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ABSTRACT

Preservation of user privacy is paramount in the pub-
lication of datasets that contain fine-grained informa-
tion about individuals. The problem is especially crit-
ical in the case of mobile traffic datasets collected by
cellular operators, as they feature high subscriber tra-
jectory uniqueness and they are resistant to anonymi-
zation through spatiotemporal generalization. In this
work, we first unveil the reasons behind such undesir-
able features of mobile traffic datasets, by leveraging an
original measure of the anonymizability of users’ mo-
bile fingerprints. Building on such findings, we propose
GLOVE, an algorithm that grants k-anonymity of tra-
jectories through specialized generalization. We evalu-
ate our methodology on two nationwide mobile traffic
datasets, and show that it achieves k-anonymity while
preserving a substantial level of accuracy in the data.
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anonymity;
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1. INTRODUCTION

Public disclosure of datasets containing micro-data,
i.e., information on individuals collected via surveys,
transaction records, positioning and service logs, is an
increasingly frequent practice. Indeed, these datasets
yield fine-grained data about large populations that has
proven central to seminal studies across research disci-
plines. Preserving user privacy in publicly accessible
micro-data is a critical task, and naive anonymization
techniques (e.g., hashing of users’ identifiers) often of-
fer inadequate protection. This has been repeatedly
demonstrated by re-identification attacks on, e.g., med-
ical records [1] or web service databases [2], which dis-
closed health conditions or political views of users.
Our work focuses on movement micro-data extracted

from mobile traffic collected by cellular network probes.
These data describe the movement of thousands to mil-
lions of subscribers over time periods of weeks to months.
They have become an important instrument for large-
scale analyses in sociology, demography, epidemiology,
and computer science: recent surveys are available in [3,
4]. Like other types of micro-data, mobile traffic data-
sets are prone to attacks on individual privacy. Specifi-
cally, they suffer from (1) high uniqueness and (2) low
anonymizability.

1. High uniqueness. Mobile subscribers have very
distinctive patterns that often make them unique
even within a very large population. Experiments
showed that 50% of the mobile subscribers in a
25 million-strong dataset could be uniquely de-
tected with minimal knowledge about their mo-
vement patterns, namely the three locations they
visit the most frequently [5]. Similarly, an individ-
ual could be pinpointed among 1.5 million other
mobile customers with a probability almost equal
to one, by just knowing five random spatiotempo-
ral points in his mobile traffic data [6].

We remark that uniqueness does not imply re-identifi-
ability, since the sole knowledge of a specific subscriber’s
trajectory cannot disclose his identity: thus, in this
work we do not re-identify any user present in the mo-
bile traffic datasets we analyze. However, that link may
become possible via cross-database linkage: in a recent
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attempt, georeferenced check-in’s of Flickr and Twitter
users were leveraged to bring a de-anonymization attack
on a mobile traffic dataset [7]. Several hundreds could
be pinpointed with a 90% confidence level, and the au-
thors argue that complete re-identification would have
been possible with limited additional side information.
Uniqueness is thus a vulnerability that can be ex-

ploited for de-anonymization. Standard countermea-
sures rely on non-technical solutions, i.e., non-disclosure
agreements that bound the scope of the activities car-
ried out on the datasets, and prevent publication of data
analysis results without prior verification by the rele-
vant authorities. This is, e.g., the solution adopted in
the case of the mobile traffic data used in our study.
Such a practice strongly limits the availability of mo-

bile traffic datasets, as well as the reproducibility of
related research. Mitigating the uniqueness of subscri-
ber trajectories becomes then a very desirable facility
that can entail more privacy-preserving datasets, and
favor their open circulation. Here, the second problem
of mobile traffic datasets comes into play.

2. Low anonymizability. The legacy solution to
reduce uniqueness in micro-data datasets is gen-
eralization: data precision is reduced up to the
point where no individual is uniquely distinguish-
able. However, previous studies showed that blur-
ring users in the crowd, by reducing the spatiotem-
poral granularity of their movements, is hardly a
solution in the case of mobile traffic datasets. Re-
liable anonymization is attained only under very
coarse generalization, e.g., by disclosing users’ lo-
cations at city-level precision [5]. In addition, a
power-law relationship exists between uniqueness
and spatiotemporal generalization of mobile traf-
fic: additional privacy comes at an increasingly
higher cost in terms of data resolution [6].

In conclusion, not only mobile traffic datasets yield
highly unique trajectories, but the latter are also hard
to anonymize. Ensuring individual privacy in these da-
tasets easily compromises their utility. Our work tackles
this precise problem, with a two-fold contribution.
First, we carry out a thorough investigation of the

reasons behind the inconvenient properties of mobile
traffic datasets outlined above. To that end, we define
an original measure of the level of anonymizability of the
mobile fingerprints left by subscribers as they interact
with the cellular network. When applied to two nation-
wide datasets of mobile traffic, our measure offers novel
insights on the causes behind the high uniqueness and
poor anonymizability of this type of movement micro-
data, which were not individuated in [5, 6].
Second, we propose a novel anonymization algorithm

for mobile traffic datasets, which builds on the insights
above. The algorithm, aptly named GLOVE, hides
mobile fingerprints through so-called specialized gener-
alization. GLOVE achieves indistinguishability of all

Table 1: Movement micro-data from mobile traffic.

id mobile fingerprint

a c1,8 c2,14 c3,17

b c4,8 c5,15 c6,15 . . . c12,15 c13,15 c14,16 c15,17

c c16,7 c17,20

users in our reference datasets while preserving sub-
stantial accuracy in the data. It yields a dramatic im-
provement over previous attempts at anonymization of
mobile traffic, which could not attain a similar level of
privacy without disrupting data utility.

2. PROBLEM AND POSITIONING

In this section, we first formalize the general problem
of user trajectory uniqueness in mobile traffic datasets,
by introducing some fundamental definitions (Sec. 2.1).
Then, we outline the scope of our work with respect to
the general problem, so as to dispel any doubt on the ap-
plications and limitations of our methodology. Specifi-
cally, we first establish the precise objective we target
(Sec. 2.2), and the attacker model we assume (Sec. 2.3).
Then, we introduce a suitable privacy model (Sec. 2.4)
under such objective and attacker model.

2.1 Definitions

Mobile traffic data is collected by mobile operators
through probes deployed in their networks. Every mo-
bile communication activity, either triggered by a user
or autonomously initiated by his device, generates net-
work events that are timestamped and associated to
the current location of the device1. Mobile traffic data
thus embeds information about the movement of indi-
viduals, since sequences of events can be regarded as
a proxy of subscribers’ trajectories. In this paper, we
term the space and time information associated to each
logged event a spatiotemporal sample. The complete set
of samples associated to a specific user during the traffic
recording period is the mobile fingerprint of that user.
An illustration is provided in Fig. 1a, which portrays

the trajectories of three individuals, denoted as a, b, and
c, respectively, across an urban area. User a interacts
with the radio access infrastructure at 8 am, while he is
in cell c1 along his trajectory. Then, he triggers addi-
tional mobile traffic activities at 2 pm, while located in
a cell c2 in the city center, and at 5 pm, from a cell c3 in
the South-East outskirts. Thus, the mobile fingerprint
of a is (c1,8; c2,14; c3,17). The same for users b and c.
Mobile fingerprints are then collected into databases

of movement micro-data. Tab. 1 provides a database ex-
ample for the trajectories in Fig. 1a. The first column in
Tab. 1 reports, for each mobile subscriber, an identifier,

