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We study the role of the topology of the background space on the one-dimensional Kardar-
Parisi-Zhang (KPZ) universality class. To do so, we study the growth of balls on disordered 2D
manifolds with random Riemannian metrics, generated by introducing random perturbations to
a base manifold. As base manifolds we consider cones of different aperture angles θ, including
the limiting cases of a cylinder (θ = 0, which corresponds to an interface with periodic boundary
conditions) and a plane (θ = π/2, which corresponds to an interface with circular geometry). We
obtain that in the former case the radial fluctuations of the ball boundaries follow the Tracy-Widom
(TW) distribution of the largest eigenvalue of random matrices in the Gaussian orthogonal ensemble
(TW-GOE), while on cones with any aperture angle θ 6= 0 fluctuations correspond to the TW-GUE
distribution related with the Gaussian unitary ensemble. We provide a topological argument to
justify the relevance of TW-GUE statistics for cones, and state a conjecture which relates the KPZ
universality subclass with the background topology.

PACS numbers: 68.35.Ct, 02.40.-k, 64.60.Ht, 61.43.Hv

I. INTRODUCTION

Growth is about geometry, even in the presence of
noise. The Kardar-Parisi-Zhang (KPZ) universality
class, which describes the fluctuations of growing inter-
faces, [1, 2] is known to also describe the statistics of the
boundaries of balls with increasing radii on random man-
ifolds which are flat on average [3]. Remarkably, for one-
dimensional interfaces evolving in two-dimensional space,
the KPZ class does not only entail the values of the crit-
ical exponents, but also the full probability distribution
for the one-point and the two-point fluctuations, which
were initially conjectured and later shown to follow Airy
processes [4–7], see e.g. [8] for a recent review. Nonethe-
less, at this level the class splits into different subclasses,
as occurs when considering for instance growth geome-
tries frequently found in experiments and many contin-
uum and discrete model systems. For instance, in band
geometry, i.e., for an interface with periodic boundaries,
the local fluctuations are ruled by the Tracy-Widom dis-
tribution for the largest eigenvalue of random matrices
in the Gaussian orthogonal ensemble (TW-GOE) [9–11].
However, if the interface has an overall circular shape, the
fluctuations are those characteristic of the Gaussian uni-
tary ensemble (TW-GUE). What is the origin of such a
splitting of the class into two topological flavors? Recent
work on discrete growth models and the KPZ equation
itself [12, 13] shows that, if the interface is in a band ge-
ometry but the underlying substrate is growing, the fluc-
tuations are TW-GUE, just as in the circular case. This
shows that the interface does not need to have a non-zero
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global curvature for TW-GUE statistics to occur.
All these considerations point to relevant questions:

what kind of change takes place in the KPZ subclass
when the topology of the base manifold on which growth
takes place is changed? What are the relevant subclasses
occurring? The possibility of exploring the KPZ class on
any Riemannian manifold was already put forward with
the proposal of a covariant form of the KPZ equation,
which was used to explore band and circular geometries
simply by changing the base manifold [14, 15]. It was
shown that, before reaching the KPZ behavior, the sys-
tem explored a transient state: an Edwards-Wilkinson
(EW) or a self-avoiding walk (SAW) crossover for band
and circular geometry, respectively. As a particular case,
in the absence of noise or diffusive terms one can study
the equation which merely propagates an interface with a
constant speed along the local normal direction —related
with the level set equation in the case of the dynamics of
function graphs [16]—, which we call Huygens equation.
If applied to an infinitesimal circle, such an equation
yields balls of increasing radii around the central point.
In [3], such a Huygens equation was studied on random or
disordered Riemannian manifolds with short-range cor-
relations, which are flat on average. The dynamics of
ball boundaries with increasing radii were shown to fall
into the KPZ universality class, the radial fluctuations
following the TW-GUE distribution. A relevant point is
that transients were absent in this case: KPZ universal
behavior was reached already for very short times.

In this work we study the effect of topology on the
subclass structure of the KPZ universality class of one-
dimensional interfaces, by exploring the interface fluc-
tuations for growing balls on different types of random
Riemannian manifolds. More concretely, we study the
interfaces developed by the Huygens equation on cones
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of different opening angles, including the limiting cases
of the cylinder and the plane, which is the case studied
in [3]. See Fig. 1 for an illustration.

