a challenge that could led to the base melody that would simplify

the whole composition process.

The author of this project, that counts with an elementary education in

music and Arti�cial Intelligence (AI), is widely interested in the union of art and

technology. A challenge as composing music (generating music, from an AI perspec-

tive), is then appropriate.

13

Music composition based on Arti�cial
Neural Networks

1.2. Objectives

The project aims at composing a pleasant to hear melody, that could either

be a part of a song itself or could serve as a base to compose further complex

melodies.

To achieve the main goal, a data model must be designed as a collateral

task. The design of a model that was understood for either technical or non technical

people would be a great contribution to the music generation �eld.

Music composition through Deep Learning techniques is a young research

�eld (it has emerged on this decade), with lots of details to be explored and de�ned.

Another purpose of this project is to shed some light on the music generation �eld,

e.g. data extraction, model simpli�cations, metrics, training and generating issues,

etc.

It would also be interesting to determine if humans are able to di�erentiate

AI compositions from human compositions through an adaptation of the Turing

Test.

Great amounts of data and computational power are required to solve prob-

lems through Deep Learning. The experiments were made with limited resources,

so a great performance is not a priority, though it is a desirable goal.

1.3. Regulatory Framework

1.3.1. Legal analysis in Arti�cial Intelligence

De�ning legal regulations of autonomous systems is a pending task. No laws

about Arti�cial Intelligence have yet been de�ned, so the fair and constructive usage

of available techniques only depends on the ethical values of the developer/belonging

corporation. The legal gap a�ects both general Machine Learning and Robotic �elds,

though the study will focus on AI speci�cally.

Even without a legal framework available, the concerning on ethical devel-

opments has driven to some research publications. To bring an example, Virginia

Dignum [1] claims that the path to achieve a responsible usage of AI has two sides.

On the one hand, laws must de�ne who has the responsibility in case of failure. On

the other hand a data regulation of both used and created data is mandatory. It

14

Music composition based on Arti�cial
Neural Networks

could be said that authorities are starting to de�ne the second side of the path to a

responsible AI, as the new General Data Protection Regulation (GDPR) has been

approved this year at the Spanish context. This new GDPR de�nes customer rights

about data treatment and privacy, among other aspects.

Any creative task carries the right of intellectual property with itself. Par-

ticularly in music, the Spanish law automatically provides intellectual property of

the �nal composition to its authors, since the moment of its creation [2]. The intel-

lectual property law grants the acknowledgment, economical retribution and other

bene�ts to its authors.

There is, however, a regulatory gap in the de�nition of author, resulting of

the contrast of technology versus legal evolution.

The Spanish Royal Academy considers an author as the 'person who has

produced a scienti�c, literary or artistic work' [3]. However, in music generation

several authors might be identi�ed:

• Even though it would be more precisely to consider the author as the au-

tonomous system (as it is autonomous), there is no regulation at the moment

that grants any kind of rights and obligations to an autonomous system, as

the de�nition of author refers to a human being.

• The development team has the intellectual property of the script (or even

platform) that performs the generation. Thus, reserved rights on submitted

data and generated melodies depend on the code license.

• It is not clear if the �nal user would have the intellectual property of the

generated piece. However, if the piece is modi�ed in a way that it could not

be related to the original piece, the user would have the intellectual property

of the derived piece for sure.

1.3.2. MIDI as a technical standard

MIDI is the technical standard used in the project for music representation.

It was standardized in 1983 'by a consortium of musical equipment manufacturers

(including Korg, Oberheim, Roland, Sequential Circuits, and Yamaha).' [4]. The

MIDI standard includes three di�erent standardizations: �rst, there is a protocol

standard for digital and electronic instruments communication. Second, the General

MIDI speci�cation de�nes the relation of instrument types with the di�erent patch

15

Music composition based on Arti�cial
Neural Networks

or program numbers of a synthesizer. Finally, there is a speci�cation for Standard

MIDI Files (with .mid extension). Further information about the MIDI format can

be found in section 2.3.2.

The US Copyright O�ce ("USCO") accepts copyright registration �lings

for original music in Standard MIDI File (SMF) format [5]. This means that, even

when the melody is in the public domain, the MIDI �le can be subjected to copyright

protection. This can led to the payment of royalties when commercially purposes

are intended. However, in the case of music generation, the original MIDI �les are

just processed to extract relevant information, so the MIDI �le can be perfectly used

if it is public.

1.4. Socio-economic Environment

1.4.1. Budget

A virtual scenario is assumed in order to elaborate the project budget.

Thus, the project duration, worked hours and roles are derived from the Bachelor

thesis plan.

The project duration has been set to sixteen weeks, as the Bachelor thesis

is designed to be completed in four months. Twelve ECTS are assigned to the

Bachelor thesis and each one of them represent 25 hours for the student to work. It

would take 300 hours of work for a developer to implement and evaluate the system:

12ECTS · 25hours = 300 hours of work. Assuming a temporal guard interval of

5%, total hours amount ascend to 450 hours.

Assuming weekly meetings of 2 hours with the Supervisor, this role would

dedicate 32 hours to the project; 33.6 hours with guard intervals. (see Table 1.1 for

a global perspective of the human resources).

Table 1.1: Human resources cost

Category Cost (e per hour) Total hours Total Cost (e)

Developer 15 450 6750

Supervisor 20 33.6 672

Sum 7422

16

Music composition based on Arti�cial
Neural Networks

As all software used has been free and open-source, the only direct costs

considered has been related to the equipment.

About the equipment, only one laptop have been used with the following

speci�cations: i7-6700, NVIDIA GeForce GTX 960M, 2GB, 16 GB RAM. The de-

preciation of the equipment has been calculated by following the next expression:

(A/B) · C where:

• A: Period of use (months).

• B: Pay back period (months).

• C: Equipment unit cost.

Chargeable cost of the laptop can be checked in the direct costs table: Table

1.2.

Table 1.2: Equipment. Direct costs.

Equipment Unit cost (e) Months Payback (months) Chargeable cost (e)

Laptop 1099 6 48 137.38

Software 0 - - 0

Sum 137.38

Indirect costs have been quanti�ed as a 20% of direct costs, as there is no

way to take into account Internet, water, light and gas bills for a theoretical project.

Table 1.3 contains the complete project budget, which has a total cost of

7586.86 e.

Table 1.3: Complete project budget

Total costs

Human resources 7422 e

Direct costs (equipment) 137.38 e

Indirect costs 27.48 e

Sum 7586.86 e

17

Music composition based on Arti�cial
Neural Networks

1.4.2. Socio-economic impact

The development of this project can be helpful for the society in di�erent

situations:

A commercial version of the project could be used as a software in any

recording studio, in order to compose the next hit. They could take advantage of

the artist discography and new hits for the system to extract their characteristics

and compose a novel one, with both last trends and the artist essence. In addition,

the creation process could speed up, having a decreasing e�ect for total costs of the

company.

In education, teachers could use the system for a wide variety of tasks:

• To illustrate concepts music theory related concepts, such as scales and har-

monization. The teacher could generate as many examples as needed and the

student could experiment by his/her own. The project could contribute to

make more dynamic and collaborative music classes, where the student could

see music composition almost as a game.

• To make it easier to memorize concepts: a simple song could be generated and

the teacher could compose some lyrics about the topic. This can be applied

to any subject, from elemental calculus to history.

Last but not least, people with short musical background could enjoy to

compose melodies without the limitations of the high sloped learning curve of music

theory. This could led to a democratization where anyone could express emotions

by music.

18

Music composition based on Arti�cial
Neural Networks

2. State of the Art

Music is the art of combining sounds in a temporal sequence, applying

di�erent rules that provide mathematical relations on rhythm, melody and harmony.

These rules generate patterns; combined sounds that produce expressive e�ects as

tension, expectancy, and emotion on a listener.

As the project aims at implementing an autonomous system to inference

those rules, extracting representative information is mandatory in order to train it

with a good dataset.

Therefore, the �rst subsection will dive into the state of the art of Music

Information Retrieval (MIR), to de�ne what kind of information must be extracted

and how to achieve that goal. Music concepts related to the information to be

extracted are explained on subsection 2.2 to ease the understanding of the system

design and its implementation. Section 2.3 will describe the existing computational

methods to extract the required data. Finally, most common machine learning

techniques for generative models are described in section 2.4, focusing on neural

networks and the best architectures for generating music.

2.1. MIR Overview

By merging Downie's [6] and Meurer's [7] publications, Music Information

Retrieval can be de�ned as the synthesis of multiple aspects of music representation,

whether it is raw audio (e.g. MP3, OGG, AAC, PCM, AIFF, etc.), symbolical, (e.g.

MIDI, MusicXML, score, etc.), or both.

As an expansion of text-based Information Retrieval, it aims to provide

complete access to the information that any form of digital music representation

contains and to reduce the gap between high-level musical information and low-level

audio data.

The �eld of MIR uni�es related disciplines such as acoustics, psychoacous-

tics, audio signal processing, computer science, musicology, library science, pattern

recognition and machine learning. MIR applications extend to 'searching, exten-

sive sorting, music recommendation, metadata generation, transcription, and even

aiding/generating real-time performances' [7].

