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Probabilistic MIMO Symbol Detection with
Expectation Consistency Approximate Inference

Javier Céspedes, Pablo M. Olmos, Matilde Sánchez-Fernández, Fernando Perez-Cruz

Abstract—In this paper we explore low-complexity probabilis-
tic algorithms for soft symbol detection in high-dimensional
multiple-input multiple-output (MIMO) systems. We present a
novel algorithm based on the Expectation Consistency (EC)
framework, which describes the approximate inference problem
as an optimization over a non-convex function. EC genera-
lizes algorithms such as Belief Propagation and Expectation
Propagation. For the MIMO symbol detection problem, we
discuss feasible methods to find stationary points of the EC
function and explore their tradeoffs between accuracy and
speed of convergence. The accuracy is studied, first in terms
of input-output mutual information and show that the proposed
EC MIMO detector greatly improves state-of-the-art methods,
with a complexity order cubic in the number of transmitting
antennas. Second, these gains are corroborated by combining
the probabilistic output of the EC detector with a low-density
parity-check (LDPC) channel code.

Index Terms—MIMO Communication Systems, Approximate
Inference, Expectation Consistency, Low-density Parity-Check
Codes.

I. INTRODUCTION

With the increasing demand for higher data rates, multiple-
input multiple-output (MIMO) systems have attracted much
attention over the last decade [1]. It is well known that MIMO
communication systems achieve substantial gains in terms
of spectral efficiency compared to conventional single-input
single-output (SISO) systems. In fact, it has been shown that
under ideal conditions the capacity of a point-to-point MIMO
system with m transmitting antennas and r receiving antennas
scales linearly with min(m, r), which is referred to as the
multiplexing gain [2].

Modern channel-coding techniques, such as Turbo codes [3]
or LDPC codes [4], are needed to achieve transmission rates
close to the fundamental theoretical limits of the MIMO chan-
nel. Efficient decoding is possible using the belief propagation
(BP) algorithm [4], [5], which is a low-complexity message-
passing approximate inference method to estimate marginals
in a joint probability distribution. BP decoding needs as input
an estimate to the posterior probability of each coded bit
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given the vector of channel observations. This information
is provided by the so-called probabilistic symbol detector,
which has to marginalize the posterior probability density
function (pdf) of the transmitted vector of symbols, given the
channel observation. For a MIMO channel, this has complexity
O(Mm), where M is the constellation order.

Multiple algorithms have been proposed to perform hard-
output symbol detection in MIMO systems, see [6]–[15].
On the contrary, the list of probabilistic symbol detection
algorithms is comparatively much shorter. Soft-ouput sphere
decoding (SD) methods solve the marginalization in a sub-
space of the constellation alphabet Am [16]–[18]. However,
to maintain good performance, the dimension of the sub-
space must grow rapidly with m, the modulation order and
the inverse of the signal-to-noise ratio (SNR) [19]. Thus, SD
methods are not suitable for massive MIMO scenarios, where
both m and M are potentially very large. Alternatively, some
other works consider the use of Markov chain Monte Carlo
(MCMC) algorithms to approximate the marginal posterior
probabilities [20]–[23]. While this approach has been shown
to be viable for hard-output symbol detection, probabilistic
detection requires a sufficiently large number of samples per
constellation point at each transmitter. For large m and high-
order constellations, MCMC methods become excessively
burdensome.

The focus of this paper is on MIMO probabilistic symbol
detection methods that can scale up to hundreds of antennas
and high-order modulations based on quadrature amplitude
modulation (QAM). In particular, we focus on methods with
polynomial complexity with the number m of transmit an-
tennas. The minimum-mean-squared error (MMSE) solution
can be cast as a probabilistic detector since it computes the
mode of a Gaussian approximation to the posterior pdf of
the MIMO symbols [13], [24], likewise its soft successive
interference cancellation (soft MMSE-SIC) version [25]. In
both implementations complexity is dominated by an m×m
matrix inversion. The Gaussian tree approximation (GTA)
algorithm [26], very close in hard detection performance to
MMSE-SIC, is a detection algorithm that constructs a tree-
factorized approximation to posterior pdf of the symbols,
to then estimate marginals distributions using BP. Also, in-
spired by their success in compressed sensing [27], in recent
years there has been an intense research interest on MIMO
detection techniques based on message passing algorithms.
We can mention the channel hardening-exploiting message
passing (CHEMP) in [28] and the Gaussian Message Passing
Iterative Detector (GMPID) in [29], [30]. Both methods have
been shown to be effective (close to SD methods) for large
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MIMO systems with QPSK constellations. However, asymp-
totic analysis of this type of algorithms shows that they do
not perform well with high-order QAM constellations unless
the number r of receiving antennas is much larger than the
number m of transmitting antennas [30], [31]. An improved
version of the GMPID algorithm called SA-GMPID is shown
to asymptotically converge to the MMSE detection solution
even for the case m/r > 1 [32]. We remark that in this paper
we propose algorithms that, while having larger complexity
compared to these type of message-passing algorithms, they
significantly improve the MMSE solution.

In [33], we proposed Expectation Propagation (EP) [34],
[35] to perform hard-output MIMO symbol detection in the
high SNR regime. In that paper, EP is used to find the
mode of the posterior probability distribution by projecting
it into a Gaussian approximation. The method cannot be
easily generalized to perform probabilistic detection, as its
description is essentially an iterative algorithm that does not
provide the complete picture of the fundamental underlying
inference problem. Actually, in [36] we showed that, while
the MIMO EP receiver in [33] is able to significantly improve
GTA as hard detector, achieving gains of around 2 dBs, both
methods perform similarly when combined with an LDPC
channel decoder that requires a probabilistic input. In a simpler
scenario, i.e. channel equalization for single-user intersymbol-
interference (ISI) channels, different heuristics have been re-
cently proposed in [37] to improve the EP probabilistic output,
but it is shown that ultimately a turbo-like receiver, where
the LDPC decoder output is fed back to the EP equalizer, is
required to obtain a robust solution that is not tailored to a
particular modulation or channel instance.

