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Abstract

We present a growth model with spatial interdependencies in the heterogeneous

technological progress and the stock of knowledge that, under certain conditions, yields a

growth-initial equation that can be taken to the data. We then use data on EU-NUTS2

regions and a correlated random effects specification to estimate the resulting spatial

Durbin dynamic panel model with spatially weighted individual effects. QML estimates

support our model against simpler alternatives that impose a homogeneous technology.

Also, our results indicate that rich regions tend to have higher (unobserved) productivity

and are likely to stay rich because of the strong time and spatial dependence of the GDP

per capita. Poor regions, on the other hand, tend to enjoy productivity spillovers but are

likely to stay poor unless they increase their saving rates.
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1 Introduction

Historically, the empirical economic growth literature consisted mostly of “aspatial empirical

analyses that have ignored the influence of spatial location on the process of growth” (Fingleton

and López-Bazo, 2006, p. 178). In the last two decades, however, a number of studies seek

to incorporate “spatial effects” in the standard (i.e., non-spatial) economic growth models. In

particular, the idea that the spatial location of an economy may drive its economic growth has

been developed using models of absolute location, which account for the location of one economy

in the geographical space, and models of relative location, which account for the location of

one economy with respect to the others. Econometrically, these two types of model are closely

related to the concepts of spatial heterogeneity and spatial dependence (Abreu et al., 2005).

Although spatial heterogeneity is usually associated with parameter heterogeneity (see e.g.

Ertur and Koch, 2007; Basile, 2008), the most common approach in the literature is to allow

for unobserved differences using panel data (Islam, 1995; Elhorst et al., 2010). Also, knowledge

spillovers are the main mechanism used to incorporate interactions between economies into the

Solow-Swan neoclassical growth model (López-Bazo et al., 2004; Egger and Pfaffermayr, 2006;

Ertur and Koch, 2007; Pfaffermayr, 2009). It is interesting to note, however, that these two

streams of the literature have developed quite separately. Notable exceptions include Elhorst

et al. (2010), who consider the extension of the model proposed by Ertur and Koch (2007)

to panel data; Ho et al. (2013), who consider an ad-hoc extension of the model proposed by

Mankiw et al. (1992) that includes a spatial autoregressive term and a spatial time lag term;

and Yu and Lee (2012), who use a simplified version of the technology assumed by Ertur and

Koch (2007) to derive a growth model with spatial externalities based on the model of Mankiw

et al. (1992). This paper aims to contribute to this limited literature by considering a growth

model with spatial heterogeneity and spatial externalities that nests the models introduced by

Islam (1995) and Ertur and Koch (2007).

To be precise, we present a growth model with interdependencies in the (heterogeneous)

technological progress and the stock of knowledge. The basic framework is similar to that of

Ertur and Koch (2007), which means assuming that the stock of knowledge depends on one’s
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own stock of physical capital and the stock of knowledge of the other economies. However, we

consider an alternative source of spatial externalities in the stock of knowledge, namely that

arising from the technological progress of the other economies (Klenow and Rodriguez-Clare,

2005). To make this possible, we do not assume a common exogenous technological progress but

introduce heterogeneity in the initial level of technology (Prescott, 1998), which is interpreted

here as a proxy for total factor productivity (Islam, 1995) and, consistent with the empirical

evidence, assumed to be spatially correlated (LeSage and Fischer, 2012; Miranda et al., 2017b).1

Having presented our model, we then derive the steady-state equation and a growth-initial

equation that can be taken to the data. It is worth noting, however, that although we closely

follow the approach proposed by Ertur and Koch (2007), we use weaker assumptions and provide

conditions for such assumptions to be fulfilled. Also, the resulting econometric specification

is a spatial Durbin model similar to theirs, but with a dynamic component (see also Elhorst

et al., 2010; Yu and Lee, 2012; Ho et al., 2013) and spatially weighted individual-specific effects

(arising from the heterogeneous technological progress). Thus, given the obvious interest in

distinguishing individual effects from their spatial spillovers, we resort to a correlated random

effects specification (Miranda et al., 2017a,b). In particular, we estimate our growth-initial

equation by Quasi-Maximum Likelihood (see also Lee and Yu, 2016) using EU-NUTS2 regional

data from Cambridge Econometrics. We use regional data because, as López-Bazo et al. (2004,

p. 43) argue, once it is accepted that “[e]conomies interact with each other (...), linkages are

[likely] to be stronger [between close-by regions] than across heterogeneous countries”.

We find evidence of technological interdependence in the output per capita of the EU

regions, that is, a positive and significant impact of the level of technology of neighbouring

regions. However, there is also evidence of “unobserved” technological interdependence in the

EU regions (i.e., local spatial contagion of “unobserved productivity”), which supports our

assumed technology. In contrast, our estimates do not support the role that Ertur and Koch

1The model can be further extended by considering the stock of capital of the other economies as an additional
source of spatial externalities in the stock of knowledge (López-Bazo et al., 2004; Egger and Pfaffermayr,
2006; Pfaffermayr, 2009). However, it can be shown that the resulting econometric specification becomes then
overspecified and requires imposing constraints on the parameters and/or using an alternative specification (e.g.
using lags and/or different weighting matrices) to identify some of the parameters. We leave this extension for
future research.
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(2007) assume capital plays in shaping technological progress.

The rest of the paper is organised as follows. In section 2 we present the model and derive

the empirical specification. In section 3 we discuss the data and the estimation results. Section

4 concludes.

2 The Model

In this section we present our growth model and derive the growth-initial equation to be

estimated. To a large extent, our approach follows the steps of Ertur and Koch (2007). Thus, we

first discuss and motivate the assumed technology, and then plug it into the (Cobb-Douglas)

production function. We subsequently obtain the output per worker equation at the steady

state, and finally the growth-initial equation. We depart from Ertur and Koch (2007) in that

we derive the growth initial equation using weaker assumptions and show that our assumptions

are fulfilled under certain conditions on the variables (or the parameters).

2.1 Technological interdependencies in growth

Our starting point is the Solow growth model originally proposed by Mankiw et al. (1992)

using cross-section data and subsequently extended by Islam (1995) to panel data (see also

Barro and Sala-i-Martin, 2003). Let us then consider a Cobb-Douglas production function for

region i = 1, . . . , N in time t = 1, . . . , T :

Yit = AitK
α
itL

1−α
it , (2.1)

where Yit denotes output, Kit physical capital (α is thus the capital share or output elasticity

parameter), Lit labour, and Ait technology. All the variables are in levels and there are constant

returns to scale in production. Also, while output, capital and labour are typically assumed to

be observable, technology is assumed to be (partially) unobservable. Mankiw et al. (1992), for

example, assume that lnA = a+ ε, where a is a constant term and ε is the standard i.i.d error.
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For the purposes of this paper, a major feature of this model is that technology is assumed to

grow exogenously and at the same rate in all regions. In mathematical terms, Ait = Ω0 exp(µt),

where Ω0 is the exogenous technological progress and µ is its constant rate of growth. This rules

out the existence of knowledge spillovers arising from technological interdependence between

the regional economies. However, accounting for technological interdependence and knowledge

spillovers is critical when analysing how “the relative location of an economy affects economic

growth” (Anselin, 2003; Fingleton and López-Bazo, 2006; Elhorst et al., 2010, p. 338).

To address this issue, Ertur and Koch (2007) assume that the technological progress of an

economy depends on the stock of physical capital per worker in that economy as well as the

stock of knowledge of the other economies. More specifically, they assume that the technology of

an economy depends on a geometrically weighted average of the technology of other economies,

thus making knowledge spillovers spread over all the regions (and hence become “global”).2

However, it is still assumed that “some proportion of technological progress is exogenous and

identical in all countries” [p. 1036].

Thus, if Ωit denotes the exogenous technological progress and kit =
Kit

Lit
the level of physical

capital per worker (of region i in period t), Ertur and Koch (2007, p. 1036) assume that the

technology of region i in period t is given by

Ait = Ωitk
φ
it

N∏
j 6=i

A
γwij
jt , (2.2)

where “[t]he parameter φ describes the strength of home externalities generated by physical

capital accumulation” and “the degree of [regional] technological interdependence generated by

the level of spatial externalities is described by γ”. Notice that the spatial relation between

region i and its neighbouring regions is represented by a set of spatial weights or “exogenous

friction terms” wij, with j = 1, . . . , N , that are assumed to satisfy the following properties:

wij = 0 if i = j, 0 ≤ wij ≤ 1, and
∑
j

wij = 1. Lastly, Ertur and Koch (2007) assume that

Ωit = Ωt = Ω0 exp(µt), where µ is the constant rate of growth of the exogenous technological

2López-Bazo et al. (2004) and Egger and Pfaffermayr (2006), for example, consider growth models in which
the knowledge spillovers are local in nature, in the sense that they are limited to the neighbouring regions.
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progress. Therefore, the technology eventually assumed is Ait = Ω0 exp(µt)kφit

N∏
j 6=i

A
γwij
jt .

