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Abstract. This research aims to explore contextual visual information
in the lecture room, to assist an instructor to articulate the effective-
ness of the delivered lecture. The objective is to enable a self-evaluation
mechanism for the instructor to improve lecture productivity by under-
standing their activities. Teacher’s effectiveness has a remarkable impact
on uplifting students performance to make them succeed academically
and professionally. Therefore, the process of lecture evaluation can sig-
nificantly contribute to improve academic quality and governance. In
this paper, we propose a vision-based framework to recognize the activ-
ities of the instructor for self-evaluation of the delivered lectures. The
proposed approach uses motion templates of instructor activities and
describes them through a Bag-of-Deep features (BoDF) representation.
Deep spatio-temporal features extracted from motion templates are uti-
lized to compile a visual vocabulary. The visual vocabulary for instruc-
tor activity recognition is quantized to optimize the learning model. A
Support Vector Machine classifier is used to generate the model and pre-
dict the instructor activities. We evaluated the proposed scheme on a
self-captured lecture room dataset, IAVID-1. Eight instructor activities:
pointing towards the student, pointing towards board or screen, idle,
interacting, sitting, walking, using a mobile phone and using a laptop,
are recognized with an 85.41% accuracy. As a result, the proposed frame-
work enables instructor activity recognition without human intervention.
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1 Introduction

An effective teacher is a source of inspiration and responsible for students 
achievement. The students’ academic performance is highly dependent upon 
the teacher’s effectiveness and their behavioral traits. In educational institutes, 
students are surveyed for the evaluation of instructor effectiveness and quality 
of the delivered lecture. In this regard, institutes are evaluating the effective-
ness of teachers and lectures mainly through student feedback. This feedback 
is based on the standard survey mechanism “Student’s Evaluating Teaching 
(SET)”. The prime motive to examine feedback is to improve the quality of the 
lecture. Unfortunately, in SET a teacher’s instructional and behavioral skills are 
evaluated on a smaller scale. Moreover, SET feedback are usually collected at 
the end of the semester which is not beneficial for students enrolled in a current 
semester. These performance evaluation statistics have being collected for a long 
time and empirically have been fount to have no significant impact on ratings of 
teaching [5]. The root cause of inaccurate instructor’s performance insight is due 
to poorly designed questionnaires, personal biases, and non-serious student’s 
response. Hence, an alternative system is required to support the evaluation pro-
cess that can provide a consistent view of the quality of lecture and effectiveness 
of the teachers.

Fig. 1. The visual classroom information for the development of intelligent application
using actions and emotion recognition techniques.

Everyday numerous hours of video data are recorded in academic institutes 
across the world. However, the majority of institutes rarely analyze the recorded 
or live stream videos for instructor performance evaluation or estimation of the 
lecture effectiveness, as illustrated in Fig. 1. Such real-time classroom data has an 
enormous potential to explore various problem domains within a classroom and to 
provide a solution to academicians to understand visual semantics using com-
puter vision and pattern recognition techniques as shown in Fig. 1. Recently, some 
computer vision findings have been reported to automatically estimate instructor 
performance using pose, gesture and activity recognition [15,19,20]. In [15], vision-
based instructor activity recognition uses silhouette representation to train a 
Hidden Markov Model (HMM). The system was able to identify five activities: 
walking, writing, pointing towards the board, standing and pointing towards 
presentations with a recognition accuracy of 90%. Similarly, in [19] face 
recognition and pose estimation techniques were applied to analyze academic 
performance within a lecture room. Structure and texture features were used to
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localize objects and the instructor within the classroom. A Bayesian classifier was 
used to model five activities: standing, walking, pointing, writing and addressing. 
The achieved accuracy was reported to be 96%. In [20], instructor activities were 
used to record a lecture automatically through localization of classroom objects 
and instructor. Then morphological features were used to generate fuzzy rules for 
instructor activities recognition. Such techniques [15,19,20] use spatial data for 
activity recognition but have ignored temporal information and have had to 
resort to their own datasets because of the unavailability of standard activ-ity 
datasets for instructor evaluation. Consequently, there is a need to develop 
standard datasets for researchers to compare and improve results.

