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Abstract. We present a new deep learning approach for real-time 3D human
action recognition from skeletal data and apply it to develop a vision-based
intelligent surveillance system. Given a skeleton sequence, we propose to
encode skeleton poses and their motions into a single RGB image. An Adaptive
Histogram Equalization (AHE) algorithm is then applied on the color images to
enhance their local patterns and generate more discriminative features. For
learning and classification tasks, we design Deep Neural Networks based on the
Densely Connected Convolu-tional Architecture (DenseNet) to extract
features from enhanced-color images and classify them into classes.
Experimental results on two chal-lenging datasets show that the proposed
method reaches state-of-the-art accuracy, whilst requiring low computational
time for training and infer-ence. This paper also introduces CEMEST, a new
RGB-D dataset depict-ing passenger behaviors in public transport. It consists
of 203 untrimmed real-world surveillance videos of realistic normal and
anomalous events. We achieve promising results on real conditions of this
dataset with the support of data augmentation and transfer learning
techniques. This enables the construction of real-world applications based on
deep learn-ing for enhancing monitoring and security in public transport.
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1 Introduction

Human Action Recognition or HAR for short, plays a crucial role in many 
computer vision applications such as intelligent surveillance, human-computer 
interaction or robotics. Although significant progress has been achieved, detect-
ing accurately what humans do in unknown videos is still a challenging task due 
to numerous challenges, e.g. viewpoint changes, intra-class variation, or 
surrounding distractions [31]. At present, depth sensor-based HAR is consid-ered 
as one of the best available methods for overcoming the above obstacles. Cost-
effective depth sensors are able to provide 3D structural information of the human 
body, which is suitable for HAR task. In particular, most of these devices have 
integrated the real-time skeleton estimation algorithms [34] that are robust to 
surrounding distractions as well as invariant to camera viewpoints. Therefore, 
exploiting skeletal data for HAR opens up opportunities for addressing the lim-
itations of RGB and depth modalities. In the literature of skeleton-based action 
recognition, there are two main issues that need to be solved. The first challenge is 
how to transform the raw skeleton sequences into an effective representa-tion, 
which is able to capture the spatio-temporal dynamics of human motions. The 
second is to model and recognize actions using the motion representation 
obtained from skeletons. Previous works on this topic can be divided into two 
main groups: HAR based on hand-crafted features and HAR using deep learn-ing 
models. The first group of methods extracts hand-crafted local features from 
skeleton joints and uses probabilistic graphical models such as Hidden Markov 
Model (HMM) [26], Conditional Random Field (CRF) [8], and Fourier Tempo-ral 
Pyramid (FTP) [39] to model and classify actions. For instance, since the first 
work on 3D HAR from depth data was introduced [20], many methods for 
skeleton-based action recognition have been proposed [8,25,39,41–43,46,47]. The 
common characteristic of these approaches is that, they extract the geo-metric 
features from the 3D coordinates of the skeleton joints and model their temporal 
information by a generative model. Although promising results have been 
achieved, most of these approaches are shallow, data-dependent and require a lot 
of feature engineering. E.g., they require pre-processing input data in which the 
skeleton sequences need to be segmented or aligned. In contrast, we propose a 
skeleton-based representation and a learning framework for 3D HAR that learns 
to recognize actions from the raw skeletons in an end-to-end manner, without 
dependence on the length of actions.

The second group considers skeleton-based action recognition as a time-series 
problem and proposes to use Recurrent Neural Networks with Long Short-Term 
Memory units (RNN-LSTMs) [12] to analyze the temporal evolutions of skele-
tons. They are considered as the most popular deep learning based approach 
for the HAR task from skeletons and have achieved high-level performance 
[6,21,23,33,35,38,51]. The temporal evolutions of skeletons are in fact spatio-
temporal patterns. Thus, they can be modeled by memory cells in the structure of 
RNN-LSTMs. However, RNN-LSTM based methods tend to overemphasize the 
temporal information and lose spatial information of skeletons [6] – an important 
characteristic for 3D HAR. Another limitation of RNN-LSTM networks is that
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they just model the overall temporal dynamics of actions without considering the 
detailed temporal dynamics of them [19]. Additionally, this approach considers 
skeletons as a kind of low-level feature by feeding raw skeletal data directly into 
the network. The huge number of input features makes RNN-LSTMs complex, 
time-consuming and easily lead to overfitting. Furthermore in many cases, RNN-
LSTMs act as a classifier, which cannot extract high-level features for the HAR 
problem [32]. In this paper, we propose a CNN-based method to extract rich 
geometric motion features from skeleton sequences and model various temporal 
dynamics, including both short-term and long-term actions.