19

Music composition based on Arti�cial
Neural Networks

As Downie de�nes in an older publication, music information can be clas-

si�ed in seven facets: 'pitch, temporal, harmonic, timbral, editorial, textual, and

bibliographic facets' [8]. The following paragraphs will focus on the analysis of mu-

sic theory on pitch, harmonic and temporal facets, as no bibliographic or editorial

content will be extracted from meta-data and there is no relevant information for

composing in timbral aspects.

2.2. A brief on music theory

2.2.1. Pitch: Notes

A note is the audible signal generated by the air vibration at a constant and

audible fundamental frequency (see the representation of a keyboard in �gure 2.1).

A note is also known as the minimum element of a musical sound.

Occidental music de�nes a system of twelve periodic notes to describe the

audible frequency range. This intervals are known as octaves. Its de�nition is basic

to understand notes nomenclature, as the thirteenth note will share the same name as

the �rst, as can be seen in the keyboard in �gure 2.1. A technical explanation could

be found in the frequency domain; there is a relationship between the frequency of

a note and that same note an octave above or under: the upper octave of a note will

double its frequency, while same note in the octave below will be half its frequency.

Figure 2.1: Relation between notes and frequencies and their position in a
keyboard. The �rst row of name-frequency pairs represents black keys, while the

second row represents white keys.
Source: https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF

20

https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF

Music composition based on Arti�cial
Neural Networks

This system was primary developed in the middle Ages to make it easier

to compose, learn and sing melodies. At �rst, notes were named by the �rst letters

of the alphabet, which is an equivalent to a later notation: Solfège. Nowadays

both notations coexist, though letter notation is typically used in English-speaking

countries. The correspondence between both notations can be found in Table 2.1

Table 2.1: Conversion between Solfège and Letter notation of the seven main tones
in occidental music

Letter notation Solfège

C Do

D Re

E Mi

F Fa

G Sol

A La

B Si

As showed in �gure 2.1, both notations give names to the notes represented

by the seven white keys on the piano, leaving related names for the �ve black keys

even though they are equally important from a frequency perspective. Thus, the

higher black key of A will be A sharp (#) and the lower black key will be A �at ([).

This representation is made for convenience, as some notes are more likely

to be paired with a selected group of notes than with others in a composition as we

will see in the next section.

2.2.2. Harmony: Scales and Intervals

A scale is an organized sequence of notes; a selection of notes that share

harmonic properties as a common pattern represented as the intervals between two

subsequent notes measured in semitones within an octave. Intervals de�ne the

distance between notes e.g. as explained before, an octave is an interval of 12 notes.

The most common scale is C Major; a scale centered in C that follows the

pattern: 2-2-1-2-2-2-1 (a Major pattern). It is so important that the keys of the

piano were designed following that pattern; looking at a C note in �gure 2.1, the

pattern represents all the white keys: C, D, E, F, G, A, B, so that they would be

easy to �nd.

21

Music composition based on Arti�cial
Neural Networks

More examples can be found in the table 2.2, which contains examples of

typical scales and their patterns.

Table 2.2: Common scale patterns centered in C (for simplicity).

Scale Pattern

Minor C 2-1-2-2-1-2-2

Dorian 2-1-2-2-2-1-2

Phrygian 1-2-2-1-2-2

Minor harmonic 2-1-2-2-1-3-1

Pentatonic 2-2-3-2-3

Whole tone scale 2-2-2-2-2-2

Chromatic 1-1-1-1-1-1-1-1-1-1-1-1

Blues 3-2-1-1-3-2

Besides the aforementioned octave, another basic interval is a major second:

a distance of a tone or two semi-tones, or notes, as were named earlier. Referring

to tones and semitones makes it easier to relate notes to keyboard representation;

a distance between a black key and a white key is a semi-tone and the distance

between white keys is a tone. There is an exception, though: the pair of white keys

with no black-key in the middle have a distance of a semi-tone.

To describe other intervals between notes, it is important to note that there

are two strands that de�ne the same intervals with di�erent names: the diatonic and

the chromatic perspective. In order to keep a simple explanation, it could be said

that a diatonic interval expresses distance in white keys. A chromatic perspective

also includes black keys in the counting. This document, in particular, will follow a

diatonic notation when it is needed.

Tones represented in �gure 2.2, are numbered following their positions in

the C Major scale: C = 1, D = 2, E = 3, etc. Referred to C, an interval of second

would refer to a transition from C to D, whether it is D# or D[, an interval of third

to a transition from C to E, etc. In this case, this notation is equivalent to degree

notation, where G would be the 5th degree of C Major scale. When referring to

degrees, the tonic is the �rst note of the scale (C in the previous example).

However, the sound transitioning from C to D is not the same than the

sound from C to D#; these intervals have di�erent qualities. The quality of an

interval can be Perfect, Diminished, Augmented, Major, or Minor.

22

Music composition based on Arti�cial
Neural Networks

Figure 2.2: Grades: diatonic tones in a C Major scale.
Source: https://www.earmaster.com/images/misc/diatonicscale.gif

Perfect intervals are fourth, �fth, octave and unison (same tone). All of

them can be augmented, if they are one semi-tone larger, or diminished if they are

one semi-tone smaller. The rest of the intervals (second, third, sixth and seventh) can

be major or minor, where minor means that the interval is a semi-tone smaller than

the major version of the same interval. There are also augmented and diminished

seconds, thirds, sixths and sevenths but they are not so commonly used.

2.2.3. Temporal: Notes, rests and tempo

In a sta� representation, the previous pitch-related concepts are shown in

a vertical position, while time is represented in horizontal. Time is a fundamental

part of a piece of music, as rhythm is achieved with periodical sequences of notes,

delimited by bars in the sta�.

The duration of a note, or a rest, is determined by standardized symbols

with a formalized relation (see �gure 2.3). These relations, however, do not quantify

duration in time units such as seconds or milliseconds. Historically, time references

were taken from tempo marks at the beginning of the music piece.

There is a correspondence with an indirect meaning in time units: the beat.

A beat is a measure that depends on the time signature of the piece. For example:

a typical 4/4 time signature refers to a beat as a quarter note and indicates that

a complete bar is formed of four beats. The standardized term for measuring the

tempo of a piece of music is beats per minute (bpm), e.g. modern music used to be

composed at 120 bpm, though pop music is lately dropping to 90.5 bpm.

23

https://www.earmaster.com/images/misc/diatonicscale.gif

Music composition based on Arti�cial
Neural Networks

Figure 2.3: Note and rest symbols and duration in beats. Source:

https://dannywalker9.files.wordpress.com/2013/06/06notevalues.png?w=650

2.3. Computational music description

While symbolic and spoken representations of music in live performances

have a high level of abstraction (even an emotional component), computer represen-

tation of music must be mathematically precise and concrete.

According to Dannenberg [9], di�erent levels of abstraction must be de�ned,

as each level of abstraction synthesizes unavailable information in other levels. Thus,

three levels of abstraction must be distinguished:

High level: printed notation, as it is symbolical and abstract.

Intermediate level: emotional information in a live performance. E.g.: to raise

the brightness of a note means to appropriate tune a note that could sound �at.

Low level: digital audio signals and other bit-based representations, as they must

remain non-symbolic and concrete.

Focusing in low level representations, several software, codecs, and lan-

guages have been developed to represent and work with music. However, working

with raw audio was undesirable as audio signal processing was required to extract

information about the three facets: pitch, harmonical and temporal. The document

will not analyze available audio formats or digital audio workstations as they were

not considered for the system design and implementation. The analysis will focus

on two music languages instead: CSound and MIDI

24

https://dannywalker9.files.wordpress.com/2013/06/06notevalues.png?w=650

Music composition based on Arti�cial
Neural Networks

2.3.1. Music N (1957 - 1986) and CSound

As discussed in [10], Music N is a family of computer music languages

made by di�erent organizations (e.g. Bell Labs, Princeton University, Standford

University, M.I.T., etc.) that share some characteristic features.

Figure 2.4: Music N releases structured in a tree of predecessors. Source: http:

//www.musicainformatica.org/wp-content/uploads/2011/09/music_n1.png

The design of this set of languages has in�uenced later developments, whether

they do or do not belong to the family of Music N. Di�erent versions were launched

over a period of forty years, where early versions were developed in Assembler and

Fortran, �nally evolving to C.

Music I and its predecessors de�ne musical parameters with letters and

numbers, enabling to compile a text �le without graphical interfaces, even though

through the years graphical approaches to composition have also been developed.

Since Music III, the usage of units generator has been extended to later

designs and has had a big impact on computer music in general. Units generator

25

http://www.musicainformatica.org/wp-content/uploads/2011/09/music_n1.png
http://www.musicainformatica.org/wp-content/uploads/2011/09/music_n1.png

Music composition based on Arti�cial
Neural Networks

are useful macros to generate or control sound, such as delay, oscillators, �lters,

amplitude envelopes, etc. The composer could then concatenate several units to

create its own instruments.

One of the main disadvantages of the Music N family is the deferred time

processing attached to hardware limitations of that time. This issue made impossible

to generate real-time compositions. Only the last version, CSound (1986), could

operate in real time.

CSound development has continued from the mid-eighties until today, ex-

panding its �elds of application by creating a whole ecosystem to create music.