1The actual precision (e.g., in space and time) of the in-
formation recorded varies significantly with the nature
of the probes used for data collection [4]. Our discus-
sion is independent of the mobile traffic data collection
technique, and the solutions proposed in this work befit
mobile traffic data featuring any level of precision.
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(a) Original (b) Generalized

Figure 1: Example of mobile fingerprints of three sub-
scribers. (a) Original dataset granularity: user loca-
tions are represented at cell level, and the temporal
information has a hourly precision. (b) Spatiotempo-
ral generalization: location is limited to the Eastern or
Western half of the city, and time has 12-hour precision.

e.g., his name, IMSI, or phone number. Since identifiers
allow direct identification, they are never disclosed in
movement micro-data. Instead, the common practice is
to replace each identifier with a pseudo-identifier, i.e.,
a value that is unique for every individual in a same
dataset, but changes across databases. Random strings
or hashed identifiers are typical examples of pseudo-
identifiers. Unfortunately, pseudo-identifiers do not guar-
antee indistinguishability: users’ trajectories are often
different from each other, making mobile fingerprints
unique within the database [5, 6]. As discussed in Sec. 1,
uniqueness is a vulnerability that can be exploited for
cross-database correlation and user re-identification [7].

2.2 Objective

The ultimate objective our work contributes to is
Privacy-Preserving Data Publishing (PPDP), i.e., the
provisioning of methods for the publication of informa-
tion that is both privacy-preserving and useful. In our
case, information maps to movement micro-data from
mobile traffic, i.e., mobile fingerprints. Practical PPDP
entails then the following requirements [8].

P1. Publication of data, and not of data mining

results. We aim at producing privacy-preserving
datasets of mobile fingerprints rather than anony-
mized datasets of classifiers, association rules, or
aggregate statistics. This sets our goals apart from
those of Privacy-PreservingData Mining (PPDM),
where the precise usage the data will be put to is
known in advance.

P2. Truthfulness at the record level. Each pub-
lished record, i.e., mobile fingerprint, must corre-
spond to an existing individual in real life. In addi-
tion, samples in each mobile fingerprint must map
to locations actually visited by the subscriber at
that time. Randomized, perturbed, permuted, or
synthetic data does not meet this requirement.

Our solution will obey the two principles above, which
is why we do not target specific data usages and we
discard some options for data anonymization. These
concepts are unfolded in Sec. 2.4 below.

2.3 Attacker model

According to the classification of privacy preserva-
tion solutions proposed in [8], four different types of at-
tacks can be envisioned against published micro-data:
(i) record linkage aims at uniquely distinguishing an in-
dividual in the database; (ii) attribute linkage aims at
correlating data pertaining to a same individual across
different databases; (iii) table linkage aims at inferring
whether an individual is present in a database; (iv) a
probabilistic attack aims at improving some belief on an
individual, by accessing the database. In this work we
tackle the first category, i.e., record linkage attacks. We
regard our approach as a sensible initial step towards
a complete suite of solutions capable of guaranteeing
PPDP against all types of attacks mentioned above.
Also, unlike previous works that have considered par-

tial attacker’s knowledge of the subscribers’ mobile fin-
gerprints (e.g., preferred locations [5] or random sam-
ple subsets [6]), we do not assume any specific adver-
sary knowledge. This maps to ensuring so-called quasi-
identifier-blind anonymity [9], i.e., accept that an at-
tacker can be aware of any portion of the target user’s
trajectory, including the entirety of it. This choice is
motivated by the fact that there is currently no reli-
able model of the attacker’s knowledge [10], and mak-
ing hypothesis in that sense may be dangerous. In this
perspective, potential data providers will not accept to
disclose datasets whose anonymization is only robust to
one well-defined attacker model that surmises abilities
or prior information of the opponent.
Summarizing the discussion above, we target releas-

ing data that is robust to record linkage attacks, under
the most general model of attacker’s knowledge.

2.4 Privacy model

Our privacy model is consistent with the objective
and attacker model presented in Sec. 2.2 and Sec. 2.3.
First, we adopt k-anonymity as a criterion of indis-

tinguishability, among the many proposed for micro-
data. k-anonymity commends that each individual in
a dataset must be indistinguishable from at least k-1
other users in the same dataset. In our case, each mo-
bile fingerprint needs to be hidden in a crowd of other
k identical ones. This criterion is known to have limi-
tations when confronted to attacks aiming at attribute
linkage, at localizing users, or at disclosing their pres-
ence and meetings [11, 12]. However, k-anonymity is
an effective countermeasure against the record linkage
attacks we target (see Sec. 2.3), and thus perfectly fits
our needs.
Second, we consider k-anonymization of the full-length

mobile fingerprint of each user in the dataset. Indeed,
this is the only way to ensure data robustness indepen-
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dently of the attacker’s knowledge, i.e., abiding by the
quasi-identifier-blind anonymity principle (see Sec. 2.3).
We stress that full-length fingerprint anonymization is
a more demanding task than protecting the same data
from attacks that narrow the adversary’s capability (e.g.,
by assuming that the adversary only knows a limited set
of popular locations [5] or random spatiotemporal sam-
ples [6] from the target user’s trajectory).
Third, we adopt spatiotemporal generalization and

suppression as techniques to achieve the k-anonymity
criterion in the movement micro-data we target. As an-
ticipated in Sec. 1, spatiotemporal generalization relies
on reducing data precision in space and time so as to
make samples of different mobile fingerprints identical.
Suppression allows instead removing some data, either
individual samples or whole fingerprints (i.e., users),
from the dataset, because they do not fulfill the ano-
nymity criterion.
Overall, we seek a solution for the full-length k-anony-

mization of mobile fingerprints through spatiotemporal
generalization and possibly suppression. This privacy
model fully conforms to the PPDP principles set forth
in Sec. 2.2, as follows.

• P1 dictates that the anonymized data must be
analysis-agnostic. In other words, (i) the anonymi-
zed data must retain the same format of the orig-
inal data, and (ii) be as close as possible to the
original data. Our privacy model fulfills the first
point, since it returns trajectories of spatiotempo-
ral samples, semantically identical to those in the
original data. It also satisfies the second point, as
the only way it acts on the trajectories is by re-
ducing their granularity; and, it does so in a way
that the accuracy loss is minimized.

• P2 limits the set of transformations that can be
applied on the mobile fingerprints to those that
do not inject new, fabricated spatiotemporal sam-
ples in the data. Both techniques considered in
our work, i.e., spatiotemporal generalization and
suppression conform to this principle.

