
This is a postprint version of the following published document:

Narayanan, V., Ravi, J., Mishra, V.K., Dey, B.K., Karamchandani, N. 
y Prabhakaran, V. M. (2018). Private Index Coding. In 2018 IEEE 
International Symposium on Information Theory (ISIT), pp. 596-600.

DOI: https://doi.org/10.1109/ISIT.2018.8437353

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/288501459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Private Index Coding

Varun Narayanan∗, Jithin Ravi†, Vivek K. Mishra‡, Bikash K. Dey§, Nikhil Karamchandani§, Vinod M. Prabhakaran∗
∗ Tata Institute of Fundamental Research, Mumbai. Email: varun.narayanan@tifr.res.in, vinodmp@tifr.res.in

† Universidad Carlos III de Madrid, Leganés, Spain. Email: rjithin@gmail.com
‡ Qualcomm, India. Email: vivemish@qti.qualcomm.com

§ Indian Institute of Technology Bombay, Mumbai. Email: {bikash, nikhil}@ee.iitb.ac.in

Abstract—We study the problem of index coding under the
privacy requirement that receivers do not learn anything more
than the messages they already have as side information and
the message they want from the server. To achieve this private
index coding, we consider the use of secret keys that are shared
among various subsets of users and the server. We characterize
key access structures that allow private index coding. For up to
three receivers, we characterize the rate region of transmission
and key rates and show that scalar coding is optimal; we
also show that scalar linear codes are sub-optimal for four
receivers. Furthermore, when no keys are available, we consider
a weaker notion of privacy analogous to weak security. Finally,
for a different setting in which the server is allowed to send
messages exclusively to a subset of users, we study the number of
transmissions required to achieve error-free decoding and privacy.

I. INTRODUCTION

Index coding [1] is a fundamental problem in network
information theory where a server with N messages Xi,
i ∈ [N ] := {1, . . . , N} communicates over a noiseless
broadcast link to N users. User i ∈ [N ] has a subset of the N
messages as side information and wants to obtain Xi. In this
work, we consider the additional privacy constraint that each
user i learns no additional information about the N messages
other than the side information it already has and the message
Xi which is intended for it. To achieve this, the encoding and
decoding schemes use a collection of keys that are shared by
subsets of users and are known to the server. We call this the
private index coding problem.

Some recent works have studied security aspects of index
coding [2]–[6]. Most of these consider security against an
eavesdropper who tries to learn some information about the
messages by wiretapping the broadcast link from the server
to the users. Security against an eavesdropper who has access
to a subset of messages was first studied in [2]. The authors
obtained the conditions that any linear code should satisfy
to achieve decodability as well as secrecy. Security against
an eavesdropper without any side information was studied
in [3]. Here secrecy is achieved using a key shared between
the server and users. Weakly-secure index coding against an
eavesdropper with some side information was studied in [4].
Eavesdropper with side information was also studied in [5],
where an equivalence between secure index coding and secure
network coding was shown. In [6], a different aspect of privacy
was studied, where each user wants to hide the identities of its

side information messages and requested messages from other
users.

In this paper, we first characterize the key access structures
(i.e., the collections of subsets of users which possess exclusive
keys) that make private index coding feasible. We also give
conditions under which a linear scheme is a valid private index
code. Next, we study the rate region of private index coding
which gives the fundamental trade-off between the rate of
transmission and rates of keys. We characterize the rate region
when the number of users is at most 3 and show that all
feasible rates may be achieved using scalar linear coding and
time sharing. Further, we give an instance of the problem with
4 users where all the points cannot be achieved using scalar
linear coding. In contrast, for index coding, it was shown that
scalar linear coding is optimal up to 4 users [7].

We also consider privacy when no keys are shared among
the users and the server. It turns out that, under all but trivial
cases, the above privacy requirement cannot be met. Hence,
we study a weaker notion of privacy where each user must not
learn any information about each individual message that it
does not have access to or is intended for it (though the user
may learn some information about the collection of all such
messages). In the context of eavesdropper security, a similar
notion of secrecy has been called 1-block security [2] or weak
security [4]. In this work, we will call this weak privacy. We
aim to characterize the index coding instances where we can
achieve weak privacy. Finally, we consider a setup where there
are no shared keys, but the server can multicast to subsets of
users. We are interested in the minimum number of multicasts
required to achieve (strong) privacy.