In this work, we consider one-shot receiver architectures,
in which the channel decoder output is not fed back to the
MIMO symbol detector to modify the original estimate. In
this scenario, the design of the MIMO detector is particularly
crucial, as the overall system performance highly depends
on its accuracy. One-shot receivers can be used in latency-
constrained applications instead of iterative Turbo-like re-
ceivers, as the latency in the latter case can become too large
if long block channel codes are used [38]. Furthermore,
we show how probabilistic MIMO symbol detection can be
implemented using a general approximate inference frame-
work called Expectation Consistency (EC), which was first
described by Opper & Winther in [39]. In EC, we describe
the inference problem as the search of a stationary point of
an approximation to the free energy associated to the true
posterior probability distribution of the transmitted symbols.
Any stationary point satisfies a moment matching condition
between the involved distributions. In this paper, we tailor the
original EC formulation to the MIMO detection case and we
discuss feasible methods to find such stationary points and
show the fundamental tradeoffs between accuracy and speed
of convergence. In particular, we propose an update rule that
performs very close to the moment matching EC solution, with
a complexity comparable to running MMSE ten times. Also,
we propose methods to overcome numerical instabilities that
may arise in the MIMO detection scenario, particularly when
we use large constellation alphabets. In all tested scenarios,

we find solutions that are robust and accurate across differ-
ent modulation orders and system dimensions. Finally, the
resulting EC probabilistic MIMO detector achieves excellent
performance results compared to state-of-the-art methods with
the same complexity order.

To measure the accuracy of the EC MIMO detector proba-
bilistic output, first we use a Monte Carlo estimate to the mu-
tual information between the transmitted MIMO symbol vector
and the corresponding output of the probabilistic symbol
detection stage. At high SNRs, all detection methods saturate
at the same mutual information level, i.e., log2(M) bits per
channel use per antenna, due to the use of a finite discrete con-
stellation of M points. Operating in the high-SNR region of
saturation is undesirable, as the gap to channel capacity grows
exponentially as we increase the SNR. However, at moderate
SNR, our proposed detector outperforms other detectors in the
literature and, in those scenarios where we could obtain the
optimal detector solution, EC gets very close to it. Second, the
predicted gain at moderate-SNRs is corroborated by bit error
rate (BER) performance simulation using optimized irregular
LDPC block codes [40] and terminated convolutional-LDPC
block codes [41], [42]. In all cases, we obtain remarkable SNR
gains, proving that the accuracy of the MIMO probabilistic
symbol detection stage is crucial in the system’s performance.

Overall, the contributions of this paper are summarized as
follows:
• We introduce EC approximate inference framework and

show how it can be applied to the MIMO detection
scenario, developing the EC free energy approximation
and computing its gradients.

• We compare several approaches to find EC stationary
points, and propose iterative rules that are able to ap-
proach the optimal solution at O(m3) complexity.

• We obtain the achievable rate (mutual information) of a
single-user MIMO system to show the accuracy in the
pdf approximation to the true posterior, also proving that
with EC detection we significantly reduce the gap to
capacity. The predicted gains are corroborated via error
rate simulation with optimized LDPC codes.

The paper is structured as follows. In Section II we re-
view the system model. In Section III, we discuss on the
transmission rate and how it depends on the MIMO symbol
detection method implemented, highlighting the importance of
a good approximation to the true posterior. Section IV briefly
presents the EC approximate inference framework and we
tailor it to the MIMO detection case in Section V. In Section
VI, experimental results are presented. Final conclusions and
potential lines of future research are described in Section VII.

Notation: Capital and lowercase boldface symbols represent
matrices and vectors respectively. [·]> is the transpose and [·]H
is the Hermitian. Finally, [n] denotes the set {1, 2, . . . , n}.

II. SYSTEM MODEL

Consider a single-user MIMO system where m transmitting
antennas communicate to a receiver with r antennas. The sys-
tem model is shown in Fig. 1. Let b = [b1, b2, ..., bk]> denote
the input information binary vector, which is Gray-mapped
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Fig. 1. System model

and modulated into QAM symbols. Then, an m-dimensional
vector of QAM symbols is generated, that is denoted by
u = ure +juim ∈ Am, where |A| = M . The symbol vector u,
is transmitted over a memoryless flat-fading complex MIMO
channel, defined as a matrix H with dimensions r×m of zero-
mean unit-variance complex Gaussian coefficients. Therefore,

y = Hu + w, (1)

where y ∈ Cr and w ∈ Cr is an additive white circular-
symmetric complex Gaussian noise vector with independent
zero-mean components and σ2

w-variance. We also assume that
the receiver has perfect channel state information (CSI). On
the other hand, the signal-to-noise ratio is defined as

SNR(dB) = 10 log10

(
m log2(M)

Eb
σ2
w

)
, (2)

where Eb is the bit energy and the constellation energy Es
can be written as

Es = Eb log2(M). (3)

Note that the SNR defined is taking into account the
full power transmission instead of the per-antenna power.
Given the channel observation, the posterior distribution of the
transmitted symbols, that would lead to the optimal detector
and that is also denoted through this work as true posterior,
is

p(u|y) =
p(y|u)p(u)

p(y)
∝ N (y : Hu, σ2

wI)p(u), (4)

where N (y : Hu, σ2
wI) denotes a complex Gaussian with

mean Hu and covariance matrix σ2
wI, and p(u) is the prior

probability density function for u. Assuming that we transmit
independent uniformly distributed symbols, we have

p(u) =
m∏
i=1

p(ui) =
m∏
i=1

1

M
Iui∈A, (5)

where Iui∈A takes value one if ui belongs to A. Observe that,
due to the likelihood term in (4), p(u|y) is a multidimensional
discrete distribution that maps over a fully connected factor
graph. Exact inference over p(u|y), required to evaluate
symbol marginals p(ui|y), i ∈ [m], to later feed a modern
channel decoder, has cost O(Mm) and quickly (in both M
and m) becomes unfeasible.

A. Posterior approximation and inference

One of the alternatives to implement a low complexity prob-
abilistic symbol detector is to construct a tractable distribution
q(u) that approximates p(u|y). By tractable we mean that
performing inference over q(u), namely marginalizing it or
computing expectations, is feasible. Other options, reduce or
modify the constellation space, as for example SD.