We provide an example of the privacy model in Fig. 1b,
for the mobile fingerprints of Fig. 1a. There, spatiotem-
poral generalization reduces the granularity of the data
in space (cells are aggregated into two macroscopic East
and West regions) and time (the temporal precision is
reduced to 12-hour intervals). The three subscribers a,
b and c are 3 now have identical full-length fingerprints
(West,1-12; East,13-24), i.e., they are 3-anonymized.
Clearly, the generalization induces a loss of accuracy
in the data. E.g., in the example of Fig. 1b, the mobile
fingerprint that allows hiding a, b and c is very coarse
both in space and time. This is precisely the problem of
the low anonymizability of mobile traffic datasets intro-
duced in Sec. 1: in this type of micro-data, even guaran-
teeing 2-anonymity requires a reduction of granularity
so severe to impair data utility [5, 6]. It is our goal

to attain such anonymity while preserving substantial
accuracy in the mobile traffic data.
As a final remark, we reckon that the privacy model

we propose has limitations and may not suit all data
analyses. Specifically, we believe that k-anonymized
data better fits studies on, e.g., the routine behaviors of
individual subscribers (e.g., home and work locations,
next location predictions), or aggregate statistics on
user populations (e.g., investigation of land uses, com-
muting flows, population distributions). Instead, anal-
yses targeting outlying behaviors (e.g., visits to unusual
locations by individuals, overnight mobility flows) may
be distorted if run on k-anonymized data. Indeed, un-
common movement patterns introduce, by their own
nature, some uniqueness that must be necessarily re-
moved to attain indistinguishability.

3. MOBILE TRAFFIC DATASETS

For the purpose of our study, we extract movement
micro-data, in the form of subscribers’ mobile finger-
prints, from two datasets of mobile traffic released by
Orange within Data for Development Challenges [13].

• Ivory Coast. The first dataset describes five
months of Call Detail Records (CDR) in the whole
Ivory Coast. It contains the complete spatiotem-
poral trajectories for a subset of 50,000 randomly
selected users, re-drawn every two weeks. Thus,
the dataset contains information about ten 2-week
periods. We ran a preliminary screening, filtering
out users that have less than one sample per day in
their fingerprint. Then, we merged all remaining
fingerprints into a database of 82,000 records. This
dataset is indicated as d4d-civ in the following.

• Senegal. The second dataset is derived from CDR
collected over the whole Senegal for one year. It
contains a randomly selected subset of 320,000 users
over a rolling 2-week period, for a total of twenty-
five periods. We did not filter out subscribers,
since the dataset is already limited to users that
are active for more than 75% of the 2-week time
span. In our study, we consider one representative
2-week period among those available. This dataset
is referred to as d4d-sen in the rest of the paper.

In both mobile traffic datasets, the information about
user position is provided as a latitude and longitude pair
that corresponds to an antenna location. We mapped
the latter to a two-dimensional coordinate system using
the Lambert azimuthal equal-area projection. We then
discretized the resulting positions on a 100-m regular
grid, which represents the maximum spatial granularity
we consider2. As for the temporal dimension, the max-
imum precision granted by both datasets is one minute,
and this is also our finest time granularity.
2At 100-m spatial granularity, each grid cell contains
at most one antenna location from the original dataset:
the process does not cause any loss in data accuracy.
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4. MEASURING ANONYMIZABILITY

Our first objective is understanding the causes be-
hind the high uniqueness and low anonymizability of
movement micro-data extracted from mobile traffic. To
that end, we propose and leverage a measure of the
level of anonymizability of a mobile fingerprint, which
estimates how easy (or difficult) it is to hide a given
fingerprint in a dataset. Coherently with the scope of
our work discussed in Sec. 2, the measure is based on
the k-anonymity criterion and assumes spatiotemporal
generalization to achieve it. Thus, the measure eval-
uates the spatiotemporal loss of accuracy required to
make the fingerprint of a subscriber indistinguishable
from those of k-1 other users in the same dataset. We
name our measure the k-gap of a mobile fingerprint, and
denote it as ∆k

a in the case of a user a that needs to be
k-anonymized.

4.1 Sample stretch effort

The k-gap of a fingerprint depends on the cost of
k-anonymizing the spatiotemporal samples that com-
pose it. We thus start by providing an expression of
the sample stretch effort, i.e., the spatiotemporal loss of
accuracy required to merge two samples through gen-
eralization. The sample stretch effort between the i-th
sample of a’s fingerprint and the j-th sample of b’s fin-
gerprint is denoted as δab(i, j) in the following.
Let us consider the i-th sample of user a’s fingerprint.

We indicate the spatial information it conveys as a tuple
σa
i = (xa

i , dx
a
i , y

a
i , dy

a
i ), which outlines the boundaries of

the geographical rectangle where a is located. Similarly,
the temporal information in the sample is τai = (tai , dt

a
i ),

meaning that a was within the area σa
i at some point

in time during the interval between tai and tai + dtai . As
indicated in Sec. 3, dxa

i = dyai = 100 m and dtai = 1 min,
for all original fingerprints in our reference datasets.
A generic formulation of the sample stretch effort

δab(i, j) that accounts for generalization along both spa-
tial and temporal dimensions is then

δab(i, j) = wσφσ

(

σa
i , σ

b
j

)

+ wτφτ

(

τai , τ
b
j

)

. (1)

Here, φσ, φτ ∈ [0, 1] are functions that respectively de-
termine the loss of accuracy in space and time induced
by the merging of the two samples. The normalization
factors wσ = wτ = 1/2 ensure that δab(i, j) ∈ [0, 1].
The functions φσ and φτ are designed by considering

that both spatial and temporal generalizations induce
a loss of information that is linear in the decrease of
granularity, i.e.,

φσ

(

σa
i , σ

b
j

)

=







φ∗
σ

(

σa
i , σ

b
j

)

φmax
σ

if φ∗
σ

(

σa
i , σ

b
j

)

≤ φmax
σ

1 otherwise,

(2)

φτ

(

τai , τ
b
j

)

=







φ∗
τ

(

τai , τ
b
j

)

φmax
τ

if φ∗
τ

(

τai , τ
b
j

)

≤ φmax
τ

1 otherwise.

(3)

In (2) and (3), functions φ∗
σ and φ∗

τ model the stretch
needed to make the two samples identical in space and
time, respectively. Constants φmax

σ and φmax
τ are spatial

and temporal thresholds above which the information
loss is so severe that the data is not usable anymore3.
Formally, the stretch in space φ∗

σ is computed as

φ∗
σ

(

σa
i , σ

b
j

)

=

[

lσ
(

σa
i , σ

b
j

)

+ rσ
(

σa
i , σ

b
j

)]

na

na + nb

+

+

[

lσ
(

σb
j , σ

a
i

)

+ rσ
(

σb
j , σ

a
i

)]

nb

na + nb

, (4)

where

lσ
(

σa
i , σ

b
j

)

= [xa
i −min(xa

i , x
b
j)]+

+ [yai −min(yai , y
b
j)], (5)

rσ
(

σa
i , σ

b
j

)

= [max(xa
i + dxa

i , x
b
j + dxb

j)− xa
i − dxa

i ]+

+ [max(yai + dyai , y
b
j + dybj)− yai − dyai ]. (6)

The lσ and rσ functions quantify the left stretch and
right stretch in space, i.e., they measure how much the
boundaries of the first sample, σa

i , need to be extended
along the longitudinal and latitudinal axes, in order to
cover the bounding rectangle of the second sample, σb

j .
Graphical examples are provided in Fig. 2a–2c. In (4),
the left and right stretches required for a’s sample to
geographically cover b’s sample are summed with those
required for b’s sample to cover a’s.
The sum in (4) is weighted by na and nb. When a

and b are the mobile fingerprints of two individual sub-
scribers, then na = nb = 1. However, our definitions
above can accommodate the case where a and b are not
two subscribers, but two groups of subscribers whose
fingerprints have already been made indistinguishable.
In that case, na and nb represent the number of sub-
scribers whose mobile fingerprints have already been
generalized into fingerprints a and b, respectively. Then,
the rationale for the weighted sum is that stretching a
sample of fingerprint a reduces the accuracy in the data
of na users, and the same is true for the nb users in b:

