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Abstract. Predicting solar irradiance is an active research problem,
with many physical models having being designed to accurately predict
Global Horizontal Irradiance. However, some of the models are better at
short time horizons, while others are more accurate for medium and long
horizons. The aim of this research is to automatically combine the predic-
tions of four different models (Smart Persistence, Satellite, Cloud Index
Advection and Diffusion, and Solar Weather Research and Forecasting)
by means of a state-of-the-art machine learning method (Extreme Gra-
dient Boosting). With this purpose, the four models are used as inputs
to the machine learning model, so that the output is an improved Global
Irradiance forecast. A 2-year dataset of predictions and measures at one
radiometric station in Seville has been gathered to validate the method
proposed. Three approaches are studied: a general model, a model for
each horizon, and models for groups of horizons. Experimental results
show that the machine learning combination of predictors is, on average,
more accurate than the predictors themselves.

Keywords: Global irradiance forecasting · Machine learning
Combining forecasting models

1 Introduction

A key issue to increase the competitiveness of the solar energy and to increase 
their share in the electric systems is the improvement of the reliability of the solar 
energy forecasts. In the last years, a wide range of forecasting methodologies has 
been developed, with very different characteristics, such as the spatial and 
temporal resolution or their forecasting horizon [1].

Machine Learning [2] has played an important role on improving solar energy 
forecasting [3,4]. Nevertheless, there is still room for improvement. In this regard, 
there have been some efforts to combine different sources of information (obser-
vations, camera, satellite, ...) and take advantage of the possible synergies.
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For example, real measures and camera have been combined using an arti-ficial 
neural network optimized through a genetic algorithm [5]. [6] proposes a 
combination of NAM (North American Mesoscale Model) with cloudiness infor-
mation obtained from satellite images. This model improves spatial resolution of 
the NAM, while improving intra-day and 1-day predictions. A system based in 
extreme learning machines optimized through evolutionary computation (coral 
reef algorithm) combines direct measures, radiosondes and NWP to obtain the 
daily prediction of solar irradiance [7]. In [8], a combined prediction of cloud cover 
derived from a sky-camera and satellite offers a forecast of up to three hours. In a 
similar way, a combination of cloudiness estimation from satellite and the NWP 
from European Center for Medium range Weather Forecasting (ECMWF) is 
proposed [9]. Further results [10] show that the combination of statistical models 
and NWP is able to reduce the forecasting error at one hour horizons. In [11] a 
machine learning blending of irradiance forecasts using a Ran-dom Forest is used. 
This approach combines three models: the NAM model, the SREF (Short Range 
Ensemble Forecast) model and the GFS model. A recent work combines satellite-
derived, ground data, solar radiation, and total cloud cover to improve solar 
radiation forecasting for horizons between 1 h and 6 h [12].

Similar combination approaches have also been applied for wind energy. [13] 
combines different predictions at several horizons using an adaptive weighting, 
dependent on the error yielded by the past sources.

The novelty of this research is to use machine learning to combine Global 
Horizontal Irradiance (GHI) forecasts obtained from four sources, in order to out-
put an improved GHI forecast. The sources are: Smart Persistence [14], Satellite 
[15], Cloud Index Advection and Diffusion (CIADCast) [16], and Solar Weather 
Research and Forecasting (WRF-Solar) [17]. These perform differently under 
different situations and forecasting horizons. The aim of our approach is to use 
machine learning to combine them automatically, so as to take advantage of their 
synergies and to improve the performance of sources used separately.

In this work, several prediction horizons have been tested from 15 to 360 min, 
in steps of 15 min. Three different approaches are proposed for integrating the four 
sources: general, horizon-individual and horizon-group. The approaches are 
different ways to treat the horizon information either by using a single gen-eral 
model valid for all horizons, by making specialized models for each horizon 
(horizon-individual), or a compromise between both (horizon-group).

The machine learning method chosen for combining them is extreme gradient 
boosting [18]. Gradient boosting has been used before in solar forecasting. For 
instance, [19,20] use meteorological variables to predict GHI. However, the aim of 
our work is different, because our inputs are not meteorological variables but GHI 
forecasts themselves.