Fig. 1. Overview of the proposed approach for real-time 3D action recognition from
skeletal data. Each skeleton sequence is encoded as a single RGB image via a skeleton-
based representation called SPMF [27]. The SPMF is built from Pose Feature vectors
(PFs) and Motion Feature vectors (MFs), which are estimated from the 3D coordinates
of skeletons. A color enhancement technique [30] is adopted to enhance the local tex-
tures of SPMF to form the enhanced motion maps, namely Enhanced-SPMF. Finally,
they are fed to a deep network for learning image features and performing action clas-
sification.

In contrast to the existing approaches, we aim to build an end-to-end deep 
learning framework for real-time action recognition from skeleton sequences. We 
believe that an effective motion representation is the key factor influencing recog-
nition performance. Therefore, we propose to encode human poses and motions 
extracted from the 3D coordinates of skeleton joints into color images. These 
color-coded images are then enhanced in their local textures by an Adaptive 
Histogram Equalization (AHE) algorithm [30] before feeding into Deep Convo-
lutional Neural Networks (D-CNNs), which are built based on the DenseNet 
architecture [14]. Before that, a smoothing filter is applied to reduce the effects of 
noise on the input skeletal data. The overview of the proposed method is 
illustrated in Fig. 1. Generally speaking, four hypotheses that motivate us to 
build a skeleton-based representation and design DenseNets for 3D HAR include:
(1) human actions can be correctly represented via movements of the skeleton
[16]; (2) spatio-temporal evolutions of skeletons can be transformed into color
images – a kind of 3D tensor that can be effectively learned by D-CNNs [1,3,5].
This hypothesis was proved in our previous studies [27–29]; (3) compared to RGB
and depth modalities, skeletal data has high-level information with much less
complexity. This makes the learning model much simpler and requiring less
computation, allowing us to build real-time deep learning framework for HAR
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task; (4) DenseNet is currently one of the most effective CNN architecture for 
image recognition. It has a densely connected structure allowing maximal infor-
mation flow and facilitates features reuse as each layer in its architecture has 
direct access to the features from previous layers. This helps DenseNet to improve 
its learning performance. Therefore, we explore and optimise this architecture 
for learning and recognizing human actions on the proposed image-based repre-
sentation.

The main contributions of this work are three-fold. First, we introduce 
Enhanced-SPMF (Enhanced Skeleton Pose-Motion Feature) – a 3D motion rep-
resentation for HAR tasks (Sect. 2). This is an extended representation of SPMF, 
which was presented in our previous work [27]. The new representation aims to 
improve the efficiency of the SPMF by using a smoothing filter on input skeleton 
sequences and a color enhancement technique that could make the pro-posed 
Enhanced-SPMF more robust and discriminative. An ablation study on the 
Enhanced-SPMF demonstrates that the new representation leads to better 
overall action recognition performance than the SPMF. Second, we introduce an 
end-to-end deep framework based on D-CNNs1 for learning and recognizing 
actions from the Enhanced-SPMFs (Sect. 3). This approach is general in the sense 
that it can be applied to other data modalities, e.g. mocap data or the output of 
3D pose estimation algorithms. The proposed method is evaluated on two highly 
competitive benchmark datasets and achieved state-of-the-art perfor-mance on 
both these two benchmark tasks with high computational efficiency (Sect. 4). 
Finally, we collect and introduce a new RGB-D dataset consisting of real-world 
surveillance videos for analyzing anomalous and normal events in public 
transport. Experimental results show that the proposed method achieves 
promising performance in realistic conditions (Sect. 4).

The rest of this paper is organized as follows: Sect. 2 presents the proposed 
skeleton-based representation. The proposed deep learning framework is pre-
sented in Sect. 3. Datasets and experiments are provided in Sect. 4, including 
a description of our dataset and the obtained results. Section 5 concludes the 
paper.