The paper is organized as follows. We describe our private
index coding setup in Section II. We give the characterization
of a feasible key distribution in Section III. We discuss our
results on linear coding in Section IV. Characterizations of
rate regions for small networks are discussed in Section V.
Our results on weak privacy and private index coding through
multicast sessions are provided in Section VI and Section VII
respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

The server possesses N messages, X1, . . . , XN and user
i ∈ [N ] wants the message Xi. We assume that Xi’s are
independent and take values uniformly in a field F. We allow
block coding, i.e., the server observes n independent copies of
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each message before transmission. The n independent copies
of Xi is denoted by X(n)

i . The indices of the messages that
are available at user i as side information is represented by
Ai ⊆ [N ] \ {i}, then the set of messages possessed by user
i is represented as XAi

. In general, for a subset of indices
S ⊆ [N ], the set of messages {Xi : i ∈ S} is represented by
XS . Let Ai represent the set Ai ∪ {i}. Index coding problem
can be represented by a directed graph G with vertex set
V = [N ] and edge set E, where (i, j) ∈ E if and only if
j ∈ Ai. Complement of graph G, denoted by Gc, has vertex
set V = [N ] and (i, j) ∈ E(Gc) if and only if (i, j) /∈ E(G).

The privacy requirement we consider is that user i should
not obtain any information about X

[N ]\Ai
. The server has

access to keys that are shared among various subsets of users.
For S ( [N ],S 6= ∅, the key that is available exclusively
to users in S is represented by Kb, where b ∈ {0, 1}N is
the characteristic vector for the set S, i.e., ith bit in b is 1
if and only if i ∈ S. A key Kb is a random variable that is
independent of the messages and other keys and is uniformly
distributed in the set {1, · · · , |F|nRb}, where Rb denotes the
rate of that key1. So the set of all keys is indexed by the set
{b : b ∈ {0, 1}N}. The key K~0 which is not available at any
user can be viewed as part of the private randomness at the
server. Since we will consider a randomized encoder, without
loss of generality we set R~0 to 0. In the extended version, we
argue that public randomness can be ignored without loss of
generality, hence we take R~1 to be 0.

The key access structure of a private index code instance,
B, is the set of indices corresponding to keys with non-zero
rates, i.e.,

B ={b : b ∈ {0, 1}N \ {~0,~1}, Rb 6= 0}.
For i ∈ [N ], let bi denote ith bit in b, then Bi denotes the

indices in the key access structure which are available to the
user i, i.e., Bi = {b ∈ B : bi = 1}.

A transmission scheme consists of a possibly randomized
encoder

φ :
∏
b∈B

[|F|nRb ]×
∏

i∈[N ]

Fn −→ [|F|nRM ] (1)

that outputs the transmitted message M . The rate of transmis-
sion is RM . Each user i uses a deterministic decoder

ψi : [|F|nRM ]×
∏

b∈Bi

[|F|nRb ]×
∏

j∈Ai

Fn −→ Fn. (2)

The rate of the scheme is the (2N − 1)−tuple of RM and the
key rates Rb,b ∈ {0, 1}N \ {~0,~1}. A given rate is said to
be achievable if for some n ≥ 1, there exists a transmission
scheme with these rates such that

H
(
X

(n)
i

∣∣∣KBi
, X

(n)

Ai
,M
)
= 0 for all i ∈ [N ], (3)

I

(
M ;X

(n)

[N ]\Ai

∣∣∣∣KBi
, X

(n)

Ai

)
= 0 for all i ∈ [N ]. (4)

1Rates and entropies in this paper are expressed in units of log |F| bits.

For an index coding problem represented by graph G, the
rate region is defined as the closure of the convex hull of all
achievable rate tuples, and it is denoted by R(G).
Definition 1. A key access structure B is said to be feasible
if for some n ≥ 1 there exists a transmission scheme which
achieves (3) and (4) with Rb = 0 for all b /∈ B.