The structure of the paper is the following: first, the predictors used as inputs 
of machine learning method are presented in Sect. 2. In Sect. 3, the dataset used to 
the evaluation is described. Section 4 explains the different machine learning 
approaches to be studied in this work. In Sect. 5, the experimental methodology
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is explained and the experimental results are presented. The final conclusions of 
this research and future lines of work are presented in Sect. 6.

2 Description of the Predictors

This section describes the four forecasting models (or predictors) that will be 
combined by a machine learning model.

2.1 Smart Persistence

This model is computed with the actual measured irradiance I0 and corrected 
with the variation of the clear-sky (cs) irradiances Ics from the initial time to 
a future time t. The relation between actual irradiance and cs irradiance at a 
certain time 0 is kept constant and multiplied by the clear-sky irradiances in 
future t. The European Solar Radiation Atlas [14] cs model is used (Eq. 1).

I(t) =
I0

Ics(0)
∗ Ics(t) (1)

2.2 Satellite-Based Model

In this method, satellite images are first processed to derive the so-called cloud 
index images, an intermediate step to retrieve the clear-sky index images and then 
the solar radiation maps [21]. Secondly, a statistical comparison of various 
consecutive cloud index images allows deriving the cloud motion vector field. In 
this case OpenPIV is used (http://www.openpiv.net/openpiv-python/). The 
discrete cloud motion vector field is transformed into a continuous flow com-
puting the streamlines, i.e., a family of curves tangent to this wind field [15]. The 
streamline passing through the station location is used to obtain the future cloud 
index values, then the clear-sky index values and, finally, the GHI forecast

2.3 CIADCast

The CIADCast model [16] for short-term solar radiation forecasting is based on 
the advection and diffusion of cloud index estimates derived from satellite using 
the Weather Research and Forecasting [22] NWP models. Cloud index values are 
inserted in the WRF cell which corresponds to the cloud top height provided by 
the EUMETSAT product. Then, WRF is used to advect and diffuse the cloud 
index values as dynamical tracers both horizontally and vertically.

After the model run, the sum of each column of cloud index values is com-
puted to obtain again a two-dimensional cloud index map. The cloud index values 
at the station location are used finally to derive the GHI forecast, similarly to the 
satellite-based model. CIADCast was run with the standard WRF model version 
3.7.1, configured with 37 vertical levels and three nested domains of 27, 9 and 3 
km spatial resolution. The cloud index maps were ingested in the inner domain, 
which has similar resolution to the satellite images. 18-h simulations were run 
discarding the first 6 simulated hours as spin-up.
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2.4 WRF-Solar

NWP uses mathematical models based on physical principles of the atmo-sphere 
and oceans to predict the weather based on current weather conditions. WRF-
Solar [17] is a particular physical configuration of the WRF numerical weather 
prediction model version 3.6 devised for solar energy applications. It has 
improved parameterizations for the interactions of solar radiation with clouds and 
aerosols. The model configuration used here consisted of two nested domains with 
9 and 3 km spatial resolution and 37 vertical levels. As with CIADCast, 
simulations with 18 h of forecasting horizon and 6 h of spin-up were run.

3 Data

The evaluation is conducted at one radiometric station in Seville (southern 
Spain) where GHI (the total amount of shortwave radiation received from above 
by a surface horizontal to the ground) has been measured. GHI has been acquired 
with a Kipp & Zonen CMP6 pyranometer with a 1 min sample rate. The main-
tenance of radiometric stations follows World Meteorological Organization rec-
ommendations and the quality control of the data is applied following Long and 
Dutton [23]. The observations cover from March 2015 to March 2017.

To ensure the quality of the data, a preprocessing of the dataset has been 
made. Only predictions taken when the zenith is less than 75◦ are included in the 
dataset, because the hours selected by this filter are the most relevant to global 
irradiance in the day. Forecasts of GHI up to 6 h ahead, with a time step of 15 
min, are obtained based on four different models: Smart Persistence, Satellite-
based, CIADCast, and WRF-Solar. An example of the structure of the dataset is 
shown in Table 1. There are four different numerical inputs (four predictors), a 
target (measure column). On average, each horizon contains 2400 instances,

Table 1. Dataset example

Date Hour Horizon SmartPers Satellite CIADCast WRF-Solar Measure

2015-03-03 10:15 15 299.72 620.9 230.3 226.29 283.1

2015-03-03 10:15 30 427.23 649.3 240.42 283.04 254.55

2015-03-03 10:15 45 627.45 674.16 249.23 326.29 303.18

. . . . . . . . . . . . . . . . . . . . . . . .