In this paper, we extend Ertur and Koch (2007)’s model by introducing heterogeneity

and spatial dependence in the exogenous technological progress (while still assuming that the

technological progress of an economy depends on the stock of knowledge of the other economies).

First, as Mankiw et al. (1992, p. 6) point out, the Ω0 “term reflects not just technology

but resource endowments, climate, institutions, and so on; it may therefore differ across

countries”. In this respect, Prescott (1998) stresses the importance of considering differences in

the adoption of technologies across economies in order to account for the observed differences

in income levels. Thus, we introduce region heterogeneity into the definition of the exogenous

technological progress by assuming that Ωit = Ωi0 exp(µt).3 Second, as Islam (1995, p. 1149)

points out, Ωi0 “is an important source of parametric difference in the aggregate production

function across [regions]”. Econometrically, it can be interpreted as an individual-specific effect

(possibly correlated with some of the covariates in the initial-growth specification eventually

derived). Economically, it is “a measure of efficiency with which the [regions] are transforming

their capital and labor resources into output and hence is very close to the conventional concept

of total factor productivity” [p. 1155-1156]. This opens the door to considering productivity

spillovers as an additional source of spatial externalities, since empirical evidence indicates that

estimates of Ωi0 are spatially correlated (LeSage and Fischer, 2012; Miranda et al., 2017b). This

correlation may arise, for example, from R&D spillovers (Klenow and Rodriguez-Clare, 2005)

and/or analogous technology policies, practices and institutions across nearby regions (Parente

and Prescott, 1994).4

All in all, a production technology that accounts for these alternative sources of spatial

3Alternative ways of modelling the exogenous technological progress are Ωit = Ω0 exp(µit) and Ωit =
Ωi0 exp(µit). However, these proposals would considerably increase the number of parameters of the model
(by more than N , since it can be shown that the balanced growth rate becomes heterogeneous too) and make
identification difficult, if not impossible (Lee and Yu, 2016).

4There may be alternative explanations for the spatial correlation of productivity. In any case, the question
of how to introduce these alternative explanations in the model and test for their validity is clearly beyond the
scope of this paper.
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dependence is the following:

Ait = Ωit

N∏
j 6=i

Ω
ϕwij
jt kφit

N∏
j 6=i

A
γwij
jt (2.3)

where Ωit = Ωi0 exp(µt), Ωi0 are non-observable (which is why Ωit does not have a coefficient in

2.3), and ϕ can be interpreted as the degree of technological interdependence generated from

the (unobserved) productivity spillovers. In particular, if we leave aside the heterogeneous

technological progress, ϕ = φ = γ = 0 would lead us to the model without spillovers proposed

by Islam (1995) and ϕ = 0 to the model proposed by Ertur and Koch (2007). Notice also that,

in contrast to the local contagion models of López-Bazo et al. (2004) and Egger and Pfaffermayr

(2006), both ours and Ertur and Koch (2007)’s are models of global contagion (Anselin, 2003).

We differ, however, in that whereas in their case there are no (global) spatial externalities in

the stock of knowledge unless γ 6= 0, there are here if ϕ 6= 0 (albeit of a local nature). This is

because our model accounts for both global and local contagion.

2.2 The production function

In order to obtain the explicit form of the Cobb-Douglas production function in 2.1 given our

assumed technology, let us consider 2.3 expressed in logs and matrix form:

A = Ω + ϕWΩ + φk + γWA = (I − γW )−1Ω + ϕ(I − γW )−1WΩ + φ(I − γW )−1k (2.4)

where the parameters ϕ and γ have been previously described (in particular, it is now assumed

that 1/γ is not an eigenvalue of W , the N × N spatial weight matrix, when γ 6= 0), A is the

N × 1 vector of logarithms of the technology, k is the N × 1 vector of logarithms of the capital

per worker, I is the N×N identity matrix, and Ω = Ω0 + ιNµt is the N×1 vector of logarithms

of the exogenous technological progress with Ω0 = (ln Ω10, . . . , ln ΩN0)
′ and ιN being a N × 1

vector of ones. Notice that, in this vein, the technology depends on the exogenous technological

progress and the capital per worker (but not on the technology of the other economies).

Let us now denote by w
(r)
ij the row i and column j element of matrix W r. Notice that, since
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W is assumed to be row-normalized, its eigenvalues are equal or smaller than one in absolute

value. Thus, if |γ|< 1, (I − γW )−1 =
∞∑
r=0

γrW r. This means that we may rewrite 2.4 as

Ait =
N∏
j=1

Ω

∞∑
r=0

γrw
(r)
ij

jt

N∏
j=1

Ω

ϕ
γ

∞∑
r=1

γrw
(r)
ij

jt

N∏
j=1

k
φ
∞∑
r=0

γrw
(r)
ij

jt

= Ω
1+( γ+ϕγ )

∞∑
r=1

γrw
(r)
ii

it

N∏
j 6=i

Ω
( γ+ϕγ )

∞∑
r=1

γrw
(r)
ij

jt k
φ+φ

∞∑
r=1

γrw
(r)
ii

it

N∏
j 6=i

k
φ
∞∑
r=1

γrw
(r)
ij

jt

Then, given that yit = Aitk
α
it,

yit = Ω
1+
(

(γ+ϕ)(uii−α−φ)
φγ

)
it

N∏
j 6=i

Ω
(γ+ϕ)uij

φγ

jt kuiiit

N∏
j 6=i

k
uij
jt (2.5)

where uii = α + φ + φ
∞∑
r=1

γrw
(r)
ii and uij = φ

∞∑
r=1

γrw
(r)
ij , with uii +

N∑
j 6=i

uij =
N∑
j=1

uij =

α + φ+
φγ

1− γ
= α +

φ

1− γ
.

Notice that “this model implies spatial heterogeneity in the parameters of the production

function”, a feature shared with Ertur and Koch’s model (2007, p. 1037). We differ, however,

in that it is no longer the case that “if there are no physical capital externalities, i.e., φ = 0, we

have uii = α and uij = 0, (and) then the production function is written in the usual form” (as

in e.g. Mankiw et al. 1992 and Islam 1995). As previously pointed out, here we further require

that ϕ = γ = 0 for the production function to be written in the usual form.

2.3 The Steady State equation

To derive the equation describing the output per worker of region i at the steady state, we

proceed in the following way. First we rewrite the production function in logs and matrix form,

y = A+αk, and substitute the technology by its expression in 2.4. We then pre-multiply both

7



sides of the resulting equation by I − γW to obtain

y = Ω + ϕWΩ + (α + φ)k + γWy (2.6)

Lastly, we replace in 2.6 the log of the capital per worker in region i by its log value at the

steady state, ln k∗it. To this end, we start by noting that the evolution of capital is governed by

the following dynamic equation:

·
kit = siyit − (ni + δ)kit (2.7)

where the dot over a variable denotes its derivative with respect to time, si is the fraction

of output saved, ni is the growth rate of labour, and δ is the annual rate of depreciation of

capital (common to all regions). Given that production shows decreasing returns to scale,

equation 2.7 implies that the capital-output ratio is constant and converges to a balanced

growth rate g defined by

·
kit
kit

= ln
·
kit = ln

·
yit = g =

µ (1 + ϕ)

(1− γ)(1− α)− φ
(see appendix

A). It can also be shown that, given a balanced growth rate g and 2.7 (see e.g. Barro and

Sala-i-Martin, 2003),
k∗it
y∗it

=
si

ni + δ + g
and ln k∗it = ln y∗it + ln

(
si

ni + δ + g

)
. Lastly, note that

if we compute the marginal productivity of capital (using the expression defining yit in 2.5)

we obtain

·
kit
kit

= siΩ
1+
(

(γ+ϕ)(uii−α−φ)
φγ

)
it

N∏
j 6=i

Ω
(γ+ϕ)uij

φγ

jt kuii−1it

N∏
j 6=i

k
uij
jt − (ni + g). Therefore, provided

that α+
φ

1− γ
< 1, there are diminishing returns to the capital, as in Ertur and Koch (2007)’s

model.

What remains to be done is to introduce in 2.6 (rewritten for economy i rather than in

matrix form) the expression obtained for the log of the capital per worker in region i at the

steady state. In doing so, we obtain the equation describing the output per worker of region i
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at the steady state:

ln y∗it =
ln Ωit

1− α− φ
+

ϕ

1− α− φ

N∑
j=1

wij ln Ωjt +
α + φ

1− α− φ
ln

(
si

ni + δ + g

)

− αγ

1− α− φ

N∑
j=1

wij

(
sj

nj + δ + g

)
+

(1− α)γ

1− α− φ

N∑
j=1

wij ln y∗jt

(2.8)

Notice that this steady state equation differs from that obtained by Ertur and Koch (2007)

in that the term
ϕ

(1− α− φ)

N∑
j=1

wij ln Ωjt is missing in theirs. This arises from our assumption

of heterogeneous exogenous technological progress, since Ωit is assumed to be Ωt in Ertur and

Koch (2007) and, consequently, no exogenous technological interdependences are considered.