III. FEASIBILITY OF PRIVATE INDEX CODING

In private index coding, achieving (3) and (4) relies on the
availability of certain keys among users. Hence, the feasibility
of private index coding depends on the key access structure
(eg., Fig. 1). The following theorem characterizes the feasible
key access structures for a private index coding problem.

Feasible Infeasible

Server

1 2

X1

X2

Server

1 2

X2X1

K01X2, K10

X1, X2,K01

X2

X1, X2,K10

X1 ⊕K10

X2

Fig. 1: Feasible and infeasible key access structures

Theorem 1. A key access structure B is feasible if and only if
∀ i, j ∈ [N ] such that i /∈ Aj , there exists a b ∈ B such that
bi = 1, bj = 0.

The full proof of this theorem is provided in the extended
version of the paper. An overview follows.

a) Only if part: By the privacy condition (4) at user j,

I

(
M ; X

(n)

[N ]\Aj

∣∣∣∣X(n)

Aj
,KBj

)
= 0.

But, by the decoding condition (3) at user j, X(n)
j is a function

of M,X
(n)

Aj
,KBj

, hence

I

(
X

(n)
j ,M ; X

(n)

[N ]\Aj

∣∣∣∣X(n)

Aj
,KBj

)
= 0.

Since, i /∈ Aj , using chain rule,

I
(
M ; X

(n)
i

∣∣∣X(n)
[N ]\{i},KBj

)
= 0.

Using independence of messages and keys, it can be shown
from the above that

I
(
M ; X

(n)
i

∣∣∣X(n)
[N ]\{i},KBj∩Bi

)
= 0. (5)

By the decoding condition (3) at user i,

I
(
M ;X

(n)
i

∣∣∣X(n)
[N ]\{i},KBi

)
= H

(
X

(n)
i

)
. (6)
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Using the independence of messages and keys, H(KBi\Bj
)

(and, hence, n
∑

b∈Bi\Bj
Rb) is lower bounded by

I
(
M ;KBi\Bj

∣∣∣X(n)
[N ]\{i}, X

(n)
i ,KBj∩Bi

)
(a)
= I

(
M ;KBi\Bj

, X
(n)
i

∣∣∣X(n)
[N ]\{i},KBj∩Bi

)
≥ I

(
M ;X

(n)
i

∣∣∣X(n)
[N ]\{i},KBi

)
(b)
= H

(
X

(n)
i

)
, (7)

where (a) follows from (5) and (b) follows from (6). Hence,
n
∑

b∈Bi\Bj
Rb ≥ H(X

(n)
i ). Since H(X

(n)
i ) > 0, Rb is

non-zero for some b ∈ Bi \ Bj .
b) If part: We can show that the following is a valid linear

private index coding scheme. We use N independent copies of
each key in the key access structure, i.e., ∀b ∈ B,Kb ∈ FN .
Let Ki

b be the ith coordinate of the key Kb. The transmission
M consists of N parts, Mi, i ∈ [N ],

Mi = Xi +
∑
b∈Bi

Ki
b. (8)

IV. LINEAR PRIVATE INDEX CODES

In this section we consider linear coding schemes for private
index coding. We characterize linear schemes that satisfy the
decoding (3) and privacy (4) conditions.

In the context of linear coding, for block length n ≥ 1,
let Xi denote the row-vector corresponding to X(n)

i and Kb

denote the key uniformly distributed in FnRb , where nRb is
assumed to be an integer. The linear encoder is of the form

M =
∑
i∈[N ]

GiX
T
i +

∑
b∈B

HbK
T
b , (9)

where Gi ∈ Fr×n for i ∈ [N ] and Hb ∈ Fr×nRb for b ∈ B.
Transmission rate R is said to be achievable if for some n ≥ 1
there exists a scheme such that R = r/n and it satisfies (3)
and (4). If n = 1, the scheme is called a scalar linear code.

Theorem 2. A linear encoding scheme is a valid private index
coding scheme if and only if it satisfies the following conditions
for each i ∈ [N ],

1) Let Gi =
[
g1i . . . g

n
i

]
, then for each 1 ≤ k ≤ n,

gki /∈ 〈{Gj}
j /∈Ai

, {Hb}b/∈Bi
〉,

2) 〈{Gj}
j /∈Ai

〉 ⊆ 〈{Hb}b/∈Bi
〉.