2015-03-03 10:15 360 71.80 312.25 119.01 31.23 280.22

2015-03-03 10:30 15 417.26 649.01 295.54 296.93 254.55

2015-03-03 10:30 30 666.79 673.98 306.37 401.20 303.18

2015-03-03 10:30 45 636.63 619.67 445.28 599.42 347.69

. . . . . . . . . . . . . . . . . . . . . . . .

2015-03-03 10:30 360 471.29 556.22 298.87 411.25 546.71

. . . . . . . . . . . . . . . . . . . . . . . .

4



although the distribution of the number of instances per horizon is not uniform 
(short horizons have more instances than long horizons).

4 Methods

The approach to predict GHI is to combine a set of n predictors by means of 
machine learning models, which the aim to improve the final prediction for every 
forecast horizon. Therefore, the GHI can be described by Eq. 2, where machine 
learning model f is used to combine several predictors Pi.:

ghi = f(P1, P2, ..., Pn) (2)

In this work there are four predictors available which are used as inputs for the 
machine learning algorithm. The predictors combined in this work have been 
described in detail in Sect. 2. The machine learning method for finding f is the 
extreme gradient boosting tree ensemble (xgbtree) [18]. This decision has been 
taken after comparing preliminary results with random forests and support vector 
machines. Xgbtree displayed a good performance, while at the same time it is a 
very fast and efficient implementation. In any case, other methods could have 
been used within the schema proposed in this article.

Given that each predictor performance depends on the horizon, three differ-
ent approaches for dealing with horizons have been studied: general, horizon-
individual, and horizon-group. They are described in the following subsections.

4.1 General Model

The first approach constructs a model that minimizes error for all horizons con-
sidered together. This is achieved by combining data from the different horizons 
(i.e. excluding the horizon column in Table 1), and training a single model f from 
the joint dataset. Equation 3 shows how model f can be used for forecasting GHI at 
time t for horizon h. It can be seen that f is common for all horizons.

ghi(t + h) = f(P1(t, h), P2(t, h), ..., Pn(t, h)) (3)

4.2 Horizon-Individual Model

The second approach builds a different machine learning model fh for each hori-
zon h. Each  fh is trained using data from each horizon h only. The end result 
will be a set of 25 machine learning models specialized in predicting GHI for every 
single horizon. There is a model for horizon 15, able to predict GHI at 15 min 
forward in time, another model for horizon 30, able to predict GHI at 30 min 
forward in time, and so on. Equation 4 shows how to use models fh for making 
GHI forecasts at time t for each horizon h.

ghi(t + h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f15(P1(t, 15), ..Pn(t, 15)), h ≡ 15
f30(P1(t, 30), ..Pn(t, 30)), h ≡ 30
...

f360(P1(t, 360), ..Pn(t, 360)), h ≡ 360

(4)
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4.3 Horizon-Group Model

This last approach builds a set of models, this time by using groups of horizons 
instead of individual horizons (as in the previous approach). Given that some 
predictors work better for close horizons (Smart Persistence and Satellite) and 
others for medium or long horizons (WRF-Solar), the aim is to identify groups of 
horizons for which some predictors are better than others. The advantage over 
the horizon-individual approach is that now each group of horizons have more 
data for training. The end result will be g machine learning models, each one 
specialized in predicting GHI for a horizon group, where g is the number of 
groups. Each group model is trained using data from horizons belonging to that 
group only. This model is represented by Eq. 5, where the pi’s represent the 
partition points in the horizon range and the 15 ≤ h ≤ p1, p1 ≤ h ≤ p2,  . . . ,
pg−1 ≤ h ≤ 360 are the g horizon groups.

ghi(t + h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(P1(t, h), ..Pn(t, h)), 15 ≤ h ≤ p1

f2(P1(t, h), ..Pn(t, h)), p1 ≤ h ≤ p2

...

fg(P1(t, h), ..Pn(t, h)), pg−1 ≤ h ≤ 360

(5)

After visual analysis and taking into account the performance of the fore-
casting models for the different horizons, three groups (g = 3) have been used, 
although larger values could be considered at the expense of computational cost 
and diminishing the number of data for each group.