Nowadays, it is used by composers and musicians for any kind of music that can be

made with the help of the computer. As an open-source platform, a broad commu-

nity of volunteers take part on its development with bug reports, feature requests

and discussions and provide examples, documentation and articles [11].

Even though it can be used as a framework from a wide variety of program-

ming languages (e.g. such as Python, Lua, C/C++, Java, etc.), the high complexity

and learning-curve of installing a full environment combining CSound and Machine

Learning libraries made preferable to simply use MIDI to translate from bits to

music.

2.3.2. MIDI

MIDI refers to Musical Instrument Digital Interface. It is an standard pro-

tocol for communications between many di�erent kinds of devices such as digital in-

struments, cell-phones, computers, and audio devices, even though it was originally

designed for communicating several synthesizers. As an standard, its applications

extend to music production, personal computers and television, as it is great for

developers, composers, producers, educators, and for domestic purposes.

The protocol operates by MIDI Messages. They describe which notes are

to be played and for how long, as well as the tempo, which instruments are to

be played, and at what relative volumes. [12] Most common MIDI Messages, its

description and code are shown in table 2.3.

Each MIDI note has some de�ned properties:

Key: Note code in MIDI standard.

26

Music composition based on Arti�cial
Neural Networks

Table 2.3: Main MIDI Messages.Source: https:
//www.midi.org/specifications-old/item/table-1-summary-of-midi-message

Status

D7�-D0

Data Bytes

D7�-D0
MIDI Message Description

1000nnnn
0kkkkkkk

0vvvvvvv
Note O� event

Sent when a note is released (ended).

kkkkkkk: key number

vvvvvvv: velocity.

1001nnnn
0kkkkkkk

0vvvvvvv
Note On event

Sent when a note is depressed (started).

kkkkkkk: key number

vvvvvvv: velocity

Velocity: Quanti�es the intensity of the note; the strength that has produced it.

Time: Relative passed time since the last event.

Figure 2.5: Note codes in MIDI. Source:
https://i.pinimg.com/564x/73/1f/77/731f7741cd7a26e3be6a131044592446.jpg

Inside a MIDI track, tempo is characterized by MIDI ticks; a magnitude

that provides resolution to beats per minute (de�ned in section 2.2.3). Thus, a

resolution of an sixteenth note will be achieved with 4 ticks per beat. Figure 2.6

shows a graphical example of a resolution of 3 ticks per beat.

MIDI is not an audio recording per se, just a sequence of instructions,

which the device that performs the music piece will interpret, in the form of MIDI

Messages. Thus, the way a MIDI �le sounds depends on the �nally used device or

on a previous synthesizing stage.

27

https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
https://i.pinimg.com/564x/73/1f/77/731f7741cd7a26e3be6a131044592446.jpg

Music composition based on Arti�cial
Neural Networks

Figure 2.6: Note resolution in MIDI. Source:
http://mido.readthedocs.io/en/latest/_images/midi_time.svg

The protocol counts with some of advantages derived from its not-audio

nature: storing generated sounds in a MIDI �le will require of much less storage

than a real audio �le (typically 10 Kb per minute). This has a directly e�ect on the

processing speed of the �le.

There is also a wide variety of frameworks designed to work with MIDI in

common programming languages. Python and Matlab must be highlighted from

table2.4, as they are better for prototyping tasks.

Table 2.4: MIDI Frameworks in common programming languages.

Language Frameworks available

Python Mido, python-midi,

Matlab Audio System ToolboxTM

Java MIDI package

2.4. The role of machine learning for

music generation

Machine Learning (ML) aims at designing general purpose and e�cient

algorithms of practical value, to teach computers to solve tasks such as accurate

classifying or predictions. In ML `a large set of N digits {x1, x2, x3, ..., xN} called a

training set is used to tune the parameters of an adaptive model' [13]. Thus learning

is always based on the convergence (training) of a general function that maps a set

of observations (data samples).

Generalization is so important that there is always a test set of data, dif-

ferent from the training set, to evaluate the e�ectiveness of the machine learning

28

http://mido.readthedocs.io/en/latest/_images/midi_time.svg

Music composition based on Arti�cial
Neural Networks

algorithm by counting how many of the outputs of the samples are correctly com-

puted by the method [14].

ML is included as a sub-area of Arti�cial Intelligence, though it also inter-

sects broadly with other �elds, especially statistics, but also mathematics, theoretical

computer science, etc. [15].

A wide variety of techniques have been designed to achieve that goal, such

as Decision Trees, Naive Bayes, Genetic Algorithms, Markov Chains, Support Vector

Machines, Neural Networks, ... However, the document will focus on techniques spe-

cially designed for generating sequences because of the project scope. An exhaustive

analysis of the state of the art is not intended, as it would be unmanageable.

ML-based successful applications are for example spam detection, tumor

detection, text generation, language translation, image caption generation, object

classi�cation, game playing or handwriting generation [16].

Two di�erent broad classes of procedures exist:

Supervised learning: the learning stage counts on labeled data. The model is

tuned for each iteration to �t the targets, i.e, the labels.

Unsupervised learning: the learning stage does not count on labeled data.

These tasks often consist on data clustering.

Music generation has been broadly studied from a Machine Learning per-

spective over the past decade. Past related projects often use Genetic Algorithms

[17] and Markov Chains [18] to generate music. Complex hybrid models of Restricted

Boltzmann machines and Recurrent Neural Networks have been developed [19] in

order to model unconstrained polyphonic music. However, these methods do not

achieve a successful modeling of longer-term musical structure.

Huge advances in accuracy and speed were obtained by Deep Learning

around 2012. Nowadays it is possible to model long-term structures in generation

tasks, as an speci�c deep neural network architecture tends to be suggested: Long

Short Term Memory architectures (LSTM).

Some machine learning terminology needs to be de�ned in order to under-

stand and enhance the training performance of our system:

29

Music composition based on Arti�cial
Neural Networks

Cost function models the cost of the error of the classi�cation or prediction

task. This term is equivalent to loss or error function.

Over-�tting is an undesirable e�ect that happens when the the function �ts

really well the training set, but it �ts badly (or not as well) the test set. In other

words, the cost or loss will decrease with a di�erent behavior in train and test.

Gradient descent is an iterative optimization algorithm that �nds the min-

ima of a curve. In machine learning it is used to set parameters (e.g. weights)

minimizing the cost function in each iteration. The learning rate de�nes how big

the step of the gradient descent will be in a determined iteration of the algorithm.

In some frameworks as Keras, algorithms as Gradient Descent are referred as opti-

mizers, as they try to �nd the absolute minima of the cost function.

Figure 2.7: Gradient descent of a mean square error function (MSE) through 4
iterations. Source:

https://cdn-images-1.medium.com/max/800/1*UUHvSixG7rX2EfNFTtqBDA.gif

Batch size: de�nes the number of input instances that will be fed and

propagated through the network. E.g. if the batch size is set to 128, that number of

input instances will be fed to the network each time. Di�erent training techniques

are de�ned depending on the existence of batches:

• Stochastic Gradient Descent (SGD): calculates the error and updates the

model for each input instance of the dataset. Even though it is computa-

tionally expensive, it often is a good solution to avoid the loss to get stuck in

a local minima.

30

https://cdn-images-1.medium.com/max/800/1*UUHvSixG7rX2EfNFTtqBDA.gif

Music composition based on Arti�cial
Neural Networks

• Batch Gradient Descent: calculates the error for each input instance of the

dataset, but the model updates are performed at the end of each epoch. It is

more computationally e�cient than SGD but sometimes leads to the conver-

gence of the model in suboptimal parameters.

• Mini-batch Gradient Descent: the dataset is fragmented in small batches.

The error is quanti�ed and the model updated for each mini-batch. It is an

intermediate solution that �nds the balance between robustness and e�ciency,

which makes it a common technique in Deep Learning.

The following paragraphs will explain all required concepts to broadly un-

derstand LSTM, by starting with Neural Networks fundamentals, diving into Deep

Learning to �nally explain LSTM functionality.

2.4.1. Arti�cial Neural Networks

A neural network is a computational model inspired by the biological pro-

cess of information 'where hundreds of billions of interconnected neurons process

information in parallel' [20]. A high number of processing units (neurons) produce

linear outputs in each iteration of the algorithm, in order to �t a series of targets

(labels).

Figure 2.8: A simple perceptron. Source: https://cdnpythonmachinelearning.

azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png?x31195

In �gure 2.8 the schematics of a perceptron is shown. This unit is a simpli�ed

mathematical model of how the neurons in our brains operate. The perceptron

31

https://cdnpythonmachinelearning.azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png?x31195
https://cdnpythonmachinelearning.azureedge.net/wp-content/uploads/2017/09/Single-Perceptron.png?x31195

Music composition based on Arti�cial
Neural Networks

estimates an output given a set of inputs, a set of weights, a bias and a threshold

that is usually included in the bias. Weights and bias are typically initialized to

small random numbers.

