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Abstract. This research describes “EspiNet”, a Deep Learning Convo-
lutional Neural Network model, in conjunction with a Markov Decision
Process (MDP) tracker for detection and tracking of occluded motorcy-
cles in urban environments. The model is trained and evaluated, using
a new public dataset with up to 10,000 annotated images, created for
this research, and captured in real urban traffic scenes. Images were
captured using a moving camera mounted in a drone, where more than
60% of the motorcycles are affected by occlusions. The network design
involves many tests, where a promising result of 88.84% in average preci-
sion (AP) is achieved, despite the considerable number of occluded vehi-
cles, the movement of the camera and the low angle used for capture.
The model predictions are used as input to an MDP tracker, reaching
results up to 85.2% in Multiple Object Tracking Accuracy (MOTA).
The proposed network architecture outperforms state of the art YOLO
(You Look Only Once) v3.0 and Faster R-CNN (VGG16 based) detec-
tion models, producing also better tracking results in comparison with
the use of the other two models as detector base for the MDP tracker.
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1 Introduction

1.1 Motorcycles as Part of Urban Traffic

Motorcycles are currently one of the most popular means of transport in emerg-
ing countries, which results in important fatality rates [4] and a significant envi-
ronmental impact due to emissions (e.g. P.M. 2.5) [19].

As an example of conditions in emerging countries, the annual report of Traffic 
Accidents of the Andean Community 2007–2016 [1], indicates that in 2017, for 
Bolivia, Colombia, Ecuador and Perú, of the 347,642 road accidents 88%
correspond to urban occurrences. Colombian road users most affected by traffic 
accidents are motorcyclists, representing 49.82% of reported deaths and 56.36%
of non-fatal injuries. Of the total drivers, motorcyclists represented 78.81% of 
the dead and 80.51% of the injured and for their passengers the figures were 
50.69% and 48.99%, respectively [2].

Therefore, it is important to implement traffic management techniques or 
strategies starting from the detection and tracking of motorcycles to reduce 
accidents. The use of Intelligent Transportation Systems (ITS) and video analysis 
in particular, could be one way of helping address issues affecting road safety.

In this research we introduce EspiNet, a CNN model inspired on Faster R-
CNN [15] combining it with a Markov Decision Process (MDP) tracker for the 
tasks of detecting and tracking motorcycles in urban traffic video sequences, 
especially under occlusion, characteristic of road conditions in emerging coun-
tries. General vehicle detection, under this condition, has been studied by many 
authors, benchmarking their results mainly using the KITTI dataset [10], which 
unfortunately lacks a motorcycle category. For this reason we have created and 
used a new public motorbike dataset of 7,500 and 10,000 annotated images, 
captured on a public road using a camera mounted in a drone.

The main contributions of this work are

1. The publication of a realistic annotated video dataset of motorcycle traffic,
presenting realistic occlusion conditions;

2. The proposal of a new convolutional model, EspiNet, inspired by Faster R-
CNN to detect motorcycles;

3. The combination of EspiNet and an MDP tracker that obtains competitive
results and that provides a baseline for other researchers to improve upon.

This paper is organized as follows: Sect. 1.2 describes works related with vehi-
cle and motorbike detection. Section 2 describes the motorcycles dataset created 
for this research. Section 3 shows the EspiNet model, describing its main improve-
ments w.r.t to Faster R-CNN, and providing an insight about the advantages 
of its architecture. Section 4 the MDP tracking strategy used in this research. 
Section 5 shows the experimentation done for detection and tracking, and a com-
parative study with state of the art detectors trained end-to-end for this pur-
pose. Finally, Sect. 6 presents the conclusions around the proposed model and 
the directions for future research.
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1.2 Motorcycle Detection

Traditionally, video technique analysis requires reliable methods for object fea-
ture extraction to obtain accurate classification results. Video detection sys-
tems in the last decade are implemented through discrimination capabilities on 
appearance features. Motorcycle detection and classification using appearance 
features include the construction of 3D models [5], dimensions of the vehicles [8], 
there is also used colour, symmetry, shadows, texture and geometrical fea-tures 
(e.g. circles) as wheel contours [7]. Description of features as histogram of oriented 
gradients (HOG) used for detection of helmet in motorcycle riders [16]. There are 
also variations of HOG [6] and the use of scale-invariant feature transform 
(SIFT), DSIFT and speeded up robust features (SURF) [17].