2 Enhanced Skeleton Pose-Motion Feature

One of the major challenges in exploiting D-CNNs for skeleton-based action 
recognition is how a skeleton sequence could be effectively represented and fed to 
the deep networks. As D-CNNs work well on still images [18], our idea therefore is 
to encode the spatial and temporal dynamics of skeletons into 2D images [28,29]. 
Two essential elements for describing an action are static poses and their 
temporal dynamics. As shown by Zhang et al. in [50], the combination of too 
many geometric features will lead to lower performance than using only a single 
feature or several main features. Moreover, joint features such as joint distance 
and joint motion are stronger features than others [49]. Hence, we decide to 
transform these two important elements into the static spatial structure of

1 Codes and models are available on our GitHub project at https://bit.ly/2EC9vj9.
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a color image. The details of this idea are explained in our previous work [27], 
in which the spatio-temporal patterns of a skeleton sequence can be encoded 
into a single color image as a global representation, namely SPMF, via pose and 
motion feature vectors. Due to the limited space available, detailed description 
of the SPMF is not included. Instead, we refer the interested readers to [27] for 
further technical details. Figure 2 shows some SPMF representations in form of 
an image-based representation obtained from MSR Action3D dataset [20].

Fig. 2. Some SPMF representations obtained from the MSR Action3D dataset [20]. The 
change in color reflects the change of distance and orientation between the joints.

The color images obtained after the process of encoding mainly reflect the 
spatio-temporal distribution of skeleton joints. We observe that these images are 
represented by close contrast values, as can be seen in as Fig. 2. In this case, a 
color enhancement method can be useful for increasing the contrast of these rep-
resentations and highlighting the texture and edges of motion maps. This helps to 
better distinguish similar actions. Therefore, it is necessary to enhance the local 
features on the generated color images. The Adaptive Histogram Equaliza-tion 
(AHE) [30] is a common approach for this task. This technique is capable of 
enhancing the local features of an image. Mathematically, let I be a given image, 
represented as a r-by-c matrix of integer pixels with intensity levels in the range 
[0, L  − 1]. The histogram of image I will be defined by Hk = nk, where nk is the 
number of pixels with intensity k in I . Hence, the probability of occurrence of 
intensity level k in I is

pk =
nk

r × c
, (k = 0, 1, 2, ..., L − 1). (1)

The histogram equalized image will be formed by transforming the pixel inten-
sities, n, of I by the function

T (n) = floor((L − 1)
n∑

k=0

pk), (n = 0, 1, 2, ..., L − 1), (2)

The Histogram Equalization (HE) method is used for increasing the global con-
trast of the image. However, it cannot solve the problem of increasing the local 
contrast. To do this, the image needs to be divided into R regions and the HE 
is then applied in each region. This technique is called the Adaptive Histogram 
Equalization (AHE). Figure 3 shows samples of the enhanced motion maps with 
R = 8, which we refer to it as Enhanced-SPMF for some actions from the MSR 
Action 3D dataset [20].
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Fig. 3. The corresponding Enhanced-SPMF representations after applying the AHE 
algorithm [30]. This color enhancement step could make the proposed Enhanced-SPMF 
more robust and discriminative for the representation learning phase with D-CNNs 
later.

3 Deep Learning Model

This section reviews the key ideas behind the DenseNet architecture and presents 
the proposed deep networks for recognizing actions from the Enhanced-SPMFs.

3.1 DenseNet Review

DenseNet [14], a recently proposed CNN model, has some interesting properties. 
Each layer is connected to all the others within a dense block and all layers can 
access feature maps from their preceding layers. Besides, each layer receives 
direct information flow from the loss function through shortcut connections. 
These properties make DenseNet less prone to overfitting for supervised learning 
problems. Traditional CNN architectures use the output feature maps xl−1 of the 
(l − 1)th layer as input to the lth layer and learn a mapping function xl = Hl(xl−1). 
Here, Hl(·) is a non-linear transformation that is usually implemented by a series 
of operations such as Convolution (Conv.), Rectified Linear Unit (ReLU) [7], 
Pooling, and Batch Normalization (BN) [15]. When increasing the depth of the 
network, the problem of optimization becomes complex due to the vanishing-
gradient problem and the degradation phenomenon [9]. To solve these problems, 
[11] introduced ResNet. The key idea behind the ResNet architecture is to add 
shortcut connections that bypass the non-linear transformations Hl(·) with an 
identity function id(x) =  x. Inspired by the philosophy of ResNet, to maximize 
information flow through layers, Huang et al. [14] proposed DenseNet in which 
the lth layer in a dense block receives the feature maps of all preceding layers as 
inputs. That means

xl = Hl(concat[x0,x1,x2, ...,xl−1]), (3)