2.4 The growth-initial equation

In the standard, non-spatial growth models (see e.g. Barro and Sala-i-Martin, 2003), the analog

of equation 2.8 gives an expression for the output per worker in the steady state that does not

depend on the output per worker in the steady state of the other economies (i.e., the term

(1− α)γ

1− α− φ

N∑
j=1

wij ln y∗jt is missing). Thus, a log-linear approximation to the dynamics around

the steady state using a Taylor expansion produces a differential equation (see e.g. Mankiw

et al., 1992) whose solution leads to a growth-initial equation that takes the form of a linear

(dynamic panel data) model (Islam, 1995). In our case, however, this approach produces a

complex system of first-order differential linear equations, thus raising two important questions:

the stability of the solution and the derivation of an estimable growth-initial equation from such

an stable solution. To address the stability issue, we simply refer to results provided by Ertur

and Koch (2007). Next we concentrate on the derivation of the growth-initial equation.

Let us then consider a log linearisation of the marginal productivity of capital,

·
kit
kit

, around
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the steady state:

·
kit
kit

= g + (uii − 1)(ni + δ + g) (ln kit − ln k∗it) +
N∑
j 6=i

uij(ni + δ + g)
(
ln kjt − ln k∗jt

)
(2.9)

Ertur and Koch (2007) provide sufficient conditions for the (local) D-stability of the system

of first-order differential equations in 2.9. Also, given 2.9, it can be shown (see appendix B)

that the “converge equation” is

·
y(t)− ·

y(t)∗ = BJB−1 [y(t)− y(t)∗] (2.10)

with J = Diag(ni + δ + g)
[
− (1− α) I + φ (I − γW )−1

]
and B = αI + φ (I − γW )−1.

Notice that, in standard non-spatial growth models, matrix BJB−1 is diagonal and the

elements of the diagonal correspond to the speed of convergence of each economy (Mankiw

et al., 1992; Barro and Sala-i-Martin, 2003).5 This is not the case here, which means that

using a solution to 2.10 (see appendix B for details) to derive the growth-initial equation

yields an econometric model too complicated to be estimated. Egger and Pfaffermayr (2006),

for example, obtain a particular solution to the system of linear differential equations that

defines their convergence equation. However, because of the intricate expression they obtain,

their empirical implementation uses a reduced form version of the growth-initial equation that

corresponds to a spatial autoregressive model with spatially correlated errors. In our case, it

can be shown that this approach would result in a non-linear spatial model specification with

heterogeneous coefficients. We leave this avenue for future research.

Ertur and Koch (2007) address this problem by imposing conditions on the converge

equation, namely restricting the spatial dependence of the gap between the observed and the

steady state values of the capital (k−k∗) and the output per worker (y−y∗). In particular, it is

assumed that the gap between the observed and the steady state values of the capital and output

5To be precise, since it is generally assumed that ni ≡ n, the speed of convergence is given by a scalar (i.e.,
all the economies have the same speed of convergence) and the convergence equation is just a linear differential
equation.
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per worker of one economy are proportional to the gap between the observed and the steady

state values of the capital and output per worker of the other economies, respectively. Under

these assumptions, the convergence equation in 2.10 becomes analogous to that in standard,

non-spatial growth models and the growth-initial equation takes the form of a spatial Durbin

model. This is the approach we follow here.

Still, a major limitation of Ertur and Koch (2007)’s approach is that they do not provide

conditions for the assumed relations in the output-per-worker and output gaps to hold. We

provide such a conditions in appendix C. To be precise, we provide the proof using the

expression obtained for the capital in 2.9 and then show that the results also hold for the

output (rather than attacking the problem directly using the complicated expression of the

output in 2.10). In particular, if we define Φij =
ln kit0 − ln k∗it0
ln kjt0 − ln k∗jt0

for all i, j = 1, ..., N and some

t0, we show that the relation

ln kit − ln k∗it = Φij

(
ln kjt − ln k∗jt

)
(2.11)

holds for all t ≥ t0 as long as the growth rate of labour satisfies that ni = κ

[
N∑
j=1

uijΦji − 1

]−1
−

(g + δ) for i = 1, . . . , N − 1 and κ = (nN + g + δ)

[
N∑
j=1

uNjΦjN − 1

]
.6

We also show that, under these conditions, the speed of convergence, λi, is given by the

following differential equation (see appendix C):

d ln yit
dt

= g − λi (ln yit − ln y∗it) , (2.12)

where λi =
N∑
j=1

GijΘ
−1
ij , Gij is the row i and column j element of matrix BJB−1 and

6Our results can also be interpreted as either a condition on the observed and steady-state capitals in t0 or
as a set of constraints on the parameters of the model (α, φ, γ and κ). Notice, however, that these approaches
do not yield an explicit solution for the variables and parameters involved, respectively, which means that the
existence of such a solution is generally not guaranteed (obviously, in the case of the parameters, a necessary
condition for the existence of a solution is that N ≤ 4).
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Θis =
N∑
j=1

uijΦij/Φis

N∑
j=1

usjΦsj are the proportionality parameters of the output-per-worker

gap, i.e., ln
yit
y∗it

= Θis ln
yst
y∗st

.

Lastly, under the simplifying assumption that the speed of convergence is homogeneous

across regions, i.e., λi = λ for i = 1, . . . , N , the growth initial equation can be written as (see

appendix C for details):

ln yit2 = e−λτ ln yit1 − ρe−λτ
N∑
j=1

wij ln yjt1 + ρ

N∑
j=1

wij ln yjt2

+

(
1− e−λτ

)
(α + φ)

1− α− φ
ln si −

(
1− e−λτ

)
(α + φ)

1− α− φ
ln(ni + δ + g)

−
(
1− e−λτ

)
αγ

1− α− φ

N∑
j=1

wij ln sj +

(
1− e−λτ

)
αγ

1− α− φ

N∑
j=1

wij ln(nj + δ + g)

+

(
1− e−λτ

)
1− α− φ

ln Ωi0 +

(
1− e−λτ

)
ϕ

1− α− φ

N∑
j=1

wij ln Ωj0

+ g(1− ρ)
(
t2 − t1e−λτ

)
(2.13)

where τ = t2 − t1, t2 > t1 ≥ t0, and ρ =
(1− α)γ

1− α− φ
.

3 Empirical results

3.1 Model specification and identification

To derive our econometric specification, notice that equation 2.13 (plus an i.i.d. shock ε)

corresponds to the spatial Durbin dynamic panel model with individual-specific effects and
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their spatial spillovers:

zit = γ1zi,t−1 + γ2

N∑
j=1

wijzj,t−1 + ρ
N∑
j=1

wijzjt + β1x1it + β2x2it + θ1

N∑
j=1

wijx1jt + θ2

N∑
j=1

wijx2jt

+ µi +
N∑
j=1

wijαj + ft + εit (3.1)

where zit = ln yit2 , zi,t−1 = ln yit1 , x1it = ln sit, x2it = ln(nit + δ + g), γ1 = e−λτ ,

γ2 = −ρe−λτ , β1 =

(
1− e−λτ

)
(α + φ)

1− α− φ
, β2 = −

(
1− e−λτ

)
(α + φ)

1− α− φ
, θ1 =

(
1− e−λτ

)
αγ

1− α− φ
,

θ2 = −
(
1− e−λτ

)
αγ

1− α− φ
, µi =

(
1− e−λτ

)
1− α− φ

ln Ωi0, αi =

(
1− e−λτ

)
ϕ

1− α− φ
ln Ωi0 and ft = g(1 −

ρ)
(
t2 − t1e−λτ

)
.

This means that equation 3.1 corresponds to the model specification discussed by Lee and Yu

(2016), except that their model does not distinguish the spatial counterparts of the individual

effects (
N∑
j=1

wijαj). In other words, their individual effects correspond to µi +
N∑
j=1

wijαj in 3.1.

In fact, in our model, the individual effects and their spatial counterparts are proportional (by

a rate ϕ). This is, therefore, a particular case of the more general specification proposed by

Miranda et al. (2017a).

To distinguish the individual effects from their spatial spillovers, we assume a correlated

random effects specification for the individual effects (µi) and their spatial spillovers (αi). This

means making use of the following correlation functions (Mundlak, 1978; Chamberlain, 1982):

µi = πµ1

(
1

T

T∑
t=1

x1it

)
+ πµ2

(
1

T

T∑
t=1

x2it

)
+ υµi

αi = πα1

(
1

T

T∑
t=1

x1it

)
+ πα2

(
1

T

T∑
t=1

x2it

)
+ υαi,

(3.2)

where πµ1 , πµ2 , πα1 and πα2 are the parameters associated with the period-means of the

regressors, and υµi and υαi are random error terms with E(υµi) = 0 = E(υαi), V ar(υµi) = σ2
µ,

V ar(υαi) = σ2
α and Cov(υµi, υαi) = σµα. Notice that there are alternative specifications that

are nested in this error term structure. Notably, the standard “random effects” without spatial
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contagion (which is derived from our model by imposing the constraints πµ1 = πµ2 = πα1 =

πα2 = 0, σ2
α = 0 and σ2

µ 6= 0) and a “fixed effects” error term (obtained when imposing πµ1 6= 0,

πµ2 6= 0, πα1 = πα2 = σ2
α = 0, and σ2

µ 6= 0) analogous to that discussed by Mundlak (1978) and

Chamberlain (1982).