Our overall conclusion is that TW-GOE statistics are
characteristic of the cylinder, TW-GUE behavior occur-
ring for cones of arbitrary aperture angles θ, including the
plane (θ = π/2). Hence, a change takes place in the KPZ
universality subclass between TW-GUE and TW-GOE as
the aperture angle of the base cone manifold is changed,
for θ = 0. Transitions among the various KPZ sub-
classes have been previously explored, although mostly
when considering particular initial conditions which are
such that, at long times, the interface divides into spatial
regions in which statistics are of one or the other sub-
class. See e.g. [17] for the case of the totally asymmetric
simple exclusion process (TASEP) model with an initial
condition where particles are placed at the negative even
integers. Or the KPZ equation with a double-wedge ini-
tial condition or, equivalently, a directed polymer with an
end-point which is fixed and the other one is on a half-
line [18]. In our present case, the statistics are homoge-
neous throughout the system and change abruptly from
TW-GOE to TW-GUE as soon as the aperture angle is
non-zero. Such a result complements those obtained in
growing systems with a band geometry [12, 13], in the
sense that these two are the only relevant subclasses in
the presence of this type of topological changes.

This paper is structured as follows. Section II dis-
cusses our general framework: the covariant KPZ equa-
tion and Huygens equation, considered on random con-
formal deformations of a given base manifold. In section
III we describe the parametrization that we will use for
the cylinder, cones and plane, an the base metric. In sec-
tion IV we discuss our numerical simulations of interfaces
on random cones, the critical exponents, and the radial
fluctuations. The fact that all cones have TW-GUE ra-
dial fluctuations is justified in section V. Our conclusions
and ideas for further work are finally outlined in section
VI.

II. FROM THE COVARIANT KPZ EQUATION
TO RANDOM METRICS

In previous works [14, 15], we have proposed an ex-
tension of the KPZ equation for which all terms are de-
fined in a covariant manner, i.e., the equation has the
same form when expressed on any background metric.
The equation expresses the evolution of a closed simple
curve representing an interface. Each point ~r on the curve
moves along the local normal direction, with a velocity
affected by three different terms:

∂t~r = [A0 +A1k(~r) +Anη(~r)] ~n(~r). (1)

Here, ~n is the local unit normal vector, k is the geodesic
curvature, and η is a zero-average Gaussian noise, uncor-
related both in time and along the interface. The con-

stants A0, A1, and An are free parameters, which charac-
terize, respectively, irreversible growth, surface tension,
and fluctuations in the growth events. In fact, this inter-
face can develop self-intersections. Thus, Eq. (1) must be
supplemented with an algorithm to treat them. A conve-
nient choice is to remove always the smaller component
[14, 15].

In [3] we focused on the simplest case of Eq. (1) with
A1 = An = 0, which we call the Huygens equation,
namely,

∂t~r = ~n(~r), (2)

because it simply propagates any closed curve outwards,
in a way which is similar to Huygens’ principle for the
propagation of a wavefront [16]. If our initial curve is
an infinitesimal circumference around point X0, then the
evolution of our interface will be given by a set of balls
on this metric, with linearly increasing radii. In [3] we
applied Eq. (2) to the study of the growth of balls on
two-dimensional random manifolds with smooth enough
random metrics, which are flat on average and have short-
range correlations.

In the present work we lift the condition that the ran-
dom metrics need to be flat on average. Let us con-
sider any background metric, given by the metric tensor
field g0(x, y). We can introduce an ensemble of metrics
through

g(x, y) = ν(x, y)g0(x, y), (3)

where ν(x, y) is a smooth enough random field with uni-
form average and short-range correlations (as measured
by the g0 metric). This means that, at scales beyond
the (small) correlation length of this random field ν, the
metric g0(x, y) is subject to a random conformal trans-
formation or, alternatively, that we consider an optical
metric on the base manifold, with a position-dependent
index of refraction.