Deep learning theory (DL) has emerged as an important breakthrough in the 
field of computer vision in the last nine years, with astonishing results in image 
processing. This theory has been successfully used in vehicle detection, mainly 
based on DL general object detectors. These detectors can be divided into region 
based stage detectors and single stage detectors. Region based detectors involve 
two general components, the region proposal step (RPN) and the classifi-cation 
step. R-CNN [11], combines selective search algorithm for region proposal (RPN) 
and CNN features to perform object detection. This model was used in [3] to 
classify motorcycles according to the USA Federal Highway Administration 
(FHWA) scheme. There is also work based on single stage detectors, where a sin-
gle convolutional architecture simultaneously predicts bounding boxes and class 
scores associated. Huynh et al. [13] designed a network for this purpose, work-ing 
on top-view captured images, that significantly reduces occlusion between urban 
objects. Other approaches based their detection of moving objects on background 
subtraction methods using a pre-trained network (AlexNet) for fea-ture 
extraction for helmet detection [18]. However there are no reports using an open 
dataset of motorcycles on congested urban environments.

2 The Dataset

Real urban traffic present occlusions between vehicles or with regular urban fur-
niture (Fig. 1). Despite that there had been effort to construct a dataset such as 
KITTI [10], where occluded vehicles are annotated, and state of the art algo-
rithms benchmark their performance, there is not motorcycle category created 
on this dataset or any dataset public available explicitly oriented to occluded 
motorcycles in urban environments.

This is why we have created an annotated motorcycle public dataset, which 
contains images taken from a camera mounted in a drone, subject to subtle 
unstable conditions. To speed up processing analysis, images were resized to one-
third of their original size, reaching 56,975 ROI (Region of Interest) annotated 
motorcycles, and 25 pixels as the minimal height size. 60% of the annotated 
motorcycles has a level of occlusion. Objects partially occluded smaller than 
25 pixels were discarded. The ground truth generated is specified in an XML 
file that describes the class, frames covered by the object, Name, Id, height
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Fig. 1. Original dataset image vs. annotated image. Note the small object size of some
annotated objects and the variate level of occlusions.

Table 1. Details of the new dataset

Dataset Classes Objects Min. vertical size Occlusion Format

MotorBikes7,500 1 221 25 px >60% XML

MotorBikes10,000 1 317 25 px >60% XML

and width of the bbox surrounding the object. Table 1 describes these datasets, 
available on the internet1.

3 EspiNet

The EspiNet model is based on Faster R-CNN. The difference here is that we 
create a more compact model, hence with faster inference, with just 4 layers of 
convolution. EspiNet is the evolution of the architecture described in [9]. Now, the 
number of convolutional layers has been increased to four, to capture more 
discriminating features. All the convolutional filters implemented are of size [3 3]. 
The first convolutional layer includes 64 filters, used to work with the three image 
channels and capturing primitive features. These primitive features are fed to a 
second convolutional layer, with 32 filters to create more complex features, which 
are aggregated even more in the third (64 filters) and fourth (128 filters) layer. As 
in [9], this architecture is used simultaneously as a region proposal network 
(RPN) and detection network. Figure 2 shows the described model able to 
identify motorcycles even under occluded scenarios.

The optimization algorithm used for training the model is Stochastic Gradi-
ent Descent with Momentum (SGDM). The training comprises four steps learn-
ing shared parameters for the RPN and detector networks. The RPN and the 
detector network are trained separately. EspiNet uses a learning rate of 1e-5 for 
these two steps since they require a quicker convergence. In the last two steps, the 
shared convolutional layers are fixed, fine-tuning the layers unique to RPN and 
detector network. In these last steps, the learning rate is set to 1e-6 for a smooth 
fine-tuning process.
1 http://videodatasets.org/.
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Fig. 2. The EspiNet CNN model. Used simultaneously for RPN and for classification

For RPN training, positives image examples patches are those which have 0.6 
to 1.0 overlapping with the ground truth boxes. Negative ones have overlapping 
of 0 to 0.3. The overlapping criteria used is IoU (Intersection over Union) or 
Jaccard coefficient.

4 Multi-Object Tracking (MOT)

Multiple object tracking (MOT) is a challenging task, since it implies localizing 
and following multiple objects in the same scene during their life in the sequence, 
even under occlusion.