The last thing to notice about our econometric specification is that the implied parameters

(α, φ, ϕ, γ, λ and ln Ωi0) are not identified. In particular, we cannot obtain a single estimate

of α (since this can be obtained from λ, φ and either β1 or β2, but also from λ, φ, γ and either

θ1 or θ2), φ (since this can be obtained from λ, α and either β1 or β2, but also from λ, α, γ

and either θ1 or θ2), ϕ (since this can be obtained from each (αi, µi) pair, but also from either

πµ1 and πα1 or πµ2 and πα2), γ (since this requires ρ, γ1, either β1 or β2, and either θ1 or θ2,

respectively), λ (since this can be obtained from γ1, but also from γ2 and ρ) and ln Ωi0 (since

this requires either µi, γ1 and either β1 or β2, or αi, γ1, ϕ and either β1 or β2) because in

principle these parameters are overidentified. However, it is easy to see that equations 3.1 and

3.2 contain three sets of constraints on the parameters: i) β1 = −β2 and θ1 = −θ2 (arising

from the assumption that the production function is homogeneous of degree one, thus making

the output per capita depend only on the stock of physical capital); ii) γ2 = −ργ1 (arising

from the assumed spatial-time dynamics of the technology); and iii) αi = ϕµi (i.e., πα = ϕπµ,

σ2
α = ϕ2σ2

µ and σµ,α = ϕσ2
µ, which arise from the assumed spatial contagion in the heterogeneous

exogenous technology and unobserved productivity). By imposing these six constraints on 3.1

and 3.2 (i.e., the “unconstrained model”), we obtain a constrained version of our model in

which all the implied parameters are identified.7

To this end, we start by replacing 3.2 in 3.1, which in matrix form yields:

Zt = γ1Zt−1 + γ2WZt−1 + ρWZt +Xtβ +WXtθ +XΠµ +WXΠα + ft + ηt (3.3)

where Xt =
(
x1t x2t

)
, X denote period-means of Xt, β = (β1, β2)

′, θ = (θ1, θ2)
′,

7While i) also arises in Ertur and Koch (2007)’s model, ii) and iii) are specific to our model specification.
In this respect, notice that Elhorst et al. (2010, p. 343) also consider the constraint γ2 = −ργ1. However, while
in our case this arises directly from the derivation of our model specification, they argue that this “constraint
is unnecessarily restrictive because no theoretical or empirical reason exists to impose it”.
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Πµ = (πµ1 , πµ2)
′, Πα = (πα1 , πα2)

′, and the error term is ηt = υµ + Wυα + εt, with variance-

covariance matrix given by JT ⊗ (σ2
µI + σµα(W + W ′) + σ2

αWW ′) + σ2
εINT , JT being a T × T

matrix of ones and INT being the NT ×NT identity matrix. This is the unconstrained version

of our econometric model.

Let us now define S1 = I − ρW , S2 = I +ϕW and X∗it = ln

(
sit

nit + δ + g

)
= ln (Sit). Then,

the constrained model is given by

S1Zt = γc1S1Zt−1 + βcX∗ + θcWX∗ + S2XΠc
µ + ft + ηct (3.4)

with γ2 = −ργc1, β1 = −β2 = βc, θ2 = −θ1 = θc and Πα = ϕΠc
µ and ηct = εt + S2υµ, with

variance-covariance matrix given by JT ⊗ (σ2
µS2S

′
2) + σ2

εINT . Notice that, in contrast to 3.3,

the estimation of the constrained version of our econometric model in 3.4 (see e.g. Lee and Yu,

2016; Miranda et al., 2017a) provides an estimate of: i) the capital share, α (from γc1, β
c and

θc); ii) the externalities of the stock of physical capital, φ (from γc1, β
c and θc); iii) the degree

of technological interdependence between the unobserved productivity, ϕ (directly from S2); iv)

the degree of technological interdependence between the economies, γ (from γc1, β
c and θc); v)

the speed of convergence, λ (from γc1); and vi) the unobserved productivity, ln Ωi0 (from µi, β
c

and γc1). In particular, obtaining a statistically significant estimate of ϕ should be interpreted

as supportive evidence for our model (against that of Ertur and Koch, 2007). Also, obtaining

a statistically significant estimate of γ would lead us to reject the model of Islam (1995).

3.2 Estimates from EU-NUTS2 regions

We estimate the model given by 3.3 using the approach and model specifications of Lee and Yu

(2016) and Miranda et al. (2017a). We use the former as a benchmark for our basic parameters

(γ1, γ2, ρ, β1, β2, θ1 and θ2, which, since all the variables are in logs, can be interpreted

as elasticities) and the latter to obtain the whole set of estimates (i.e., the basic ones plus

those appearing in the correlation functions: πµ1 , πµ2 , πα1 and πα2), test the validity of the

constrained version of the model (using a Likelihood Ratio test), and estimate the implied

parameters (using the constrained version of the model). We also follow this scheme in the
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discussion of the results. This means that we will start with an analysis of the estimates of

the basic and correlation functions parameters in the unconstrained and constrained models,

then we will move on to the estimates of the implied parameters, and we will conclude with a

description of the geographical distribution of the estimated “unobserved productivity” of the

EU regions (ln Ω̂i0) and their estimated spatial spillover (ϕ̂
N∑
j=1

wij ln Ω̂j0).

First, however, a word about the data. We use EU NUTS2 regional data from Cambridge

Econometrics to estimate our model. In particular, our initial sample is analogous to the one

analysed by Elhorst et al. (2010), so we can use their results as a benchmark to which ours will

be compared. Thus, we initially consider 189 regions across 14 EU countries (Austria, Belgium,

Germany, Denmark, Greece, Finland, France, Ireland, Italy, the Netherlands, Portugal, Spain,

Sweden and the United Kingdom) using time intervals of five years (see also Ho et al., 2013;

Lee and Yu, 2016) between 1982 and 2002. This results in a balanced panel dataset with four

time periods (1982-1987, 1987-1992, 1992-1997, 1997-2002).8

It is worth noting, however, that we have explored alternative samples to check the

robustness of our results. First, we extended our initial sample to cover the years of the recent

global crisis (the time intervals 2002-2007 and 2007-2012). Second, we considered different

time intervals in a wider time period (1980 to 2015, with observations for 1980-1985, 1985-

1990, and up to 2010-2015, which was the last available period at the moment of writing this

paper). Third, we considered alternative groups of countries (e.g., including Norway, which

is a non-EU country, and/or dropping Portugal, Ireland, Italy, Spain and/or Greece, which

are countries that have faced (severe) problems with economic growth over the last decade).

In all these cases, the estimates we obtained for the (un)constrained model remained largely

unaltered. We illustrate this by reporting results from these alternative sampling schemes:

the period 2002 to 2012, the period 1980 to 2015, the period 1982 to 2002 without including

Portugal, Ireland, Italy, Spain and Greece (the so-called “PIIGS”) and the period 1982 to 2002

8To be precise, the (small) differences between our sample and that of Elhorst et al. (2010) are the following.
First, they have data on Luxembourg and the period 1977-1982. Second, in their sample “the islands (such as
those associated with southern European countries) are assumed to be connected to the mainland, so that each
region has at least one neighbour” (p. 353). Here we only consider continental regions, which means that our
sample does not include the Spanish cities of Ceuta and Melilla, the French “Départements d’outre mer”, and
the Greek, Finnish, French, Italian and Spanish islands.
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without including Greece (since in all these cases the results were not substantially different

when Norway was included).

All these estimates were obtained using real GDP per capita as the dependent variable (i.e.,

yit is real GDP at 2005 constant prices over total population, in thousands of people). As for the

explanatory variables, sit is the ratio between investment expenditures and gross value-added

(at 2005 constant prices and as a percentage) and nit is the growth rate of the population over

time (computed as in Islam 1995). As is common in the literature (see e.g. Mankiw et al., 1992;

Islam, 1995; Ertur and Koch, 2007), we assume that δ + g = 0.05 to compute the depreciation

rate. Note also that time dummies and a constant term were included in the set of explanatory

variables to account for ft. Lastly, W is a contiguity weight matrix.

[Insert Table 1 about here]

Table 1 provides descriptive statistics for the dependent and main explanatory variables

(i.e., yit, sit and nit). In particular, we report the statistics for the five samples considered and

the periods effectively used in estimation in each case (notice that we lose one observation due

to the inclusion of the lagged dependent variable in the model). The differences in the values

of the statistics across the samples considered are of small magnitude, particularly between the

original sample and the same sample without Greece. In fact, the observed differences arise in

the GDP and the saving rate, whereas the distribution of the depreciation rate remains almost

unaltered across samples. It is also interesting to note that the recent economic crisis seems to

have increased the levels of GDP and savings, but mostly for those regions that were already

at the top of the distribution (i.e., the centre of the distribution of these variables has shifted

to the right and the upper tail has increased, thus making differences between the extremes

larger). The effect is similar when the PIIGS are dropped from the original sample, except

that now it it is the lower tail of the distribution the one that increases (i.e., we are dropping

regions with levels of GDP and savings that are lower than those of the rest of the sample).