where concat[x0, x1, x2, ..., xl−1] is a single tensor constructed by concatena-
tion of the previous layer output feature maps. All layers receive direct super-
vision signal from the loss function through the shortcut connections. There-
fore, DenseNets are easy to optimize and resistant to overfitting. In DenseNet, 
multiple dense blocks are connected via transition layers. Each block with its 
transition layer produces k feature maps and the parameter k is called as the 
“growth rate” of the network. The function Hl(·) in the original work [14] is a 
composite function of three consecutive layers: BN-ReLU-Conv.
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Fig. 4. A DenseNet block (left). The symbols +©+ denotes the concatenation operator. 
We explore and optimize this architecture for learning and recognizing human actions 
on the proposed image-based representation (right).

3.2 Network Design

We design D-CNNs based on the DenseNet architecture [14] to learn and classify 
actions on the Enhanced-SPMF. To study how performance varies with archi-
tecture size, we test three different configurations of DenseNet: {DenseNet-16, k 
= 12}; {DenseNet-28, k = 12}; and {DenseNet-40, k = 12}. Here, the numbers 16, 
28, 40 refer to the depth of the network and k is the network growth rate. For 
computational efficiency, we use three dense blocks on 32 × 32 input images. The 
Hl(·) function is implemented by a sequence of layers: Batch Normaliza-tion 
(BN), advanced activation layer named Exponential Linear Units (ELU)[4] and 3 
× 3 Convolution (Conv). Dropout [4] with a rate of 0.2 is used after each Conv. 
to prevent overfitting. The proposed networks can be trained in an end-to-end 
manner by gradient descent using Adam update rule [17]. Dur-ing training, we 
minimize a cross-entropy loss function between the true action label y and the 
predicted action ŷ over the training samples X , by solving the following 
optimization problem

Arg min
W

(LX (y, ŷ)) = Arg min
W

⎛

⎝− 1
M

M∑

i=1

C∑

j=1

yij log ŷij

⎞

⎠ , (4)

where W is the set of weights that will be learned by the model, M denotes the 
number of samples in training set X and C is the number of action classes.

4 Experiments

The proposed method is first evaluated on two challenging datasets: the MSR 
Action3D and NTU RGB+D (Sect. 4.1). We then introduce the CEMEST 
dataset2 and report experimental results on this dataset. The implementation 
details of the proposed D-CNNs are also provided in this section (Sect. 4.2).

2 Created by Cerema and Tisséo public transport in France and available for research 
purposes from https://bit.ly/2SNbrdE.
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4.1 Datasets and Settings

MSR Action3D Dataset [20]: This dataset contains 20 actions performed by 
10 subjects. Each skeleton is composed of 20 key joints. Experiments were 
conducted on 557 action sequences. We follow the protocol proposed by [20]. 
Specifically, the whole dataset is divided into three subsets: AS1, AS2 and AS3. 
For each subset, five subjects are selected for training and the rest are used for 
testing (see Supplemental Material). Data augmentation techniques including 
random cropping, vertically flipping, and Gaussian filtering have been applied on 
this dataset.

NTU RGB+D Dataset [33]: This Kinect 2 captured dataset is a very large-
scale RGB+D dataset. It is currently the largest and state-of-the-art dataset that 
provides skeletal data for 3D HAR. The NTU RGB+D has more than 56 
thousand video samples, 4 millions frames, collected from 40 distinct subjects for 
60 different action classes. Each skeleton contains the 3D coordinates of 25 body 
joints. The authors of this dataset suggested two different evaluation criteria, 
including Cross-Subject and Cross-View evaluations. For the Cross-Subject 
setting, the sequences performed by 20 subjects are used for training and the rest 
sequences are used for testing. In Cross-View setting, the sequences provided by 
cameras 2 and 3 are used for training while sequences from camera 1 are used for 
testing (see Supplemental Material). Due to the very large-scale nature of the 
NTU RGB+D dataset, we do not apply any data augmentation technique on this 
dataset.