Perceptron Learning Algorithm In its original formulation, all inputs are mul-

tiplied by its weights and summed. The activation function, the sign function, sets

the threshold for �nal output to be binary. In each iteration:

a = 1 if
∑
wnxn + b > 0

a = −1 if
∑
wnxn + b < 0

In order to learn, the output a is compared to the correspondent desired

value d, if they are not equal, weights must be updated by using the following

algorithm:

• If the target and the output are equal, the weights remain with the same value.

w(t+ 1) = w(t)

• If d = 1 but a = −1: w(t+ 1) = w(t) + αx(t)

• If d = −1 but a = 1: w(t+ 1) = w(t)− αx(t)

α is a number between 0 and 1 equivalent to the learning rate. These

steps are repeated until the classi�cation error is satisfactory or a given number of

iterations are completed. [21]

A perceptron actually performs a binary classi�cation by the approximation

to a linear function, as inputs and weights represent a linear combination.

A basic system to perform predictions is the Adaline (ADAptative LINear

Element). The architecture is equivalent except for the activation function, which is

the identity in this case. This system estimates linear functions as linear regressions.

The learning expression for the Adaline comes from the gradient descent of the

di�erence between the output and the desired value.In the following expression, τ

is a variation rate:

w(t+ 1) = w(t) + τe(t)x(t) where the error expression is: e(t) = d(t)− w(t)x(t)

These systems are designed to classify or predict linear functions, but they

fail with non-linearities even when lots of neurons are added to the learning process.

Non-linearity issues were solved by adding more layers to the architecture, but there

was no way to �nd an expression to update the weights of the internal (hidden)

layers. It was also proved that there was no guarantee for the algorithm to converge,

so the research remained idle for �fteen years.

32

Music composition based on Arti�cial
Neural Networks

The main problem was that the activation function of the perceptron was

not di�erentiable, so there was no way to perform a gradient descent of the error to

�nd a new set of weights. Thus the solution consisted on choosing a di�erentiable

activation function; for example, a sigmoid or a tanh function.

Figure 2.9: Sigmoid and tanh activations (soft) versus sign activation (hard).
Source: https://www.researchgate.net/figure/

shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_

fig3_285458781

A multi-layer perceptron arquitecture (MLP, as shown in �gure 2.10) with

soft activations would then be able to model non-linear functions by �nding the

internal weights updates applying the chain rule of the gradient descent to previous

layers (backpropagating the error from the output layers towards the input ones.

The MLP architecture has a fundamental advantage: it is able to establish

any kind of input-output correspondence; having the capacity to solve any problem.

There is no reference, though, to the number of units or hidden layers needed to

solve it and huge amounts of data and high computational power are required for

them to have an optimal behavior.

2.4.2. Deep Learning

At the late eighties, the term Deep Learning started to refer to feature ex-

traction systems with many layers and non-linear activation functions. Deep Learn-

ing architectures allow to model high level and abstract models by adding layers,

being adequate for tasks such as image and speech recognition.

33

https://www.researchgate.net/figure/shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_fig3_285458781
https://www.researchgate.net/figure/shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_fig3_285458781
https://www.researchgate.net/figure/shows-the-activation-functions-sigmoid-tanh-and-the-sign-function_fig3_285458781

Music composition based on Arti�cial
Neural Networks

Figure 2.10: Multi-layer perceptron (MLP). Source:
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/

303875065/figure/fig4/AS:371118507610123@1465492955561/

A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm

With the raise of Big Data and the usage of GPUs, it is no surprise that

the research on Deep Learning architectures encompasses big parts of the state of

the art of a wide variety of tasks.

A few important terms are explained in the following paragraphs, just as it

was done in parent section 2.4.

In any ANN architecture an epoch de�nes the entire dataset passage forward

and backward through the layers of the network. The number of epochs then de�nes

how many times the entire dataset is gonna be fed to the network.

Dropout is a common applied technique when over�tting is detected.

Deep Neural Networks result very expressive models, as they are able to

learn complicated input-output relations. This means that complex relations might

appear in the training set but they might not appear with novel testing data. The

problem gets worse if a limited set of data is provided for training, as some of those

complex relationships might be the result of sampling noise. This scenario is a

typical case of over�tting in DL.

Dropout consists on switching o� (dropping out) units; temporarily discon-

necting the unit from the network, as well as all its incoming and outgoing con-

nections. Dropout also provides of major improvements over other regularization

34

https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm
https://www.researchgate.net/profile/Mohamed_Zahran6/publication/303875065/figure/fig4/AS:371118507610123@1465492955561/A-hypothetical-example-of-Multilayer-Perceptron-Network.ppm

Music composition based on Arti�cial
Neural Networks

methods. [22]. Dropout follows a random distribution where a neuron is present with

a determined probability. Dropped units might belong to either hidden or visible

layers.

2.4.3. Recurrent Neural Networks

A particularly interesting architecture was design to perform tasks that

require persistence (e.g. text generation, translation, speech recognition, image

captioning, etc.): Recurrent Neural Networks (RNNs) made the processing of past

events as input data in order to predict new ones possible.

Figure 2.11: Recurrent Neural Network. The right image represents an unrolled
representation. Source: http://colah.github.io/posts/

2015-08-Understanding-LSTMs/img/RNN-unrolled.png

RNNs are basically neural network architectures with loops that allow infor-

mation to persist by sharing parameters between di�erent time steps. In �gure 2.11,

the perceptron A receives a series of inputs Xt = {X0, X1, X2, ..., XN} in each time

step and makes a copy of each of them to take them into account at the future next

time steps. Thus, the architecture is designed to process sequences and lists [23].

Most recurrent networks can also process sequences of variable length.

The unfolding process makes it possible to learn a single model that operates

on all time steps and all sequence lengths, rather than needing to learn a separate

model for all of the possible time steps [24].

The learning procedure for RNNs is an algorithm called Back Propagation

Through Time. A detailed explanation can be found in Werbos publication [25].

Problems related to music require such a long persistent context that RNNs

cannot successfully connect the required past information with present data. The

technical explanation relies in the fact that linear gradients propagated over many

stages tend to 'either vanish (most of the time) or explode (rarely, but with much

35

http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png
http://colah.github.io/posts/2015-08-Understanding-LSTMs/img/RNN-unrolled.png

Music composition based on Arti�cial
Neural Networks

damage to the optimization)' [24], as a composition of many nonlinear functions is

performed. Thus, another kind of architecture, based on Recurrent Neural Networks

is needed: Long Short Term Memory networks.

2.4.4. Long Short Term Memory networks (LSTMs)

Long Short Term Memory networks are a special kind of Recurrent Neu-

ral Networks that are capable of modeling long dependencies between data. While

Recurrent Neural Networks units consist in simple tanh activations, LSTM archi-

tectures consist of LSTM cells. A LSTM cell has four internal paths (some even

consider them as layers), as can be seen in �gure 2.12: inputs, input gate, forget

gate and output gate.

Figure 2.12: Standard LSTM Cell. The black square indicates a delay of a single
time step. Source: http://www.deeplearningbook.org/contents/rnn.html

The idea is to provide gates to the system that have derivatives that neither

vanish nor explode, allowing the gradient to �ow for larger periods of time and

protect it from undesired perturbations. The LSTM decides in each time step when

to store past information in its cell state and when to forget it by the usage of

di�erent gates with sigmoid activations.

As shown in �gure 2.12 and brie�y discussed in [26], the characteristic loop

of the RNN is controlled by the forget gate, that 'learns to reset a memory cell when

its content is obsolete'. The external multiplicative input gate 'learns to protect the

36

http://www.deeplearningbook.org/contents/rnn.html

Music composition based on Arti�cial
Neural Networks

�ow from perturbation by irrelevant inputs'. The output of the LSTM cell can be

deactivated by the sigmoid of the output gate which 'learns to protect other units

from perturbation by currently irrelevant memory contents'.

As also de�ned in [26], the learning procedure of a LSTM consists on the

'Gradient Descent method that uses a slightly modi�ed, truncated BPTT (Back

Propagation Through Time) and a customized version of RTRL (Real Time Recur-

rent Learning). Output units use BPTT; output gates use the truncated version of

BPTT; while weights to cells, input gates and forget gates use truncated RTRL'.

An important fact to keep in mind must be explained continuing with the

Dropout analysis of section 2.4.2: unfortunately,a standard usage of Dropout does

not work well with Recurrent Neural Networks. However, 'when correctly used, it

greatly reduces over�tting in LSTMs' [27].

As Dropout 'can be interpreted as a way of regularizing a neural network

by adding noise to its hidden units' [22], recurrent connections amplify that noise

leading to a bad performance of the network. Thus Dropout must be applied to

non-recurrent connections to improve the network performance.

2.5. Related works

The following sections will describe music generation projects and publica-

tions based on similar techniques and generation from symbolic music.The combi-

nation of data extraction from MIDI �les and Long Short Term Memory networks is

quite common in music generation tasks. The way music data is modeled, however,

tends to change between projects. It might be noticed that some ideas of these

projects have inspired the �nal system design.

2.5.1. Magenta project

Magenta [28] is a research project that explores ways to create art by using

machine learning techniques. It was �rst started by Google Brain engineers though

a wide variety of professionals have already contributed to the project. All of their

projects are published in their GitHub page and developed over TensorFlow.

Their projects mainly cover painting and music art. Music, in particular, has

been widely explored as they have already developed music generators, synthesizers

37

Music composition based on Arti�cial
Neural Networks

and collaborative duets between humans and AI. They also provide an interesting

framework to convert a dataset to di�erent audio formats with TensorFlow such as

raw audio, MIDI, MusicXML, etc.