[Insert Table 2 about here]
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We move now to the analysis of the estimates of the model and, as previously pointed

out, start by considering the estimates of the unconstrained version of the model. These are

reported in Table 2. In particular, the first reported estimates (in column two) were obtained

using the approach and model specification of Lee and Yu (2016), whereas the rest (columns

three to seven) were obtained using that of Miranda et al. (2017a). We report results for the

initial sample (period 1982 to 2002) in columns two and three and, subsequently, for the other

samples considered (periods 1982 to 2012, 1980 to 2015, 1982 to 2002 without the PIIGS, and

1982 to 2002 without Greece).

We find a remarkable regularity in both the values and the statistical significance of

the coefficients across the samples and estimation approaches considered. Perhaps the only

differences worth mentioning are: i) the slightly lower value of the coefficient associated with

the time-lagged dependent variable (γ1) when the model is estimated using Lee and Yu (2016)’s

approach; and ii) the lack of statistical significance of the coefficient associated with the saving

rate (β1) when the years of the recent crisis are considered (i.e., the samples covering the periods

2002 to 2012 and 1980 to 2015). This caveat aside, all sets of estimates provide essentially the

same picture.

In particular, the basic parameters are all statistically significant (except for θ2) and have

the predicted signs (see Ertur and Koch, 2007).9 Consistent with the constraint γ2 = −ργ1,

the spatial and time lagged dependent variables have a high and positive coefficient, whereas

the spatially weighted lagged dependent variable has a negative and smaller coefficient in

absolute value (see also Ho et al., 2013; Lee and Yu, 2016). Thus, the level of GDP per

capita of the European regions is largely determined by its past GDP per capita, and the

current and past GDP per capita of their neighbours. Further, the saving rate of an economy

contributes positively to its GDP per capita, but its depreciation rate and the saving rate of the

neighbouring regions both contribute negatively. All in all, these results indicate that richest

9Our estimates of the basic parameters are largely consistent with those reported by Basile (2008) using an
analogous sample of regions and the period 1988 to 2000. They also concur with those reported in panel data
studies analysing countries rather than regions (see e.g. Ho et al., 2013; Lee and Yu, 2016). In contrast, we find
some differences with those reported by Pfaffermayr (2009), who considers an analogous period of analysis but
whose sample includes regions in Norway and Switzerland.
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areas are likely to stay rich (more so they if are geographically close to rich areas, like e.g. in

the so-called “blue banana”) while poorer areas can only (partially) catch up if they increase

their saving rates and/or are geographically close to rich areas.

As for the correlation functions parameters, there is evidence of i) correlation between the

individual effects and the covariates (since both the –mean– saving and depreciation rates are

statistically significant) and ii) spatial contagion in the individual effects (since the spatially

weighted –mean– saving rate is generally statistically significant). In addition, two of the

variance components, σ2
µ and σ2

ε , are statistically significant. This supports our correlated

random effects model specification. In particular, results are consistent with the constraint

αi = ϕµi, which implies a “fixed effects” error term model with proportional spatial contagion

(Miranda et al., 2017a).

[Insert Table 3 about here]

Next we consider the results for the constrained version of the model, which are reported

in Table 3. Before discussing the estimates, however, we should assess the validity of equation

3.4 in the different samples considered. To this end, we used a Likelihood Ratio test. We found

that the “fully” constrained version of the model (i.e., the model resulting from imposing the

constraints β1 = −β2, θ1 = −θ2, γ2 = −ργ1 and αi = ϕµi) was statistically supported only in

the last two samples (i.e., the period 1982 to 2002 without the PIIGS and without Greece).10

Estimates from this fully constrained version of the model are reported in Table 3b. Still, after

testing the validity of each constraint individually, we found that a “partially” constrained

version of the model in which only the constraint αi = ϕµi was imposed was not rejected in

the first three samples (periods 1982 to 2002, 1982 to 2012, and 1980 to 2015). Estimates from

this partially constrained version of the model (including ϕ, which is identified) are reported

in Table 3a.

At first sight, there is very little to comment on the results reported in Table 3a since,

10In particular, the Likelihood Ratio test statistics we obtained in the first three samples were 18.42 (period
1982 to 2002), 42.06 (period 1982 to 2012) and 27.26 (period 1980 to 2015), all statistically significant at
standard levels. The Likelihood Ratio test statistics of the other samples (the period 1982 to 2002 without the
PIIGS and without Greece) are reported in the last row of Table 3.
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as expected, they are very similar to the ones obtained from the unconstrained model (see

Table 2). Yet two things are worth mentioning. First, the correlation functions parameters

and the variance components parameters are all statistically significant. This again supports

our correlated random effects specification. Second, the coefficient reflecting the degree of

technological interdependence generated from the productivity spillovers, ϕ, shows a negative

and (at least in two of the samples considered) statistically significant value. Also, the estimates

we obtain for ϕ are similar across the samples considered. Given the imposed constraint,

αi = ϕµi, this indicates that there exists a negatively proportional relation between the

individual effects of the EU regions and their spatial spillovers. We will return to this point

when we analyse the geographical distribution of ln Ω̂i0 and ϕ̂
N∑
j=1

wij ln Ω̂j0.

As for the estimates of the “fully” constrained version of the model, the first thing to

notice is that they are similar in the two samples considered (except for the lack of statistical

significance of θc in the sample without the PIIGS). In particular, the basic parameters are all

statistically significant and have the predicted signs (see Ertur and Koch, 2007). Also, if we

compare our results with those obtained by Elhorst et al. (2010), our estimates of the difference

in the logs of the saving and depreciation rates, and of its spatial counterpart, are both larger

(and statistically significant, whereas only the former is in their case). The estimated coefficient

of the spatially lagged dependent variable, on the other hand, is analogous to the one reported

by Elhorst et al. (2010). Lastly, the other parameters have estimated values in line with those

obtained for the “partially” constrained version of the model.

[Insert Table 4 about here]

We then use these “fully constrained” estimates to obtain the implied parameters of the

theoretical model. These are reported in Table 4. Our main findings are the following.

First, the statistical significance of the degree of technological interdependence generated from

the (unobserved) productivity spillovers, ϕ, supports our assumed technology (against the

related alternatives of Islam 1995 and Ertur and Koch 2007). Second, the estimated speed of

convergence, as measured by λ, is around 2% and statistically significant, which is a standard

result in the literature (Barro and Sala-i-Martin, 2003; López-Bazo et al., 2004; Ertur and

20



Koch, 2007; Lee and Yu, 2016). Third, the statistical significance of the degree of technological

interdependence, as measured by γ, supports Ertur and Koch (2007)’s model and contradicts

the model of Islam (1995). Moreover, its value is similar to that found by Ertur and Koch

(2007) and Elhorst et al. (2010), somewhere in between them. Fourth, the estimates of the

capital share, as measured by α are in line with those obtained in the literature (Barro and

Sala-i-Martin, 2003; Ertur and Koch, 2007; Elhorst et al., 2010). Fifth, the parameter capturing

capital externalities at the global level (φ, through γ) is not statistically significant. In other

words, there is no sign of the capital externalities in technology found by Ertur and Koch

(2007).

All in all, our estimates support our model specification against that of Islam (1995) and

Ertur and Koch (2007). They also point to the existence of spatial spillovers in the unobserved

productivity and the level of technology. That is, we find evidence supporting the existence of

both local and global spillovers in the stock of knowledge. In contrast, we find no evidence of

spatial externalities in the stock of capital.

[Insert Figure 1 about here]

To conclude our empirical analysis, we report the geographical distribution of the estimated

“unobserved productivity” and its spatial spillover (to reiterate, obtained from the constrained

model in 3.4) in Figure 1. More precisely, Figure 1 presents a map of the European regions

considered and the values of these statistics grouped by quantiles: Figure 1a reports ln Ω̂i0 (the

“unobserved productivity”) whereas Figure 1b reports ϕ̂
N∑
j=1

wij ln Ω̂j0 (the spatial spillover of

the “unobserved productivity”, that is, the impact on the technology of unit i of all the units

neighbouring i having their “unobserved productivity”). Notice that we have opted to use the

estimates from the 1982-2002 sample without Greece to construct Figure 1 because this allows

us to analyse a larger number of regions. It is important to stress, however, that results were

not substantially different when we used the 1982-2002 sample without the PIIGS. Notice also

that, given the negative and statistically significant value found for ϕ, there is a negatively

proportional relation between the unobserved productivity of each EU region and the spatial

21



contagion of this unobserved productivity on its neighbouring regions.11

With this in mind, we start by noting the considerable heterogeneity that Figure 1a displays,

which contradicts the standard assumption of homogeneous exogenous technological progress.