Focusing on the first alternative, the MMSE method can be
seen as a Gaussian approximation q(u) to p(u|y) obtained by
replacing the independent discrete priors in (5) by the product
of univariate zero-mean and Es-variance complex circularly-
symmetric Gaussian factors [13], [24]. The Gaussian tree
approximation (GTA) was first proposed in [26]. The method
constructs a tractable cycle-free discrete approximation to (4)
by replacing the Gaussian likelihood term p(y|u) by a Gaus-
sian distribution that factorizes in cycle-free graph, chosen to
match the marginal and cross-moments of p(y|u). Using this
cycle-free approximation to the likelihood, efficient inference
is carried out using BP. Finally, there exist several recent pro-
posals that perform approximate inference for MIMO symbol
detection based on approximate message passing (AMP) [27].
AMP algorithms essentially implement the standard rules of
BP message passing [43] and all messages are approximated
with univariate Gaussian distributions. Among AMP methods
for MIMO detection, we can mention the CHEMP algorithm
in [28] and GMPID in [30]. An approximation to p(u|y)
can be constructed from the AMP marginals using the Bethe
reparameterization [43].

In Section V-D, we have included a table summarizing the
theoretical complexity order of each of the MIMO detection
methods we use in our experiments.

III. TRANSMISSION RATE

Consider a fixed and known channel matrix H, under
the system model defined in Section II. With the power
constraint E[uTu] ≤ SNRσ2

w, the ergodic channel capacity
per transmitted antenna with perfect CSI at the receiver and
no CSI at the transmitter is given by

C = max
p(u)

I(u,y)

m
=

log2(det(Ir + SNR
m HHH))

m
(6)

bits per channel use and antenna. Capacity is achieved when u
is Gaussian distributed with zero-mean and covariance matrix
equal to identity [44].

When u is a random vector uniformly distributed in Am,
the system transmission rate degrades and can be far from the
capacity limit in (6). The achievable rate per antenna can be
computed by evaluating the mutual information between ui,
the transmitted symbol at i-th antenna and ûi ∼ p(ui|y), i.e.,

I(ui, ûi) = Ep(ui,ûi)

[
log2

p(ûi|ui)
p(ûi)

]
(bits/channel use),

(7)
for i ∈ [m]. Unfortunately, it is not possible to compute this
mutual information in closed-form. We follow a Monte Carlo
procedure to estimate 1

m

∑m
i=1 I(ui, ûi) in the same channel

knowledge scenario as the one assumed in (6), namely perfect
CSI only at the receiver. More precisely, we estimate I(ui, ûi),
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Fig. 2. Transmission rate in 5× 5 scenario with QPSK modulation.

i ∈ [m], at one particular SNR point as follows: first, we
collect N ∈ Z+ samples from the joint distribution of ui,y
and ûi. Using this set of samples, we estimate p(ûi), p(ûi|ui)
for any ui, ûi ∈ A, and, finally, compute a numerical estimate
to I(ui, ûi) in (7). As N →∞, the estimate to I(ui, ûi) gets
tight. Samples of the joint (u,y, û) distribution are computed
using ancestral sampling [45]. Each of the N samples is
generated following the next steps:

1) Sample u from an uniform distribution in Am.
2) Sample y from p(y|u,H).
3) Sample ûi, i ∈ [m], from

p(ui|y) =
∑
u−i

p(u|y) ui ∈ A, (8)

where u−i denotes all elements in u except ui.

When a probabilistic symbol detector does not use the true
posterior, the transmission rate can be evaluated by following a
similar procedure, but in 3) we sample ûi after marginalization
over q(u), namely the approximation constructed to p(u|y).
Thus, the average mutual information computed for each low
complexity detection method is used as a performance metric
that measures how close q(u) is to p(u|y). At the same
time, the better the quality of the approximation is, the higher
the rate becomes. Note also that to compute this metric, we
consider uncoded transmission. For instance, Fig. 2 shows the
average mutual information per antenna in a 5 × 5 scenario
with QPSK modulation for both the optimal detector (which
works directly with the true posterior p(u|y)), and for MMSE,
GTA and CHEMP suboptimal detectors. It has been computed
with N = 106 samples per SNR point. Also, results have
been averaged over 100 realizations of H. Observe that all
methods operate close to the limit of 2 bits/channel use when
the SNR is high, but the gap to channel capacity in this regime
grows exponentially fast with the SNR. For intermediate SNR
values, optimal detection clearly outperforms MMSE, GTA

and CHEMP detection1 . It is precisely in this regime where
we must improve the accuracy of the probabilistic symbol
detection stage.

IV. EXPECTATION CONSISTENCY APPROXIMATE
INFERENCE FOR MIMO DETECTION

In this section we give a brief introduction to EC ap-
proximate inference [39], to then tailor it for low-complexity
probabilistic MIMO detection. Let U be a random variable
with a probability density function that factors in the following
way

p(u) =
1

Z
fq(u)fr(u), (9)

where we assume that computing Z =
∫
fq(u)fr(u)du or

any expectation w.r.t. p(u) is unfeasible. However, we do
assume that, separately, fq(u) and fr(u) are tractable w.r.t. a
measure of the form exp(λTφ(u)) for some function vector
φ(u) = [φ1(u), . . . , φJ(u)]. Namely, we assume it is possible
to perform inference over the following two distributions used
to approximate p(u):

q(u) =
1

Zq(λq)
fq(u) exp(λ>q φ(u)), (10)

r(u) =
1

Zr(λr)
fr(u) exp(λ>r φ(u)), (11)

where the J × 1 parameter vectors λq and λr belong to a
certain convex set Φ, and

Zq(λq) =

∫
fq(u) exp(λ>q φ(u))du, (12)

Zr(λr) =

∫
fr(u) exp(λ>r φ(u))du. (13)

Note that both q(u) and r(u) define an exponential family
of distributions2, where λq (λr) is the natural parameter
vector, φ(u) is the vector of sufficient statistics and logZq(λq)
(logZr(λr)) is a convex function of λq (λr) that satisfies

∇λq
logZq(λq) = Eq(u) [φ(u)] , (14)

∇λr
logZr(λr) = Er(u) [φ(u)] . (15)

The main idea behind EC approximate inference is to optimize
λq and λr so that q(u) and r(u) have the same moments,
i.e., (14) is consistent with (15), keeping in mind that both
q(u) and r(u), being the functions used to approximate p(u),
contain “partial information” (fq(u) and fr(u) respectively)
of this true distribution p(u).

