
This is a postprint version of the following published document:

Hazra, S., Duquennoy, S., Wang, P., Voigt, T., Lu, C. y Cederholm, 
D. (2019). Handling Inherent Delays in Virtual IoT Gateways. In 2019
15th International Conference on Distributed Computing in Sensor
Systems (DCOSS).

DOI: https://doi.org/10.1109/DCOSS.2019.00031

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/

republishing this material for advertising or promotional purposes, creating new 

collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works. 



Handling Inherent Delays in Virtual IoT Gateways
Saptarshi Hazra, Simon Duquennoy, Thiemo Voigt

RISE SICS
Stockholm, Sweden

{firstname.lastname}@ri.se

Peng Wang
KTH

Stockholm, Sweden
pengwang@kth.se

Chenguang Lu, Daniel Cederholm
Ericsson Research

Stockholm, Sweden
{firstname.lastname}@ericsson.com

Abstract—Massive deployment of diverse ultra-low power
wireless devices in different application areas has given rise to
a plethora of heterogeneous architectures and communication
protocols. It is challenging to provide convergent access to
these miscellaneous collections of communicating devices. In
this paper, we propose VGATE, an edge-based virtualized IoT
gateway for bringing these devices together in a single framework
using SDRs as technology-agnostic radioheads. SDR platforms,
however, suffer from large unpredictable delays. We design
a GNU Radio-based IEEE 802.15.4 experimental setup using
LimeSDR, where the data path is time-stamped at various
points of interest to get a comprehensive understanding of the
characteristics of the delays. Our analysis shows that GNU Radio
processing and LimeSDR buffering delays are the major delays.
We decrease the LimeSDR buffering delay by decreasing the USB
transfer size but show that this comes at the cost of increased
processing overhead. We modify the USB transfer packet size to
investigate which USB transfer size provides the best balance
between buffering delay and processing overhead across two
different host computers. Our experiments show that for the best
measured configuration the mean and jitter of latency decreases
by 37% and 40% respectively for the host computer with higher
processing resources. We also show that the throughput is not
affected by these modifications.

Keywords-Software Radio; Edge Computing; Internet of
Things; RAN Virtualization; IEEE 802.15.4

I. INTRODUCTION

The Internet of Things (IoT) enables communication among
huge numbers of diverse low-power devices. According to an
estimate by Ericsson [1], there will be 20 billion connected
devices by 2023 used in a wide variety of applications like
healthcare [2], smart cities [3], smart industries [4] and envi-
ronmental monitoring [5]. The rapid growth of these solutions
has led to a plethora of different heterogeneous architectures
and protocols solving specific use cases [6]. This results in
the fragmentation of the protocol space with a wide range
of options available like IEEE 802.15.4, Wireless Local Area
Network (WLAN), Bluetooth Low Energy (BLE) and Narrow
Band IoT (NB-IoT). Future application areas like smart indus-
try and smart cities will need to provide convergent access to
this miscellaneous collection of communication protocols at
the IoT gateway to satisfy different application demands.

Previous approaches [7], [8], [9], [10], [11] try to sup-
port these diverse protocols by incorporating dedicated radio
hardware for each of the supported communication protocols.
As the number of protocols increases, scaling and upgrading
these systems become inconvenient. Furthermore, the use of

specialized hardware makes it difficult to future-proof these
systems.

In this paper, we propose VGATE – Virtualized Gateway,
an edge-based IoT gateway architecture, providing convergent
access to the wireless medium using Software Defined Radio
(SDR). SDR implements the physical layer (PHY) for the
communication protocols in software which enables experi-
mentation with the physical layer protocols. Future revisions
can easily be incorporated by software updates, making it
possible to future-proof the system. This, however, comes at
the cost of additional latency and unpredictability of execution
times as we move the processing from specialized hardware to
general purpose software systems. Previous studies [12], [13],
[14] have highlighted that these additional delays are quite sig-
nificant and result in interoperability problems with dedicated
commercial off-the-shelf (COTS) platforms. A comprehensive
characterization of these delays is, however, missing. Hence, in
this paper, we develop an understanding of the characteristics
of these delays. Finally, we propose a solution to reduce these
delays.

Access Point
(AP)

Access Point
(AP)

Protocol
Stack #1

Protocol
Stack #2

Protocol
Stack #3

EDGE
Kubernetes 

Gateway

Radiohead
Access Point

(AP)

SDR SDR SDR

Ethernet
Connection

USB 3.0USB 3.0USB 3.0

Fig. 1. VGATE: Edge based virtualized RAN architecture for IoT Gateways

We make the following contributions in this paper:

• We propose VGATE, an edge-based virtualized Radio
Access Network (RAN) architecture for IoT gateways. It
makes IoT deployment more flexible by bringing together
multiple protocol stacks in a single framework.

1



• We evaluate the delays associated with our architec-
ture. For our measurements, we use a LimeSDR-based
IEEE 802.15.4 experimental setup. Our measurements
show that the LimeSDR buffering delay and GNU Radio
processing time are the major bottlenecks in our archi-
tecture.

• We address the LimeSDR buffering delay by reducing
the USB transfer packet size. Our results show that we
achieve a latency improvement of approximately 37%
while we decrease the standard deviation associated with
the latency measurements by 40%.

The paper proceeds as follows: Section II introduces the
VRAN architecture and the need for delay analysis. Our design
choices and implementation are described in Section III.
Section IV describes our experimental setup and presents our
results. We describe related work in Section V. Finally, we
present concluding remarks in Section VI.

II. VGATE ARCHITECTURE

In this section, we discuss our VGATE architecture and the
need for timing characterization in VGATE.