Especially during the last decade, understanding visual information using 
computer vision techniques and systems has been useful to recognize human 
activities and behaviors in real-time in applications such as in surveillance, robot 
navigation, elderly home care, etc. The literature on human action recognition 
can be grouped into two broad categories: handcrafted and deep learning tech-
niques. Activity recognition based on handcrafted features can be further cat-
egorized into spatio-temporal [10], motion template [14] and action trajectory 
information [18]. Spatio-temporal features tend to be sparse and not of fixed 
length, which affects accuracy [10,21]. The varying length of spatio-temporal 
features may be overcome through time evolution of actor silhouettes [14,21]. 
However, accurate segmentation of actor silhouettes is a challenging problem. 
Action trajectory information [18] is very effective but it is computationally 
expensive to capture temporal movement information of actor which is also sen-
sitive to occlusion and noise. Handcrafted action representations target specific 
applications and thus fail to provide generic solutions [21]. Recently, deep learn-
ing based techniques have been shown to outperform traditional methods in 
most recognition tasks and that has motivated researchers to explore its capa-
bilities for action recognition especially using spatio-temporal data. In the action 
recognition domain, deep learning solutions can be categorized as frame learning 
[2,12], transformed frame learning [1], handcrafted features with deep represen-
tation [4], 3D convolutional neural network [3] and hybrid models [7,16]. Deep 
learning based solutions can find generalized models for real-time application but 
suffer from the scarcity of standard video datasets [21]. Frame learning tries to 
predict action recognition without learning temporal information [2,12] opti-
mizes the models by tuning the weights. A limitation of the frame learning tech-
nique is that resolution and number of frames are fixed for all action sequences, 
yet realistic action videos are not of fixed length. Transformed frame learning 
overcomes limitations of frame learning by incorporating temporal information 
from adjacent frames. However, it works best on smaller resolution video frames 
that makes it inadequate for high resolution action prediction. Recurrent neu-
ral networks are used to learn the sequential action information and predict 
activities [7]. Deep models for action representation using handcrafted features as 
input data may be appropriate for human action recognition, assuming that 
adequate features can be found [4]. 3D CNN [3] techniques use modified 2D CNN 
to embed temporal information. However, prediction results are not much
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better than 2D frame learning techniques [21]. Deep learning techniques are data 
hungry methods that require large-scale data representation and powerful com-
putational resources. Among these techniques, a fusion of handcrafted and deep 
learning features might offer promising recognition results, as compared to state 
of the art techniques, due to higher dimensional action representation [21].

This research work proposes a technique for action recognition that uses a 
fusion of handcrafted and deep learning features to generate Bag-of-Deep-
Features (BoDF) for instructor activity recognition. Such holds a high dimen-
sional discriminative power to recognize different objects [21], and performs 
promisingly to recognize instructor activities. We evaluated this technique on 
a newly created video dataset: “Instructor Activity Video-I (IAVID-I)”. Our 
contributions are: (i) To utilize a computer vision technique for understanding 
the visual semantics of classroom for academic quality assurance, (ii) Propos-
ing a novel Bag-of-Deep-Features technique for instructor activity recognition,
(iii) The proposed technique has the potential to solvie action recognition irre-
spective of the application domain, as the motion template generated from
human silhouette captures the spatio-temporal representation of an actor that
is benefical for accurate prediction of activities, (iv) To make available to other
researchers a new dataset and a baseline set of results.

2 Proposed Methodology

Bag of Feature (BoF) is one of the most effective frameworks for various image 
and video classification applications [11]. The BoF for action recognition fol-lows 
a generic pipeline: (i) extraction of 3D feature detector and descriptor,(ii) 
Construction of visual vocabulary, (iii) Quantization of visual vocabulary,(iv) 
Generation of a training model for action prediction, (v) Testing. Boradly, our 
technique is based on the fusion of handcrafted features (i.e. MT) and deep 
features for construction of a BoDF representation. We believe that the fusion of 
handcrafted motion templates of instructor and deep representation is capable