3In our study, we set φmax
σ = 20 km and φmax

τ =
8 hours, as we consider that a spatiotemporal granular-
ity losing all intra-urban and morning-afternoon vari-
ability is of small interest to most studies. However,
an important remark is that the φmax

σ and φmax
τ values

also determine the derivative of the linear relationship
between granularity loss and information loss. Since
the two contributions in (2) and (3) are simply summed
in (1), the ratio between φmax

σ and φmax
τ has a precise

physical meaning: it indicates which loss of accuracy in
space is equivalent to which loss of accuracy in time.
Thus, the aforementioned values of φmax

τ and φmax
τ are

also chosen in a way to assign the same weight to a
spatial generalization of ∼0.5 km and a temporal gen-
eralization of ∼15 min. The rationale is that the vast
majority of data mining processes start suffering some
information loss only after the data accuracy falls be-
low either of these values, which makes them equivalent
from a data utility viewpoint.
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Figure 2: Examples of the stretch needed to merge two spatiotemporal samples. Light blue arrows indicate the left
(dashed) and right (solid) stretch on the first (a’s i-th) and/or second (b’s j-th) samples. Different levels of overlap
between the spatial and temporal components of samples are shown. (a,b,c) Spatial stretch. (d) Temporal stretch.

thus, weighting the stretches properly accounts for the
number of users affected by the generalization.
Equations are similar in the case of time, where

φ∗
τ

(

τai , τ
b
j

)

=

[

lτ
(

τai , τ
b
j

)

+ rτ
(

τai , τ
b
j

)]

na

na + nb

+

+

[

lτ
(

τbj , τ
a
i

)

+ rτ
(

τbj , τ
a
i

)]

nb

na + nb

, (7)

lτ
(

τai , τ
b
j

)

= [tai −min(tai , t
b
j), ] (8)

rτ
(

τai , τ
b
j

)

= [max(tai + dtai , t
b
j + dtbj)− tai − dtai ]. (9)

Again, lτ and rτ mark the left stretch and right stretch
in time; representative examples are provided in Fig. 2d.
The contributions of a and b stretches in (7) are weighted
by the number of subscribers involved, as in (4).

4.2 k-gap of mobile fingerprints

We can now define the fingerprint stretch effort, i.e.,
the spatiotemporal loss of accuracy required to merge
two whole fingerprints via generalization. Considering
the fingerprints of (groups of) users a and b, the effort,
denoted as ∆ab, is computed as

∆ab =























1

ma

na
∑

i=1

min
j=1,...,mb

δab(i, j) if ma ≥ mb

1

mb

nb
∑

j=1

min
i=1,...,ma

δab(i, j) otherwise.

(10)

Here, ma andmb are the cardinalities of the fingerprints
of a and b, respectively. The expression in (10) finds,
for each sample in the longer fingerprint, the sample at
minimum stretch effort in the shorter fingerprint. ∆ab

is the average of all such sample stretch efforts4.

4We emphasize that all solutions adopted in the design
of the fingerprint stretch effort in (10) are primarily
driven by a scalability rationale. Given the extremely
large size of mobile traffic datasets, we opted for very
simple formulations: examples are the sum of space
and time contributions in (1), the constant spatial and
temporal thresholds in (2) and (3), or the rectangu-
lar stretches in (4) and (7). This approach limits the
computational complexity of calculating (10), an oper-
ation that has to be repeated millions of times in order
to characterize the anonymizability of a mobile traf-
fic dataset. Although the deliberate simplicity of these

The k-gap ∆k
a of a generic mobile user a that is to

be k-anonymized can then be computed as the average
stretch effort of a’s fingerprint from those of the nearest
k-1 other users in the dataset. Formally

∆k
a =

1

k − 1

∑

b∈N
k−1

a

∆ab, (11)

where Nk−1
a is the set of k − 1 users b with the lowest

fingerprint stretch effort to that of a.
The expression in (11) returns a measure ∆k

a ∈ [0, 1]
that indicates how hard it is to hide subscriber a in a
crowd of k users in the same dataset. If ∆k

a = 0, user a is
already k-anonymous. If ∆k

a = 1, the user is completely
isolated, and k-anonymization makes all his samples so
coarse in space and time that they are uninformative.

5. ANONYMIZABILITY ANALYSIS

The k-gap in (11) can be intended as a dissimilar-
ity measure, and employed in legacy definitions used to
assess micro-data sparsity, e.g., (ǫ, δ)-sparsity [2]. How-
ever, these definitions are less informative than com-
plete distributions. Thus, in this section, we character-
ize the level of anonymizability of a dataset through the
Cumulative Distribution Function (CDF) of the k-gap
of all users in that dataset. We use the mobile traffic
datasets in Sec. 3 as our reference case studies.

5.1 The good: anonymity is close to reach

Our baseline result is portrayed in Fig. 3a. The plot
depicts the CDF of k-gap in the d4d-civ and d4d-sen
mobile traffic datasets, when considering 2-anonymity
as the privacy criterion. We observe that the two curves
are quite similar, and both are at zero in the x-axis ori-
gin. This means that ∆2

a > 0 ∀a, i.e., no mobile sub-
scriber is 2-anonymous in either of the original datasets.
The result is in line with previous analyses carried out
on different mobile traffic datasets [5, 6], which confirms
that the high uniqueness of subscribers’ trajectories is
an intrinsic property of any mobile traffic dataset, and
not a specificity of those we consider in our study.

formulations paves the road to more complex proposals,
the results in Sec. 5 and Sec. 7 prove that the expression
of ∆ab in (10) already does an effective job of estimating
the cost of merging mobile fingerprints.
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Figure 3: CDF of k-gap. (a) k = 2, d4d-civ and d4d-
sen datasets. (b) varying k, d4d-sen dataset.
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Figure 4: CDF of k-gap, for k = 2 and varied spa-
tiotemporal generalizations (labeled in km–min), in the
d4d-civ and d4d-sen mobile traffic datasets.

Interestingly, we remark the probability mass is, for
both datasets, below 0.2, i.e., it is not far from the ori-
gin. This is good news, as it implies that the fingerprint
stretch effort needed to make most users 2-anonymous
is fairly low. As an example, 50% of the users in the
d4d-civ dataset have a k-gap of 0.09 or less, which
maps, on average, to a combined spatiotemporal gen-
eralization of less than one km and little more than
20 minutes. In other words, the result seems to sug-
gest that half of the individuals in the dataset can be
2-anonymized if the spatial granularity is decreased to
1 km, and the temporal precision is reduced to around
20 minutes. Similar considerations hold in the d4d-sen
case: e.g., 80% of the dataset population has a k-gap
of 0.17 or less, i.e., has an average spatial and temporal
distances of 1.7 km and 41 minutes from 2-anonymity.
One may wonder how more stringent privacy require-

ments affect these results. Fig. 3b shows the evolution
of the anonymizability of the d4d-sen datasets when k
varies from 2 to 100. Identical results were obtained in
the d4d-civ case and are omitted here. As expected,
higher values of k require that a user is hidden in a
larger crowd, and thus shift the distributions towards
the right, i.e., need a coarser generalization. However,
quite surprisingly, the shift is not dramatic, as the cost
of k-anonymity grows sub-linearly with k.