Magenta has both pre-trained and un-trained models to generate music,

both of them based on LSTMs. This way, both technical and non-technical people

can use the technology to compose music.

All of these models generate music based on language modeling. They face

di�erent aspects of music such as polyphony modeling, timing, dynamics, etc. The

following list, extracted from (cite) contains all available Magenta models to generate

music based on LSTMs.

• Drums RNN: generates drum track.

• Melody RNN: generates melodies.

• Improv RNN: generates melodies, conditioning them on an underlying chord

progression.

• Polyphony RNN: generates polyphonic music. It is based on the BachBot

architecture. BachBot [29] is a project that harmonizes music in the style of

Bach.

• Performance RNN: generates polyphonic music. This can be achieved by ex-

tracting the following MIDI events: note on/o�, timeshift, and velocity change

events.

• Pianoroll RNN-NADE: generates polyphonic music. The LSTM is combined

with a NADE, an architecture called an RNN-NADE [19].

2.5.2. Blues improvisation

Douglas Eck and Jurgen Schmidhuber implemented a system to generate

improvisations of blues music over a sequence of �xed chords [26].

The data model was based on a one-hot encoding where 1.0 represented a

note on and 0.0 represented a note o�. Each note was an input instance with a

related target

38

Music composition based on Arti�cial
Neural Networks

To model tempo, each input vector represented a slice of real time with a

determined resolution per note. E.g. to represent an quarter note, four time steps

were required for the network to process the whole note. This method was �rst

introduced in [30] and was selected for its positive impact on timings.

This model had two approaches to ease data representation: �rst, it did not

take into account when a note ended. Second, the dataset only contained ranges of

12 notes for chords and 13 notes for melodies.

As blues counts with a determined scale (see Table 2.2), a �xed sequence

of chords was encoded so that a melody that �tted those chords was generated.

The training set contained hand-crafted melody sequences, of quarter notes with no

rests, that �tted the chords in every time step.

2.5.3. Konstantin Lackner's Composer

Konstantin Lackner [31] implemented a system to generate melodies given a

set of chords of 16 The Beatles songs from the music book �Pop Classics For Piano:

The Very Best Of The Beatles - Easy Arrangements for Piano�.

The data model was similar to Eck and Schmidhuber approach, as the

author claims 'to be motivated by their promising results'. In this case, the encoding

was performed on two di�erent matrices; one for melody and another one for chords.

The main di�erence between this encoding and the previous one was that

note endings were also encoded. This allowed to di�erentiate between, e.g. two

eight notes and one quarter note on the same pitch.

This system used MIDI encoded on 96 ticks per beat, so a preprocessing

stage sampled matrices to the equivalent of 8 ticks per beat. Reduced matrices

dimensions were, however, duplicated to allow note o� representations; each row of

both matrices would represent half of a tick and the end of a note position would

be encoded with the �rst half in 1.0 and the second half in 0.0.

An online test was made to know if subjects could identify the generated

piece and if they prefered the A.I. composition better than the original one.

39

Music composition based on Arti�cial
Neural Networks

3. System design

A great amount of projects served as an inspiration to set our system.

However, as music generation with machine learning in general, and arti�cial neural

networks in particular, are relatively new research �elds, a lack of documentation

often occurs. This fact made it necessary to go back and try new approaches at

some points of the development of the project.

Therefore, we will �rst describe our �rst generations with Magenta in section

3.1. However, since Magenta acts very much like a 'black box' when it comes to

generate music, we decided to use a new design in order to fully understand how

music generation worked with Long Short Term Memory networks. The new design

is explained in section 3.2.

3.1. Initial approach

At �rst, Magenta's solution seemed quite convenient, as this project aims

at providing a backend for experimenting and generating music in a short period of

time.

The ecosystem for generations consisted on Python 2.7, TensorFlow GPU

1.5 and Magenta-GPU 0.3.1. In order to run Magenta, any of both versions of

Python, Miniconda installer and extra packages as rtmidi, build-essential libasound2-

dev and libjack-dev are required.

The dataset used for the �rst generations contained 227 MIDI �les of clas-

sical music piano composers (e.g. Bach, Beethoven, Mozart, Chopin, Debussy,

Tchaikovsky, etc.). All MIDI �les can be found on the Classical Piano MIDI Page [32]

and they are free to use and modify.

Magenta abstracts the whole process of data modeling, training and gener-

ating to four scripts of hyper-parameters; one for each step.

First, the set of MIDI �les is transformed into a TFRecord �le of NoteSe-

quences; a �le with extension .tfrecord that storages a kind of TensorFlow data-

format called protocol bu�ers.

40

Music composition based on Arti�cial
Neural Networks

The next script extracts information contained in the TFRecord �le to Se-

quenceExample: each one of them contains a sequence of inputs and a sequence of

labels that represent a melody. Two TFRecord �les are generated: one for training

and another one for testing. At this point, the train-test slicing of the dataset is

performed by the adjustment of a parameter: eval-ratio.

In order to train and evaluate the model, two independent scripts must be

executed with the same hyper-parameters. There are several properties to be settled

at the train stage:

• Magenta model to choose.

• Batch size (default batches of 128 instances).

• Number of layers and number of LSTM cells for each layer.

• Number of training steps.

The training process is opaque as there is no way to change the internal

settings of the LSTM layers (e.g. adding dropout, changing loss function, optimizers,

etc.). In addition, there is no way to modify train and test execution traces.

The generations had good quality, but they sounded the same from one

experiment to another. That issue, summed to a divergence between train and test

loss led to think about a case of over-�tting.

After several generations of each model, it was clear that there were lots of

constraints when using Magenta. The best way to understand music generation was

to develop a full script that covered all steps.

3.2. The �nal chosen system

The �nal design simulates a very common technique to compose. Chords,

the harmony line, are �rst extracted from the set of MIDI �les and the system creates

a melody that �ts them, as used in [26] and [31]. This is inspired on a widely used

composition technique where a determined sequence of chords is set and the melody

is, then, constructed over the sequence with harmonic intervals.

The idea was taking advantage of this harmonic relation to generate a pos-

sible matching melody in a set of chords. In order to do it, the system should take

the harmony line in each time step as input and the correspondent melody line of

the next time step as targets.

41

Music composition based on Arti�cial
Neural Networks

In [33] a novel method to extract a melody from a polyphonic raw audio �le

is described. An accurate system to extract melodies is a hard related to audio signal

processing and was out of the scope of the project. Thus, a pragmatic approach was

considered:

As processed MIDI �les could either present harmony and melody in the

same or in di�erent MIDI Tracks, two independent regions were established: as the

harmony is used to be played with the left hand on the piano, and the melody with

the right hand, the limit between harmony and melody would be middle C (C4).

Thus notes to the left of C4 would be considered as harmony and notes to the right

of C4, including C4, would be considered as melody.

At �rst only one octave of chords (from C3 to B3) and two octaves of melody

(from C4 to B5) were considered. However, this did not seem to be enough; long

silent periods arose in the processed data, as some notes were ignored. In later

experiments, ranges expanded a whole octave. The �nal ranges were:

• Harmony (inputs): Two octaves, from C2 to B3 (24 notes)

• Melody (targets): Three octaves, from C4 to B6 (36 notes)

The following section will analyze possible implementations of each part of

the project, with their advantages and disadvantages taken into account in order to

get to the �nal decision.

3.2.1. Programming Language

As the project consist on a proof-of-concept to explore music generation

with machine learning techniques, important requirements needed to be satis�ed:

• Scripting and prototyping must be quick, as the project does not aim to de-

velop a commercial product.

• It must be easy to process and extract MIDI data; it must count with a friendly

MIDI framework.

• There should be available packages for mathematics and scienti�c computing

• Flexible Deep Learning frameworks must exist for that language, as they are

a fundamental part of the process.

42

Music composition based on Arti�cial
Neural Networks

C [34] and C++ [35] were both possible options, as they are powerful and

really quick on execution. C++ was plausible, as both TensorFlow [36] and OpenNN

[?] frameworks are available for developing tasks based in neural networks in that

language.

However, the author's C++ expertise is not too big and it seemed like most

researchers use Python [37] or Matlab [38] for machine learning related tasks. The

second fact was important, as frequent questions submitted to the Internet are often

focused on those languages and they are a fundamental help for any personal project.

Matlab was a good option, as it is mathematically oriented and has packages

for both MIDI and Deep Learning. However, some functions belong to non-free

packages that are not included in the standard student license, and that was a risk

that could not be taken.

Python is an open source and general purpose language widely used for

prototyping in both industrial and academic �elds. It has a simple syntax that

it makes it easy to use, even for developers with just a slightly experience on the

matter, as it was the case.

The use of Python in science projects is very extensive, as it o�ers highly

attractive and widely known frameworks that tend to work together, such as Numpy

[39], Matplotlib [40], Pandas [41] and SciKit-Learn [42]. For machine learning pur-

poses we can �nd Tensor�ow, Theano [43] and Keras [44], whose usage is widely

extended for any of them. It also has some attractive MIDI frameworks published

such as Mido and Python-Midi, both published in Pipy; the Python Package Index.

Among all programming languages, Python seemed to be the most �exible

and convenient choice and was �nally selected because of its simplicity, community

and frameworks.