In particular, the results indicate that the regions with the lowest estimated “unobserved

productivity” are mostly located in Scandinavia (Finland and Sweden), Scotland and North of

England, Northern Ireland, Central-South of France, South-Est of Germany, Austria, Central

and North-West of Spain, and North-West and South of Italy. Figure 1a also shows that the

geographical distribution of the higher estimated “unobserved productivity” covers the so-called

“blue banana” (from the South of the UK to the South-West of Germany, thus including the

North of France, Belgium and the Netherlands), plus Denmark and the Mediterranean regions

of the South-West of France and Central Italy.

What is also interesting to note is that about half of the regions in the high productivity

group can be qualified as “rich”, meaning here that their average GDP per capita over the

periods considered is in the upper quantile of the distribution. Likewise, the same criterion

would lead us to qualify about half of the regions with low estimated productivities as “poor”.

Thus, it seems that many of the richer/poorer regions tend to have higher/lower (unobserved)

productivities. In fact, the Spearman rank correlation between ln Ω̂i0 and the average GDP per

capita is 0.36 and statistically significant.

As for the spillovers associated with the “unobserved productivity”, Figure 1b reveals that

the pattern tends to be opposite to the one found for the estimated “unobserved productivity”.

In particular, the largest values are found in the Northern regions (i.e., Scandinavia, East of

Ireland, the UK Midlands and South of Scotland), but also in the East (i.e., Austria) and South

(South-West of France, North and West of Spain, and South of Italy) of Europe. This means

that these are (often poor) regions whose “unobserved productivity” is more impacted by the

“unobserved productivity” of its neighbours. The South of England and Ireland, Belgium,

the Netherlands, and West Germany, on the other hand, stand as the areas with the lowest

11These spillovers correspond to the (local) spill-in effects proposed by Miranda et al. (2017b). We do not
report the spill-out effects because, given the proportional relation that imposes the constraint αi = ϕµi, its
geographical distribution is no more informative than that of ln Ω̂i0 (in fact, since both ln Ω̂i0 and ϕ take negative
values, the spill-out effects take positive values and are larger/smaller the smaller/larger ln Ω̂i0 is).
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spillovers. This means that these are (mostly rich) regions whose output per capita is barely

affected by the “unobserved productivity” of its neighbours.

4 Conclusions

In this paper we present a growth model that extends previous knowledge-spillover models in

several directions. First, we do not assume common exogenous technological progress but

account for heterogeneity in the initial level of technology. Second, we derive the speed

of convergence and the growth-initial equation under weaker assumptions than in previous

literature and provide conditions for these assumptions to hold. We then use EU-NUTS2

regional information from Cambridge Econometrics to test whether the data supports the main

features of our growth model. In particular, our econometric specification is derived from the

growth-initial equation of the model and takes the form of a spatial Durbin dynamic panel

model with spatially weighted individual effects.

We estimate the model by QML using a correlated random effects specification for the

individual effects and their spatial spillovers. Our results support our model specification.

Also, they are largely i) consistent with other studies using analogous data; and ii) robust to

the use of alternative specifications, samples and estimation approaches. In particular, we find

evidence of the existence of (global) spatial spillovers arising from the level of technology, but

not from the investment in capital. Also, our estimates indicate that the level of GDP per capita

of the European regions is largely determined by their past GDP per capita and the current

and past GDP per capita of their neighbours, their saving rate and that of their neighbours,

and their depreciation rate. However, the role of unobservable characteristics is worth noting:

the richest areas (e.g., the “blue banana”) are rich partially because of their higher “unobserved

productivity” and a number of poor regions benefit from “unobserved productivity” spillovers.
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Table 1: Descriptive statistics

(a) Sample I: 1982-2002

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 23,393 9,961 6,321 18,554 22,307 26,227 133,452
s 23.39 4.50 9.98 20.65 23.08 25.77 46.08

n+ δ + g 0.05 0.00 0.04 0.05 0.05 0.06 0.07

(b) Sample II: 1982-2012

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 25,355 11,536 6,321 19,698 23,997 28,934 176,529
s 23.69 4.76 9.98 20.64 23.47 26.17 48.84

n+ δ + g 0.05 0.01 0.04 0.05 0.05 0.06 0.08

(c) Sample III: 1980-2015

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 25,322 11,842 5,798 19,567 24,020 28,829 191,016
s 23.51 4.81 9.39 20.50 23.26 25.83 46.31

n+ δ + g 0.05 0.01 0.04 0.05 0.05 0.06 0.07

(d) Sample IV: 1982-2002 w/o PIIGS (Portugal, Ireland, Italy, Spain and Greece)

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 25,317 10,247 12,208 20,464 23,397 27,307 133,452
s 23.28 4.44 10.82 20.65 23.00 25.41 46.08

n+ δ + g 0.05 0.00 0.04 0.05 0.05 0.06 0.07

(e) Sample V: 1982-2002 w/o EL (Greece)

Variable Mean St. Dev. Min P25 Median P75 Max

GDP 23,936 9,881 6,321 19,188 22,620 26,525 133,452
s 23.34 4.41 9.98 20.65 23.08 25.70 46.08

n+ δ + g 0.05 0.00 0.04 0.05 0.05 0.06 0.07

Note: Number of observations: 189×4 = 756 (Sample I), 189×6 = 1, 134 (Sample
II), 189× 7 = 1, 323 (Sample III), 139× 4 = 556 (Sample IV), and 180× 4 = 720
(Sample V). GDP is real GDP (at 2005 constant prices, in Euros) per capita
(using total population, in thousands of people). s is the ratio between investment
expenditures and gross value-added (as a percentage and at 2005 constant prices,
in Euros). n is is the working-age population growth rate (computed as in Islam
1995) and δ + g = 0.05 (as in e.g. Mankiw et al., 1992; Islam, 1995; Ertur and
Koch, 2007).
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Table 2: QML estimates (unconstrained model)

Sample I Sample I Sample II Sample III Sample I Sample I
(1982-2002) (1982-2002) (1982-2012) (1980-2015) (w/o PIIGS) (w/o EL)

γ1
0.6291∗∗∗

(0.0304)

0.9049∗∗∗

(0.0145)

0.9177∗∗∗

(0.0160)

0.8520∗∗∗

(0.0294)

0.8681∗∗∗

(0.0221)

0.8980∗∗∗

(0.0157)

γ2
−0.3202∗∗∗

(0.0556)

−0.4317∗∗∗

(0.0366)

−0.4746∗∗∗

(0.0290)

−0.3934∗∗∗

(0.0338)

−0.4757∗∗∗

(0.0412)

−0.4706∗∗∗

(0.0362)

ρ
0.5281∗∗∗

(0.0432)

0.5047∗∗∗

(0.0380)

0.5603∗∗∗

(0.0277)

0.5463∗∗∗

(0.0273)

0.5587∗∗∗

(0.0513)

0.5357∗∗∗

(0.0383)

β1
0.1149∗∗∗

(0.0283)

0.0774∗∗

(0.0354)

0.0124

(0.0187)

−0.0053

(0.0149)

0.0604

(0.0405)

0.1031∗∗∗

(0.0349)

β2
−0.1624∗∗∗

(0.0434)

−0.1952∗∗∗

(0.0542)

−0.1742∗∗∗

(0.0370)

−0.1045∗∗∗

(0.0320)

−0.1564∗∗∗

(0.0506)

−0.1536∗∗∗

(0.0529)

θ1
−0.0944∗∗∗

(0.0339)

−0.0907∗∗

(0.0419)

−0.0526∗∗

(0.0259)

0.0018

(0.0187)

−0.1090∗∗∗

(0.0506)

−0.1154∗∗∗

(0.0410)

θ2
0.0553

(0.0577)

0.0528

(0.0714)

0.0337

(0.0482)

0.0317

(0.0404)

0.1085

(0.0703)

0.0446

(0.0697)

πµ1
−0.1131∗∗∗

(0.0397)

−0.0526∗∗

(0.0259)

−0.0606∗∗

(0.0306)

−0.1185∗∗

(0.0482)

−0.1432∗∗∗

(0.0403)

πµ2
0.3486∗∗∗

(0.0728)

0.3321∗∗∗

(0.0596)

0.3310∗∗∗

(0.0752)

0.3358∗∗∗

(0.0888)

0.3037∗∗∗

(0.0737)

πα1

0.0954∗

(0.0502)

0.0829∗∗

(0.0337)

0.0613

(0.0393)

0.1223∗

(0.0637)

0.1189∗

(0.0508)

πα2

−0.1637

(0.1112)

−0.1244

(0.0846)

−0.1453

(0.1011)

−0.2721

(0.1360)

−0.0975

(0.1137)

σ2µ
0.0006∗∗∗

(0.0002)

0.0004∗∗

(0.0001)

0.0010∗∗

(0.0003)

0.0013∗∗∗

(0.0003)

0.0007∗∗∗

(0.0002)

σ2α
1.7× 10−5

(0.0004)

0.0002

(0.0003)

0.0008

(0.0005)

0.0001

(0.0008)

1.2× 10−5

(0.0004)

σµα
0.0001

(0.0002)

−0.0002

(0.0002)

−0.0007∗

(0.0004)

−0.0003

(0.0006)

−0.0001

(0.0003)

σ2ε
0.0035∗∗∗

(0.0002)

0.0030∗∗∗

(0.0002)

0.0028∗∗∗

(0.0002)

0.0019∗∗∗

(0.0002)

0.0028∗∗∗

(0.0002)

Note: All estimates were obtained using the approach proposed by Miranda et al. (2017a),
except for those in column two, which were obtained using the approach proposed by Lee and
Yu (2016). Time dummies included but not reported. The symbol ∗ indicates statistically
significant at the 10% level, ∗∗ at the 5% level and ∗∗∗ at the 1% level.