5.2 The bad: generalization does not work

Unfortunately, the easy anonymizability suggested by
the results above is only apparent. Fig. 4 shows the im-
pact of spatiotemporal generalization on k-gap, k = 2.
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Figure 5: (a) CDF of the Tail Weight Index computed
on the distributions of sample stretch efforts (overall,
and separated into spatial and temporal components)
for all users in the d4d-civ datasets. (b) CDF of
the temporal-to-spatial component ratios in the over-
all sample stretch effort, for all users in the d4d-civ
and d4d-sen datasets. All results refer to k = 2.

Each curve corresponds to a different level of generaliza-
tion of samples in mobile fingerprints, from the original
dataset granularity of 100 meters and 1 minute, to an
uninformative granularity of 20 km and 8 hours. As one
could expect, increased generalization pushes the dis-
tribution towards the left, i.e., makes the dataset more
privacy-preserving. However, the effect is mild: even a
very coarse-grained generalized dataset where the spa-
tiotemporal granularity is reduced to 20 km (the size
of a large city) and 8 hours cannot 2-anonymize but
∼35% of mobile users’ trajectories. The result is again
in agreement with previous studies [5, 6], and confirms
the second property of mobile traffic datasets pointed
out in Sec. 1, i.e., their low anonymizability.

5.3 The why: long-tailed time diversity

The results shown up to this point yield an apparent
incongruity: spatiotemporal generalization performs po-
orly (Fig. 4), yet the fingerprint stretch effort needed to
attain k-anonymity is in theory low (Fig. 3). In fact, the
fingerprint stretch effort is an average of multiple sam-
ple stretch efforts, as per (10). We then hypothesize
that the discrepancy above has roots in the diversity
across the stretch efforts associated to different samples
in a same fingerprint.
In order to test our proposition, we evaluate the sta-

tistical dispersion of the sample stretch efforts within
each fingerprint. To that end, for each user a in the
dataset, we retrieve the setNk−1

a of k-1 other subscribers
whose fingerprints are the closest to that of a, accord-
ing to (11). Then, we disaggregate all the fingerprint
stretch efforts ∆ab between a and the users b ∈ Nk−1

a

into sample stretch efforts δab, as per (10). Finally,
we separately collect the spatial and temporal com-
ponents of all such sample distances, in (1), into sets
Ska = {wσφσ} and Tk

a = {wτφτ}.
The distributions of values in Ska and Tk

a unveil the
stretch effort required to k-anonymize individual sam-
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ples of a’s fingerprint, separately in the spatial and tem-
poral dimensions. We are especially interested in study-
ing the tails of such distributions, since they contain
hard-to-anonymize samples that demand a high stretch
effort (i.e., a significant loss of accuracy) in space or
time, in order to be hidden via generalization. We em-
ploy the Tail Weight Index (TWI) as a measure of the
weight of the distribution tail: the higher the TWI, the
heavier the tail [14]. Specifically, we compute, for all
fingerprints in a dataset, the TWI of three CDFs: the
total stretch effort per sample (δ), as well as the associ-
ated spatial (wσφσ) and temporal (wτφτ ) components.
Fig. 5a shows the CDFs of the TWI computed on all

fingerprints in the d4d-civ dataset. Identical results
were obtained in the d4d-sen case and are omitted
here. The TWI in the spatial dimension is below 1.5
in around 85% of cases: this implies that tail of spatial
stretch distributions decays exponentially, if not faster,
in the vast majority of cases. Instead, temporal stretch
distributions are typically heavy tailed, with a TWI ≥
1.5 in around 70% of cases5. As a result, the TWI of
the overall stretch effort (δ) distribution is shaped after
that of temporal components.
Quantitative analyses confirm this last resolution. The

plot in Fig. 5b shows the CDF of the temporal-to-spatial
component ratios, i.e.,

∑

Tk
a

wτφτ/
∑

Sk
a

wσφσ , for all

users a in each of the two reference datasets. The
CDF is skewed towards high values in the d4d-civ and
d4d-sen datasets: in 95% of fingerprints, the temporal
stretch is larger than the spatial one; in half of the cases,
the temporal stretch contributes to 80% or more of the
total fingerprint stretch effort; in 15% of cases, the cost
of anonymization is fully determined by the temporal
stretch. We conclude that the temporal component of
a mobile fingerprint is much harder to anonymize than
the spatial one. In other words, where an individual
generates mobile traffic activity is easily masked, but
hiding when he carries out such activity is not.

5.4 Takeaways

The results presented in this section let us postulate
that typical mobile fingerprints are composed by a vast
majority of spatiotemporal samples that are easily hid-
den among those of other users in the same dataset.
This leads to a low k-gap of mobile fingerprints.
However, mobile fingerprints also feature a small but

not negligible number of samples that create long tails
in the sample stretch effort distributions. These samples
are extremely difficult to anonymize, mainly along their
temporal dimension. Their impact is dramatic since, in
order to hide a subscriber, one has to reduce granular-
ity in space and time until all of his samples are merged
within the fingerprints of k-1 more users in the same
dataset. As a result, the single sample that is the hard-

5An exponential distribution with parameter equal to
one has TWI 1.6, whereas a fat-tailed Pareto distribu-
tion with shape equal to one has TWI 14.

est to anonymize in a fingerprint dooms all the others
to undergo the same loss of accuracy it requires to be
k-anonymized. Ultimately, this makes spatiotemporal
generalization ineffective in attaining k-anonymity.
Overall, not only our analysis is consistent with pre-

vious results on the high uniqueness and low anony-
mizability of mobile traffic datasets [5, 6], but it pro-
vides, for the very first time, a rigorous explanation for
such undesirable features. This new understanding of
the characteristics of mobile fingerprints also represents
the cornerstone for the development of anonymization
techniques that better fit the specificity of mobile traffic
datasets, as discussed next.

6. GLOVE

We leverage the insights in Sec. 5.4 to design a novel
algorithm for the k-anonymization of movement micro-
data extracted from mobile traffic datasets. The algo-
rithm, named GLOVE, builds on the fact that: (i) the
vast majority of spatiotemporal samples in mobile fin-
gerprints can be hidden with limited loss of accuracy;
(ii) only a smaller portion of samples requires dras-
tic generalization. At the light of these observations,
GLOVE uses a specialized generalization, where each
sample undergoes an independent, minimal reduction
of granularity that hides it in a crowd of k.

6.1 Algorithm in a nutshell

The pseudocode of GLOVE is listed in Alg. 1. The in-
puts to the algorithm are the mobile fingerprint dataset
and the value of k, i.e., the target k-anonymity level. In
the initialization phase, the fingerprint stretch efforts
between all fingerprint pairs are calculated according
to (10), and stored in a matrix S (line 2). The al-
gorithm then iterates until all fingerprints have been
k-anonymized (line 3). At each iteration, the two fin-
gerprints that have not yet been k-anonymized and are
at minimum stretch effort in S are identified and re-
moved from the database and from S (lines 5–6). They
are then merged into a single fingerprint, which includes
a number of subscribers equal to the sum of those al-
ready hidden into the two original fingerprints (lines 7–
8). The resulting fingerprint is included in the database,
computing its stretch effort, via (10) again6, to all other
yet-to-be-anonymized fingerprints (lines 9–12).