3.2.2. Frameworks

Lots of Python attractive frameworks have already been named in section

3.2.1. Comparison will be established between all of them but there are special

cases.

Numpy is an extremely useful framework for scienti�c computing in Python

and, if they exist, the alternatives do not have an extensive usage. Numpy allows

the usage of a similar syntax to Mathematica based languages, making it suitable

43

Music composition based on Arti�cial
Neural Networks

for working with numerical data structures such as matrices and tensors. Therefore,

it is one of the main frameworks selected were no alternatives have been taken into

account.

The next comparative will led to the selected Deep Learning frameworks.

Keras will be used to abstract some common tasks such as back propagation through

time, to allow quick implementations of LSTM cells, etc. Thus, the real comparative

must be made between the underlying framework: TensorFlow or Theano.

Theano is a Deep Learning library, implemented in Python, whose usage is

quite extended in the data science community. One of its disadvantages is that the

performance is low, as Python is interpreted, though it was not either a requirement.

Its usage consists on the implementation of a graph of tasks that it is lately

compiled and executed. This makes it a very �exible framework, as the graph must

be implemented from scratch. On the contrary, data structures in Theano are quite

complicated, as if works at a very low level.

TensorFlow has some similarities with Theano, as it works by the imple-

mentation of a graph �ow that is later compiled and executed. It is an open source

software library for high performance numerical computation, though its usage by

the community is highly related to Deep Learning.

As both frameworks are quite similar, TensorFlow was �nally chosen to

bene�t from the author's previous expertise.

All python MIDI frameworks tend to convert MIDI bytes to an object ori-

ented syntax. There are, however, some frameworks speci�cally designed to work

with audio devices such as MIDI keyboards, DAWs, etc. This is not a required fea-

ture, as the framework is needed to extract MIDI note events and their attributes

(pitch and time).

Two libraries stand out from the rest of them: Python-midi and Mido.

python-midi is a framework originally designed to control audio equipment from

a computer. It also allows to work with MIDI Messages, but it is not its main

functionality. Mido is design to work with both MIDI Messages and Ports. Mido

was �nally chosen as the MIDI framework because of the extensive documentation

it provides at the GitHub repository and its website.

44

Music composition based on Arti�cial
Neural Networks

3.2.3. Dataset

In the Magenta approach the dataset used was the published in the Classical

Piano Midi Page. It contains 227 piano MIDIs from 25 composers and an additional

Christmas section. The number of �les was big enough but it was discarded as later

experiments based on one single artist tend to have better results. This can be

explained if we keep in mind that each piano composer has its own unique style and

those features must also be learned by the network.

In the �nal design, four di�erent datasets made by di�erent communities

were used to test the learning performance, but only two of them were �nally selected

for the evaluation process:

• Nottingham dataset: a set of over 1,000 folk songs originally written in ABC

format and later converted to MIDI �les. This is the biggest proven dataset,

but the results were not satisfying, as the generation tended to get stuck in

the most probable note.

• An Aerosmith dataset from FreeMidi.org containing 38 songs. The results

were quite atonal so the dataset was discarded.

• A set of 16 songs from The Beatles extracted from Musescore.

• A set of 30 pieces of Bach extracted from Musescore.

MIDI �les of each dataset were processed to extract the chords from the

melody. A pre-processing algorithm was implemented to achieve that task. The

following process was followed for each MIDI �le in the data folder:

First, all MIDI �les in the folder are shu�ed so that generation occurs with

di�erent chords each time. For each MIDI �le, it was converted to a JSON �le and

ticks per beat value was extracted (the note resolution, as explained in �gure 2.6).

Then, the script moved through each track of the MIDI �le, and through each MIDI

event inside that track.

For each MIDI 'Note on' event, a few note attributes were stored in two

lists; harmony and melody:

• The played note.

• Note velocity.

45

Music composition based on Arti�cial
Neural Networks

• Related time to the past event.

For each MIDI 'Note o�' event ot 'Note on' event with 'velocity = 0', the

stored attributes were:

• The played note.

• Related time to the past event.

Besides, the absolute time of the MIDI �le was computed by the sum of all

related times.

From each list, a one-hot encoding matrix was created were each Note on

event was represented by 1.0 and each Note o� event was represented by 0.0. The

melody matrix had dimensions ['absolute_time', 36] and each row represented the

active note in that tick. The chord matrix had dimensions ['absolute_time', 24] and

a similar behavior

The note resolution of a MIDI �le depends on its encoding. In particular,

Musescore's sheet music has ticks per beat set to 480. That is a huge resolution that

caused matrix dimensions to be more extensive than needed. Thus, a reduction of

matrix dimensions was mandatory.

In order to reduce matrix dimensions, it was needed to set a note resolution.

A sixteenth note seemed appropriate, as thirty-second notes are just common in

percussion. A sixteenth note is represented with 4 ticks/beat so, for each row in

both matrices, 1 of 120 values were taken (as 480/4 = 120).

To better predict the note that could match a chord sequence, chords were

sliced in sequences of 8 ticks, in order to predict a melody each two beats/quarter

notes.

Final matrices have the following dimensions:

• Harmony matrix: [number of 2 beat sequences, 8 (ticks), 24 (2 octaves)]

• Melody matrix: [number of 2 beat sequences, 36 (3 octaves)]

46

Music composition based on Arti�cial
Neural Networks

3.2.4. Network architecture

Among all machine learning techniques, a Long Short Term Memory net-

work was preferred since music needs to refer to structures that happened before

posterior structures (e.g. the past chorus in a modern pop song).

The chosen data model determines two of the characteristics of the archi-

tecture: the input layer must have 24 LSTM and the output layer 36, in order to

match input and output dimensions.

The batch-size for training is set to two mini-batches.

The test set size, which is the set used for generation is the 10% of the total

of data instances. The validation set is the 30% of the total of data instances.

After the experimentations included in 4, a Mean Squared Error has been

selected as loss function and the learning procedure consists on the Stochastic Gra-

dient Descent.

The Dropout probability of non recurrent connections is set to 25%.

A threshold of 0.1 is set to transform the generated matrix of probabilities

from the LSTM into a one-hot encoding matrix, in order to generate �nal MIDI �le.

47

Music composition based on Arti�cial
Neural Networks

4. Experiments and Results

The section explains the experiments and analyses the results obtained on

train, test and generation stages.

4.1. Preliminary experiments

At �rst, train and test losses through iterations did not strictly follow the

usual negative exponential curve, as shows �gure 4.1. In the �gure, an irregular

descending pattern with local minima in the validation set is shown.

Figure 4.1: Train and test loss general curve pro�le

The image corresponds to one of the early experimentations made with The

Beatles dataset. The parameters and loss results are shown in table 4.1:

In general, the most common issue detected in experimentation was the

ability of the network to generate one or two most probable notes in an interleaving

pattern.

This issue is not strange, because the network is learning to generalize the

generation to the most repeated notes in the testing set. A high threshold also

triggers this behavior.

49

Music composition based on Arti�cial
Neural Networks

Table 4.1: Experimentation parameters and results

Threshold: 0.02 Loss function: Binary cross-entropy

Number of layers: 2 Number of LSTM Cells per layer: 24,48

Validation set size: 20% Test set size: 10%

Number of epochs: 400 Batches per epoch: 2

Dropout: 0.1 Recurrent dropout: 0

Train loss(@epoch = 400): 0.0747 Test loss(@epoch = 400): 0.0680

Figure 4.2: Generated melody matrix with two interleaved notes.

4.1.1. General observations

Over-�tting happens when the model is highly accurate, but only on the

training set. It can be easy identi�ed, as the loss curve in test di�ers heavily from

the training curve.

In music generation, the same songs (or very similar ones) will always be

generated in di�erent experimentations because of the over-�tting. The model is

learning to generate almost equal slices of the same notes of the training set each

time.

Apart from that, another bad e�ect was noticed: all experimentations with

hidden layers showed a better performance in training, as there were no irregularities

in the loss pro�le, but generations stuck into one single note over and over. These

experiments had 1 or 2 hidden layers with a number of LSTM cells multiple of 12

to provide a better performance with input and output layers.

Similar projects also describe this e�ect [31], even though two layers with

limited LSTM cells (e.g. 9 and 18 cells in each layer) provide good results.

50

Music composition based on Arti�cial
Neural Networks

This note stucking problem led to the usage of simple input-output LSTM

cells with no hidden layers in between.

4.2. Final music generations

Whenever tone note is more probable to be active than others, in a con-

trolled way, a pleasant 'key e�ect' is detected, as this note uses to be the tonic of

the other intervals. It is a good thing how they usually have an harmonic relation

of an interval of 3rd or 5th (see �gure 4.2, where D and G# are activated).

In any training procedure its expected for train and test to keep a similar

curve, as the testing set must represent the training set. However, exceptions might

happen when a dropout probability is applied to the neurons, as it only a�ects the

training process.

Figure 4.3: Train and test loss with Dropout: 0.25.

As some neurons are deactivated, the train loss takes a longer time than the

test loss to be reduced and loss lapse might be unstable. Dropout had a signi�cant

e�ect on countering the generation to get stuck in the most probable note.

Stochastic gradient descent optimizer often works well with LSTMs [45]

and it certainly helped with the irregular loss pro�le. By changing the loss function

51

Music composition based on Arti�cial
Neural Networks

Figure 4.4: Generated melody matrix with dropout.