The first step to derive the EC approximation is to note that
the partition function Z in (9) can be expressed the following
way

Z = Zq(λq)
Z

Zq(λq)
= Zq(λq)

∫
fq(u)fr(u)du

Zq(λq)
=

= Zq(λq)

∫
fq(u)

Zq(λq)
fr(u) exp((λq − λq)>φ(u))du

(16)

= Zq(λq)Eq(u)[fr(u) exp(−λ>q φ(u))]. (17)

1Note the similarities with the throughput results presented in [46].
2See [43] for an introduction to exponential families and their properties.
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And thus,

logZ = logZq(λq) + log
(
Eq(u)[fr(u) exp(−λ>q φ(u))]

)
.

(18)

where logZ is also known as the energy function. In order to
estimate the expectation in the above expression, we replace
q(u) by a simpler distribution s(u) that belongs to the same
exponential family than q(u) and r(u), i.e.,

s(u) =
1

Zs(λs)
exp(λ>s φ(u)), (19)

where logZs(λs) is a convex function of λs that satisfies
∇λs

logZs(λs) = Es(u)[φ(u)]. While replacing q(u) by
s(u) yields, in general, a poor approximation, it can be a
fairly reasonable solution if both q(u) and s(u) have the
same moments, namely if Eq(u) [φ(u)] = Es(u) [φ(u)]. This
condition is naturally achieved as a stationary point of the
resulting approximation to logZ. By replacing q(u) by s(u)
in (18), logZ is approximated by

logZEC(λq,λs) =

= logZq(λq) + log(Es(u)[fr(u) exp(−λ>q φ(u))]), (20)

and after simple manipulation this term can be expressed as
follows:

logZEC(λq,λs) =

= logZq(λq) + logZr(λs − λq)− logZs(λs). (21)

Recall that by assumption Zq(λq), Zr(λs − λq) and Zs(λs)
can be computed efficiently. And note that logZEC depends
only on λq and λs, while it depends on three probability
distributions: q(u) with parameter vector λq , r(u) with pa-
rameter vector (λs−λq) and s(u) with parameter vector λs.
Recall we seek moment matching between q(u) and r(u)
and also between q(u) and s(u). While the first condition
ensures that the two approximations that we construct to
p(u) are consistent, the latter is required so that the measure
replacement in the expectation in (18) is not too coarse.
Both conditions are satisfied at any point (λ∗q ,λ

∗
s) where the

gradient of the EC energy function logZEC(λq,λs) is zero,
i.e. optimization over logZEC(λq,λs) would lead to (λ∗q ,λ

∗
s).

A. The EC free energy for MIMO detection

To simplify the low-complexity detector derivation, we
rewrite the probabilistic model in (4) to work with real-
valued distributions, considering the real R(·) and imagi-
nary I(·) parts separately. Define ũ =

[
u>re u>im

]>
, ỹ =[

R(y)> I(y)>
]>

, w̃ =
[
R(w)> I(w)>

]>
and

H̃ =

[
R(H) −I(H)
I(H) R(H)

]
.

Thus, the real-valued channel model is

ỹ = H̃ũ + w̃, (22)

where σ2
w̃ = σ2

w/2 is the variance of the real and imaginary
parts of the noise and we define Ã as the new alphabet for the
real and imaginary components of the M -QAM constellation,

ũ ∈ Ã2m, with energy Ẽs = Es/2. In the rest of this
work we adopt the real-valued channel model formulation
in (22) and we drop the model indicator (̃·) to keep the
notation uncluttered. Therefore, the a posteriori probability pdf
of the transmitted symbol vector u, and that we propose to
approximate with tractable pdfs, can be expressed as follows

p(u|y) =
1

Z
N (y : Hu, σ2

wI)
2m∏
i=1

Iui∈A, (23)

The matching of (23) with functions fq(u) and fr(u) in
(9) will be done so that q(u) and r(u) in (10) and (11) are
tractable w.r.t. a measure of the form exp(λTφ(u)), which
means that we have to be able to easily compute moments
of the form E[φ(u)] w.r.t. both distributions. For an EC based
low-complexity detector we choose the vector of statistics and
natural parameters as follows

φ(u) =

[
u1, u2, . . . , u2m,

−u2
1

2
,
−u2

2

2
, . . . ,

−u2
2m

2

]>
, (24)

λ = [γ1, γ2, . . . , γ2m,Λ1,Λ2, . . . ,Λ2m]
>

= [γ,Λ]>, (25)

where γ ∈ R2m and Λ ∈ R2m
+ . According to (24), this choice

of φ(u) implies that at any zero-gradient point of the EC
energy function in (21), the distributions q(u) and r(u) must
be consistent only in their marginal first and second order
moments. Under this assumption, if we choose functions fq(u)
and fr(u) as follows

fq(u) = N (y : Hu, σ2
wI), and fr(u) =

2m∏
i=1

p(ui) (26)

then we conclude that q(u) and r(u) are tractable probability
density functions, since q(u) is a Multivariate Normal distri-
bution and r(u) is a discrete independent distribution. More
precisely, according to (10) and (26), we have

q(u) =
1

Zq(γq,Λq)
fq(u) exp

(
γ>q u− u> diag(Λq)u

2

)

=

exp


(

H>y

σ2
w

+ γq

)>
︸ ︷︷ ︸

g>

u− 1
2u>

(
H>H

σ2
w

+ diag(Λq)

)
︸ ︷︷ ︸

S

u


Zq(γq,Λq)