III. CYLINDER, CONES, AND PLANE

Let us address the study of the statistical properties of
interfaces generated by the Huygens equation (2) on ran-
dom conformal deformations of a given base Riemannian
manifold g0(x, y), as expressed by Eq. (3). The division of
the KPZ class between band geometry and circular geom-
etry can be recast in our Riemannian geometry language
by stating that band geometry refers to propagation of
Huygens equation on a cylinder, while circular geome-
try refers to propagation on a plane. Thus, for a random
metric based on the plane, the results of [3] show that, as
expected, the radial fluctuations obey TW-GUE statis-
tics. On a random metric based on the cylinder, if we
set up as initial condition a curve which wraps around
it, the ensuing interface fluctuations should follow the
TW-GOE distribution.
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(a) (b) (c)

FIG. 1. Ball boundaries on a random manifold whose background metric is (a) a cylinder, (b) a cone, and (c) a plane. These
interfaces have been generated using the numerical algorithm described in Sec. IV.

Let us define a natural family of surfaces which inter-
polates between the cylinder and the plane: a set of cones
of increasing opening angle θ between the axis and the
axis and the generatrix, with θ = 0 for the cylinder and
θ = π/2 for the plane. See Fig. 2 for an illustration. The
cone can be understood as a plane from which a wedge
of angle 2π(1 − sin θ) has been removed. We will ad-
dress the following question: how does the distribution
for the normal fluctuations of the interface interpolate
between TW-GOE for the random metric on the cylin-
der and TW-GUE for the random metric on the plane?

Cones are surfaces with zero Gaussian curvature K
everywhere except at the vertex. The integral of K over
any domain containing the vertex is always the same, and
equal to the angular defect ∆ = 2π(1−sin θ) [19, 20]. The
sum of the angles of any geodesic triangle containing the
vertex will be π + ∆. In fact, there is a stronger version
of this statement, that is a consequence of the Gauss-
Bonnet theorem:

∫
γ

kg ds = 2π sin θ. (4)

Here, kg is the geodesic curvature of any curve γ sur-
rounding the vertex. In the case of a random metric
based on the cone, Eq. (4) will be modified by fluctu-
ations. Yet, it shows that the integral of the geodesic
curvature is a conserved quantity on average, and we can
expect some observables of our interfaces to depend on
θ.

A. Coordinates and metric on the cones

Let us describe our cone manifolds in detail, starting
with their embedding in 3D and moving to an intrinsic
chart. Fig. 2 shows the surfaces embedded in 3D space,
the (X,Y, Z) coordinates of an arbitrary point on one of

h

h

r0

θ

FIG. 2. Illustration for our family of conical surfaces,
parametrized by θ, the angle between the cone axis and gener-
atrix. They are all forced to coincide on a base circumference
of radius r0, marked with the blue line. Quasi-polar coordi-
nates are defined by using a “radius” r = r0 + h.

these surfaces being given by

X = (r0 + h sin θ) cosφ, (5a)

Y = (r0 + h sin θ) sinφ, (5b)

Z = h cos θ, (5c)

where we have made the cones coincide on a base cir-
cumference of radius r0 (the thick blue line in Fig. 2) for
all θ, h is the distance of the point to the base circum-
ference, and φ is the azimuthal angle. Let us choose a
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quasi-polar coordinate chart on the cones, in which each
point is given by the pair (r, φ), with r = r0 + h. Thus,
the base circumference will be described as r = r0 on all
the cones. This coordinate chart presents some advan-
tages, such as an homogeneous description of all cones,
cylinder, and plane. We can now consider the metric for
the cones expressed on these coordinates,

ds2 = dr2 + ρ2(r)dφ2, (6)

where ρ(r) = r0 + h sin θ = r0 + (r − r0) sin θ is the
distance to the axis of the cone. The limit case of the
cylinder (θ = 0) yields

ds2 = dr2 + r20dφ
2. (7)

Similarly, for the plane (θ = π/2) we have

ds2 = dr2 + r2dφ2. (8)

Despite the simplicity of this quasi-polar metric, we
prefer to introduce a new Cartesian-like chart. The rea-
son is to avoid the need for periodic boundary conditions
in the azimuthal angle. Let us define x and y as

x = r cosφ, (9a)

y = r sinφ. (9b)

Geometrically, the Cartesian-like coordinates (x, y) ex-
press a mapping of the cone on the plane containing the
base circumference, in which distances to this base curve
are preserved. In these quasi-Cartesian coordinates, the
metric can be written as

gxx =
2r0y

2 (r − r0)
(
sin θ − sin2 θ

)
+ r4 sin2 θ +

(
r20y

2 + r2x2
)

cos2 θ

r4
, (10a)

gyy =
2r0x

2 (r − r0)
(
sin θ − sin2 θ

)
+ r4 sin2 θ +

(
r20x

2 + r2y2
)

cos2 θ

r4
, (10b)

gxy = gyx =
xy[
(
r2 − r20

)
cos2 θ − 2r0 (r − r0)

(
sin θ − sin2 θ

)
]

r4
. (10c)

Our numerical simulations will be performed on the
(x, y) plane, using the base metric described by Eq. (10).