25



Table 3: QML estimates (constrained model)

(a) Partially constrained model

Sample I Sample II Sample III
(1982-2002) (1982-2012) (1980-2015)

γ1
0.9028∗∗∗

(0.0144)

0.9217∗∗∗

(0.0147)

0.8674∗∗∗

(0.0271)

γ2
−0.4455∗∗∗

(0.0373)

−0.4853∗∗∗

(0.0281)

−0.4099∗∗∗

(0.0319)

ρ
0.5253∗∗∗

(0.0384)

0.5608∗∗∗

(0.0271)

0.5434∗∗∗

(0.0273)

β1
0.0595

(0.0394)

0.0019

(0.0196)

−0.0086

(0.0151)

β2
−0.1891∗∗∗

(0.0562)

−0.1717∗∗∗

(0.0372)

−0.1044∗∗∗

(0.0321)

θ1
−0.0453

(0.0377)

−0.0116

(0.0174)

0.0142

(0.0153)

θ2
0.0323

(0.0790)

0.0283

(0.0487)

0.0361

(0.0391)

πµc1
−0.0903∗∗∗

(0.0446)

−0.0336

(0.0261)

−0.0467∗

(0.0270)

πµc2
0.3423∗∗∗

(0.0781)

0.3309∗∗∗

(0.0597)

0.3320∗∗∗

(0.0707)

σ2
c

µ

0.0005∗∗

(0.0002)

0.0004∗∗∗

(0.0001)

0.0009∗∗∗

(0.0003)

σ2
c

ε

0.0035∗∗∗

(0.0002)

0.0031∗∗∗

(0.0002)

0.0029∗∗∗

(0.0001)

ϕ
−0.3803

(0.3303)

−0.3773∗

(0.2267)

−0.4644∗∗

(0.1903)

LR-test 4.82 5.35 3.02

(b) Fully constrained model

Sample I Sample I
(w/o PIIGS) (w/o EL)

γc1
0.8700∗∗∗

(0.0195)

0.9026∗∗∗

(0.0131)

ρc
0.5747∗∗∗

(0.0405)

0.5496∗∗∗

(0.0361)

βc
0.0797∗∗

(0.0323)

0.1083∗∗∗

(0.0333)

θc
−0.0575

(0.0318)

−0.0780∗∗

(0.0383)

πµc1
−0.1257∗∗∗

(0.0412)

−0.1445∗∗∗

(0.0392)

πµc2
0.2195∗∗∗

(0.07530)

0.2507∗∗∗

(0.0617)

σcµ
0.0013∗∗∗

(0.0003)

0.0006∗∗∗

(0.0002)

σ2
c

ε

0.0020∗∗∗

(0.0002)

0.0031∗∗∗

(0.0002)

ϕ
−0.3854∗

(0.2108)

−0.4432∗

(0.2459)

LR-test 9.88 7.65

Note: The superscript c denotes constrained parameters (see section 3.2 for details). All estimates
were obtained using the approach proposed by Miranda et al. (2017a). Time dummies are included
but not reported. The symbol ∗ indicates statistically significant at the 10% level, ∗∗ at the 5% level
and ∗∗∗ at the 1% level. LR-test is the Likelihood Ratio test statistic of the hypothesis that the
constraint αi = ϕµi is valid (Table 3a) and the constraints β1 = −β2, θ1 = −θ2, γ2 = −ργ1 and
αi = ϕµi are valid (Table 3b).
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Table 4: Implied Parameters

Sample I Sample I
(w/o PIIGS) (w/o EL)

α
0.5930∗∗∗

(0.1216)

0.4349∗∗∗

(0.1374)

φ
−0.0665

(0.0744)

−0.0548

(0.0983)

ϕ
−0.3854∗

(0.2108)

−0.4432∗

(0.2459)

λ
0.0205∗∗∗

(0.0029)

0.0279∗∗∗

(0.0045)

γ
0.6394∗∗∗

(0.1346)

0.6305∗∗∗

(0.1162)

Note: ∗ indicates statistically
significant at the 10% level, ∗∗

at the 5% level and ∗∗∗ at the
1% level.
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Figure 1: Estimated individual effects and their spatial spillovers

(a) Geographical distribution of lnΩ̂i0

(b) Geographical distribution of ϕ̂

N∑
j=1

wij ln Ω̂j0
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A The balanced growth rate

From equation 2.5:

ln yit =

[
1 +

(
(γ + ϕ)(uii − α− φ)

φγ

)]
ln Ωit +

(
γ + ϕ

φγ

) N∑
j 6=i

uij ln Ωjt + uii ln kit +
N∑
j 6=i

uij ln kjt

Since ln Ωit = ln Ωi0 + µt, then:

d ln yit
dt

=

[
1 +

(
(γ + ϕ)(uii − α− φ)

φγ

)]
µ+

(
γ + ϕ

φγ

) N∑
j 6=i

uijµ+ uiig +
N∑
j 6=i

uijg

Also, using uii +
N∑
j 6=i

uij =
N∑
j=1

uij = α +
φ

1− γ
,

d ln yit
dt

=

(
1− (γ + ϕ)(α + φ)

φγ
+

(
γ + ϕ

φγ

)(
α(1− γ) + φ

1− γ

))
µ+

(
α +

φ

1− γ

)
g = g,

which after some algebra becomes:

(
1 + ϕ

1− γ

)
µ+

(
α(1− γ) + φ

1− γ

)
g = g

Therefore,

g =
µ (1 + ϕ)

(1− γ)(1− α)− φ
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B The convergence equation

Folowing Egger and Pfaffermayr (2006), let us start by calculating
d ln kit
dt

− d ln k∗it
dt

:

·
kit −

·
k∗it = −(ni + δ + g)(ln kit − ln k∗it) + uii(ni + δ + g)(ln kit − ln k∗it)

+
N∑
j 6=i

uij(ni + g + δ)(ln kjt − ln k∗jt)

= − (1− α) (ni + δ + g)(ln kit − ln k∗it) + φ
N∑
j=1

∞∑
r=0

γrw
(r)
ij (ni + δ + g)(ln kjt − ln k∗jt)

where the second term is easily obtained using the definitions of uii and uij, and the fact that
∞∑
r=1

γrw
(r)
ij =

∞∑
r=0

γrw
(r)
ij − w

(0)
ij . In matrix notation:

·
k(t)−

·
k(t)∗ = Diag(ni + δ + g)

[
− (1− α) I + φ (I − γW )−1

]
(k(t)− k(t)∗)

= Diag(ni + δ + g)PDiag

(
− (1− α) +

φ

1− γτi

)
P−1 (k(t)− k(t)∗)

= J (k(t)− k(t)∗) (B.1)

where we use the term (t) after a matrix to stress its time dependence, Diag() denotes a

diagonal matrix whose elements correspond to the expression in brackets, P is the matrix of

eigenvectors of W , and τi is the i-th eigenvalue of W . Notice that, since W is row-normalized,

|τi| ≤ 1.