In order to decide the actual location of p1 and p2, a greedy search has been 
implemented. Starting from some initial values for p1 and p2, all combinations of 
neighboring points are explored. The set of neighbors of (p1, p2) is considered to 
be (p1 ± 0, 15, 30, p2 ± 0, 15, 30). Table 2 shows those neighboring points. For 
each partition explored, three different models are obtained (one per group), each 
one trained with data from each horizon group and evaluated on validation sets. 
Out of all the neighbors, the four combinations with lowest errors are kept.

The reason for keeping more than one (p1, p2) combination is to avoid falling 
into local minima. The combination with lowest error, and still unvisited by the 
algorithm, is the next explored combination of points. p1 and p2 are then updated 
to those locations that minimize the average validation error. This process is 
repeated until there is an empty list of combinations or the 4 best possible 
combinations have already been explored. At the end of the search, the algorithm 
chooses the partition (i.e. combination of p1 and p2) with the best error found 
throughout all the search.

The method is detailed in Algorithm 1. Line 1 creates a table (VisitedTable) 
that stores information about all combinations (p1, p2) explored by the algo-
rithm. That is, Accuracy is the average validation error for each particular com-
bination; visited informs whether this combination has already been explored; 
and lastVisit marks one of the pairs as the one that should be selected for 
expanding the neighbors.
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Table 2. Neighbors for any p1 and p2

p1 p2 p1 p2

p1 − 30 p2 − 30 p1 − 15 p2 − 15

p1 − 30 p2 − 15 . . . . . .

p1 − 30 p2 p1 p2 − 15

p1 − 30 p2 + 15 p1 p2 + 15

p1 − 30 p2 + 30 . . . . . .

p1 + 15 p2 − 30 p1 + 30 p2 + 30

Loop in lines 2–17 runs while it is possible to find combinations that improve 
the error. In line 3 the last state is retrieved from VisitedTable (i.e. lastVisit == 
TRUE). After being retrieved, lastVisit will be set to FALSE. In line 4, the (p1, p2) 
combination is retrieved from LastState and all possible neighbors are calculated in 
line 5 (AllNeighbours(p1, p2)). The loop in lines 6–12 checks every pair of points 
from the list of neighbors (see Table 2) previously expanded (NewPointList). If the 
pair has already been visited, it can be extracted out of the VisitedTable. 
Otherwise, its performance is computed (Accuracy(p1, p2)) in line 10. At the end of 
the loop, PairErrors contains the performance of all neighbors. Line 13 selects the 
best four combinations (BestErrors), out of which the best unvisited pair is finally 
selected (line 14). This best pair is marked with lastVisit = TRUE, so that it will 
be selected in the next iteration for computing neighbors. All information 
regarding new explored pairs and their respective errors is included into 
VisitedTable (line 15). Exploration will continue, as far as at least one of the four 
best pairs was unvisited (BestError not empty, line 18). Once the termination 
condition is satisfied, the best pair (p1, p2) from  VisitedTable is returned.

Algorithm 1. Horizon-group greedy search process
1: V isitedTable ← Table(p1, p2,Accuracy(p1, p2), visited, lastV isit)
2: while continue do
3: LastState ← lastV isit in V isitedTable is TRUE
4: p1, p2 ← p1 and p2 in LastState
5: NewPointList ← AllNeighbours(p1, p2)
6: for each PointPair in NewPointList do
7: if p1, p2 exists in V isitedTable then
8: PairError ← error in V isitedTable
9: else
10: PairError ← Accuracy(p1, p2)
11: end if
12: end for
13: BestErrors ← select 4 lowest from PairErrors
14: BestError ← select lowest and !visited from BestErrors. Mark this pair with lastV isit ←

TRUE
15: update V isitedTable with NewPointList and PairErrors
16: continue ← !(BestError is empty)
17: end while
18: BestSeparation ← min error from V isitedTable
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5 Experimentation

The aim of the experimentation is to compare the skill of each method pre-sented 
here to predict GHI at each horizon from h = 15  to h = 360. There are seven 
different methods to compare, four of them are the predictors (WRF-Solar, 
CIADCast, Smart Persistence and Satellite) and the other three are the different 
machine learning approaches proposed in this work (General, Horizon-individual 
and Horizon-group).