IV. NUMERICAL SIMULATIONS AND
RESULTS

In this section we describe our numerical simulations
of the evolution of the base circumference x2 + y2 = r20
under Huygens equation (2), supplemented with the rule
of self-intersection removal, on a random metric of the
form (3), i.e., a random conformal perturbation of the
metric g0. In turn, g0 will be one of our cone metrics,
given by Eq. (6) in (quasi-)polar coordinates or by Eq.
(10) in (quasi-)Cartesian coordinates.

We have extended the algorithm described in Ref. [3] in
order to work on random conformal deformations of any
given base Riemannian manifold. Let us summarize the
algorithm. The interface is considered to be a piecewise
linear simple curve, with an adaptive number of points:
if two points separate beyond a certain threshold `max
(in the base metric g0), a new point is included mid-way
[14]. In all cases, we take `max = 0.05. Each segment
of the interface determines a tangent vector ~t along the
interface curve. We make it evolve along the local nor-
mal direction ~n. In order to determine ~n, we require the
local metric tensor, g(~r). This is obtained, via Eq. (3),

by multiplying the local metric tensor of the base mani-
fold by a random conformal factor, ν(~r). Then, we solve
the equation ~t ⊥g ~n, i.e., gµν(~r)tµnν = 0. The propa-
gation of each segment at each time-step (∆t = 0.005)
is performed in a straightforward way, but the evolution
equation is supplemented with an algorithm in order to
detect self-intersections [14]. As mentioned above, the
smaller component is always removed so that the inter-
face remains a simple curve at all times.

Figures 3 and 4 show some profiles obtained by our
simulations, for a cylinder and for a cone with θ = π/4,
respectively. The initial radius is r0 = 15 for the cylinder
and r0 = 0.01 for the cone. The local conformal factors
ν(~r) are uniform random deviates in [1/20, 1] which are
chosen independently at each point, since we assume our
discretization cutoff `max to be larger than the correla-
tion length for the ν field. In both figures, the top panel
shows the ball profiles as obtained in the (x, y) coordinate
chart. The top-right panel is a zoom of a single profile.
The center panels show how the previous interfaces fit on
the original manifolds, the cylinder and the cone. The
bottom panel, in both cases, shows the interface evolved
up to the same time, t = 20.
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FIG. 3. Interfaces on a cylinder with r0 = 15. Top panels:
profiles in (x, y) coordinates. The top-right panel shows a
zoom of the outermost profile in the top-left panel. Medium
panel: profiles on the 3D cylinder. The simulation times are
t = 0, 4, 8, 12, 16, and 20, bottom to top. Bottom panel:
enlargement of the t = 20 profile shown in the center panel.

A. Critical exponents

As described in Ref. [3], ball boundaries on a flat-
average random metric of the form of Eq. (3) follow
the Family-Vicsek Ansatz when considered as interfaces.
Specifically, the roughness of the ball boundary, as mea-
sured in the Euclidean metric, grows with time as a
power-law, W (t) ∼ tβ , and so does the correlation length
along the interface, ξ(t) ∼ t1/z. Moreover, in the case
studied in [3], the values of the critical exponents were
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FIG. 4. Interfaces on a cone with θ = π/4 and r0 = 0.01.
Top panels: profiles in (x, y) coordinates. The top-right panel
shows a zoom of the outermost profile in the top-left panel.
Medium panel: profiles on the 3D cylinder. The simulation
times are t = 0, 4, 8, 12, 16, and 20, bottom to top. Bottom
panel: enlargement of the t = 20 profile shown in the center
panel.

shown to be those of the Kardar-Parisi-Zhang universal-
ity class, β = 1/3 and 1/z = 2/3.