Table 4.2: Experimentation parameters and results with dropout

Threshold: 0.02 Loss function: Binary cross-entropy

Number of layers: 2 Number of LSTM Cells per layer: 24,48

Validation set size: 30% Test set size: 15%

Number of epochs: 400 Batches per epoch: 2

Dropout: 0.25 Recurrent dropout: 0.1

Train loss(@epoch = 400): 0.0697 Test loss(@epoch = 400): 0.0739

from 'binary_crossentropy' to a classical 'mean_squared_error', and the optimizer

from 'adam' to 'sgd', a much smaller loss is achieved in the �st iteration, as well as a

smooth negative exponential pro�le. The only disadvantage is that this combination

is really slow; in our case, the loss curve follows an almost linear drop down (see

�gure 4.5) and takes many more epochs for the loss to converge.

After some experimentation it was concluded that good training and testing

rates did not necessarily implied better generations, as it depended on the chosen

dataset. Generation results with MSE and SGD are more dynamic, as it does

not tend to get stuck in one or two notes. However, the generation often lacks of

coherence, as disonant intervals appear. The generations with MSE and SGD seems

appropriate for Back-like generations but they sound disonant in Beatles-like ones.

4.3. Online Listening Test

Music is meant to be listened by people. Therefore an online survey has

been carried out to quantify if a music piece sounds pleasant to an audience and if it

can be assigned to a particular genre. It was also interesting to know if the audience

could di�erentiate a piece composed by a human versus a piece composed by an AI

system.

52

Music composition based on Arti�cial
Neural Networks

Figure 4.5: Loss when optimizer is changed to Stochastic gradient descent (SGD)
and loss function to Mean Squared Error (MSE).

The survey is designed to ask three questions for each presented composi-

tion, alternating AI and human compositions. 120 human subjects from di�erent

ranges of age and musical background have participated. 2 compositions from The

Beatles dataset and 2 from Bach dataset were shown (one composed from a human

and the other one from AI in both cases).

Among all subjects, 67 (55.83%) had some kind of musical background (e.g.

musical theory, piano, guitar,...), while 53 (44.17%) did not (see �gure 4.6). This is

perfect, as responses are quite balanced.

However, 87% of the subjects belong to a range from 18 to 25 years of age,

as they are close people from college. Thus, a segmentation by age can not be

properly done because of unbalanced classes.

4.3.1. Bach-like generation

With the Bach dataset, both AI and human generations cause doubts.

While 'Nor pleasant neither unpleasant' has high rates in both cases, AI compo-

sition seems to be pleasant for a big amount of subjects.

Collected answers reveal that AI composition does not sound human-like

53

Music composition based on Arti�cial
Neural Networks

Figure 4.6: Count of subjects with and without musical background.

Figure 4.7: Responses to 'How pleasant the music sounds?' where (A) is a piece
from a human composer and (B) from an AI for Bach's dataset.

for a slight majority of the subjects. However, this fact is not clear, as most of the

subjects do not think the human composition are made by a human composer.

54

Music composition based on Arti�cial
Neural Networks

Table 4.3: Results for the comparative between Bach's dataset musical pieces.

Do you think the composition is made by a human?

Human composition % A.I. composition %

Yes 35 29% 63 53%

No 85 71% 57 48%

4.3.2. The Beatles-like generation

Beatles' generation seems to be more pleasant to hear. It is surprising that

the A.I. composition sounds even more pleasing than the human composition. It

could be said that the system generates a pleasant composition with Beatles data,

which was the primary goal of the project.

Figure 4.8: Responses to 'How pleasant the music sounds?' where (A) is a piece
from a human composer and (B) from an AI for The Beatles' dataset.

In this case, it seems plausible that both compositions were composed either

from an A.I. or a human.

Table 4.4: Results for the comparative between The Beatles' dataset musical pieces.

Do you think the composition is made by a human?

Human composition % A.I. composition %

Yes 54 45% 53 44%

No 66 55% 67 56%

55

Music composition based on Arti�cial
Neural Networks

5. Conclusions and further work

5.1. Conclusions

5.1.1. Accomplished or partially accomplished objectives

The primer goal of the project has been accomplished, as an autonomous

system has composed a pleasant melody. In this case, the melody has been generated

over a set of chords.

A functional system has been designed following common composition pro-

cedures to set simpli�cations that ease the representation problem, such as com-

posing the melody over a set of chords and separating harmony notes from melody

notes.

Common issues when generating music, such as stuck notes and local min-

ima or over-�tting have been detected and solved.

The primer goal of the project has been accomplished, as an autonomous

system has composed a pleasant melody. In this case, the melody has been generated

over a set of chords.

5.1.2. Pending objectives

The composition based on The Beatles' dataset seems more attractive for

people than the composition based on Bach's dataset. However, the test reveals

that neither the pop, nor the classical music essence has been modeled according to

the subjects.

How to measure a good computer composition is yet an unresolved problem,

as usual metrics (e.g. log-likelihood) can not quantify how good a composition is.

There is not a clear conclusion about whether the subjects have been able

to determine if the compositions were composed by a human or an AI or not.

56

Music composition based on Arti�cial
Neural Networks

5.2. Further work

Technical limitations of the survey platform have made impossible to answer

the following questions:

• How many subjects with musical background think each one of the composi-

tions are pleasant or unpleasant?

• How many subjects without musical background think each one of the com-

positions are pleasant or unpleasant?

• Is there a correlation between having musical background and better deter-

mining if the music piece is composed by a human or an A.I.?

• Is there a correlation between age range and thinking classical music is pleasant

or unpleasant?

• Is there a correlation between age range and thinking pop music is pleasant

or unpleasant?

Future versions of the project could include other datasets of jazz or blues

performers. These two genres in particular have distinctive characteristics that could

be easy to model.

There are lots of possibilities if a music genre is successfully modeled. A

future line of work could answer the question if a determined genre is better modeled

by instances of one artist or from various artists.

Finding paths to accurately extract chords from melodies in MIDI �les

would have a positive impact on �nal results.

Some RNNmethods as teacher forcing could led to better models. It consists

on feeding the output of a given time step to the input of the next time step.

The attention mechanism would perform a better modeling as an intuition of

relevant information would be provided to the LSTM. It could also provide more free-

dom to the system, as a sequence to sequence architecture would then be mandatory.

This way, input sequences could have di�erent durations that output sequences.

Better modeling could led to a system that composes novel and pleasant

melodies that appear to be composed by a human.

Metrics to quantify a good composition should also be de�ned. A good

contribution could also de�ne a method to use common metrics in a representative

way.

57

Music composition based on Arti�cial
Neural Networks

5. References

[1] V. Dignum, �Responsible arti�cial intelligence: Ethical think-

ing by and about ai.� https://icps.gwu.edu/sites/g/

files/zaxdzs1736/f/downloads/Virginia%20Dignum_

%20Responsible%20Artificial%20Intelligence%20(1).pdf.

[2] C. y. D. Ministerio de Educación, �El registro de la propiedad intelectual.�

https://www.mecd.gob.es/cultura-mecd/areas-cultura/

propiedadintelectual/la-propiedad-intelectual/

preguntas-mas-frecuentes/registro.html.

[3] R. A. Española, �Autor, ra (query).� http://dle.rae.es/?id=4UGeohY.

[4] J. Gibson, �Introduction to midi and computer music: The midi standard.�

http://www.indiana.edu/~emusic/361/midi.htm.

[5] T. M. Association, �https://www.midi.org/speci�cations-

old/item/about-smf-and-us-copyright-law.� https://www.midi.org/

specifications-old/item/about-smf-and-us-copyright-law.

[6] J. S. Downie, �The music information retrieval evaluation exchange (2005�

2007): A window into music information retrieval research,� Acoustical Science

and Technology, vol. 29, no. 4, pp. 247�255, 2008. https://www.jstage.

jst.go.jp/article/ast/29/4/29_4_247/_pdf/-char/ja.

[7] W. Meurer, �Aspects of music information retrieval,� School of Information at

The University of Texas at Austin. https://www.ischool.utexas.edu/

~i385df04/StudentPPT/HTML/meurer_w/.

[8] J. S. Downie, �Music information retrieval,� Annual review of information sci-

ence and technology, no. 37, pp. 295�340, 2003.

[9] R. B. Dannenberg, �Music representation issues, techniques, and systems,�

Computer Music Journal, vol. 17, no. 3, pp. 20�30, 1993. https://www.

cs.cmu.edu/~rbd/papers/issues.pdf.

[10] M. Mathews and A. D. Nunzio, �Musicn.� http://www.

musicainformatica.org/topics/music-n.php.