5.1 Methodology

The dataset is divided into two subsets: training and test. The former is made up 
of the 21 first days of each month (3 weeks of data), the latter is for the test set, 
that will be used to evaluate the trained model. The training set itself is divided 
into a model-training set and a validation set. The first one contains the 14 first 
days of the month and it is used for training the models. The validation set is used 
for hyper-parameter tuning and to guide the search process for the horizon-group 
approach and to select the best horizon groups (see Sect. 4.3). The metric used for 
comparison purposes is the normalized root mean square error, which is 
calculated in Eq. 6.

nRMSE =

√∑
(xi − oi)2/N

∑
(oi)/N

(6)

where xi is a prediction, oi is an observation and N is the number of samples. 
nRMSE is calculated for each horizon. The global nRMSE is the mean of all 
horizon nRMSE values.

5.2 Results

In Table 3 the global test nRMSE for each model is shown. The first four rows 
refer to the predictors. The fifth row displays the error that would be obtained if 
for each horizon, the best predictor would be selected (called optimal selection in 
Table 3). Given that this selection is done using the test set, it could not be 
applied in practice. It is provided only for comparison purposes with the machine 
learning approaches. It can be seen that all machine learning approaches have 
better global error than any of the predictors or even their optimal selection. On 
average, WRF-Solar is the most reliable predictor (0.2603 global nRMSE), with 
Smart Persistence being the second best (0.2837 nRMSE). Observing the machine 
learning blending approaches, the most accurate prediction method is the 
horizon-group approach with a global nRMSE of 0.227. After applying Algorithm 
1, horizon groups are 15–60, 75–270 and 285–360.

Table 4 shows the nRMSE broken down by horizon (from h = 15  to  h = 
360) for each of the different predictors and approaches. This information is also 
displayed in Figs. 1 and 2. Figure 1 compares the predictors. Under an hour, 
CIADCast is the best predictor available, then Smart Persistence is best until
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Table 3. Global nRMSE

Method nRMSE Method nRMSE

Smart persistence 0.2837 General 0.2291

Satellite 0.3117 Horizon-individual 0.2312

CIADCast 0.3039 Horizon-group 0.227

WRF-Solar 0.2603

Optimal selection 0.2543

90 min, when WRF-Solar starts being the best model from that point onwards.
There are a couple of times where WRF-Solar is worse, at 105 and 150 min.
Interestingly, for WRF-Solar, the nRMSE decreases as h increases, although
after 285 min the error starts increasing again.

Table 4. nRMSE by horizon

h= 15 30 45 60 75 90 105 120 135 150 165 180

General 0.197 0.205 0.211 0.217 0.226 0.229 0.22 0.217 0.219 0.215 0.216 0.225

h-individual 0.208 0.21 0.213 0.221 0.234 0.229 0.22 0.217 0.225 0.223 0.22 0.227

h-group 0.203 0.208 0.209 0.212 0.228 0.23 0.222 0.218 0.218 0.217 0.216 0.226

CIADCast 0.229 0.244 0.252 0.263 0.283 0.287 0.281 0.29 0.297 0.282 0.273 0.270

Satellite 0.229 0.248 0.255 0.26 0.288 0.298 0.291 0.28 0.268 0.267 0.275 0.289

SmartPer 0.245 0.252 0.255 0.259 0.274 0.28 0.265 0.271 0.281 0.281 0.276 0.293

WRFSolar 0.284 0.272 0.279 0.277 0.284 0.274 0.269 0.264 0.262 0.268 0.266 0.265

h= 195 210 225 240 255 270 285 300 315 33 345 360

General 0.22 0.221 0.22 0.233 0.236 0.234 0.232 0.246 0.261 0.275 0.264 0.260

h-individual 0.226 0.227 0.223 0.226 0.241 0.234 0.225 0.241 0.264 0.271 0.256 0.269