6.2 Fingerprint merge

The pseudocode in Alg. 1 involves a merging opera-
tion that returns one generalized fingerprint from two
original fingerprints (line 7). We propose a two-stage
process to perform the merging, in Fig. 6a. In the first
stage, each sample in the longer fingerprint a is matched
to that in the shorter fingerprint b at minimum sample
stretch effort, computed as in (1). Then, all samples in

6We recall that the expression in (10) can accommodate
the case where the input fingerprints are already the
result of a merge, see Sec. 4.2.
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input : Anonymization level k
input : Mobile fingerprint dataset M
output: Anonymized fingerprint dataset M

1 foreach a,b ∈M, a 6= b do
2 S [a,b]=calcStretch (a,b) ;
3 end
4 while ∃ a,b ∈M s.t. a.k < k, b.k < k do
5 a,b ← leastStretch(S) ;
6 remove(M,S,a,b) ;
7 m ← merge(a,b) ;
8 m.k = a.k + b.k ;
9 add(M,m) ;

10 if m.k < k then
11 foreach c ∈M s.t. c.k < k do
12 S [c,m]=calcStretch (c,m) ;
13 end
14 end
15 end

Algorithm 1: GLOVE algorithm pseudocode.
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Figure 6: (a) Example of fingerprint merging operation.
(b) Example of reshaping operation.

fingerprint a pointing to a same sample in fingerprint
b (e.g., sa1 and sa2 , pointing at sb2) are merged with the
latter. In the second stage, the same procedure is run
on samples of the shorter fingerprint that have not been
merged during the first stage (e.g., sb1). These samples
are matched with those resulting from the first stage
(e.g., sa1–s

a
2–s

b
2 in the case of sb1).

At both stages, samples are merged through spa-
tiotemporal generalization. Let us consider two generic
samples, a’s i-th and b’s j-th, to be merged into a new
sample, m’s k-th. Reusing the notation introduced in
Sec. 4.1, the generalization is realized as follows:

⋆mk = min(⋆ai , ⋆
b
j), (12)

d⋆mk = max(⋆ai + d⋆ai , ⋆
b
j + d⋆bj)− ⋆mk , (13)

where ⋆ is to be replaced by x and y, or by t, in order to
obtain the equations for spatial or temporal generaliza-
tion, respectively. These operations simply stretch the
new sample ofm so that it covers the geographical areas
and temporal intervals of both a’s i-th sample and b’s
j-th sample. In case multiple samples must be merged
together (e.g., sa1 , s

a
2 , and sb2, in Fig. 6a), the operations

can be run iteratively, merging one sample at a time.
It is important to note that equations (12) and (13)

realize our principle of specialized generalization, since:
(i) the loss of granularity is the minimal required to hide
each sample; (ii) the generalization is different among
samples, breaking the dependency of all samples in a
fingerprint from the hardest-to-anonymize one.
As a last remark, the merging operation may result

into counter-intuitive representations of time, in cases
where the minimum sample stretch effort is dominated
by the spatial component. An example is provided in
Fig. 6b: there, locations σa

2 = c2 and σb
1 = c1 are farther

in space than instants τa2 = t3 and τb2 = t5 are in time.
Thus, the merging of fingerprints a and b leads to gener-
alized samples ofm that overlap in time, but refer to dif-
ferent geographical locations. The resulting fingerprint
is formally correct, but it is difficult to read or analyze.
We run a reshaping process that resolves all temporal
overlappings, either partial or complete, by creating a
new sample for each such case. The new sample covers
the overlapping time intervals, and its spatial granular-
ity is obtained by merging the geographical areas of the
overlapping samples it replaces, as per (12) and (13).
Reshaping has a cost in terms spatial granularity, but
it improves the usability of anonymized data.

6.3 Complexity analysis

Attaining optimal k-anonymity is a NP-hard prob-
lem in movement micro-data databases [15]. GLOVE
takes a greedy approach that requires: (i) computing
the fingerprint stretch effort among all possible pairs of
users in the original mobile traffic dataset; (ii) itera-
tively merging the two closest fingerprints and recom-
puting the stretch effort between the merged fingerprint
and all those remaining in the dataset.
Let us denote as |M| the number of users in the

dataset, and as n̄ their average fingerprints length. The
complexity of the first operation (i) above maps to the
calculation of (10), whose cost is O

(

n̄2
)

, for all |M|2

user pairs, and is thus O
(

|M|2n2
)

. The complexity of
the second operation (ii) is the sum of two contributions.
On the one hand, the merge has a cost O

(

n̄2
)

, and
needs to be repeated k = O (|M|) times (where k is the
desired k-anonymity level, and cannot exceed the num-
ber of users in the dataset) for all users |M|, leading to
O
(

|M|2n̄2
)

. On the other hand, the recalculation of the
stretch efforts for the new merged fingerprint requires
computing (10) against all remaining users, which are
O (|M|), for an overall costO

(

|M|n̄2
)

. Overall, GLOVE
runs in polynomial time, and is quadratic in both the
number of users and the fingerprint length.
Moreover, a strategic aspect in the design of GLOVE

is that all of its key calculations are highly paralleliz-
able. The implementation used in this paper relies on
the Nvidia CUDA architecture for GPU computing. The
calculations in (10), (12) and (13) were easily mapped
to match the parallel computation capability of a GPU.
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Figure 7: Spatiotemporal accuracy in the d4d-civ and
d4d-sen datasets, 2-anonymized with GLOVE.

A non-optimized proof-of-concept version of the soft-
ware executes the calculations in (10) on 20–50,000 fin-
gerprint pairs per second, using a single-GPU, low-end
GeForce GT 740 card with 384 CUDA cores at 1 GHz.
On this machine, the d4d-civ and d4d-sen datasets
could be 2-anonymized with GLOVE in roughly 60 hours
each. However, we believe that much better performan-
ce can be expected by running an optimized version of
the software on dedicated, high-end hardware7.

7. PERFORMANCE EVALUATION

GLOVE guarantees, by design, k-anonymity of all
mobile fingerprints in a dataset. This is a result that
legacy spatiotemporal generalization could not achieve,
even under severe loss of granularity, as shown in Fig. 4.
Clearly, the question is at which cost, in terms of pre-
cision loss, GLOVE attains k-anonymity.
Fig. 7 shows the accuracy of GLOVE-anonymized fin-

gerprint samples in the d4d-civ and d4d-sen data-
sets, for the baseline case of 2-anonymity. The two
plots outline the spatial and temporal accuracy of the
anonymized data. We observe that 20% to 40% of the
samples retain their original spatial accuracy, and have
a temporal error of 30 minutes or less, largely sufficient
to accurately characterize human mobility [16]. Even
for larger fractions of samples, the loss of spatiotempo-
ral granularity is tolerable: 70% to 80% of samples have
a spatial error of less than 2 km and a temporal error
of less than 2 hours – a level of accuracy that can sup-
port a large variety of studies in networking, sociology,
or transportation research. Also, we recall that, un-
der similar levels of generalization, no single subscriber
could be 2-anonymized in Fig. 4.
Although 2-anonymity already satisfies the indistin-

guishability principle, higher privacy levels are possible,
at a cost in terms of accuracy. Fig. 8 details the trade-
off for the d4d-civ dataset. Identical trends were found
for d4d-sen, and are omitted here. The percentage of
samples with unvaried position accuracy drops to 25%