,

(27)

where diag(Λq) is a diagonal matrix with main diagonal given
by Λq . Therefore q(u) = N (u : µ,Σ), and Σ = S−1 and
µ = S−1g. Also, we obtain

logZq(γq,Λq) =
1

2
µTΣ−1µT +

1

2
log |Σ|. (28)

By applying standard rules for matrix derivatives, we can
check that

∂ logZq(γq,Λq)

∂γq,i
= Eq[ui] = µi, (29)

∂ logZq(γq,Λq)

∂Λq,i
= −1

2
Eq[u2

i ] = −1

2

(
Σii + µ2

i

)
. (30)
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On the other hand, from the definition of fr(u) in (26) we get

r(u) =
1

Zr(γr,Λr)
exp

(
γTr u− uT diag (Λr) u

2

) 2m∏
i=1

Iui∈A

=
1

Zr(γr,Λr)

2m∏
i=1

exp

(
γriui −

Λriu
2
i

2

)
Iui∈A. (31)

Therefore, r(u) is an independent discrete pmf over A2m such
that, for i ∈ [2m],

Er[ui] =

∑
ui∈A ui exp

(
γriui − Λriu

2
i

2

)
∑
a∈A exp

(
γria− Λria2

2

) , (32)

Er[u2
i ] =

∑
ui∈A u

2
i exp

(
γriui − Λriu

2
i

2

)
∑
a∈A exp

(
γria− Λria2

2

) . (33)

Also we have

logZr(γr,Λr) = log

(∑
a∈A

exp

(
γria−

Λria
2

2

))
, (34)

where we can again check that, ∂ logZr(γr,Λr)
∂γr,i

= Er[ui]
and ∂ logZr(γr,Λr)

∂Λr,i
= − 1

2Er[u
2
i ], for i ∈ [2m]. Finally, the

averaging distribution s(u) in (19) is given by

s(u) =
1

Zs(λs)
exp

(
γ>s u− u> diag (Λs) u

2

)
, (35)

and therefore s(u) is an independent Gaussian distribution,
i.e. s(u) = N (u : diag

(
Λ−1
s

)
γs,diag

(
Λ−1
s

)
).

Note that, given the vector of moments in (24), any choice
for the functions fq(u) and fr(u) different to (26), where
some discrete priors are multiplied together with the Gaussian
likelihood term p(y|u), would result in q(u) or r(u) being
an hybrid distribution, with some components taking values
only in A and some other components taking real values.
In such a case, evaluating the moments E[φ(u)] would be
an issue. On the other hand, while many other statistics can
be included in the vector φ(u), e.g. cross moments of the
form uiuj for some or all pairs of variables, we will show
in the experimental results session that our choice in (24)
drives a robust and accurate MIMO detector. For instance, in
the experimental section we show that the EC-based MIMO
detector average mutual information in (7) is very close to the
optimal detector for an scenario where the true posterior can
be evaluated. Hence, there is little room for improvement of
the EC solution by including higher order moments in φ(u).

V. OPTIMIZING THE MIMO EC FREE ENERGY

As described in the previous section, the goal in EC infer-
ence is to find (γq,Λq) and (γs,Λs) such that q(u) in (27),
r(u) in (31) (evaluated at γr = γs − γq and Λr = Λs −Λq)
and s(u) in (35) satisfy

Eq[ui] = Er[ui] = Es[ui] (36)

Eq[u2
i ] = Er[u2

i ] = Es[u2
i ] (37)

for i ∈ [2m].

To achieve such a point, we present two algorithms. The
so-called single loop (SL), iteratively updates either (γq,Λq)
or (γr,Λr) and follows a message-passing procedure. The
resulting algorithm has approximately the MMSE complexity
per iteration (see Table I). On the other hand, by exploiting the
fact that the EC free energy in (21) is a convex function w.r.t.
(γq,Λq), the so-called double loop algorithm (DL) performs
iteratively a convex optimization to set (γq,Λq) for fixed
(γs,Λs) to then update the latter. Simulation results in Section
V-C show that the DL algorithm typically converges to a
point closer to the stationarity conditions in (36)-(37). As a
caveat, its complexity is extremely large (see Table I) and we
would rather use it as a benchmark to improve the single loop
approach.

It is important to remark that, for both algorithms, conver-
gence to (36)-(37) is not guaranteed [39]. Actually, in most
cases we observe that both algorithms get stuck in a (λq,λr)
point for which these parameters do not change anymore but
at the same time the moment matching (MM) condition is not
fully met. Our goal is to design robust algorithms to optimize
the EC free energy such that they converge to stable (λq,λr)
points that are as close to the MM condition as possible.

A. The EC MIMO detector with single loop updates

We initialize (γq,Λq) such that q(u) in (27) coincides
with the MMSE Gaussian approximation, i.e., γ(0)

q = 0

and Λ
(0)
qi = E−1

s ∀i ∈ [2m] [13], [24]. The main steps
are summarized Algorithm 1. The complexity per iteration is
dominated by the computation of the covariance matrix of
the q(u) distribution in (27) at step 1) of the algorithm. This
complexity is O(m3), but independent on the constellation
size M . After the matrix inversion, computing the mean of
q(u) requires O(m2) operations. Computing the r(u) mean
and variance in (32) and (33) requires O(mM) operations.

Algorithm 1 The EC MIMO detector with SL updates
Fix a damping factor β. Set maximum number of iterations
IEC-S. Set ` = 0.
Initialize γ(0)

q = 0 and Λ
(0)
qi = E−1

s i ∈ [2m].
repeat

1) Given γ(`−1)
q ,Λ

(`−1)
q , compute Eq[ui] and Eq[u2

i ], i ∈
[2m].
2) Compute γ(`)

s ,Λ
(`)
s such that Es[ui] = Eq[ui] and

Es[u2
i ] = Eq[u2

i ], i ∈ [2m].
3) Update γ(`)

r = γ
(`)
s − γ(`)

q , Λ
(`)
r = Λ

(`)
s −Λ

(`)
q .

