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Abstract

Automatic human action recognition is indispensable for al-

most artificial intelligent systems such as video surveillance, 
human-computer interfaces, video retrieval, etc. Despite a lot 
of progresses, recognizing actions in a unknown video is still 
a challenging task in computer vision. Recently, deep learn-

ing algorithms has proved its great potential in many vision-

related recognition tasks. In this paper, we propose the use of 
Deep Residual Neural Networks (ResNets) to learn and rec-

ognize human action from skeleton data provided by Kinect 
sensor. Firstly, the body joint coordinates are transformed into 
3D-arrays and saved in RGB images space. Five different deep 
learning models based on ResNet have been designed to ex-

tract image features and classify them into classes. Experi-

ments are conducted on two public video datasets for human 
action recognition containing various challenges. The results 
show that our method achieves the state-of-the-art performance 
comparing with existing approaches.

1 Introduction

Human action recognition in video is an important research 
area in computer vision. Recognizing correctly actions in un-

known video is a challenging task due to many factors such as 
occlusions, viewpoint, lighting and so on. Many approaches 
have mainly focused on recognizing actions from video se-

quences with RGB, depth, or combining these two data types 
(RGB-D). Currently, depth cameras such as Kinect is able to 
provide a powerful skeleton tracking algorithm [24] in real-

time. Meanwhile, human actions can be represented by the 
movements of skeleton joints, thus using the skeleton data can 
distinguish many actions. Furthermore, the skeleton data repre-

sentation has the advantage of lower dimensionality than RGB-

D representations; this benefit makes action recognition mod-

els simpler and faster. For that reason, exploiting the 3D human 
joint positions from depth cameras for recognizing human ac-

tion is a very effective research direction.

In recent years, deep learning based approaches achieved 
outstanding results in image recognition and classification. 
Among deep learning-based models for action recognition, 
Convolutional Neural Networks (ConvNets) were seen as the 
most important architecture. Many authors have proposed the 
use of ConvNets for solving problems related to human action 
recognition [25]. Most of these approaches learn action fea-

tures from RGB-D image sequences and use learned features 
to classify actions. Although RGB-D images are very infor-

mative for action recognition, the computation complexity of 
the learning model will increase rapidly when the number of 
frames increases. Therefore, it makes models more complex 
and slower.

In this paper, we aim to take full advantages of 3D skeleton 
joints provided by Kinect sensor and the power of very deep 
ConvNet to build an end-to-end learning framework for human 
action recognition in video. Firstly, the skeleton data is col-

lected by Kinect in frames. These skeleton sequences are then 
transformed into 3D-arrays and saved in RGB images in or-

der to ensure they are accepted as the input of our ConvNet 
models. To learn and recognize actions, we propose the use of 
Deep Residual Network (ResNets) [12], a recent state-of-the-

art ConvNet on image recognition and classification. Five 
different ResNet models have been designed and tested. Ex-

perimental results on two benchmark action datasets show that 
our leaning framework achieves the state-of-the-art accuracies 
in the same experimental condition. To the best of our knowl-

edge, we are the first to use successfully ResNets for skeleton 
based action recognition in video.

The rest of the paper is organized as follows: Section 2 in-

troduces the related works on using skeleton for action recog-

nition. In section 3, we present our proposed models includ-ing 
a data transformation module, the principle of ResNet and five 
different ResNet architectures for recognizing actions. Datasets 
and their experimental protocols are described in Sec-tion 4 
and results are shown in Section 5. Finally, conclusion is 
provided in section 6.

1



2 Related Work
Taking the advantages of depth camera technology, many solu-

tions which use skeleton data have been proposed. Looking at 
the literature of human skeleton based action recognition, two 
main research directions can be found containing approaches 
based on local features and approaches based on Recurrent 
Neural Networks (RNNs).

Approaches based on local features: Human action is a spatio-

temporal pattern, many researchers have proposed the use of 
temporal models for modeling human motions. Firstly, spatio-

temporal features of an action are extracted. Then, the au-

thors employ generative models such as Hidden Markov Model 
(HMM) [20, 32] or Conditional Random Field (CRF) [11] for 
modeling and recognizing the human action. Another tech-

nique called Fourier Temporal Pyramid (FTP) [29, 32] has been 
also used to describe the temporal structure of an action and 
predict its class. Although promising results have been achieved 
from these above approaches, there are some limita-tions which 
are very difficult to overcome. E.g., HMM based methods 
require preprocessing input data. Normally, the skele-ton 
sequences need to be segmented and aligned. Meanwhile, FTP 
based approaches can only utilize limited contextual infor-

mation of an action and cannot globally capture the temporal 
sequences of actions.