Let us now consider the interfaces produced by Huy-
gens equation (2) on our random cones. The average
shape of the ball boundary for any given time is expected
to be a circumference of radius proportional to t. Al-
though we do not have a proper shape theorem for our
general case, see [21, 22] for some rigorous shape theo-
rems in particular manifolds. We define the roughness of
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FIG. 5. Average roughness W as a function of time for inter-
faces grown with Huygens equation (2) on conformal random
deformations of metrics corresponding to a cylinder of radius
r0 = 30, cones with opening angles θ = 15◦ and 45◦, and a
plane. In all cases, the roughness exponent is close to 1/3.

a curve W as the expected magnitude of the normal devi-
ations of the actual interface from its best-fit circumfer-
ence centered at the origin. Notice that distances along
the radial direction in the (x, y) chart can be computed in
an Euclidean setting. Fig. 5 shows these measurements
of W as a function of time, averaged over 100 realizations
of the disorder, for a cylinder of radius r0 = 30, a cone
with opening angle θ = 15◦ and r0 = 0.1, another cone
with 45◦ and r0 = 0.01, and the plane. In all cases, the
power-law behavior of the roughness with time, W ∼ tβ ,
is clear-cut, with a value of β which is very close to 1/3,
as expected. Note, among all cases, the cylinder is the
only one for which roughness saturation at long times to a
system-size dependent value may influence the measured
value of β. In view of the fact that higher-order cumu-
lants do not seem to change trend for our simulations of
the cylinder case (see next section), we believe our sim-
ulation times are not significantly affected by saturation
effects in this case.

The Family-Vicsek Ansatz also implies that the aver-
age roughness on windows of size ` will scale as w(`) ∼ `α
if ` is smaller than the surface correlation length, ξ(t).
Moreover, the three critical exponents are related via
α/β = z. In our case, direct measurements of the rough-
ness exponent α are involved, because distances along the
curve should be carefully computed. In order to overcome
this difficulty, we have devised a novel technique to mea-
sure the correlation length, which is illustrated in Fig. 6.
For a given interface, we draw the best-fit circumference
with center at the origin, and mark all the intersection
points between the circumference and the actual inter-
face. They divide the circumference into a series of n
patches or arcs, whose actual lengths {`1, `2, · · · , `n} on
the cone are measured along the azimuthal direction, be-
ing given by

FIG. 6. Illustration of the procedure to estimate the surface
correlation length ξ(t). The profile is superimposed onto the
best-fit circumference centered at the origin, and the intersec-
tion points are marked. The correlation length is estimated
as the expected length of the patch to which a random point
on the circumference belongs.

`i = ∆φi (r0 + (r̄ − r0) sin θ) , (11)

where r̄ is the radius of the best-fit circumference.
We can estimate the correlation length asking the fol-

lowing question: if we choose a random point on the
circumference, what is the expected length of the patch
on which it stands? On average, this value will be given
by

ξ ≡
∑
i `

2
i∑

i `i
. (12)

Notice that this value does not correspond to the aver-
age value for the patch lengths. The behavior of this
correlation length ξ is shown in Fig. 7, where we can see
that it follows a power-law, with exponent close to the
KPZ value 1/z = 2/3 in all cases. Thus, we have checked
the first claim, that the interfaces on cylinder, cones and
plane, in all cases show the critical exponents of the KPZ
universality class.

B. Radial Fluctuations

The KPZ universality class does not only entail the
values of the critical exponents. As discussed above,
the radial fluctuations are expected to follow one of the
well known Tracy-Widom probability distributions. In
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FIG. 7. Growth of the correlation length ξ(t) for interfaces
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with 1/z very close to 2/3.

the case of a ball on a random metric over the plane,
it was shown in Ref. [3] that they indeed follow the
Tracy-Widom statistics for the Gaussian unitary ensem-
ble (TW-GUE).