Now, from equation 2.5,

ln yit =

[
1 +

ϕ(uii − α− φ)

φγ

]
ln Ωit +

(γ + ϕ)

φγ

N∑
j 6=i

uij ln Ωjt + uii ln kit +
N∑
j 6=i

uij ln kjt

and its value at the steady state,

ln y∗it =

[
1 +

ϕ(uii − α− φ)

φγ

]
ln Ωit +

(γ + ϕ)

φγ

N∑
j 6=i

uij ln Ωjt + uii ln k
∗
it +

N∑
j 6=i

uij ln k∗jt,
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we obtain that

ln yit − ln y∗it = uii(ln kit − ln k∗it) +
N∑
j 6=i

uij(ln kjt − ln k∗jt) (B.2)

Also, using the definitions of uii and uij, and the fact that
∞∑
r=1

γrw
(r)
ij =

∞∑
r=0

γrw
(r)
ij − w

(0)
ij ,

we may rewrite B.2 as

ln yit − ln y∗it = α(ln kit − ln k∗it) + φ
N∑
j=1

∞∑
r=0

γrw
(r)
ij (ln kjt − ln k∗jt)

In matrix notation:

y(t)− y∗(t) =
[
αI + φ (I − γW )−1

]
(k(t)− k(t)∗) = B (k(t)− k(t)∗) , (B.3)

Thus,

·
y(t)− ·

y(t)∗ =
[
αI + φ (I − γW )−1

]( ·
k(t)−

·
k(t)∗

)
= B

(
·
k(t)−

·
k(t)∗

)
(B.4)

Lastly, plugging B.1 into B.4 and replacing k(t) − k(t)∗ by its expression from B.3, we

obtain the “convergence equation” (Egger and Pfaffermayr, 2006; Ertur and Koch, 2007):

·
y(t)− ·

y(t)∗ = BJB−1 [y(t)− y(t)∗] = B [Diag(ni + δ + g)(−I +B)]B−1 (y(t)− y(t)∗) (B.5)

We conclude by noting that if we denote by exp {} the exponential function, the solution to

the first-order differential equation in B.5 expressed in terms of y(t1)− y∗(t1) is:

y(t)− y∗(t) = exp
{

(t− t1)BJB−1
}

[y(t1)− y∗(t1)]
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C Speed of convergence and the growth-initial equation

Following Ertur and Koch (2007), let us consider the following condition

ln kit − ln k∗it = Φij

(
ln kjt − ln k∗jt

)
(C.1)

for all i, j = 1, ..., N and t ≥ t0. Let us also define Φij =
ln kit0 − ln k∗it0
ln kjt0 − ln k∗jt0

, a set of N − 1

“proportionality parameters” satisfying Φij = Φ−1ji , Φsj = Φij/Φis and Φii = 1. Next we show

that C.1 holds if

ni = κ

[
N∑
j=1

uijΦji − 1

]−1
− (g + δ) (C.2)

for i = 1, . . . , N − 1 and κ = (nN + g + δ)

[
N∑
j=1

uNjΦjN − 1

]
.

We start by rewriting equation 2.9 as

∂ ln kit
k∗it

∂t
= (ni + g + δ)

[
N∑
j=1

uijΦji − 1

]
ln
kit
k∗it

Then, for some constant κi,

ln
kit
k∗it

= κi exp

(
(ni + g + δ)

[
N∑
j=1

uijΦji − 1

]
t

)

and so

ln
kit+1

k∗it+1

= exp

(
(ni + g + δ)

[
N∑
j=1

uijΦji − 1

])
ln
kit
k∗it
.
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Now suppose that condition C.1 holds in some t ≥ t0. Then,

ln
kit+1

k∗it+1

= exp

(
(ni + g + δ)

[
N∑
j=1

uijΦji − 1

])
Φis ln

kst
k∗st

=

exp

(
(ni + g + δ)

[
N∑
j=1

uijΦji − 1

])

exp

(
(ns + g + δ)

[
N∑
j=1

usjΦjs − 1

])Φis ln
kst+1

k∗st+1

In other words, given that C.1 holds in t0 (by definition of Φij), C.1 holds in all t ≥ t0 as long

as, for all i = 1, . . . , N and s = 1, . . . , N ,

exp

(
(ni + g + δ)

[
N∑
j=1

uijΦji − 1

])

exp

(
(ns + g + δ)

[
N∑
j=1

usjΦjs − 1

]) = 1,

which is obviously equivalent to condition C.2 given that C.2 implies that (ni + g +

δ)

[
N∑
j=1

uijΦji − 1

]
= κ for all i = 1, . . . , N .

Now it is easy to show that, if condition C.2 is satisfied for Φij =
ln kit0 − ln k∗it0
ln kjt0 − ln k∗jt0

, then the

following relation assumed by Ertur and Koch (2007)

ln yit − ln y∗it = Θij

(
ln yjt − ln y∗jt

)
(C.3)

also holds, with Θij being another set of N − 1 “proportionality parameters” (Θij = Θ−1ji ,

Θsj = Θij/Θis and Θii = 1). To this end, let us rewrite B.2 as

ln yit − ln y∗it =
N∑
j=1

uij(ln kjt − ln k∗jt),
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which, using ln kit − ln k∗it = Φij

(
ln kjt − ln k∗jt

)
, becomes

ln
yit
y∗it

=
N∑
j=1

uijΦij ln
kit
k∗it

Therefore,

ln yit
y∗it

ln yst
y∗st

=

N∑
j=1

uijΦij

N∑
j=1

usjΦsj

ln kit
k∗it

ln kst
k∗st

=

N∑
j=1

uijΦij

N∑
j=1

usjΦsj

ln kit
k∗it

Φsi ln
kit
k∗it

=

N∑
j=1

uijΦij

Φsi

N∑
j=1

usjΦsj

and

ln
yit
y∗it

= Θis ln
yst
y∗st

with Θis =

N∑
j=1

uijΦij

Φsi

N∑
j=1

usjΦsj

.

Lastly, we use C.3 to derive the growth initial equation. To this end, we start by noting

that the steady state in 2.8 can be written as

ln y∗it =
1

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r)
ij ln Ωjt +

ϕ

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r+1)
ij ln Ωjt

+

(
α + φ

1− α− φ

) N∑
j=1

∞∑
r=0

ρrw
(r)
ij ln

(
sj

nj + δ + g

)
− αγ

1− α− φ

N∑
j=1

∞∑
r=0

ρrw
(r+1)
ij ln

(
sj

nj + δ + g

)

with ρ =
(1− α)γ

1− α− φ
. Using this, we can see that

d ln y∗it
dt

=
(1 + ϕ)µ

1− α− φ

(
1

1− ρ

)
. In fact, since

1

1− ρ
=

1− α− φ
(1− α)(1− γ)− φ

,

d ln y∗it
dt

= g,

which can be seen as another differential equation whose particular solution expressed in terms
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of ln yi0 is

ln y∗it = gt+ ln y∗i0 (C.4)

Notice also that plugging C.3 into B.5 we obtain that, for t ≥ t0,

d ln yit
dt

= g − λi (ln yit − ln y∗it) , (C.5)

where λi =
N∑
j=1

GijΘ
−1
ij is the “speed of convergence” of each economy and Gij is the row i and

column j element of matrix BJB−1.12

Then, plugging equation C.4 into C.5 we obtain:

d ln yit
dt

= g − λi (ln yit − gt− ln y∗i0)

We use the integrating factor method to solve this differential equation. Thus, we first reorder

terms and then multiply the equation by the integrating factor e
∫
λidt = eλit to obtain

d

dt

(
eλit ln yit

)
= eλitg + λie

λit (gt+ ln y∗i0) ,

which, by integrating on both sides, provides the general solution:

ln yit = gt+ ln y∗i0 + Ce−λit

for t ≥ t0. Then, specifying the constant C in terms of the function evaluated at t = t1,

C = (ln yit1 − gt1 − ln y∗i0) e
λit1 , the solution for any t is given by

ln yit = g
(
t− t1e−λi(t−t1)

)
+ ln yit1e

−λi(t−t1) + (1− e−λi(t−t1)) ln y∗i0,

12Notice that Ertur and Koch (2007) derive an analogous expression for the speed of convergence but assuming
that both C.1 and C.3 hold. Here, however, because of the result obtained in B.1 (following Egger and
Pfaffermayr, 2006), we only require that one of the proportionality relations they consider hold (either the one
on the capital, C.1, or that on the output-per-worker, C.3).
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which, at t = t2 > t1, is

ln yit2 = g
(
t2 − t1e−λiτ

)
− e−λiτ ln yit1 + (1− e−λiτ ) ln y∗i0 (C.6)

with τ = t2 − t1.

At this point it is convenient to write the previous expression in matrix form under the

simplifying assumption that the speed of convergence is homogeneous across regions:

y(t2) = g
(
t2 − t1e−λτ

)
ιN + e−λτy(t1) +

(
1− e−λτ

)
y∗(0) (C.7)

where y(t2) is a N × 1 vector containing the log of the outcome per worker at t2, ιN is a N × 1

vector of ones, y(t1) is a N × 1 vector containing the log of the outcome per worker at t1, and

y∗(0) is a N × 1 vector containing the log of the initial level of output per worker at the steady

state. The reason for this is that it facilitates replacing y∗(0) by 2.8, which, in matrix form, is:

y∗(0) = (I − ρW )−1
[

1

1− α− φ
Ω(0) +

ϕ

1− α− φ
WΩ(0) +

α + φ

1− α− φ
S − αγ

1− α− φ
WS

]
(C.8)

where it is assumed that 1/ρ is not an eigenvalue of W when ρ 6= 0 and S ={
ln

(
si

ni + δ + g

)}
i=1,...,N

.

All is left is to introduce C.8 in C.7 and pre-multiply both sides of the resulting equation

by I − ρW to obtain:

y(t2) = g(1− ρ)
(
t2 − t1e−λτ

)
ιN + e−λτ (I − ρW ) y(t1) + ρWy(t2)

+
(
1− e−λτ

) [ 1

1− α− φ
Ω(0) +

ϕ

1− α− φ
WΩ(0) +

α + φ

1− α− φ
S − αγ

1− α− φ
WS

]
(C.9)
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