Here 〈.〉 denotes the linear span of column vectors. The
proof of this theorem is provided in the extended version. The
first condition is the decodability condition at user i and is
similar to that in index coding. The second condition is the
privacy condition against user i.

V. RATE OF PRIVATE INDEX CODING

We first observe a simple connection between private
index coding and index coding problems with the same
side information structure. Given an index coding scheme
(specifically, the optimal scheme), we describe a private index
code (for a certain key access structure we specify below) with

the same transmission rate: Let Kb(i) be a key of the same
rate as Xi that is available at user i and all users j such that
i ∈ Aj . Taking {Xi +Kb(i), i ∈ [N ]} as the messages, the
index coding scheme can be employed to deliver Xi+Kb(i) to
user i, i ∈ [N ]; note that user i has access to side-information
{Xj +Kb(j) : j ∈ Ai} as required. Having access to Kb(i),
user i can recover Xi. Privacy follows from the fact that Kb(i)

is unavailable to any user who should not learn Xi. Thus, the
optimal transmission rate of the index coding problem is also
achievable in private index coding for a certain key access
structure. Clearly, the minimum transmission rate of private
index coding cannot be less than that of index coding since
setting the keys of the private index code to some arbitrary
fixed values gives an index code. Thus we observe:

Observation 1. For a given side information structure, optimal
transmission rates of index coding and private index coding
(optimized over key access structures and key rates) are the
same.

The following theorem shows that when N ≤ 3, rate region
of transmission rate and key rates for private index coding can
be characterized.

Theorem 3. For every private index coding instance G with at
most 3 users, the rate region R(G) is achievable using scalar
linear codes and time sharing.

A full proof of this theorem and the characterization of
the rate region for every private index coding instance with
N ≤ 3 is presented in the extended version of the paper. Here
we illustrate the proof method using an example. Consider
the graph given in Table I. We first show the necessity of
the constraints on the rates. In arguing the “only if” part of
Theorem 1 we showed that if i /∈ Aj , then

∑
b∈Bi\Bj

Rb ≥
H(X

(n)
i )/n. The first three inequalities in the table follow

from this using H(X
(n)
i )/n = 1, i = 1, 2, 3. To see the next

inequality, note that the transmission rate of a private index
code is lower bounded by the rate of the index coding problem
for the same side information graph. Hence, RM is lower
bounded by number of vertices in the maximum acyclic induced
subgraph [8], which is 2 in this example. To show the next
inequality, consider

H (M) ≥ I(M ;X
(n)
1 , X

(n)
2 , X

(n)
3 ,K001, . . . ,K110)

= I
(
M ;X

(n)
2 ,K100,K110,K101

)
+

I
(
M ;X

(n)
1

∣∣∣X(n)
2 ,K100,K110,K101

)
+

I
(
M ;K001,K011

∣∣∣X(n)
1 , X

(n)
2 ,K100,K110,K101

)
+

I
(
M ;X

(n)
3

∣∣∣X(n)
1 , X

(n)
2 ,K100,K110,K101,K001,K011

)
+

I
(
M ;K010

∣∣∣X(n)
[3] ,K100,K110,K101,K010,K011

)
.

We lower bound the terms in red by zero. The decodability
condition at user 1 implies that the first term in black is
H(X

(n)
1 ). Using the independence of keys and messages, the
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1 2

3

R100 +R101 ≥ 1
R010 +R110 ≥ 1
R001 +R011 ≥ 1
RM ≥ 2
RM +R011 ≥ 3
RM +R101 ≥ 3
RM +R110 ≥ 3
Rb ≥ 0, 1 ≤ b ≤ 6

Vertices Coding Scheme
(2, 0, 0, 1, 0, 1, 1) X1 +X2 +K101 +K110, X2 +X3 +K110 +K011