We have developed an extension of the analysis in [3]
in order to obtain the radial fluctuations histogram for
interfaces following the Huygens equation (2) on random
conformal deformations of a base Riemannian manifold,
Eq. (3), assuming that a growing circumference is a solu-
tion of the aforementioned Eq. (2). Along the simulation
procedure described at the beginning of this section, the
radial data are stored along with their time tag. We con-
sider all pairs (ti, ri), from different noise realizations and
times, and fit them to a linear form ri = %+vti, whereby
constant values % and v are obtained. Then, we fit the
remainders to a power law with time, namely,

(ri − (%+ vti))
2

= Γ2t2β . (13)

Using the ensuing values of Γ and β (=1/3), we finally
extract the rescaled radial fluctuation χ as

χi ≡
ri − (%+ vti)

Γtβi
. (14)

Notice that, by construction, this χ variable has zero
mean and unit variance, and that it is invariant under
affine changes in the radii r. We then proceed to ob-
tain the histogram for these {χi}. The theoretical pre-
diction is that these histograms will correspond to the
(suitably normailzed) TW-GOE and TW-GUE distribu-
tions in the extremes of our family of surfaces: TW-GOE
for the cylinder (θ = 0) [3] and TW-GUE for the plane
(θ = π/2). In order to assess the statistics of interface

fluctuations, note that one could alternatively [? ? ]
measure Γ and % from suitable moments of the interface
radial positions and compare the histograms of the en-
suing stochastic variable to the suitable standard TW
distribution (with non-zero average and universal vari-
ance).

Let us remark that the values of Γ that we obtain fol-
lowing the procedure in [3] as indicated above are the
same for all the cones within our numerical accuracy,
Γ = 0.03(2) in all cases, as expected from the theoretical
results in [25]. This result could have been anticipated
from Fig. 5, where all the roughness curves can be seen
to (nearly) collapse. Moreover, the sign of the effective
growth parameter (usually known as λ) is positive, the
same as in systems with a net radial growth velocity [3].

These measurements have been carried out in three
cases: (A) a cylinder with r0 = 15, for which we run 500
noise realizations and gather all the points obtained from
1000 snapshots in the time interval t ∈ [1, 10] for each
noise configuration, giving a total of 7 · 107 points; (B)
a cone with θ = 15◦, r0 = 0.1, 500 realizations and 500
snapshots for each one with t ∈ [100, 200], a total of 3·107

points; (C) a cone with θ = 45◦, 100 realizations and 1000
snapshots for each one with t ∈ [10, 80], a total of 4 · 108

points; (D) a plane, θ = 90◦, with 500 realizations in
t ∈ [10, 27].

Before giving a quantitative assessment, let us con-
sider the visualization of these results as shown in Fig.
8. Since the TW-GUE and TW-GOE distributions are
very close visually to the normal distribution, we plot
the difference with the normalized Gaussian probability
density function, ρ(χ) = (2π)−1/2 exp(−χ2/2), which we
call here non-Gaussianity. The top panel shows the non-
Gaussianity as a function of χ for the exact TW-GOE and
TW-GUE distributions, and for the obtained radial fluc-
tuations on the cylinder with r0 = 15, which fit closely
the TW-GOE distribution, as expected. The central and
bottom panels show the analogous data for the cone with
θ = 15◦ (central panel) and θ = 45◦ (bottom panel). In
these two cases, the empirical distribution fits closely the
TW-GUE distribution, as we know to be the case for the
plane [3]. But, of course, this check is merely visual, and
should be supplemented with further numerical compar-
isons.

A more strict test is provided by the estimation of the
third and fourth cumulants of the distributions, normal-
ized as the skewness and the kurtosis, as shown in Table
I. The data for the cylinder can be seeen to correspond
approximately to the TW-GOE distribution, while they
fit the TW-GUE distribution for the cones in all cases.
Fig. 9 shows the time evolution of the skewness of the
distribution, convoluted with a Gaussian filter with de-
viation σ = 5 in order to highlight the trends of the var-
ious sets of data. We can see that, for all the cones and
the plane, the skewness values converge slowly towards
the TW-GUE value, while for the cylinder it fluctuates
around the TW-GOE one.

Another interesting measure is provided by the
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FIG. 8. Difference with a Gaussian (non-Gaussianity) of the
radial fluctuations of interfaces grown with Huygens Eq. (2)
on random conformal deformations of our base manifolds:
top, cylinder with r0 = 15; center: cone with θ = 15◦; bottom:
cone with θ = 45◦. Each panel includes the non-Gaussianity
of the TW-GOE and TW-GUE distributions, for easy com-
parison. Notice that the cylinder corresponds to TW-GOE
statistics, as expected, while the cones follow TW-GUE statis-
tics. Further numerical checks are discussed in the text.