CEMEST Dataset: We have collected a new RGB-D dataset, called CEMEST 
(CErema MEtro STation dataset) using Kinect v2 sensor and carried out exper-
iments on this dataset to verify the effectiveness of the proposed method on a

Fig. 5. Some samples from the CEMEST dataset: (a), (b) crossing over the barriers,
(c), (d) jumping over the ticket barriers and (e), (f) sneaking under ticket barriers.
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real-world dataset. The CEMEST was made at a metro station in France with-
out any control of the passenger behavior as well as illumination. It contains 
three actions including both normal and abnormal behaviors: crossing normally 
over the barriers, jumping over the barriers, and  sneaking under the barriers. 
These three behaviors are taken into account for acquisition because they have 
a significant impact on monitoring and management in public transport. As an 
example, the French National Railway Company (SNCF) reported that they lost 
e500 million every year through people trying to cheat the ticket system [37]. In 
summary, this dataset provides RGB, depth and skeletal data. The skeleton 
sequences are extracted by Kinect SDK with 25 key joints for each subject, at a 
frame rate of 30 FPS. All recorded sequences are manually segmented and labeled. 
Figure 5 shows some samples from the CEMEST. We carried out two experimental 
evaluations on this dataset. In the first setting, we randomly chose 67% of the data 
as training set and the remaining 33% is used for testing. In the second setting, the 
proposed networks are trained on a combination dataset, which is created from a 
portion of the MSR Action3D [20] and NTU RGB+D [33] datasets (see 
Supplementary Material for more details). To ensure the num-ber of samples in 
each action class is balanced, we augmented samples in the MSR Action3D to 
match the size of the larger dataset. The pre-trained model is then deployed on the 
CEMEST dataset in the hope that transfer learning will help to solve overfitting 
problem when training on small dataset. In both experiments, data augmentation 
(i.e. cropping, flipping, Gaussian filtering) has been used.

4.2 Implementation Details

The Enhanced-SPMFs are computed directly from skeletons without using a fixed 
number of frames. The proposed DenseNets were implemented in Python using 
Keras. For training, we use mini-batches of 64 images. The weights are initialized 
as [10]. Adam optimizer [17] is used with an initial learning rate η = 3e−4. All 
networks are trained for 250 epochs from scratch.

4.3 Experimental Results and Evaluation

Experimental results and comparison of the proposed method with existing 
approaches on the MSR Action3D dataset are summarized in Table 1. The 
DenseNet-40 achieves an average accuracy of 99.10% over three subsets, which 
outperformed previous approaches by [2,6,20,39,42,44,48] and surpassed our 
previous work on SPMF [27]. Figure 6 (left) shows an example of the learning 
curves of the network during training on this dataset.

For the NTU RGB+D dataset, as shown in Table 2, the proposed DenseNet-40 
achieves an accuracy of 79.95% on the Cross-Subject and 87.52% on Cross-View 
evaluations, respectively. These results demonstrate the effectiveness of the 
proposed representation and deep learning framework since they surpassed pre-
vious state-of-the-art approaches reported in [6,13,21,22,24,33,39,40,50] as well 
as a higher level of performance than SPMF [27]. Figure 6 (right) shows the train-
ing loss and test accuracy of the proposed DenseNet-40 on the NTU RGB+D
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Table 1. Experimental results and comparison with the state-the-art approaches on 
the MSR Action3D dataset [20]. The best accuracies are in italics. Results that surpass 
previous works are in bold.

Method (protocol of [20]) AS1 AS2 AS3 Aver.

Bag of 3D Points [20] 72.90% 71.90% 71.90% 74.70%

Depth Motion Maps [2] 96.20% 83.20% 92.00% 90.47%

Bi-LSTM [36] 92.72% 84.93% 97.89% 91.84%

Lie Group [39] 95.29% 83.87% 98.22% 92.46%

Hierarchical RNN [6] 99.33% 94.64% 95.50% 94.49%

Graph-Based Motion [42] 93.60% 95.50% 95.10% 94.80%

ST-NBNN [44] 91.50% 95.60% 97.30% 94.80%

ST-NBMIM [45] 92.50% 95.60% 98.20% 95.30%

S-T Pyramid [48] 99.10% 92.90% 96.40% 96.10%

SPMF [27] 97.54% 98.73% 99.41% 98.56%

Enhanced-SPMF DenseNet-16 (ours) 98.05% 98.38% 98.80% 98.41%

Enhanced-SPMF DenseNet-28 (ours) 98.44% 98.47% 99.18% 98.70%

Enhanced-SPMF DenseNet-40 (ours) 98.88% 99.05% 99.24% 99.10 %

Fig. 6. Learning curves of the proposed DenseNet-40 network on the Enhanced-SPMFs 
obtained from the MSR Action3D and NTU RGB+D