(3, 0, 0, 1, 1, 1, 0) X1 +K101, X2 +K110, X3 +K001

(3, 0, 1, 0, 0, 1, 1) X1 +K101, X2 +K010, X3 +K011

(3, 0, 1, 0, 1, 1, 0) X1 +K101, X2 +K010, X3 +K001

(3, 1, 0, 1, 0, 0, 1) X1 +K100, X2 +K110, X3 +K011

(3, 1, 0, 1, 1, 0, 0) X1 +K100, X2 +K110, X3 +K001

(3, 1, 1, 0, 0, 0, 1) X1 +K100, X2 +K010, X3 +K011

(3, 1, 1, 0, 1, 0, 0) X1 +K100, X2 +K010, X3 +K001

TABLE I: Vertices are represented as a tuple (RM , R100, R010, R110, R001, R101, R011)

second term in black can be lower bounded by

I
(
M ;X

(n)
3

∣∣∣X(n)
1 ,K101,K001,K011

)
(a)
= H(X

(n)
3 ),

where (a) follows from the decodability condition at user 3.
To bound the third term in black, we note that

I
(
M ;K010,K110

∣∣∣X(n)
[3] ,K100,K101,K010,K110

)
(a)

≥ I
(
M ;K010,K110

∣∣∣X(n)
[3] ,K101

) (b)

≥ H
(
X

(n)
2

)
,

where (a) can be shown using the independence of messages
and keys and (b) follows from (7) with i = 2 and j = 3, since
2 /∈ A3. From this, we can show that the third term in black
is lower bounded by H(X

(n)
2 ) −H(K110). Putting all these

together we have H(M) ≥∑i∈[3]H(X
(n)
i )−H(K110) which

implies that RM ≥ 3 − R110, similarly we get the next two
inequalities. The table shows that the vertices of the polygon
described by these inequalities can be achieved using scalar
linear codes. In the extended version, we also show:

Proposition 1. There is a 4 user private index coding problem
where a vector linear code obtains a rate tuple outside the
rate region obtained by scalar linear coding and time sharing.

VI. WEAK PRIVACY

Theorem 1 shows that if the goal is to achieve the privacy
required by (4), then, in all but trivial cases, we need to
distribute keys among the users. In this section, we consider a
model without the extra resource of keys. In the absence of
keys, we aim to achieve weak privacy. Encoding and decoding
are similar to (1) and (2) respectively without any keys. A
transmission scheme with broadcast message M with weak
privacy satisfies

H
(
X

(n)
i

∣∣∣X(n)

Ai
,M
)
= 0 for all i ∈ [N ], (10)

and

I
(
M ;X

(n)
j

∣∣∣X(n)

Ai

)
= 0 for all i ∈ [N ], j ∈ [N ] \ Ai. (11)

For example, in weak privacy, if user i does not have Xj and
Xk as side information, then the user must not learn anything
about Xj or Xk individually, but user i is allowed to get some
information about the pair (Xj , Xk).

Feasible Infeasible

X3

X4

X2

X1

X1X2X3X4

X1 ⊕X2

X3 ⊕X4

X3

X4

X1

X2

X2

X3

X1

X1

X1X2

X1X2X3

X2X3

Fig. 2: For the 4 user network, transmitting X1 ⊕ X2 and
X3 ⊕X4 will suffice. For the 3 user network, decodability at
user 3 demands H(X

(n)
3 |M,X

(n)
1 , X

(n)
2 ) = 0. But privacy

at user 2 implies that I(M,X
(n)
1 , X

(n)
2 ;X

(n)
3 ) = 0 =⇒

H(X
(n)
3 |M,X

(n)
1 , X

(n)
2 ) 6= 0. So there is no scheme for this

network.

A. Feasibility of Weak Privacy

Weak privacy is not possible to achieve for all index coding
instances. Fig. 2 shows a feasible and an infeasible instance of
index coding problems under weak privacy. Next we study the
feasibility of index coding under weak privacy. We first give
some necessary conditions that the network should satisfy in
order to be feasible. We start with a simple subset condition
that any pair of nodes should satisfy in order to be feasible.
This condition is similar to Theorem 1.

Proposition 2 (Subset Condition). An index coding problem
under weak privacy is feasible only if, ∀ i, j ∈ [N ], i 6= j such
that i /∈ Aj , it holds that Ai ( Aj .

The proof of Proposition 2 uses the fact that if Ai ⊆ Aj

and user j does not have Xi as side information, then user j
also learns Xi if user i learns Xi from the broadcast message.
The subset condition is not sufficient for feasibility. There is
no scheme for the network in Fig. 3 (a) though it satisfies
Proposition 2. Details are given in the extended version. The
condition is extended in the following proposition to get a
better necessary condition for feasibility.