Skewness Kurtosis

TW-GOE 0.2934 0.1652

TW-GUE 0.2241 0.0934

Cylinder r0 = 15 0.30 0.18

Cone (θ = 15◦) 0.24 0.10

Cone (θ = 45◦) 0.23 0.13

Plane 0.22 0.10

TABLE I. Skewness and kurtosis of the radial scaled variable
χ, Eq. (14), for different base manifolds, as compared to the
exact TW values.

Kullback-Leibler (KL) divergence between the empirical
histograms and the theoretical distributions. The KL di-
vergence D(P ||Q) between two probability distributions
P and Q is defined as the loss of information when data
samples from P are assumed to stem from Q [26], and
can be regarded as a natural distance in the space of
distributions. It can be computed as

D(P ||Q) =

∫
µP log

(
P

Q

)
, (15)

where µP is the measure induced by distribution P . Ta-
ble II shows the KL divergences between the empirical

FIG. 9. Time evolution of the skewness of the radial distri-
bution for the cylinder, cones, and plane, along with the val-
ues for TW-GUE and TW-GOE, convoluted with a Gaussian
filter with deviation σ = 5 in order to highlight the trends.
Notice that, for long times, the cylinder fluctuates around the
TW-GOE value, while for all cones and the plane the skew-
ness approaches the TW-GUE value. Notice that the initial
radius r0 is different for the 15◦ cone and for the 45◦ one.

χ distributions and the TW-GUE and TW-GOE distri-
butions. It can be seen that, on the cylinder, the radial
fluctuations are more likely TW-GOE, but on all cones
the radial fluctuations are closer to TW-GUE.

KL-Distance to: TW-GOE TW-GUE

Cylinder r0 = 15 2.7 · 10−5 2.5 · 10−4

Cone (θ = 15◦) 2.9 · 10−4 8.3 · 10−5

Cone (θ = 45◦) 5.2 · 10−4 2.6 · 10−4

Plane 5.2 · 10−4 1.3 · 10−4

TABLE II. Kullback-Leibler (KL) divergences, Eq. (15), be-
tween the empirical χ distributions and the theoretical TW-
GOE and TW-GUE distributions.

V. GROWTH, GEOMETRY, AND TOPOLOGY

The numerical simulations discussed in the previous
section allow us to extract several hypothesis. First, Huy-
gens propagation on random conformal deformations of
cones of different opening angles are shown to fall into the
KPZ universality class, for all opening angles. We can
also conjecture that, on the cylinder, the radial fluctua-
tions follow TW-GOE statistics, while for all the cones
with θ > 0 we obtain TW-GUE. This conjecture fits
well with the results of [12, 13], where it was shown that
growth in a band geometry whose substrate expands at
a constant rate in time follows the TW-GUE distribu-
tion. In our geometric setting, an expanding substrate is
similar to a cylinder with a growing radius, i.e., a cone.

These results require some theoretical explanation,
which we will attempt within our Riemannian geometry
framework. Let us recall that Huygens equation (2) is
covariant: solutions obtained using one coordinate chart
can be mapped into solutions obtained using a different
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coordinate chart. The base metric tensor for all our sur-
faces, in a polar chart (r, φ), has the form

g(r, φ) =

(
1 0

0 f(r)

)
, (16)

where f(r) = (r0 + (r − r0) sin θ)2. If θ 6= 0, an affine
change of coordinates,

r → r̂ = r − r0 +
r0

sin θ
, (17)

φ→ φ̂ = φ sin θ, (18)

renders the metric Euclidean. Notice that this corre-
sponds to viewing the cone as a plane from which a wedge
of angle 2π(1 − sin θ) has been removed. For θ = 0, of
course, the change of variables (18) becomes singular.
And, as noted in the previous section, an affine transfor-
mation in the r coordinate will not change the χ distri-
bution.

Let us now turn our attention to the conformal noise
imposed upon the base metric. Since we assume it to be
uncorrelated in space, we can safely assume that it will
be invariant under coordinate changes. Combining both
statements we find that, if θ 6= 0, the radial fluctuations
for growth of any cone must have the same form as in the
Euclidean case. The same argument can not be applied
to growth on the cylinder, since in that case the metric
factor fcyl(r) = r0, and no affine change of coordinates in
r will map it to the Euclidean case fEuc(r) = r. Notwith-
standing, please notice that our argument does not entail
that the cylinder and the plane must have different fluc-
tuations.