4) Given γ(`)
r ,Λ

(`)
r , compute Er[ui] and Er[u2

i ], i ∈ [2m].
5) Compute γ(`)

s ,Λ
(`)
s such that Es[ui] = Er[ui] and

Es[u2
i ] = Er[u2

i ], i ∈ [2m].
6) Update

γ(`)
q = β

(
γ(`)
s − γ(`)

r

)
+ (1− β)γ(`−1)

q

Λ(`)
q = β

(
Λ(`)
s −Λ(`)

r

)
+ (1− β)Λ(`−1)

q

7) ` = `+ 1
until convergence (or ` > IEC-S)
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The complexity of the rest of steps does not depend on the
constellation and thus the complexity is O(m). Therefore, if
the algorithm is run for IEC-S iterations, the final complexity
is O(m3IEC-S +m2IEC-S +mMIEC-S +mIEC-S).

Numerical issues arise due to the fact that we are propagat-
ing moments between a continuous and a discrete distribution,
particularly in scenarios where all the mass of the marginal
r(ui) distribution is concentrated in a small region of a
potentially very large QAM constellation. This leads to small
values of the marginal variance Varr[ui] and, consequently, Λsi
may diverge in step 5). In order to avoid numerical issues,
we implement a damping (low-pass filter) in the update of
(γq,Λq) at step 6) of Algorithm 1. Smoothing parameter
updates via damping is a fairly common technique to stabilize
approximate inference iterative algorithms. See for instance
[47]–[49] for discussions on message-passing stabilization.

B. The EC MIMO detector with double loop updates

The double loop algorithm is based on a simultaneous
update of both q(u) and r(u) at every iteration by solving the
following convex optimization problem for a fixed (γs,Λs)

(γ∗q ,Λ
∗
q) = arg min

(γq,Λq)
logZEC(γq,γs,Λq,Λs) (38)

= arg min
(γq,Λq)

(logZq(γq,Λq) + logZr(γs − γq,Λs −Λq))

At (γ∗q ,Λ
∗
q), both q(u) and r(u) have the same moments.

Then, (γs,Λs) is recomputed to enforce moment matching (as
in step 2) of Algorithm 1). Instead of using the distribution
s(u) to iteratively communicate the moments between q(u)
and r(u), as the single loop algorithm does, note that the
double loop is directly optimizing together both q(u) and r(u)
to then update s(u). The main steps are outlined in Algorithm
2. We could use standard gradient descend to numerically
solve (38) in step 1). Note that in (28), evaluating the gradient
of logZq(γq,Λq) w.r.t. (γq,Λq), requires a matrix inversion
and a matrix product and thus a complexity of O(m3 +m2).
If D denotes the number of gradient descend steps and
IEC-D is the number of iterations, then the complexity is
O(m3DIEC-D +m2DIEC-D +mIEC-D).

Algorithm 2 The EC MIMO detector with DL updates
Fix a damping factor β. Set maximum number of iterations
IEC-D. Set ` = 0.
Initialize γ(0)

s = 0 and Λ
(0)
si = E−1

s i ∈ [2m].
repeat

1) Given γ(`−1)
s ,Λ

(`−1)
s , solve the convex optimization

in (38).
2) Compute γ(`)

s ,Λ
(`)
s such that Es[ui] = Eq[ui] and

Es[u2
i ] = Eq[u2

i ], i ∈ [2m].
3) Update

γ(`)
s = β

(
γ(`)
s

)
+ (1− β)γ(`−1)

s

Λ(`)
s = β

(
Λ(`)
s

)
+ (1− β)Λ(`−1)

s

4) ` = `+ 1
until convergence (or ` > IEC-D)

C. Assessing convergence

The moment matching condition in (36) and (37) represents
the optimal operational point of the EC approximation. We em-
phasize that this notion of optimality is measured in terms of
moment matching between tractable approximations to p(u|y)
(q(u) and r(u) respectively), and not w.r.t. the distribution
p(u|y) itself.

For our experiments, we study the evolution of the following
two quantities along iterations of the single loop EC MIMO
detector:

∆u =
1

2m

2m∑
i=1

∣∣∣Eq[ui]− Er[ui]
∣∣∣, (39)

∆u2 =
1

2m

2m∑
i=1

∣∣∣Eq[u2
i ]− Er[u2

i ]
∣∣∣. (40)
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∆
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Double Loop

(a)
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10−4

10−3

10−2

10−1
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Single Loop iteration index `

∆
u
2

(b)

Fig. 3. We represent ∆u and ∆u2 for an 5 × 5 scenario with QPSK
modulation at a SNR of 6dB, averaged over 104 realizations of both the
channel matrix H and received vector y.

In Fig. 3 we represent ∆u and ∆u2 for a 5×5 scenario with
QPSK modulation at a SNR of 6dB, averaged over 104 real-
izations of both the channel matrix H and received vector y.
According to Fig. 2, this SNR value is far from the saturation
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Fig. 4. In (a)-(b), we represent ∆u and ∆u2 for an 32× 32 scenario with QPSK modulation at a SNR of 6dB, averaged over 104 realizations of both the
channel matrix H and received vector y. In (c)-(d), we reproduce the results for an 32× 32 scenario with 64-QAM modulation at a SNR of 21dB.

regime (largest gap to channel capacity), and it is in this range
where we aim the EC detector at substantially improving state-
of-the-art methods. With dotted black line we represent the
double loop benchmark, computed for IEC-D = 50 iterations.
At every iteration, we found that D, the number of gradient
descend updates at step 1) of Algorithm 2, has to be to a very
large value until the gradient norm was below a threshold of
0.1. We set an upper limit of D = 2000 and a gradient descend
step-size of 10−3. We remark that every gradient descend step
is as complex as a single iteration of the single loop EC
algorithm.

Three implementations of the SL algorithm are compared
in Fig. 3. For the red solid line we have used β = 0.2, i.e.,
a very slow parameter update in step 6) of Algorithm 1. The
opposite case is represented by the green dashed line, which
has been computed with β = 0.95. While the β = 0.2 case
approaches the double loop solution, achieving ∆u and ∆u2

around 10−3, it requires in average 25 iterations to converge to
such a stationary point. Recall that each single loop iteration
is as complex as computing the MMSE estimate, due to the
matrix inversion in (27). On the other hand, the β = 0.95 case
quickly saturates (around 10 iterations), but its solution is still
far from the MM condition.