7On a related point, dataset anonymization for PPDP
is a one-time operation that is performed just once on
the original data before it is released. Data releasing
typically occurs with months of delay with respect to
the data collection phase, due to data cleaning and legal
clearance issues. Thus, the processing time is a much
less relevant issue in PPDP than in other use cases.
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Figure 8: Spatiotemporal accuracy in the d4d-civ
dataset, k-anonymized with GLOVE.
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Figure 9: Spatiotemporal accuracy in the d4d-civ

dataset, 2-anonymized with GLOVE and suppression.

for k = 3 and 15% for k = 5; the percentage of sam-
ples with accuracy better than 2 km is 70% for k = 3
and 50% for k = 5. In time, 50% and 20% of samples
feature a temporal accuracy better than 2 hours under
k = 3 and k = 5, respectively. These figures point out
that, depending on the type of analysis to be carried out
on the data, the fraction of exploitable samples may be
significantly reduced for 2 < k ≤ 5.
For k > 5, the anonymized dataset becomes hardly

exploitable: if such a level of protection is required, then
one may try to simplify the problem, by, e.g., making
assumption about the attacker’s knowledge. This would
allow modifying GLOVE operation so as to target, e.g.,
partial fingerprint anonymization, which is less expen-
sive to achieve than the full-length version we are tar-
geting in this work. Allowing suppression is another
option, and we discuss it next.

7.1 Combining GLOVE with suppression

Suppression allows discarding hard-to-anonymize sam-
ples from fingerprints and is easily integrated in GLOVE.
Indeed, specialized generalization can be combined with
removal of samples whose temporal or spatial stretch
efforts in (12) and (13) exceed some threshold. Fig. 9
shows the improvement of spatiotemporal accuracy (x
axis) when imposing different thresholds to the spatial
and temporal stretch (tags along curves), which results
on discarding some percentage of samples (y axis). The
plot refers to the the d4d-civ dataset. Trends are sim-
ilar in the d4d-sen case. Suppression can significantly
improve the quality of the anonymized dataset. For in-
stance, the average spatial accuracy shifts from more
than 5 km to around 1 km when discarding less than
8% of samples, i.e., by removing samples with a spatial
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d4d-civ d4d-sen abidjan dakar
W4M-LC GLOVE W4M-LC GLOVE W4M-LC GLOVE W4M-LC GLOVE

k
=

2

Discarded fingerprints 1,104 (1.3%) 0 430 (0.1%) 0 3,387 (16.8%) 0 994 (1.4%) 0
Created samples (×1000) 4,444 (24.9%) 0 5,302 (17.9%) 0 1,004 (20.8%) 0 1,949 (17.4%) 0
Deleted samples (×1000) 1,325 (7.5%) 1,482 (8.3%) 1,577 (5.3%) 4,175 (14.1%) 997 (20.7%) 194496 (4.03%) 686 (6.1%) 535 (4.8%)
Mean position error [m] 10,190.88 1,013.71 9,392.85 1,312.28 2,939.70 1,323.12 1,889.34 1,249.24
Mean time error [min] 1,151.51 60.21 1,037.74 69.31 2,769.74 57.21 1,172.66 58.47

k
=

5

Discarded fingerprints 1,271 (1.5%) 0 3740 (1.2%) 0 204 (0.1%) 0 614 (0.8%) 0
Created samples (×1000) 8,018 (44.9%) 0 8,863 (29.9%) 0 3,524 (73.8%) 0 3.310 (17.4%) 0
Deleted samples (×1000) 1,713 (9.6%) 1,482 (8.3%) 2,179 (7.3%) 5,004 (16.9%) 652 (13.5%) 213 (4.41%) 877 (7.8%) 721 (6.4%)
Mean position error [m] 23,534.062 5,129.9 19,881.9 5,694.2 4,033.4 1,870.10 3,365.22 1,596.77
Mean time error [min] 3,455.94 171.01 2.600.64 408.30 3,334.4 146.90 2,030.13 147.53

Table 2: Comparative analysis of W4M-LC [17] and GLOVE. Results for anonymized datasets with k = 2 and k = 5.

stretch above 20 km, and whose temporal stretch8 is
above 6 h. Similarly, the average temporal accuracy is
halved by suppressing just 4% of samples, i.e., thresh-
olding at 6 h. Not only the mean, but also the median
and 25th–75th percentile range are noticeably improved.
Interestingly, the accuracy gain is the most signif-

icant when only a small percentage of samples is re-
moved form the dataset. We conclude that minimal
suppression allows discarding a limited number of hard-
to-anonymize outliers in the data, with a consequent
large gain in accuracy.

7.2 Comparative analysis

Several solutions were proposed for the k-anonymiza-
tion of trajectories, and are reviewed in Sec. 8. Among
those, the only technique that can hide movement micro-
data along both spatial and temporal dimensions is Wait
for Me (W4M) [17], and we thus select it as the state-
of-the-art benchmark for GLOVE.
The approach of W4M builds on the representation of

an uncertain trajectory as a cylindrical volume that has
a diameter δ in space and stretches through time. W4M
groups similar trajectories into clusters of at least k ele-
ments each, and then performs the minimum spatiotem-
poral translation needed to push all the trajectories of a
cluster within the same cylindrical volume. An impor-
tant remark is that W4M allows both suppression and
creation of new synthetic samples. The latter operation
is leveraged to improve the matching among trajecto-
ries in a cluster, and assumes that mobile objects (i.e.,
subscribers in our case) effectuate linear constant-speed
movements between spatiotemporal samples. We use
W4M with linear spatiotemporal distance and chunk-
ing (LC), i.e., the version intended for large databases,
and indeed the only scaling to our mobile traffic data9.
We ran W4M-LC on the d4d-civ and d4d-sen data-

sets, as well as on subsets of the same, geographically
limited to major cities in Ivory Coast and Senegal, and
named abidjan and dakar. We used the suggested set-
tings for W4M-LC, i.e., δ = 2 km and a 10% trashing
(allowing the removal of trajectories that are difficult to
cluster) [17]. Tab. 2 presents the results for k = 2 and

8The left plot of Fig. 9 also considers a temporal stretch
threshold, since spatial thresholding alone yielded
marginal accuracy gain.
9Available at http://kdd.isti.cnr.it/W4M/.
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Figure 10: Spatiotemporal accuracy in time-subsets of
d4d-civ and d4d-sen, 2-anonymized with GLOVE.

k = 5, confronted to those achieved by GLOVE with
suppression via thresholds set at 6 hours and 15 km.
Differences are significant. In all scenarios, W4M-LC

creates a substantial amount of synthetic samples, tal-
lying 17% to 74% of the original data. Such samples do
not correspond to actual user movements, and thus vi-
olate the PPDP truthfulness principle (P2 in Sec. 2.2).
Even worse, fabricated samples do not help in attain-
ing a sufficient level of accuracy in the anonymized data:
the mean error introduced by the perturbations in W4M-
LC is between 2-3 km (citywide datasets, k = 2) and 19-
20 km (countrywide datasets, k = 5) in space, and be-
tween 16 hours (k = 2) and more that two days (k = 5)
in time. The result is hardly exploitable for data anal-
ysis purposes. GLOVE yields a much higher average
precision, around 1 km and 1 hour in all k = 2 cases,
and around 1 km (citywide) to 5 km (countrywide) and
3 hours when k = 5. Moreover, these figures are ob-
tained at an affordable cost (in the range 4%-17%) in
terms of sample suppression.
We believe that the poor result of W4M-LC is due

to the nature of the data. The technique was designed
for the anonymization of trajectories sampled at fre-
quencies that are high and similar for all moving ob-
jects. This is the case of, e.g., the GPS logs consid-
ered in the original performance evaluation of W4M-
LC [17]. Instead, mobile traffic dataset contain trajec-
tories whose sampling is very heterogeneous and typ-
ically sparse. In this context, the dedicated solution
provided by GLOVE grants superior performance.