Despite the metric nature of our argument, the differ-
ence between the cylinder and the rest of the cones is,
moreover, topological. All cones are homeomorphic to
the plane, while the cylinder is not. In fact, on the cylin-
der the Huygens equation is applied in a different way.
For any cone, we can start with an infinitesimal circum-
ference around the vertex and produce balls around it.
In the cylinder, we must start with a curve which is not
homotopically equivalent to a point, because it will wrap
around the manifold. But this difference by itself does
not allow us to assert that growth on the cylinder will
possess different kinds of fluctuations, since the cylinder
can be smoothly completed with a lower lid, thus render-
ing our initial circumference homotopically trivial. Thus,
the difference between TW-GUE and TW-GOE behav-
ior does not stem from the homotopy class of the initial
curve.

VI. CONCLUSIONS AND OUTLOOK

We have investigated the universality subclass struc-
ture of the KPZ class in a Riemannian geometry setting

for disordered substrates. We have studied the statis-
tical properties of Huygens interfaces on random met-
rics, see Eq. (2). A Huygens interface is defined as a the
propagation of an initial simple closed curve on a cer-
tain manifold, always following the local normal direc-
tion with unit speed. The metrics studied were confor-
mal random deformations of a certain set of base man-
ifolds: the Euclidean plane, cones of different opening
angles, and a cylinder. Note, in all these systems disor-
der is quenched. Nontheless, fluctuations of ball inter-
faces are in the KPZ universality class associated with
time-dependent noise. Indeed, while in the planar case
it had already been shown [3] that the interfaces follow
KPZ statistics with TW-GUE radial fluctuations, in the
present work we have shown how KPZ statistics are found
in all other manifolds, with TW-GUE fluctuations for the
cones and TW-GOE for the cylinder. There is no inter-
mediate subclass between these two.

A theoretical explanation of this result has been put
forward, based on the notion that the Huygens equation
is covariant, i.e., it can be studied in any possible coor-
dinate chart. All cones with non-zero opening angle are
homeomorphic to the Euclidean plane, but not to the
cylinder. Moreover, we have written down the explicit
non-singular change of coordinates between the cones and
the plane and shown that it has no effect on the statisti-
cal properties of the radial fluctuations of the interfaces,
implying that all cones should present TW-GUE statis-
tics. This result fits very well with the results of [12, 13],
where it was shown that KPZ systems (a discrete model
and the KPZ equation itself) in band geometry with an
expanding substrate also feature TW-GUE statistics.

Another relevant conclusion for our work that remains
beyond the approaches in [12, 13] is that growing inter-
faces with global curvature may still present TW-GOE
fluctuations, as shown in our rendering of the solutions of
the Huygens equation on the randomized cylinder. One
may argue that the global curvature of these interfaces is
merely apparent, because their integrated geodesic curva-
ture is, indeed, zero. This points to the need of a deeper
geometric understanding of the KPZ subclass structure
within the Riemannian geometry framework.

Regarding technical aspects, we have introduced a
novel way to estimate the correlation length of the in-
terface, by considering the expected value of the distance
between intersections with the average circumference, see
Fig. 6. Moreover, we have employed techniques from
information theory in order to determine the probability
distribution, such as the Kullback-Leibler divergence, see
Eq. 15.

Our work opens up many possibilities: what are the
statistical properties of the covariant KPZ equation on a
generic manifold? Or, alternatively, which are the statis-
tics of the Huygens equation on random deformations
of a certain base manifold? In this case, we expect a far
richer set of possibilities. The argument described in Sec.
V suggests a possible methodology in order to extract the
radial fluctuations when the manifold is homeomorphic
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to either the cylinder or the plane. But it leaves open
the question regarding additional flavors or subclasses of
the celebrated KPZ universality class.

Another relevant question is whether this strategy to
characterize subclasses within the KPZ universality class
will extend to higher dimensions, and whether they will
be related to topological considerations, as suggested
by recent work on directed polymers in random media
(DPRM) in 2+1D [27, 28]. A comparison of the Huygens
and the DPRM methods is in order, which may lead to
very interesting results.
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