In order to achieve a better trade-off between accuracy and
complexity, we maintain the fast updates using β = 0.95, but

modify the parameter update in Algorithm 1 and introduce
a gradual decrease in the variance per component allowed at
each iteration. More precisely, we set an iteration-dependent
minimum value of the variance Es[u2

i ] at step 5) of Algorithm
1 of the following form:

Vars[ui] = max
(

2−max(`−4,1),Varr[ui]
)
, (41)

namely during the first 5 iterations we set a reasonably mini-
mum high variance per component (0.5) and, from iteration 4,
we let this minimum value to decrease exponentially fast with
`. The convergence of this implementation of the EC algorithm
is represented in Fig. 3 with blue dashed-dotted lines. Observe
that an improvement is achieved w.r.t. the β = 0.95 case,
reducing the gap w.r.t. to the stationary point achieved by
β = 0.2, without a significant penalty in speed of convergence,
as it typically converges in less than 10 iterations. These effects
are even more evident when we move to higher-dimensional
scenarios. In Fig. 4 we consider a 32 × 32 scenario with
QPSK (a)-(b) and 64-QAM modulation (c)-(d). Convergence
speed is actually maintained and the gap w.r.t. the β = 0.2
case is clearly reduced. While the parameter update in (41)
was obtained heuristically after an intense empirical evaluation
of the algorithms, we interpret the improvement achieved as
follows. Setting a high-variance parameter during the first
iterations of the algorithm is crucial in the low-SNR regime in
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TABLE I: Complexity order of different r ×m MIMO detectors.
In iterative algorithms, IX denotes the number of iterations. D is the
number of gradient descend steps for the double-loop EC detector.

MIMO detector Complexity order

Optimal detector Mm

MMSE m3 +m2 +mM
soft MMSE-SIC [25] O(m3 +m2 +mr3 +mr2 +mM)
GTA [26] m3 +m2M
CHEMP [28] rm2 ICHEMP

EC (Single L.) m3IEC-S +m2IEC-S +mMIEC-S +mIEC-S

EC (Double L.) m3DIEC-D +m2DIEC-D +mIEC-D

order to avoid over-fitting. For large values of β, we observed
that the single loop EC algorithm performance is degraded
by very small values of the r(ui) variance (Varr[ui]) at early
iterations (step 4) of Algorithm 1, indicating a very peaky
distribution around a small region of the QAM constellation.
Note that a very small variance is propagated to the s(ui)
distribution at step 5) of Algorithm 1 with very large values
of Λsi. According to (35), we have

Λ−1
si = Vars[ui] = Er[u2

i ]− (Er[ui])2
= Varr[ui], (42)

and the same effect is propagated to Λqi at step 6) of
the algorithm unless β is small enough. Very large values
of Λqi will dominate the diagonal of the matrix in (27)
and, ultimately, this implies that successive steps of the EC
algorithm will not be able to significantly change the ui
marginal distribution anymore. Note that this is dramatic to the
algorithm performance if the mode of the r(ui) distribution
is placed at the wrong symbol, which is likely to happen at
high-noise levels.

Instead of using small values of β to control sudden changes
in parameter updates, with the update in (41), we propose
an easy way to artificially control overconfident distributions
at early steps of the algorithm, which would restrain the EC
algorithm to move far away from the MMSE initial estimate.
We note that using the EC moment matching criterion many
other variants of the single loop update methods can be tested
and compared with our proposal. However, no significant dif-
ferences have been appreciated when we measure the system
performance in terms of the mutual information in (7) or
system bit error rate (BER). In the rest of the paper, regardless
of the dimension of the system or constellation order, we
implement the EC detector using the single loop approach
with β = 0.95, the progressive variance limit in (41) and a
maximum number of iterations of IEC-S = 10.

D. Complexity

In Table V-D we summarize the main complexity order
of the algorithms presented and those that will be used in
our simulation experiments in the next section. In iterative
algorithms, IX denotes the number of iterations. As a rule of
thumb, if we run the EC MIMO detector using IEC-S = 10
iterations, the incurred complexity is around 10 times larger
than the MMSE, GTA and CHEMP complexities. However,

6 8 10 12 14

1

2

3

4

SNR

1 m
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Fig. 5. For an 5× 5 MIMO system with QPSK modulation, in (a) we show
the achievable transmission rates. In (b), we include simulated performance
when a (3, 6)-regular LDPC code with block length 5120 bits is used.

the significant gain in performance that we report in the next
section can justify the increased-complexity of the proposed
EC detector.

VI. EXPERIMENTAL RESULTS

In the following, we include simulation performance results
that demonstrate the accuracy of the EC approximation. In our
experiments, we compare our proposal with the soft output
MMSE solution in [13], [24], the soft version of the MMSE-
SIC in [25], the GTA algorithm in [26], and the CHEMP
method in [28]. To avoid cluttering, we do not include in
our experiments the GMPID algorithm [30], since it performs
close to CHEMP. For similar reasons, we do not include the
EP method proposed in [33], since it performs similarly to
GTA when used for probabilistic detection [36].
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Fig. 6. Transmission rate computed for an m = r = 32 MIMO system and different constellation orders with QPSK modulation (a), 16-QAM modulation
(b), 64-QAM modulation (c) and 256-QAM modulation (d).

A. A Low Dimensional MIMO System

Consider again the 5 × 5 scenario with QPSK modulation
described in Fig. 2. Recall that the dimensionality is small
enough so we are able to solve the marginalization in (8)
exactly, which represents the optimal detector. In Fig. 5(a) we
include now the results for the EC MIMO detector. Remark-
ably, it essentially overlaps the optimal detector performance,
achieving a large gain w.r.t. GTA, MMSE and CHEMP. When
the number of antennas is small (5 in our case), the columns
of the channel matrix H are typically non-orthogonal and this
limits the MMSE performance [13], [24]. Also, the CHEMP
method relies on the matrix m−1H>H being diagonal and for
a small m, this assumption is unrealistic [28].