7.3 Generality analysis

Our evaluation is dependent on the data we use. We
thus derive results that let us speculate on how the anal-
ysis would generalize to other datasets.
First, we investigate how the timespan of a mobile
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Figure 11: Spatiotemporal accuracy in user-subsets of
d4d-civ and d4d-sen, 2-anonymized with GLOVE.

fingerprint dataset affects its k-anonymized version ac-
curacy. To that end, we extract datasets of different
duration, from one day to two weeks, from the origi-
nal d4d-civ and d4d-sen datasets. Fig. 10 shows their
spatiotemporal accuracy, upon 2-anonymization with
GLOVE.We observe that shorter datasets yield a higher
accuracy, both in space and time, once they have been
anonymized. This is not surprising, since a lower dataset
timespan reduces the length of mobile fingerprints, which
then become easier to match to each other. The gain in
accuracy can be very high, as 2-anonymized 1-day data-
sets are twice as precise than 2-week ones. Interestingly,
all curves are not linear, and the loss of accuracy seems
to decrease as datasets become longer; this effect is more
evident for the median (typical users) than for the av-
erage (hard-to-anonymize individuals). We hypothesize
that the result is due to the weekly periodicity known
to drive human activities: long datasets spanning over
multiple weeks may not be much harder to anonymize
than a one-week dataset, as most of the diversity among
mobile fingerprints is already present in the latter.
As a second test, we evaluated the impact of a diverse

spatial extension of the datasets, using the abidjan and
dakar subsets introduced before. Anonymizing such da-
tasets with GLOVE yields a spatiotemporal accuracy
similar to that obtained in the nationwide datasets, as
exemplified by the values in Tab. 2. The fact that data-
sets featuring very different geographical coverage are
similarly anonymized is explained by the locality of hu-
man activities: the median and average radius of gyra-
tion of users are 1.8 km and 12 km in d4d-civ, and 2 km
and 10 km in d4d-sen. Thus, the mobile fingerprints of
most individuals are confined to a limited geographical
region the size of a city, and they are typically hidden
among those of other users in the same area.
Finally, an interesting question is to which extent re-

ducing the number of users in a dataset makes them
more distinguishable. Fig. 11 shows how the spatiotem-
poral accuracy varies when considering datasets that
comprise from 5% to 100% of the subscribers in d4d-civ

and d4d-sen. Clearly, datasets with a lower number of
users tend to be harder to anonymize, since the crowd
that one can leverage to hide himself becomes thinner.
However, the effect is only remarkable when retaining
a rather low user fraction. We conclude that the ano-
nymizability of our datasets is impaired only when the
number of users falls below a few tens of thousands.

8. RELATED WORK

Our work deals with privacy preservation in move-
ment micro-data. This is a very different problem from
ensuring anonymity in relational micro-data [1, 2]. It
also differs from confidentiality problems in other types
of databases extracted from mobile traffic data, e.g.,
networks of subscriber relationships [18] or aggregate
mobile demands at the access network [19]. The re-
lated techniques are designed for database formats and
semantics that are completely different from ours.
Within the domain of movement micro-data, we fo-

cus on the anonymization of spatiotemporal trajecto-
ries, which are are not to be confounded with other
kinds of movement micro-data: (i) location-based ser-
vices (LBS), and (ii) spatial trajectories.
In LBS, the goal is anonymizing georeferenced queries,

i.e., individual spatiotemporal points. This is done via
temporal [20], spatial [21], or personalized spatiotempo-
ral generalization [22]; encryption is also an option [23].
In all cases, hiding individual samples is a subset of
the problem we tackle, which concerns instead com-
plete spatiotemporal trajectories. Even in presence of
linked queries (i.e., sequences of points that are subject
to tracking), solutions rely on pseudo-identifier replace-
ment [24]. While changing the user pseudo-identifier at
will does not impair LBS operation, it is not an option
in our case. First, it would disrupt the integrity of tra-
jectories and thus the utility of the dataset. Second, it
would not solve to the uniqueness problem we tackle.
Spatial trajectories are instead sequences of geograph-

ical locations without any temporal reference. They
represent routes traveled by users, regardless of when
they do so. Solutions for the anonymization of spatial
trajectories tend to rely on spatial generalization [25];
however, they do not preserve the temporal dimension
of the data, which is paramount in our context.
Among the works that addressed the anonymization

of spatiotemporal trajectories, ours is the first to tackle
the problem of Privacy-Preserving Data Publishing of
mobile traffic datasets. Previous research has relied on
techniques that do not meet the requirements we estab-
lished in Sec. 2.2, namely the replacement of pseudo-
identifiers mentioned above [15, 26], or perturbations
and permutations that displace users at locations they
may have never actually visited [17, 27, 28].
Even when they employ PPDP-compliant approaches,

e.g., suppression [29] and generalization [30], past solu-
tions do not fit our needs. Some only work on very short
spatiotemporal trajectories of three samples each [29],
whereas mobile fingerprints typically include hundreds
of samples per week. Others are intended for datasets
where the positions of all users are sampled with iden-
tical periodicity, e.g., via GPS logging [27, 28, 30]: in
that case, the anonymization process only concerns the
spatial dimension, since temporal hiding is implicit.
The only approach proposed to date that is capa-

ble of handling the anonymization of full-length finger-
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prints along both space and time dimensions is Wait for
Me (W4M) [17]. Although it creates fabricated samples
that do not match the real-world user mobility and thus
it does not fulfill the truthfulness principle of PPDP
(P2 in Sec. 2.2), we picked W4M as a benchmark for
our comparative analysis in Sec. 7.2.

9. CONCLUSIONS

We presented GLOVE, an algorithm for the k-anony-
mization of movement micro-data extracted from mo-
bile traffic. Its design builds on novel insights into the
nature of mobile fingerprint anonymizability. GLOVE
attains complete k-anonymization of two reference da-
tasets while preserving a level accuracy that would not
even grant partial 2-anonymization under legacy spa-
tiotemporal generalization. Also, it outperforms exist-
ing solutions for k-anonymization of movement micro-
data, intended for dense spatiotemporal trajectories.
Overall, the research presented in this paper advances

the current state of the art in best practices for the
anonymization of mobile traffic datasets. However, our
work also has limitations that open the way to future
improvements. First, the privacy model behind the de-
sign of GLOVE is effective in countering a subset of
the possible attacks on mobile traffic data: it thus rep-
resents a first step towards complete PPDP. Also, it
may not fit some data analyses, e.g., targeting out-
lier behavior detection. Second, GLOVE was shown to
grant at most 5-anonymity while maintaining a signifi-
cant level of data granularity in the reference datasets.
Although additional tests with other datasets may af-
fect this bound, the result suggests that higher levels
of privacy may require the use of suppression or the
introduction of assumptions on adversary knowledge.
As a concluding remark, we recall that in this work we

address the problem of uniqueness in mobile users’ tra-
jectories. Uniqueness does not implies direct re-identifia-
bility of mobile users, and thus we do not de-anonymize
any subscriber in the datasets we study.
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