Fig. 2. The visual classroom information for the development of intelligent application
using actions and emotion recognition techniques.
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to predict the instructor’s activities. To validate this hypothesis, handcrafted 
motion templates of instructor’s activities and deep features from different lay-ers 
of a CNN network [6] are fused together and each video sequence is repre-sented 
by a feature vector of fixed size. The proposed technique is based on a generic BoF 
[13] representation with some modifications at the feature compu-tation step.
Since deep learning techniques have improved image classification performance
[6], therefore it is amenable to utilize deep features for action rep-resentation
using BoF paradigm. In BoDF, the deep features are computed as Z =
zi, iε (1, . . . , N ), where ziεDST F D is deep spatio-temporal action descriptor
computed from action video sequences and N is the length of DSTF of fixed size
D. Where D is 4096 or 1000 depending upon the fully connected layer used for
feature extraction. Then, encoding these DSTF to obtain an optimal represen-
tation of action videos through function, f : DST F D ⇒ DST F K . The coding
function f maps the deep spatio-temporal DST F into deep visual dictionary
representation into K clusters. Then, the histogram h is used to quantize the
deep visual vocabulary to train a SVM model for instructor action prediction.
The vocabulary size is varied to examine the behavior of the model. The expe-
riential results are discussed in the results and findings section. The following
subsection will explain the methodology in detail.

2.1 Preprocessing

Initially, RGB video action sequences of classroom lectures are presented to the 
framework as input. Then, instructor silhouettes are extracted using graph cut 
segmentation. In minimum graph cut segmentation, each pixel of the instructor 
activity video frame is represented by a graph node. Each node is connected to 
each other through a vertex. In our technique, Gaussian distribution is used to 
assign probability weights to each vertex and segment the instructor silhouetted 
s(x, y, t) from the classroom static background based on associated probabil-
ity weights. The minimum probability at the vertex is responsible to segment 
the instructor silhouettes from the static background. We extract instructor sil-
houettes to encode instructor motion information of the entire video sequence 
through motion templates. On application of graph cut segmentation, instructor 
silhouettes s(x, y, t) are obtained for each video frame, i.e. the spatial location 
of the instructor as a binary representation.

2.2 Motion Template (MT) Generation

The instructor binary silhouettes generated from the video sequence are pro-
cessed further to form motion templates, as shown in Fig. 2. These templates 
hold the spatio-temporal representation of action sequences and computed for 
all the training and testing video sequences. The motion template (MT) is a func-
tion of intensity for holding information on the most recent spatial location of 
motion [8]. A brighter pixel indicates recent motion location of instructor within

5



the classroom. MT is computed using Eq. 1, where MT is spatio-temporal tem-
plate generated from a silhouette frame s(x, y, t) represents the object of interest, 
i.e. instructor at time t at location (x, y) as shown in expression (1).

MT =

{
τ ifs(x, y, t) = 1
max(0, st−1(x, y) − 1) otherwise

(1)

Here, τ is total number of frames used for generation of MT for every action 
sequence in a similar way. The benefit of using MT is to reduce the spatial and 
computational complexity of action recognition. The resultant MT is cumulative 
greyscale motion representation of the instructor in an action video sequence, as 
3D instructor spatial and temporal information are mapped into 2D greyscale 
MT. All the videos MT are normalized, wrapped to 227 × 227 or 224 × 224 
dimension and centered to reduce redundant information. The wrapping and 
centering processes are applied to overcome constraints of spatial location, view-
point variation, and scale, as motion templates are sensitive to spatial location 
and viewpoint.

2.3 Deep Spatiotemporal Features (DSTF)

Then, these spatio-temporal MTs are described through deep features from a pre-
trained AlexNet CNN network [6] and VGG19 [17] to form deep visual words (DV 
W ). The aim is to obtain higher dimensional spatio-temporal instructor action 
representation of MT using deep visual words at different network depth. Visual 
patches of motion templates are represented as deep numerical vectors to 
represent each type of instructor activities. The input layer in the CNN receives 
the MT and passes it to the convolutional layer. The convolutional layer performs 
convolution of MT  at the smaller region with weights to generate a y feature map 
of neurons. Assume that we have spatio-temporal template MT  of dimension 
MxM and present into CNN to extract DST F , ultimately forming the DVW for 
instructor activity recognition. The receptive field or kernel of size is r × r and 
w is the number of the kernel, the convolutional layer will generate an output 
neuron volume of (M − r + 1) × (M − r + 1)  in  Eq. 2.

DSTFmn =
r−1∑
α=0

r−1∑
β=0

wyr−1
x+i,y+i (2)

We have computed the DV W from a 25 layered Alexnet [6] at different 
network depths, such as deep features are extracted from fully connected layer 
17(DV W17), 20(DV W20) and 23(DV W23) respectively. There are 196,608 deep 
visual words generated when DV W17 and DV W20 are used for feature extraction 
and 43,000 deep visual words are generated when DV W23 is used for feature 
computation. Similarly, we have computed the DVW from 47 layered VGG19 [17] 
at different network depths, and in this case deep features are extracted from fully 
connected layer 39(DV W39), 42(DV W42) and 45(DV W45) respectively.