Proposition 3. If ∃ a user j s.t. for any subset S ⊆ Aj where
j ∈ S, ∃ users i and l s.t. k ∈ S \ Ai and j, k ∈ S \ Al, then
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there is no scheme achieving weak privacy.

1 2 3 1 2 3 4

5 6 7

1

2

3

{3,5}

{5,6}

{4,5}

(b)(a) (c)

54

Fig. 3: Examples: (a) infeasible although it satisfies Prop. 2,
(b) has a scheme using secure clique cover (Prop. 4) and (c)
feasible using a linear code, but has no secure clique cover.

Next we give a sufficient condition to achieve weak privacy.
We first give the definition of secure clique cover. A clique
cover of a graph is a set of cliques which cover all the vertices.

Definition 2 (Secure clique cover). A clique cover CG of G
is said to be secure if it satisfies the following two conditions:
1) For any clique c ∈ CG with |c| = k and k ≥ 2, @ a vertex
v ∈ c s.t. v has exactly k − 1 incoming edges from the nodes
in V \ c.
2) For any singleton in CG, there is an incoming edge from
all other vertices to that vertex.

Proposition 4. For the index coding problem represented by
G, weak privacy is achievable if G has a secure clique cover.

The proof of Proposition 4 is given in the extended version.
Observe that {{1, 2, 4}, {3, 5}} is a secure clique cover for the
graph shown in Fig. 3 (b).

B. Linear Coding for weak privacy

Linear encoding for weak privacy is similar to (9) with
only the first term involving Gis. In Theorem 4, we give the
necessary and sufficient condition for the encoding matrix to
satisfy for obtaining weak privacy. We use the same notations
that we used to describe linear coding in Section IV. The proof
of Theorem 4 is along similar lines as that of Theorem 2, hence
it is omitted.

Theorem 4. The matrices (Gi)i∈[N ] is a valid encoding
scheme under weak privacy if and only if they satisfy the
following conditions for each i ∈ [N ],

1) gki /∈ 〈{Gj}
j /∈Ai

〉, for 1 ≤ k ≤ n,
2) For j /∈ Ai, 〈Gj〉 ⊆ 〈{Gk}

k/∈Ai
〉.

For the index coding problem represented by the graph
shown in Fig. 3 (c), there is a linear coding scheme which
achieves weak privacy, but there is no secure clique cover. This
shows that secure clique cover is not necessary to achieve weak
privacy. Details are provided in the extended version.

VII. PRIVACY THROUGH MULTICASTS

We consider a model in which there is no shared key between
the server and the users. However, the server can multicast
to any subset of users. A multicast session is defined as
transmitting one element from field F to a subset of users.
A scheme of multicast transmissions is required to satisfy (3)

and (4). Given an index coding instance, we are interested
in determining the minimum number of multicast sessions
required. Let MS(n) denote the minimum number of multicast
sessions required for n-instances of the messages. We define
MS∗ , infn

MS(n)
n . Theorem 5 characterizes MS∗. Then we

show that the optimal scheme of multicast can be achieved by
using a particular key distribution and a transmission scheme
for the private index coding problem. We use the following
graph theoretic notions to study this problem.

For a graph G, assigning a subset of size b of the set
{1, · · · , L} to each node of a graph such that any two adjacent
nodes get disjoint sets is called a b-fold coloring. Minimum
size of the set {1, · · · , L} required for b-fold coloring is the
b-fold chromatic number, denoted by χb(G). The fractional
chromatic number χf (G) is defined as

χf (G) = lim
b→∞

χb(G)

b
= inf

b

χb(G)

b
.

Since χb(G) is subadditive, the limit exists.

Theorem 5. For the index coding problem represented by G,
MS∗ = χf (G

c).

Theorem 5 is proved in the extended version. We would
also like to note that, given a multicast scheme, there is a
natural private index coding scheme in which, corresponding
to ith multicast session that sends Mi ∈ F to a subset of users
Si ⊆ [N ], there is a secret key Kbi

that is shared by the server
and the users in Si and a server transmission Mi +Kbi

.
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