4.1 Online Multi-Object Tracking by Decision Making

We adopt the work proposed for online multi-object tracking based on Markov 
Decision Processes (MDP) [20], where the object tracked lifetime is modeled by 
using a MDP with four state subspaces: Active, Tracked, Lost and Inactive. With 
the state transitions the appearance/disappearance of objects is modeled in the 
MDP tracking process. Data association is performed by learning (reinforcement 
learning) a similarity function within the MDP policy scheme. The modular 
architecture of the framework can be combined with different object detection 
approaches, single object tracking and data association techniques which could 
be used for learning the MDP policy. We tested this tracking framework on the 
challenging new dataset (Sect. 2), and evaluated tracking performance for Faster 
R-CNN (VGG16 based), YOLO v3, and EspiNet, all models are trained end to
end.

The framework is categorized as a hybrid learning model, implementing 
off-line learning using supervision from ground truth trajectories, and online-
learning method while tracking objects on training examples, making the MDP 
able to decide supported on the history and the current status of the target.
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Table 2. Comparative detection results EspiNet model against a state of the art trained 
network Faster-R-CNN (based on VGG16) [12] and YOLO [14]

Metrics EspiNet Faster R-CNN YOLO

Precision (%) 93.7 57.3 93.0

Recall (%) 90.0 76.3 81.0

F1 score (%) 91.8 65.4 86.6

AP (Average Precision) 88.84 68.75 80.72

5 Experiments

5.1 Detection

For comparative purposes, we chose state of the arts models, representative of 
single stage detectors (YOLO [14]) and the region based Faster-R-CNN (VGG16 
based) [12]. For a fair comparison, all these models were trained end-to-end 
using the challenging 10,000 examples dataset (Sect. 2). Evaluating the model 
we achieved an Average Precision (AP) of 88.84% and an F1-score of 91.8%, 
outperforming results of Faster-R-CNN (based on VGG16) and YOLO (Table 2).

In all metrics, EspiNet outperforms the other two detectors, the closet best 
performance is achieved by YOLO that showed almost the same precision but 
poorer recall because the single stage model lacks RPN and thus it can fail to 
detect objects that appear too close or too small. Video results can be viewed 
in the following link2.

5.2 Tracking

The tracking algorithm is evaluated also in the new dataset described in Sect. 2. 
For comparative purposes, we used the detection results of EspiNet, YOLO and 
Faster R-CNN (VGG-16 based) described in Sect. 5.1.

Tracking Performance Metrics. Based on the metrics defined in the MOT 
challenge3, we evaluated the results of the modified MDP, tracking detections 
from the new dataset. Two main performance metrics were used:

Multiple Object Tracking Precision (MOTP) MOTP =
∑

i, tdit∑
t, Ct

which calcu-

lates the total error for matched pairs of ground truth-tracker pairs over all
frames, averaged by the total number of matches found.
Multiple Object Tracking Accuracy (MOTA) MOTA = 1 −∑

t(mt + fpt + mmet)
∑

t gt
where mt, fpt and mmet are the number of misses, of

false positives, and of mismatches, respectively, for time t.
2

3

https://goo.gl/RSZQGz. 
https://motchallenge.net/.
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Additionally, other metrics are used that allow understanding tracking 
behaviour: Mostly Track targets (MT), percentage of ground truth tracks cov-
ered by the tracking mechanism for at least 80%. Mostly Lost targets (ML, 
percentage of ground truth tracks covered by the tracking mechanism less than 
20%. ID Switches (IDS) ID of the tracks that are erroneously changed by the 
algorithm. Fragmentation (Frag) corresponds to the total number of times a 
trajectory appears fragmented.

Tracking Results. For training proposes, the 7,500 section of the dataset 2 was 
used. For data association in the Lost state, we use K = 10 as trade off as 
suggested in [20]. The tracking results described in Table 3 show the importance 
of using a quality detector for the MDP tracking process. According to the results 
presented 5.1, the use of EspiNet as a detector for the MDP tracker offers the best 
results achieving a MOTA of 85.2% or tracking accuracy, which evaluates how 
many mistakes the tracker made in terms of misses, false positives, mismatches 
and failures to recover tracks. This result is consistent with a good recall result 
(90.0), reflected in a low false alarm rate (0.24) and a relative low number of ID 
switches (89). The use of EspiNet as a base detector reports also a better MOTP 
(82.5%), or tracking precision which expresses how well the exact position of the 
motorcycles is estimated. These results are consistent with a slightly better 
precision compared to YOLO and Faster R-CNN, which allows the MDP tracker 
to obtain less fragmentations (341). Video tracking results can be viewed via the 
following link4.