[11] �Csound: A sound and music computing system.�

58

https://icps.gwu.edu/sites/g/files/zaxdzs1736/f/downloads/Virginia%20Dignum_%20Responsible%20Artificial%20Intelligence%20(1).pdf
https://icps.gwu.edu/sites/g/files/zaxdzs1736/f/downloads/Virginia%20Dignum_%20Responsible%20Artificial%20Intelligence%20(1).pdf
https://icps.gwu.edu/sites/g/files/zaxdzs1736/f/downloads/Virginia%20Dignum_%20Responsible%20Artificial%20Intelligence%20(1).pdf
https://www.mecd.gob.es/cultura-mecd/areas-cultura/propiedadintelectual/la-propiedad-intelectual/preguntas-mas-frecuentes/registro.html
https://www.mecd.gob.es/cultura-mecd/areas-cultura/propiedadintelectual/la-propiedad-intelectual/preguntas-mas-frecuentes/registro.html
https://www.mecd.gob.es/cultura-mecd/areas-cultura/propiedadintelectual/la-propiedad-intelectual/preguntas-mas-frecuentes/registro.html
http://dle.rae.es/?id=4UGeohY
http://www.indiana.edu/~emusic/361/midi.htm
https://www.midi.org/specifications-old/item/about-smf-and-us-copyright-law
https://www.midi.org/specifications-old/item/about-smf-and-us-copyright-law
https://www.jstage.jst.go.jp/article/ast/29/4/29_4_247/_pdf/-char/ja
https://www.jstage.jst.go.jp/article/ast/29/4/29_4_247/_pdf/-char/ja
https://www.ischool.utexas.edu/~i385df04/StudentPPT/HTML/meurer_w/
https://www.ischool.utexas.edu/~i385df04/StudentPPT/HTML/meurer_w/
https://www.cs.cmu.edu/~rbd/papers/issues.pdf
https://www.cs.cmu.edu/~rbd/papers/issues.pdf
http://www.musicainformatica.org/topics/music-n.php
http://www.musicainformatica.org/topics/music-n.php

Music composition based on Arti�cial
Neural Networks

[12] �About midi-part 1:overview.� https://www.midi.org/articles-old/

about-midi-part-1-overview.

[13] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[14] A. Kurenkov, �A 'brief' history of neural nets and deep learn-

ing.� http://www.andreykurenkov.com/writing/ai/

a-brief-history-of-neural-nets-and-deep-learning/.

[15] R. Schapire, �Cos 511: Theoretical machine learning (lecture).�

https://www.cs.princeton.edu/courses/archive/spr08/

cos511/scribe_notes/0204.pdf.

[16] J. Svegliato and S. Witty, �Deep jammer: A music generation model,� Small,

vol. 6, p. 67.

[17] J. M. Inesta, P. J. P. de León, J. Calvo-Zaragoza, and D. Rizo, �Genre-

based melody generation through multi-objective genetic algorithms,� MML

2015, p. 16, 2015. https://www.researchgate.net/profile/

Pauline_Mouawad2/publication/280490776_Multilabel_

Classification_of_Non-Verbal_Communication_of_Emotions/

links/5627882e08aee6327230b833.pdf#page=19.

[18] A. Van Der Merwe and W. Schulze, �Music generation with markov models,�

IEEE MultiMedia, vol. 18, no. 3, pp. 78�85, 2011.

[19] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, �Modeling temporal

dependencies in high-dimensional sequences: Application to polyphonic music

generation and transcription,� arXiv preprint arXiv:1206.6392, 2012.

[20] S.-C. Wang, �Arti�cial neural network,� in Interdisciplinary computing in java

programming, pp. 81�100, Springer, 2003.

[21] �Perceptron learning algorithm.� http://lcn.epfl.ch/tutorial/

english/perceptron/html/learning.html.

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

�Dropout: A simple way to prevent neural networks from over�tting,� The

Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929�1958, 2014.

[23] C. Olah, �Understanding lstm networks.� http://colah.github.io/

posts/2015-08-Understanding-LSTMs/.

59

https://www.midi.org/articles-old/about-midi-part-1-overview
https://www.midi.org/articles-old/about-midi-part-1-overview
http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/
https://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf
https://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0204.pdf
https://www.researchgate.net/profile/Pauline_Mouawad2/publication/280490776_Multilabel_Classification_of_Non-Verbal_Communication_of_Emotions/links/5627882e08aee6327230b833.pdf#page=19
https://www.researchgate.net/profile/Pauline_Mouawad2/publication/280490776_Multilabel_Classification_of_Non-Verbal_Communication_of_Emotions/links/5627882e08aee6327230b833.pdf#page=19
https://www.researchgate.net/profile/Pauline_Mouawad2/publication/280490776_Multilabel_Classification_of_Non-Verbal_Communication_of_Emotions/links/5627882e08aee6327230b833.pdf#page=19
https://www.researchgate.net/profile/Pauline_Mouawad2/publication/280490776_Multilabel_Classification_of_Non-Verbal_Communication_of_Emotions/links/5627882e08aee6327230b833.pdf#page=19
http://lcn.epfl.ch/tutorial/english/perceptron/html/learning.html
http://lcn.epfl.ch/tutorial/english/perceptron/html/learning.html
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Music composition based on Arti�cial
Neural Networks

[24] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[25] P. J. Werbos, �Backpropagation through time: what it does and how to do it,�

Proceedings of the IEEE, vol. 78, no. 10, pp. 1550�1560, 1990.

[26] D. Eck and J. Schmidhuber, �A �rst look at music composition using lstm recur-

rent neural networks,� Istituto Dalle Molle Di Studi Sull Intelligenza Arti�ciale,

vol. 103, 2002.

[27] W. Zaremba, I. Sutskever, and O. Vinyals, �Recurrent neural network regular-

ization,� arXiv preprint arXiv:1409.2329, 2014.

[28] Magenta, �Models.� https://github.com/tensorflow/magenta/

tree/master/magenta/models.

[29] F. Liang, �Bachbot.� https://github.com/feynmanliang/bachbot.

[30] F. A. Gers and J. Schmidhuber, �Recurrent nets that time and count,� in Neural

Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS Interna-

tional Joint Conference on, vol. 3, pp. 189�194, IEEE, 2000.

[31] K. Lackner, �Composing a melody with long-short term memory (lstm)

recurrent neural networks.� http://konstilackner.github.io/

LSTM-RNN-Melody-Composer-Website/Thesis_final01.pdf.

[32] B. Krueger, �Classical piano midi page.� http://www.piano-midi.de/

midi_files.htm.

[33] W. Zhang, Z. Chen, F. Yin, and Q. Zhang, �Melody extraction from polyphonic

music using particle �lter and dynamic programming,� IEEE/ACM Trans-

actions on Audio, Speech and Language Processing (TASLP), vol. 26, no. 9,

pp. 1620�1632, 2018.

[34] ISO/IEC, ISO/IEC 9899:TC3 - Programming languages � C.

[35] �News, status and discussion about standard c++.� https://isocpp.org/.

[36] �Tensor�ow website.� https://www.tensorflow.org/.

[37] �Python website.� https://www.python.org/.

[38] �Matlab website.� https://es.mathworks.com/products/matlab.

html.

60

https://github.com/tensorflow/magenta/tree/master/magenta/models
https://github.com/tensorflow/magenta/tree/master/magenta/models
https://github.com/feynmanliang/bachbot
http://konstilackner.github.io/LSTM-RNN-Melody-Composer-Website/Thesis_final01.pdf
http://konstilackner.github.io/LSTM-RNN-Melody-Composer-Website/Thesis_final01.pdf
http://www.piano-midi.de/midi_files.htm
http://www.piano-midi.de/midi_files.htm
https://isocpp.org/
https://www.tensorflow.org/
https://www.python.org/
https://es.mathworks.com/products/matlab.html
https://es.mathworks.com/products/matlab.html

Music composition based on Arti�cial
Neural Networks

[39] �Numpy website.� http://www.numpy.org/.

[40] �Matplotlib website.� https://matplotlib.org/.

[41] �Pandas website.� https://pandas.pydata.org/.

[42] �Scikit-learn website.� http://scikit-learn.org/stable/index.

html.

[43] �Theano website.� http://deeplearning.net/software/theano/.

[44] �Keras website.� https://keras.io/.

[45] M. Andrychowicz, M. Denil, S. Gomez, M. W. Ho�man, D. Pfau, T. Schaul,

B. Shillingford, and N. De Freitas, �Learning to learn by gradient descent

by gradient descent,� in Advances in Neural Information Processing Systems,

pp. 3981�3989, 2016.

61

http://www.numpy.org/
https://matplotlib.org/
https://pandas.pydata.org/
http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/index.html
http://deeplearning.net/software/theano/
https://keras.io/

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Regulatory Framework
	Legal analysis in Artificial Intelligence
	MIDI as a technical standard

	Socio-economic Environment
	Budget
	Socio-economic impact

	State of the Art
	MIR Overview
	A brief on music theory
	Pitch: Notes
	Harmony: Scales and Intervals
	Temporal: Notes, rests and tempo

	Computational music description
	Music N (1957 - 1986) and CSound
	MIDI

	The role of machine learning for music generation
	Artificial Neural Networks
	Deep Learning
	Recurrent Neural Networks
	Long Short Term Memory networks (LSTMs)

	Related works
	Magenta project
	Blues improvisation
	Konstantin Lackner's Composer

	System design
	Initial approach
	The final chosen system
	Programming Language
	Frameworks
	Dataset
	Network architecture

	Experiments and Results
	Preliminary experiments
	General observations

	Final music generations
	Online Listening Test
	Bach-like generation
	The Beatles-like generation

	Conclusions and further work
	Conclusions
	Accomplished or partially accomplished objectives
	Pending objectives

	Further work

	References