Approaches based on RNNs: Recurrent Neural Networks 
(RNNs) with Long Short-Term Memory Network (LSTM) [13] 
are able to model the contextual information of the temporal 
sequences as skeleton data. Thus, many authors have explored 
RNN-LSTMs for 3D human action recognition [5, 28]. Exper-

iments provided that RNN-LSTMs outperform many previous 
works. However, the use of RNN can face to overfitting when 
the number of features is less in training phase. Moreover, ex-

cept the study of Du et al. [5], all the work above just uses 
RNN-LSTMs as a classifier. In this paper, we investigate and 
design very deep ConvNets for learning action features from 
skeleton sequences and classify them into classes. Five resid-

ual networks [12] were designed and experimented. Our re-sults 
show state-of-the-art performance on the MSR Action 3D 
dataset [16] and Kinect Activity Recognition Dataset (KARD)

[8].

3 Proposed Model
In this section, our proposed model is presented. We first de-

scribe a data transformation module which allows us to encode 
skeleton sequences into 3D-arrays and store them in color im-

ages. We then review the ResNet model and propose five dif-

ferent ResNet architectures to solve the task of human skeleton 
based action recognition.

3.1 Data transformation

Currently, the real-time skeleton estimation algorithms have 
been integrated into depth cameras. This technology allows 
to extract correctly the position of the joints in the body. E.g., 
the latest version of the Kinect can help researchers to get more 
anatomically correct positions for crisp interactions (Figure 1).

Figure 1. The position of the joints extracted by Kinect [21].

Figure 2. Illustration of the data transformation process. N
denotes the number of frames in each sequence. K denotes the

number of joints in each frame.

The skeleton data is captured in frames, each frame contains

the 3D coordinates of skeletal joints. We transform all the 3D

coordinates (xi, yi, zi) of each frame into a new space by nor-

malizing these coordinates by the transformation function F(·):

(x′
i, y′

i, z′
i) = F(xi, yi, zi)

x′
i = 255 × (xi − min{C})

max{C} − min{C}
y′

i = 255 × (yi − min{C})
max{C} − min{C}

z′
i = 255 × (zi − min{C})

max{C} − min{C}
where (x′

i, y′
i, z′

i) are coordinates in the new space; max{C}
and min{C} are the maximum and minimum values of all co-
ordinates, respectively. Then we stack all normalized frames 
in order of time [T1, T2, ..., TN ] to represent the whole action 
sequence and store them in RGB color space. All these im-

ages are then resized to 40 × 40 pixels. Figure 2 illustrates 
this transformation process. By this way, we converted the 
skeleton information to 3D tensors which will then be feeded 
into deep learning framework as the input data. Naturally, 
human body is structured by four limbs and a trunk. Simple 
actions can be performed through the movement of a limb; 
more complex actions come from the movements of a group 
of limbs or the whole body. Inspired by this idea, Du et al. [6] 
proposed an effective representation for skeleton se-quences by 
dividing each skeleton frame into five parts, in-cluding two 
arms (P1, P2), two legs (P4, P5), and one trunk (P3) (Figure 3). 
To have a better representation, we rearrange the pixels in RGB 
images obtained above in the following or-der: P1 → P2 → P3 
→ P4 → P5. Figure 4 shows some examples of images
representation using input sequences from MSR Action 3D

dataset [16].
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Figure 3. Map of joints in each part from P1 to P5.

(a) DrawX (b) Forward kick (c) Hand catch

(d) High throw (e) Jogging (f) Two hand wave

Figure 4. Output of the transformation module obtained from 
some samples on the MSR Action 3D dataset [16].

3.2 Deep residual networks for skeleton based human
action recognition

In this section, we first review ResNets and its effectiveness in 
different recognition tasks. We then propose the use of ResNets 
for recognizing human action from skeleton sequences.

3.2.1 Residual learning

Very deep neural networks demonstrate to have a high perfor-

mance on many visual-related tasks. However, they are more 
difficult to train. ResNet [12] is a powerful solution to solve 
this problem. ResNets allow to make the network training pro-

cess faster while attaining more accuracy compared to their 
equivalent models. ResNet is a state-of-the-art ConvNet model 
which won the 1st place on the ILSVRC 2015 challenge. This 
model has also achieved the best results on many other tasks 
related to detection, localization and segmentation. A simple 
difference between ResNets and traditional ConvNets is that 
ResNets provide a clear path for gradients to back propagate 
to early layers in the network. This technique helps the learn-

ing process faster. A deep ResNet is constructed from multiple 
basic blocks that are serially connected to each other. There a 
shortcut connection parallel between input and output of each 
block and it gets added to the output of block (Figure 5;left). 
In other words, a layer of a traditional neural network learns 
to calculate a mapping function y = F(x). A ResNet layer

Figure 5. A building block of ResNet.

approximately calculate y = F(x) + id(x) where id(x) is a 
identity function: id(x) =  x. ResNets use the convolutional 
layers with 3 × 3 filters. Batch normalization [15] and ReLU

[22] are applied after each convolution (Figure 5;right). Exper-

imental results on very large datasets for image classification 
showed that the use of the shortcut connections in ResNet ar-

chitecture makes the network more accurate and faster.