Figure 3 shows an annotated frame and the results of the MDP tracker using 
the above mentioned detectors. In this comparative figure, it is possible to see 
the difference between the detectors and the ground truth, where the motorcycle 
tracking is annotated with a different count number that the one generated by 
different detectors. The more approximate numbers of the tracker objects to the 
ground truth are in this order Espinet: (d), YOLO (c) and Faster R-CNN (b).

An Nvidia Titan X (Pascal) 1531 Mhz GPU is used for training the EspiNet 
model and the Faster R-CNN model (VGG 16 based), both installed on a Win-
dows 10 Machine with a CPU core i7 7th generation 4.7 GHz, with 32 GB of 
RAM. The training process on the dataset in EspiNet model took 32 h for train-
ing, and 57 h for Faster R-CNN (VGG 16). For YOLO training a Titan Xp 
1582 Mhz GPU was used, running with Ubuntu 16.04.3, with a Xeon E5-2683 
v4 2.10 GHz CPU, and 64 GB of RAM, taking 18 h for training. All models were 
trained from scratch. Meanwhile the training of the MDP tracker took 18 h on 
the Windows environment.

6 Discussion

This research has combined EspiNet and an MDP Tracker for motorcycle detec-
tion and Tracking in urban scenarios. The model can deal with highly occluded

4 https://goo.gl/rLL2Le.
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Table 3. Comparative results for MDP tracking using detectors EspiNet (Sect. 3), 
Faster-R-CNN (based on VGG16) [15] and YOLO [14]

Metrics EspiNet Faster R-CNN YOLO

Recall 90.0 76.3 81.0

Precision 93.7 57.3 93.0

False Alarm Rate 0.24 2.04 0.38

GT Tracks 318 318 318

Mostly Tracked 283 113 142

Mostly Lost 2 7 2

ID Swiches 89 808 111

Fragmentations 341 1766 420

MOTA 85.2 34.1 71.4

MOTP 82.5 72.7 77.8

Fig. 3. Different detector effects on the MDP tracker. (a) Ground truth. (b) MDP 
tracker using Faster R-CNN as a base detector. (c) MDP tracker using YOLO as a 
base detector. (d) MDP tracker using EspiNet(Ours) as a base detector.

images and achieves in detection an Average Precision of nearly 90% and an F1 
score of 91.8% for a newly annotated motorcycle urban dataset. Results can be 
compared with state of the art algorithms benchmarked in sites such as KITTI 
[10].

8



We have illustrated the importance of the use of an accurate detector in the 
implementation of the Multi-object tracking frameworks based on Markov deci-
sion process [20]. The tracker modeled the life time of the tracked object using 
four sub-space states (Active, Tracked, Lost and Inactive). The state transition 
handled by the MDP algorithm is now improved by the quality of the detections 
to handle incoming and leaving objects, as well as birth and death of the object 
being tracked.

Several tests were carried out to evaluate the influence of the detector in the 
MDP tracking. Lower quality of detections also produce poorer tracking, losing 
the tracking of some objects or forcing some tracks to drift.

Nevertheless the MDP tracking algorithm helped to preserve the identity of 
the detected object and the results showed performance close to the state of 
the art achieving a Multiple Object Tracking Accuracy of 85.2%, using a well 
trained EspiNet as base detector for the MDP tracker.

We have defined a model capable of detecting and following motorcycles in 
urban scenarios with a high level of occlusion, which represents an important 
aid to CCTV surveillance centers in emerging countries, where this type of vul-
nerable road users exceeds 50% of the vehicular park.

Results of the use of EspiNet + MDP tracker in CCTV surveillance center, 
can be retrieved from5.

As future work we plain to move to an integrate deep learning model for 
simultaneously detect and track objects exploiting spatio-temporal features for 
improve detection and speed up tracking.
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1. Accidentes de tránsito en la Comunidad Andina, 2007–2016. http://intranet. 
comunidadandina.org/Documentos/DEstadisticos/SGDE800.pdf
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