h-group 0.22 0.224 0.217 0.231 0.234 0.23 0.227 0.244 0.256 0.257 0.255 0.248

CIADCast 0.264 0.291 0.301 0.312 0.356 0.348 0.337 0.353 0.358 0.372 0.37 0.381

Satellite 0.298 0.306 0.311 0.346 0.332 0.345 0.348 0.353 0.382 0.391 0.422 0.4

SmartPer 0.288 0.279 0.275 0.294 0.296 0.288 0.275 0.304 0.318 0.333 0.314 0.313

WRFSolar 0.263 0.253 0.251 0.237 0.229 0.242 0.231 0.237 0.254 0.26 0.264 0.263

In Fig. 2 the machine learning approaches (General, Horizon-individual and 
Horizon-group) are compared to the optimal selection of predictors mentioned 
above. All machine learning combination of predictors are better than the origi-
nal predictors up to 255 min. At that point, it is difficult to observe a difference 
respect to the predictors (WRF-Solar being the most accurate one at those 
horizons, as shown in Fig. 1). The machine learning approaches show minor dif-
ferences. First, the horizon-individual model is consistently worse during the early 
horizons, while both the general and horizon-group models are similar in their 
performance. However when the 255 min horizon is reached, they become
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Fig. 1. Predictor performance at different horizons.

Fig. 2. Performance of the three machine learning approaches at different horizons.

harder to differentiate and behave similarly. At long horizons, starting at the
330 horizon, the horizon-group approach outperforms the other approaches and
predictors. All machine learning models consistently increase in nRMSE as the
horizon increases.

6 Conclusions

In this paper machine learning methods have been tested in order to combine
GHI forecasting models (Smart Persistence, Satellite, CIADCast and WRF-
Solar) as inputs to Xgboost, with the aim of improving predictions in horizons
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from 15 to 360 min. Three approaches have been studied: a general approach
that disregards horizon information, a horizon-individual approach that builds
a Xgboost model for each horizon, and a horizon-group approach that separates
horizons in three groups and builds a Xgboost model for each group. Experi-
mental results show a great accuracy improvement over the predictors on short
time horizons, and equivalent performance to the best predictor on further hori-
zons. The general, horizon-individual and horizon-group models display similar
performance, although for far horizons, the latter displays a better performance.

Overall, the final results are satisfactory, showing that there is a lot of margin
for improvement in the field of solar forecasting using machine learning. In the
future, we would like to improve results further by including additional features,
such as other predictors or historical solar radiation data. It can be also interest-
ing training different models for different seasons or different weather regimes.
Another interesting research work would be automatically selecting subsets of
predictors for each horizons or groups of horizons.
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9. Lorenz, E., Kühnert, J., Heinemann, D.: Short term forecasting of solar irradiance
by combining satellite data and numerical weather predictions. In: Proceedings of
27th European Photovoltaic Solar Energy Conference, Valencia, Spain, pp. 4401–
440 (2012)

11



10. Huang, J., Korolkiewicz, M., Agrawal, M., Boland, J.: Forecasting solar radiation 
on an hourly time scale using a coupled autoregressive and dynamical system 
(cards) model. Sol. Energy 87, 136–149 (2013)

11. Lu, S., Hwang, Y., Khabibrakhmanov, I., Marianno, F.J., Shao, X., Zhang, J., 
Hodge, B.M., Hamann, H.F.: Machine learning based multi-physical-model blend-
ing for enhancing renewable energy forecast - improvement via situation dependent 
error correction. In: European Control Conference (ECC), pp. 283–290 (2015)

12. Mazorra Aguiar, L., Pereira, B., Lauret, P., Dı́az, F., David, M.: Combining solar 
irradiance measurements, satellite-derived data and a numerical weather prediction 
model to improve intra-day solar forecasting. Renew. Energy 97, 599–610 (2016)

13. Sánchez, I.: Adaptive combination of forecasts with application to wind energy. 
Int. J. Forecast. 24(4), 679–693 (2008)

14. Rigollier, C., Bauer, O., Wald, L.: On the clear sky model of the ESRA-European 
Solar Radiation Atlas-with respect to the heliosat method. Sol. Energy 68(1), 33–
48 (2000)

15. Nonnenmacher, L., Coimbra, C.F.M.: Streamline-based method for intra-day solar 
forecasting through remote sensing. Sol. Energy 108, 447–459 (2014)

16. Arbizu-Barrena, C., Ruiz-Arias, J.A., Rodŕıguez-Beńıtez, F.J., Pozo-Vézquez, D., 
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