Results in Fig. 5(a) indicate that the MIMO system perfor-
mance will highly benefit from the more accurate estimates to
the symbol posterior marginals p(ui|y) provided by the EC de-
tector. To corroborate this fact, we augment the system model
in Fig. 1 by including an LDPC channel encoding stage at the
transmitter and an LDPC channel decoder at the receiver. The
LDPC channel decoder is fed by soft coded bit probabilities
computed using the symbol posterior marginals p(ui|y) (or
their estimates), according to the bit-modulation mapping. It
is well known that the more accurate the probabilistic detector

is, the better performance is obtained after the LDPC decoding
stage using BP [24], [50], [51]. In Fig. 5(b), we show for
this scenario the simulated BER measured after the LDPC
decoding stage (solid lines). A (3, 6)-regular LDPC code with
block length equal to 5120 bits has been used. Note that, to
simulate the coded performance, the SNR definition in (2) is
corrected by the coding rate R (the coding rate is R = 0.5 in
the case of (3, 6)-regular LDPC code). To avoid confusion, we
denote this by SNRc, and thus SNRc(dB)=SNR+10 log10(R).
Results have been averaged over 5000 realizations of the
channel matrix H. In terms of coded performance, the gap
between optimal detection and EC is only about 0.4 dB
measured at a BER of 10−4 while the gap to GTA is over
1.5 dB. In all scenarios observe that, while the soft MMSE-
SIC method always improves MMSE, and also GTA al low
SNR values, its performance is still far from the EC detector.

B. A 32× 32 MIMO system

In a larger scenario, exact marginalization is not viable
anymore and we fully rely on approximate methods. In Fig. 6,
we represent the obtained achievable rates for a 32×32 MIMO
system using QPSK modulation (a), 16-QAM modulation
(b), 64-QAM modulation (c), and 256-QAM modulation (d).
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Fig. 7. For an 32×m MIMO system with 16-QAM modulation, in (a) we show the achievable transmission rates for different m values. In (b), we include
simulated performance when a (3, 6)-regular LDPC code with block length 5120 bits is used.

While CHEMP and EC are competitive for the QPSK case,
CHEMP is no longer a viable option in the 16-QAM or
64-QAM cases. As discussed in [28], the variance of the
interference noise that CHEMP aims to iteratively cancel
grows with the constellation order. For m = r and high
order constellations the interference noise becomes excessively
large. Note that the soft MMSE-SIC method always improves
MMSE and GTA al low-intermediate SNR values but still its
performance is far from the EC detector.

Following [28], it can be checked that CHEMP becomes
effective again as we reduce the number of transmitting
antennas, i.e., if m < r. In Fig. 7 (a), we compare the EC
and CHEMP transmission rates for a 16-QAM modulation
with r = 32 and m = 16, 26 and 32. In (b), we include
BER simulation results using the (3, 6)-regular LDPC code
with block length equal to 5120 bits. For small m values,
CHEMP is comparative to the EC solution. However, its
performance is severely degraded as m approaches r. CHEMP
can be regarded as a Gaussian message-passing distributed
implementation of the EC algorithm for those cases where
interference is “locally” tractable. Unlike CHEMP, the EC al-
gorithm performs the update of all parameters at the same time
in a centralized manner. These results show that EC MIMO
detector is robust against the increase in the constellation order.
In the following we solely consider m = r scenarios with
high order constellations and hence we omit CHEMP from
the results.

We complete the study of this scenario by including BER
performance results using LDPC constructions that are de-
signed to improve the performance of the (3, 6)-regular LDPC
code used in previous experiments. In Fig. 8 with dashed lines
we show the performance of the rate-1/2 irregular LDPC code
in [6, Example 3.99] with block length equal to 30720 bits. We

also include simulation results (solid lines) for a convolutional
LDPC (LDPCC) code constructed by spatially-coupling 48
independent copies of a (3, 6)-regular LDPC code, each having
block length of 640 bits, with low-rate terminations [52]. The
resulting coding rate is 0.479 and the total block length is
30720 bits. For the irregular LDPC code, at moderate SNR EC
is able to provide a significant gain, which vanishes at high
SNR because of the LDPC error floor. In contrast, because
the LDPCC code has large minimum distance, no error floor
has been observed in the range of SNR considered and EP
achieves a stable gain of 2.5 dB with respect to GTA. Finally,
with dotted lines we include simulation results for a LDPCC
code3 with the same block length but constructed by spatially-
coupling 48 independent copies of a (3, 24)-regular LDPC
code. The resulting coding rate is 0.869.

VII. CONCLUSIONS

Probabilistic symbol detection is a fundamental problem in
high-dimensional MIMO communications since the accuracy
of the method employed to approach the true posterior solution
may bring significant performance gains when combined with
a modern capacity-approaching channel coding scheme. In
this paper we have shown how the EC approximate infer-
ence methodology, when applied to the posterior probability
distribution of the transmitted symbols, can lead to accurate
estimates of the marginal distribution for each transmitted
symbol. Further, by computing the average per-antenna mu-
tual information between the transmitted symbols and those
distributed according to the EC output, we have shown that
the system achievable rate heavily depends on the probabilistic
detector accuracy and thus the importance of this stage cannot

3LDPCC codes are generated using protographs [53] in order to optimize
its minimum distance, as described in [54].
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Fig. 8. System performance of an 32× 32 16-QAM using the irregular rate-1/2 LDPC code in [6, Example 3.99] with (dashed lines) block length 30720
bits, a (3, 6)-regular LDPC convolutional code (solid lines) with the same block-length and coding rate 0.479, and a (3, 24)-regular LDPC convolutional
code (dotted lines) with the same block-length and coding rate 0.8698 [54].

be diminished by using a more powerful channel code. This
is actually corroborated by testing the system performance
when we combine the probabilistic output of the symbol
detectors with an LDPC channel decoder based on belief
propagation. The presented EC probabilistic MIMO detector
has cubic complexity with the number of antennas and it is
able to greatly improve state-of-the-art methods within only
10 iterations, where a matrix inversion has to be performed
per iteration.
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