6



There are 196,608 deep visual words generated when DV W39 and DV W42 are 
used for feature extraction and 43,000 deep visual words generated when DV W45 
is used for feature computation. We have explored the deep features capability 
to represent actions through BoDF representation, as it was not yet explored for 
action representation. We argue that the deep representation of motion templates 
is a major factor for precise action recognition, due to higher dimensional feature 
representation.

2.4 Deep Visual Vocabulary Generation and Quantization

Then, as illustrated in Fig. 2, the next step includes generation of visual vocabu-
lary through unsupervised clustering of deep visual words (DV W ) by K-means 
clustering algorithm. Suppose there are N activities of the instructor that are 
divided into K clusters, such that all the DV W are assigned to centroids of the 
cluster through minimizing the distance between the cluster centroid and DST F . 
The K or vocabulary size is varied from 100 to 500 and the performance of the 
proposed technique was analyzed. The deep visual vocabulary represents the 
DV W of each instructor activities as the frequency of occurrence of DV W . The  
visual vocabulary is beneficial for estimating the instructor activities through 
DV W histogram to quantize the deep visual vocabulary. We have selected the 
40% strongest DV W for quantization of deep visual vocabulary. These DV W 
are divided into 4,800 bins of final histogram.

2.5 The Training and Testing Video for Instructor Action
Recognition

A Support Vector Machine (SVM) classifier is used to train the instructor activ-
ity recognition model from the quantized deep visual vocabulary representation 
of instructor activities. The SVM classifier defines decision boundaries sepa-
rating the set of instructor actions having different class memberships. SVM 
performs classification through the generation of hyperplanes across multidi-
mensional space that discriminate video samples of different instructor action 
classes. Later on, the test video is represented by a histogram of DVW and an 
SVM used to predict the instructor’s activity.

3 Results and Findings

In this section, we describe a series of experiments performed on the Instruc-
tor Activity Video (IAVID-I) dataset, for evaluation of our system at various 
deep CNN depth for feature learning and computational cost is also estimated. 
Hardware and software specification of our system is an NVIDIA GTX-950 GPU 
card, Windows 10, an Intel i7-7700K processor with 4.5 GHz and 12 GB memory. 
The framework was implemented using MATLAB’s Deep Learning Toolbox.
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3.1 IAVID-I Dataset

We have recorded video dataset, Instructor Activity Video (IAVID-I), to recog-
nize the activities of the instructor using real-time classroom video data. The 
environmental condition remains the same during recording, 12 actors partici-
pated in the acquisition phase focusing on stage. There are 100 videos having 
854 × 480 high-resolution RGB 24 bit videos. There are eight actions in this 
dataset, i.e. interacting or idle, pointing towards the board, pointing towards 
the screen, using a mobile phone, using a laptop, sitting, walking and writing on 
the board, as illustrated in Fig. 3.

Table 1. Evaluation of deep BoDF for instructor activity recognition at various net-
work depth and vocabulary size.

sr.no DVW DSTF DVW dimension Accuracy

1 DV W17 [6] 4096 196608 84.32%

2 DV W20 [6] 4096 196608 85.41%

3 DV W23 [6] 1000 48000 83.33%

4 DV W39 [17] 4096 196608 70.00%

5 DV W42 [17] 4096 196608 75.56%

6 DV W45 [17] 1000 48000 66.67%

Fig. 3. The visual classroom information for the development of intelligent application 
using actions and emotion recognition techniques.

3.2 Evaluation of Deep BoDF at Various Network Depth

We followed a cross validation scheme on the IAVID-I dataset by randomly hold-
ing half of the video sequences for testing, while the other half was used for train-
ing the model. The hyper-parameters were set as per the pre-trained network 
Alexnet [6] and VGG19 [17]. Deep features are extracted from fully connected 
layers at network depth of 17, 20, 23, 39, 42, and 45. The prediction accuracy 
is the most reliable measure to estimate the robustness of the learned model. 
Therefore, Table 1 summarizes the performance of the deep BoDF model in terms
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of prediction accuracy. It is notable that DV W20 performed better than DV W17