dataset. On the CEMEST dataset, an accuracy of 91.18% has been made by the 
DenseNet-40 in the first setting. In the second setting, transfer learning is used. 
The experimental results show that the proposed method reached an accuracy 
of 95.70%, increasing the performance by nearly 5% compared to the first exper-
iment. This could be explained by the fact that since the CEMEST dataset is 
quite small, it benefits from the knowledge transfer coming from larger datasets 
such as the MSR Action3D and NTU RGB+D datasets. This result indicates 
that the use of data augmentation and transfer learning is crucial to address the 
small amount of samples in real-world datasets. Figure 7 shows learning curves of 
the proposed deep learning networks on the CEMEST dataset from scratch (Fig. 
7a–c), pre-training on the combined dataset (Fig. 7d–f) and fine-tuning on 
CEMEST dataset (Fig. 7g–i).
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Table 2. Experimental results and comparison with the state-the-art approaches on 
the NTU RGB+D dataset [33]. The best accuracies are in italics. Results that surpass 
previous works are in bold.

Method (protocol of [33]) Cross-Subject Cross-View

Lie Group [39] 50.10% 52.80%

Hierarchical RNN [6] 59.07% 63.97%

Dynamic Skeletons [13] 60.20% 65.20%

Two-Layer P-LSTM [33] 62.93% 70.27%

ST-LSTM Trust Gates [21] 69.20% 77.70%

Geometric Features [50] 70.26% 82.39%

Two-Stream RNN [40] 71.30% 79.50%

Enhanced Skeleton [24] 75.97% 82.56%

GCA-LSTM [22] 76.10% 84.00%

SPMF [27] 78.89% 86.15%

Enhanced-SPMF DenseNet-16 (ours) 77.89% 86.55%

Enhanced-SPMF DenseNet-28 (ours) 79.07% 86.82%

Enhanced-SPMF DenseNet-40 (ours) 79.95% 87.52%

4.4 An Ablation Study on Enhanced-SPMF

We believe that the use of the smoothing filter and the AHE algorithm [30] helps 
the proposed representation to be more discriminative, which improves 
recognition accuracy. To verify this hypothesis, we carried out an ablation study 
on the proposed representation by removing the color enhancement module and 
seeing how that affects performance. We observed that this kind of transfor-
mation is needed for improving learning performance of deep neural networks. 
Specifically, we trained the proposed DenseNet-40 on both the SPMFs and 
Enhanced-SPMFs provided by MSR Action3D dataset [20]. During training, the 
same hyper-parameters and training methodology were applied. The experimen-
tal results indicate that the proposed deep network achieves better recognition 
accuracy when trained on the Enhanced-SPMF (+1.42%). This result validates 
our hypothesis above.

4.5 Computational Efficiency Evaluation

The proposed learning framework comprises three main stages: (1) the computa-
tion of Enhanced-SPMF; (2) the training stage; and (3) the inference stage. To 
evaluate the computational efficiency of this method, we measure the execution 
time of each stage on the AS1 subset/MSR Action3D dataset with the proposed 
DenseNet-40 network, which only has 1.0M parameters. With the implementa-
tion in Python using Keras and training on a single GTX Ti 1080 GPU, the
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training process takes less than one hour to reach convergence. While the infer-
ence stage, including the stage (1) that is executed on a CPU and the stage
(3), takes an average of 0.175 s per sequence without parallel processing. This
result verifies the appropriateness of our method in terms of computational cost.
Additionally, the computation of the Enhanced-SPMF can be implemented on
a GPU for real-time applications.

Fig. 7. Learning curves of the three proposed deep networks (DenseNet-16, DenseNet-
28, DenseNet-40) on CEMEST dataset when trained from scratch (a)-(b)-(c) and fine-
tuned onCEMESTdataset (d)-(e)-(f).Our best configuration (DenseNet-40) achieved an
accuracy of 91.18%when trained on theCEMESTdataset from scratch.With the support
of transfer learning, the proposed method reached an accuracy of 95.70%, increasing the
recognition accuracy by nearly 5%.