3.2.2 Network design

Motivated by the recent success of ResNets [12], we apply this 
model to the task of human action recognition in video using 
skeleton data. We suggest different configurations of ResNet 
with 20, 32, 44, 56, and 110 layers, denoted by ResNet-20, 
ResNet-32, ResNet-44, ResNet-56, ResNet-110, respectively. 
All models are designed for accepting images with size 32×32 
and trained from scratch. The last fully-connected layer of the 
network represents the action class scores and its size can be 
changed corresponding to the number of action classes.

4 Experiment

4.1 Dataset and experimental protocol

4.1.1 MSR Action 3D dataset

We conduct the first experiments on MSR Action 3D dataset 
[16], a public benchmarking dataset used by many authors for 
evaluating action recognition algorithms. It contains 20 differ-

ent actions. Each action is performed by 10 subjects for three 
times. There are 567 skeleton sequences in total, however 10 
sequences are not valid because the skeletons were either miss-

ing or wrong, so we conduct our test on 557 sequences. We fol-

lowed the same experimental protocol as many other authors. 
More specifically, the whole data is divided into three subsets 
called AS1, AS2, AS3 (Table 1). For each subset, five actors 
are selected for training and the rest for testing.

4.1.2 Kinect Activity Recognition Dataset (KARD)

The KARD dataset was collected by Gaglio et al. [8]. It con-

tains 18 actions, performed by 10 subjects and each subject 
repeated each action three times for creating a number of 540 
sequences in total. KARD is composed of RGB, depth and 
skeleton frames. Each skeleton frame contains 15 joints. The

3



AS1 AS2 AS3
Horizontal arm wave High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup & Throw Side-boxing Pickup & Throw

Table 1. Three subsets of the MSR Action 3D dataset.

Action Set 1 Action Set 2 Action Set 3
Horizontal arm wave High arm wave Draw tick
Two-hand wave Side kick Drink
Bend Catch cap Sit down
Phone call Draw tick Phone call
Stand up Hand clap Take umbrella
Forward kick Forward kick Toss paper
Draw X Bend High throw
Walk Sit down Horiz. arm wave

Table 2. List of actions in each subset of the KARD dataset.

authors also proposed an evaluation protocol on this data in

which the whole dataset is divided into three subsets as shown

in Table 2. For each subset, three experiments have been pro-

posed. Experiment A uses one-third of the dataset for train-

ing and the rest for testing. Meanwhile, Experiment B uses

two-third of the dataset for training and one-third for testing.

Finally, Experiment C uses a half of the dataset for training

and the rest for testing.

4.2 Data augmentation

Very deep neural networks require a lot of data to train. Unfor-

tunately, we have only 557 skeleton sequences on MSR Action

3D dataset and 540 sequences on KARD dataset. Thus, to pre-

vent overfitting, data augmentation has been applied. We used

random cropping, flip horizontally and vertically techniques to

generate more data and add them into training set. More specif-

ically, 8 × cropping has been applied on 40 × 40 images to

create 32 × 32 images. Then, their horizontally and vertically

flipped images are also created. In addition, color effect has

been also applied. By this way, we have enough data for each

action class and ensure that our ResNet models work well.

(a) Original image (b) Horizontal flipping (c) Vertical flipping

Figure 6. Data augmentation applied on MSR Action 3D

dataset.

Model AS1 AS2 AS3 Aver.
ResNet-20 99.40 99.00 100.0 99.47
ResNet-32 99.50 98.70 99.70 99.30

ResNet-44 99.60 98.20 99.80 99.20

ResNet-56 99.20 97.30 99.60 98.70

ResNet-110 99.20 98.00 99.90 99.37

Table 3. Test accuracies (%) of our proposed models on AS1,

AS2, and AS3 subsets.

(a) ResNet-20 and ResNet-32 (b) Resnet-44 and ResNet-56

(a) ResNet-110

Figure 7. Learning curves on AS1. Dashed lines denote train-

ing errors, bold lines denote testing errors.