and DV W23 at visual vocabulary size of 100, due to higher dimensional feature 
representation as compared to DV W23. DV W17, computed from shallower fully 
connected layer reduces performance by 1.09% compared with DV W20, due to 
the fact that some features at shallower layers correlate with each other, and 
resulted in slight variation in prediction accuracy. From Table 1, it is observed 
that the greater the number of visual words, the better will be the represen-tation 
of action classes. The DVW extracted from Alexnet performed better than 
VGG19, as hyper-parameter and network architecture varies. However, this 
adoption needs a lot of experimentation i.e. architecture configuration and 
extension to make it able to be used as an real time system giving a performance 
comparable to humans in an efficient way. Thus, experimental results portray 
that the optimal choice of DVW computation is from 20 layers of Alexnet pre-
trained network [6]. We have computed the confusion matrix, as shown in Fig. 4, 
using a visual vocabulary size of 100 generated from DV W20, achieving 85.41%
accuracy. From the confusion matrix it can be observed that the lowest predic-
tion accuracy occurs for writing on board, due to the fact that in some sequences 
actors were walking while writing on board, therefore the writing action class is 
confused with walking. Similarly, instructor action pointing towards the student 
is also confused with pointing towards the board because of the visual similarity 
of motion templates of two action classes. To further examine the performance of 
the proposed method, we have plotted a box and whisker plot to analyze the 
spread of prediction accuracy, as shown in Fig. 5. The box and whisker plot 
presents the distribution of accuracy across the number line and divides it into 
four quartiles, and median accuracy. From the spread of plot, it is notable that 
visual words DV W20 perform better than DV W17 and DV W23 at all vocabulary 
size and the accuracy spectrum is position at upper half of the box and whisker 
plot, representing higher prediction score. The deep features hold higher discrim-
ination representation among the classes, therefore at minimum vocabulary size, 
DV W performed well to fitting data into suitable class boundaries for precise 
prediction of instructor activities. Moreover, shallower fully connected layers of 
CNN networks holds higher dimensional deep features to generate discriminative 
DV W for BoDF representation. Table 2 describes the computational cost of the 
proposed method. In the preprocessing step, instructor silhouette extraction and 
MT generation required 1 min per sequence on average for 30 fps. The computa-
tional cost is averaged for all the task. It is concluded that deep BoDF requires a 
smaller vocabulary size to learn prediction model at a lower computational time. 
On average, the minimum time required for prediction of action is 0.43 s. In the 
IAVID-I dataset, there is a total of 8 action classes having 100 videos sequences 
and each frame is 854 × 480 resolution. Using the cross-validation scheme, train-
ing and testing of 100 video sequences takes 30 s, i.e. on average it takes 0.43 s 
per sequence at a frame rate of 139.53 frames/second (FPS). It is concluded that 
BoDF requires a small vocabulary size to learn prediction model at the lower 
computational time.
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Fig. 4. Confusion matrix achieved from the deep BoDF representation of DV W20 [6]
at vocabulary size of 100.

Fig. 5. Impact of visual vocabulary size on prediction accuracy.

Table 2. Evaluation of deep BoDF for instructor activity recognition at various net-
work depth and vocabulary size.

Propose technique Time (hh:mm:ss)

1 Preprocessing and motion template generation 2:00:00

2 BoDF (training) 0:05:00

3 BoDF (testing) 0.43 s

4 Conclusion

In this paper, we have presented a BoDF method for instructor activity recogni-
tion. The deep model learns instructor activities through spatio-temporal deep
features to form deep visual words. These deep visual words enable an SVM clas-
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sifier to recognize the activities of the instructor. Such application is significant 
to understand the classroom contextual information and helpful for instructor 
self-evaluation. Through empirical analysis on network depth and different type 
of CNN model, reveals that AlexNet performs better than VGG19. The goal 
of our work is improved academic performance for societal gain rather than 
solely profit gain. As future work, we are focusing on instructor activities for 
self-evaluation of the instructor, and later on, we will analyze the behaviors, 
emotions of the instructor along with audience engagement for a more compre-
hensive evaluation of lecture effectiveness. For real time action recognition we will 
explore temporal action segmentation method [9], as instructors perform multiple 
activities sequentially. In conclusion, the availability of a commercial lecture 
effectiveness tool will enhance teachers’ effectiveness and lifelong learning of 
instructors to overcome many classroom challenges.
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