5 Conclusions

We introduced a deep learning framework for 3D action recognition from skeletal
data. A new motion representation that captures the spatio-temporal patterns
of skeleton movements and encodes them into color images has been proposed.
Densely connected networks have been designed to learn and recognize actions
from the proposed representation in an end-to-end manner. Experiments on two
public datasets have demonstrated the effectiveness of our method, both in terms
of accuracy as well as computational time. We also introduced CEMEST, a new
real-wold surveillance dataset containing both normal and anomalous events
for studying human behaviors in public transport. Experimental results on this
dataset show that the proposed deep learning based approach achieved promising
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results. We are currently expanding this study by adding more visual evidence
to the network in order to further gains in performance. A new approach for 3D
pose estimation will also be studying to replace depth sensors. The preliminary
results are encouraging.
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Abstract. Inthissupplementary material, wepresentin moredetailthe
Savitzky-Golayfilter,whichweusedtoreducetheeffectofnoiseontheorig-
inalskeletonsequences(SectionA). Wethenprovidedetailsofactionclasses
ofthe MSRAction3D,NTURGB+DdatasetsandintroduceourCEMEST
dataset(SectionB).Finally,wedescribeacombineddatasetcontainingac-
tionclassessellectedfromthe MSR Action3Dand NTU RGB+Ddatasets
thatwereusedtopretraintheproposeddeeplearningnetworksbeforefine-
tuningontheCEMESTdataset(SectionC).

1 Introduction

A.Savitzky-GolaySmoothingFilter

Savitzky-Golay(S-G)filterisalow-passfilterbasedonlocalleast-squarespoly-
nomialapproximationthatisoftenusedtosmoothnoisydata. The3Dskeleton
jointsobtainedfromdepthcamerascanbeconsideredasaseriesofequallyspaced
datainthetimedomain.ApplyingS-Gfilteronrawskeletaldatahelpsreducethe
levelofnoise while maintainingthe3Dgeometriccharacteristicsoftheinputse-
quences.

ConsideringasequenceofN =2M +1inputdatapoints x[n]centeredatn=0,
denotedas

x=[x M ,...,x1,x0,x1,...,xM ]T. (1)

TheN datasamplesofxcanbefittedbyapolynomial

p(n)=
N

k=0

cknk. (2)

SupportedbytheCeremaResearchCenter,Toulouse,France.
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Tobestfitthegivendatax,SavitzkyandGolay[2]proposedamethodofdata
smoothingbyfindingthevectorofpolynomialcoefficientsc=[c0,c1,...,cN]

Tthat
minimizethemeansquareapproximationerror

EN =
M

n= M

N

k=0

ckn
k−x[n]

2

. (3)

Tothisend,onesolutionistodetermineasetofcoefficientsthatsatisfiesthepartial
derivativeequationisequaltozero

∂EN
∂ai

=

M

n= M

2ni
N

k=0

ckn
k−x[n] =0,

withi=0,1,...,N.

(4)

Eq.(4)isequivalentto

N

k=0

M

n= M

ni+k ck=
M

n= M

nix[n]. (5)

DefiningamatrixA={αn,i}asthematrixwithelements

αn,i=n
i (6)

where−M ≤n≤M andi=0,1,...,N.ThematrixAiscalledthedesignmatrix
forthepolynomialapproximationproblem.Notethat,thetransposeofAisAT=
{αi,n}andtheproductmatrixB=A

TAisasymmetricmatrixwithelements

βi,k=

M

n= M

αi,nαn,k=

M

n= M

ni+k. (7)

Therefore,Eq.(5)canberewritteninmatrixformas

Bc=ATAc=ATx. (8)

Thepolynomialcoefficientscanbedeterminedas

c=(ATA)1(ATx). (9)

Forexample,forsmoothingbya5-pointquadraticpolynomialwithN =5,M=
−2,−1,0,1,2,thetthfilteringresult,ytisgivenby

yt=
−3xt 2+12xt 1+17xt+12xt+1−3xt+2

35
. (10)

TheEq.(10)abovewasusedinourexperimentstoreducetheeffectofnoiseonthe
inputskeletaldata.
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B. Datasets

B.1. List of action classes of the MSR Action3D dataset

Table 1 shows the action classes provided by the MSR Action3D dataset [1]. For
each subset, five subjects with IDs 1, 3, 5, 7, 9 are selected for training. The re-
maining five subjects with IDs 2, 4, 6, 8, 10 are selected for test.

Table 1. Three subsets (AS1, AS2, AS3) of the MSR Action3D dataset [1].