5 Experimental Results

We used MatConvNet [27] to implement our deep learning 
models. MatConvNet is an open source computing frame-

work for ConvNets. It provides many pre-defined neural net-

work layers, supports efficient computation on GPUs and al-

lows to train state-of-the-art ConvNets. The proposed models 
are trained and tested on a computer using Geforce GTX 1080 
Ti GPU with 11GB RAM.

5.1 MSR Action 3D dataset

Experimental results on MSR Action 3D dataset are shown in 
Table 2. Some learning curves of all the models on AS1 are 
shown in Figure 7. We achieved the best classification accu-

racy with ResNet-20 model. More specifically, classification 
accuracies are 99.4% on AS1, 99% on AS2, and 100% on 
AS3. We obtained a total average accuracy of 99.47%. This re-

sult shows that our proposed model outperforms many 
previous works (Table 5). In addition, our study found that the 
learning behavior of ResNet depend on the size of the dataset. 
Specifi-cally, ResNet-20 got better results than ResNet-32, 
ResNet-44, ResNet-56, and ResNet-110.
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Activity Set 1
Model Exp. A Exp. B Exp. C
Resnet-20 100 100 100

ResNet-32 100 100 100

ResNet-44 100 100 99.9

ResNet-56 100 100 99.9

ResNet-110 99.7 100 100

Activity Set 2
Model Exp. A Exp. B Exp. C
ResNet-20 100 100 100

ResNet-32 100 100 99.9

ResNet-44 100 100 100

ResNet-56 100 100 100

ResNet-110 99.9 100 100

Activity Set 3
Model Exp. A Exp. B Exp. C
ResNet-20 99.8 100 99.8

ResNet-32 99.8 99.9 99.8

ResNet-44 99.0 99.7 99.7

ResNet-56 99.4 99.9 99.8

ResNet-110 99.1 100 99.7

Table 4. Test accuracies (%) of our proposed models on the

KARD dataset.

Method AS1 AS2 AS3 Aver.
Li et al. [16] 72.90 71.90 79.20 74.67

Vieira et al. [31] 84.70 81.30 88.40 84.80

Xia et al. [33] 87.98 85.48 63.46 78.97

Chaaraoui et al. [1] 92.38 86.61 96.40 91.80

Chen et al. [3] 96.20 83.20 92.00 90.47

Luo et al. [19] 97.20 95.50 99.10 97.26

Gowayyed et al. [10] 92.39 90.18 91.43 91.26

Hussein et al. [14] 88.04 89.29 94.29 90.53

Qin et al. [23] 81.00 79.00 82.00 80.66

Liang et al. [17] 73.70 81.50 81.60 78.93

Evangelidis et al. [7] 88.39 86.61 94.59 89.86

Ilias et al. [26] 91.23 90.09 99.50 93.61

Gao et al. [9] 92.00 85.00 93.00 90.00

Vieira et al. [30] 91.70 72.20 98.60 87.50

Chen et al. [2] 98.10 92.00 94.60 94.90

Du et al. [5] 93.33 94.64 95.50 94.49

Our best model 99.40 99.00 100.00 99.47

Table 5. Comparing our performance with other approaches

on the MSR Action 3D dataset. All methods used the same

experimental protocol.

Method Exp. A Exp. B Exp. C
Gaglio et al. [8] 89.73 94.50 88.27

Cippitelli et al. [4]; P = 7 96.03 97.80 96.37

Cippitelli et al. [4]; P = 11 96.47 98.27 96.87

Cippitelli et al. [4]; P = 15 96.00 97.97 96.80

Ling et al. [18] 98.90 99.60 99.43

Our best model 99.87 100.0 99.93

Table 6. Average recognition accuracy (%) of the best pro-

posed model for experiments A, B and C compared to other 
approaches on the whole KARD dataset using the same exper-

imental protocol.

5.2 KARD dataset

We performed a total of 45 experiments on KARD dataset [8]. 
The experimental results on KARD dataset are shown in Ta-ble 
4. Table 6 provides an accuracy comparison between our best 
proposed model and other approaches on the whole KARD 
dataset. This result confirms that our approach outperformed 
the previous state-of-the-art on KARD dataset.

6 Conclusion and Future Work

In this paper, we proposed a deep residual framework to learn 
and recognize human action using skeleton sequences. Ex-

perimental results on two challenging action datasets demon-

strate the power of ResNets in understanding complex human 
actions. For future research, some interesting improvements 
in ResNet architecture are under study by many researchers. 
Therefore, we believe that this idea will be widely applied for 
human action recognition in the near future.
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