AS1 AS2 AS3

[a02] Horiz. arm wave [a01] High arm wave [a06] High throw
[a03] Hammer [a04] Hand catch [a14] Forward kick
[a05] Forward punch [a07] Draw X [a15] Side kick
[a06] High throw [a08] Draw tick [a16] Jogging
[a10] Hand clap [a09] Draw circle [a17] Tennis swing
[a13] Bend [a11] Two hand wave [a18] Tennis serve
[a18] Tennis serve [a12] Side boxing [a19] Golf swing
[a20] Pickup&Throw [a14] Forward kick [a20] Pickup&Throw

B.2. List of action classes of the NTU-RGB+D dataset

The following action classes are provided by the NTU-RGB+D dataset [3]: Drinking,

eating, brushing teeth, brushing hair, dropping, picking up, throwing, sitting down, standing

up, clapping, reading, writing, tearing up paper, wearing jacket, taking off jacket, wearing a

shoe, taking off a shoe, wearing on glasses, taking off glasses, putting on a hat/cap, taking off

a hat/cap, cheering up, hand waving, kicking something, reaching into self pocket, hopping,

jumping up, making/answering a phone call, playing with phone, typing, pointing to some-

thing, taking selfie, checking time, rubbing two hands together, bowing, shaking head, wiping

face, saluting, putting palms together, crossing hands in front, sneezing/coughing, stagger-

ing, falling down, touching head, touching chest, touching back, touching neck, vomiting,

fanning self, punching/slapping other person, kicking other person, pushing other person,

patting others back, pointing to the other person, hugging, giving something to other person,

touching other persons pocket, handshaking, walking towards each other, and walking apart

from each other .

Shahroudy et al. [3] proposed two evaluation protocols for the NTU-RGB+D dataset,
called Cross-Subject and Cross-View. For the Cross-Subject evaluation, the se-
quences performed by 20 actors with IDs 1, 2, 4, 5, 8, 9, 13, 14, 15, 16, 17, 18,
19, 25, 27, 28, 31, 34, 35 and 38 are used for training and the rest is used for test.
For the Cross-View evaluation, the sequences provided by cameras 2 and 3 are used
for training while sequences from camera 1 are used for test.
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B.3. Cerema Metro Station Dataset (CEMEST)

We collect and introduce the Cerema Metro Station Dataset (CEMEST) – a new
RGB-D dataset for analyzing and monitoring passenger flow in the public trans-
port system. It consists of 203 video samples containing RGB videos, depth map
sequences, and 3D skeletal data for each sample. This dataset was captured by Mi-
crosoft Kinect v2 sensor and its SDK at a metro station in Toulouse, France. The
resolution of RGB videos are 1920×1080 and 3D skeletal data contains the three-
dimensional locations of 25 major body joints for each frame (see Figure 2 ). It has
three actions including both normal and abnormal behaviors at the metro station:
crossing normally over the barriers, jumping over the ticket barriers, and sneaking
under ticket barriers. These behaviors are selected for acquiring because they have a
significant impact on monitoring and management in public transport system. The
following figure shows some samples from our dataset.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Samples from the CEMEST dataset: (a-c) crossing normally over the barriers;
(d-f) jumping over the ticket barriers without tickets and (g-i) sneaking under the ticket
barriers. This dataset and its evaluation protocol are made publicly available at https:

//bit.ly/2SNbrdE in order to encourage the research community of the field.

https://bit.ly/2SNbrdE
https://bit.ly/2SNbrdE
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Fig. 2. Illustration of the human skeleton graphs provided by Microsoft Kinect v2. The
picture was reproduced from Microsoft Corporation.

Fig. 3. Illustration of our data acquisition process with depth sensors. We developed a tool
allowing users to record and store the 3D joint coordinates of skeletal data as text files,
where each skeleton sequence containing N frames will be converted into a single text file
as the structure above. In our study, we set N = 16.
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B.4. List of action classes of the combination dataset

To improve the learning performance of the proposed deep networks on the CEMEST
dataset, we prepared a dataset as the combination of the public action datasets and
exploited transfer learning. Specifically, the following action classes from the MSR
Action 3D [1] and NTU-RGB+D [3] datasets were used for training the proposed
DenseNets before fine-tuning on the CEMEST:

Walking, Bend, Jogging, Jumping up, Forward punch, High arm wave, Hand clap, Dropping,

Picking up, Sitting down, Standing up, Hand waving, Pointing to something, Staggering,

Falling down, Punching/slapping other person, Kicking other person, Pushing other person,

Patting others back, Giving something to other person, Touching other persons pocket.
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