Fig. 1 shows the VGATE architecture. It is divided into two
halves: gateway and radiohead. The radiohead is responsible
for managing access and transferring data to and from the
wireless medium. The gateway hosts the core signal processing
processes of different communication protocols. The radio-
head components and the gateway processes are configured
and managed by a central control entity which builds a global
view of the entire system.

Most of the communication protocols for connected devices
such as IEEE 802.15.4, LoRaWAN, BLE and Wi-Fi use the
ISM band located around 2.4 GHz and 868 MHz. The spectral
coexistence of these protocols can be leveraged to design an
access point that provides convergent radio access for these
protocols. In our architecture, we have multiple access points
sampling the radio spectrum at different frequency bands and
different geographic locations using SDRs. This helps to unify
the radio channel access for an application area into a single
architecture.

In order to ensure a low end-to-end latency between the
nodes and the gateway, the transport delay between the gate-
way and radiohead should be kept minimal. We use the edge
of the network for deployment of gateway processes as it
enables low latency transport as compared to a cloud-based ar-
chitecture [15]. Incorporating the gateway functionality at the
access point will provide the lowest latency, but centralization
at the edge provides scalability and flexibility of deployment.
The gateway hosts the complete software protocol stacks for
different supported protocols and can be scaled by adding
more software stacks. This allows experimentation and future-
proofs the system by enabling software updates of the protocol
stacks all the way down to the PHY layer.

The protocol stacks are deployed as own self-contained
containers which are managed by a Kubernetes orchestrator.
The central control entity manages a logical view of the
architecture, whereas the Kubernetes orchestrator manages

the actual mapping of these protocol stacks to computing
resources. We use ethernet connections between the gateway
and radiohead of the VGATE architecture since there exists a
mature collection of transport protocols over ethernet.

Before being deployable, our architecture still has to over-
come some challenges, in particular, the delays and jitter
imposed by the use of SDR to design the physical layer in
software. These delays make it difficult to meet the round-trip
times defined in the protocol specification of some protocols
such as IEEE 802.15.4. To get a basic understanding of the
delays, we evaluate the latency of a standalone implementation
using IEEE 802.15.4 at 2.4 GHz as our representative IoT
protocol. We use the standalone setup shown in Fig. 3. In this
setup, a single host computer is connected to an SDR platform.
Fig. 2 presents these baseline measurements.

1 56 112
Message Size (in bytes)

0

200

400

600

800

1000

1200

1400

Ti
m

e 
(

s)

Fig. 2. Baseline Measurements: Latency measurements are shown along
the vertical axis, with the MAC data payload size shown along the horizontal
axis.

We encode a message from the host computer using the
IEEE 802.15.4 MAC and PHY. This message is loopbacked by
the SDR RF front end. Finally, the message is decoded on the
same computer. We define the round trip time for a message
as latency. Our experiments show that the lowest latency is
1165µs, which is more than five times the 198µs specified
by the IEEE 802.15.4 protocol for the acknowledgment of
data packets. For practical deployments of VGATE we need
to understand the cause of these delays and how to minimize
them. In this paper, we concentrate on these two questions as
they are central to determining the applicability of VGATE for
different IoT protocols.

III. DESIGN & IMPLEMENTATION

The major delays in VGATE can be decomposed into two
main components: Transport delay over ethernet connections
and delays associated with SDR implementation of the phys-
ical layer. Chang et al. [16] show the possibility of transport
delays in the order of microseconds over ethernet using UDP
and raw ethernet sockets. Montarezi et al. [17] and Miao et
al. [18] present ethernet transport delays of less than 100 µs by
using user space network stacks. In this paper, we focus on the
delays associated with the SDR as these previous approaches
demonstrate the feasibility of low latency data transfer over
ethernet connections. In order to investigate the SDR delays,
we converge the gateway and radiohead functionality into a
standalone implementation using a single protocol stack. We

2



chose IEEE 802.15.4 as our representative IoT PHY protocol,
as it is one of the most widely used PHY protocols in Low
Power Wireless Area Network (LPWAN) with the Zigbee,
Thread and 6LoWPAN protocol stacks built on top of it.

Host Computer

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

GNU Radio

LimeSDR

USB 3.0

Fig. 3. Implemented System: We design a standalone setup, which uses
GNU Radio as the digital signal processing framework. The IEEE 802.15.4
PHY and MAC are implemented inside the GNU Radio. The host computer
communicates with the LimeSDR over a USB 3.0 connection.

We chose GNU Radio as our software digital signal pro-
cessing framework as it is the most complete SDR software
framework available and is open source, allowing us to modify
it according to our needs. As we envision these gateways
to be ubiquitous the cost of the SDR platform should be
considered. We selected LimeSDR as our platform as it is
cost effective as compared to the traditionally used Universal
Software Radio Peripheral (USRP) platforms. Furthermore,
LimeSDR supports the ISM bands located around 2.4 GHz
and 868 MHz.

Fig. 3 shows the overview of our implemented system.
The IEEE 802.15.4 Medium Access Control (MAC) and PHY
are implemented by adapting the implementation from the
WIME [19] project as individual blocks in the GNU Radio.
The IEEE 802.15.4 PHY communicates with the LimeSDR
over a USB 3.0 bus connection.

IV. EVALUATION

A. Experimental Setup

As we are interested in better understanding the reasons
behind the delays inherent to our implementation, we decided
to ignore the over the air transmission delay. We use a Radio
Frequency (RF) loopback configuration on the LimeSDR,
where the Transmit (TX) RF front-end path is connected
to the Receive (RX) RF path. This configuration uses the
complete LimeSDR data path including the digital to analog
domain and analog to digital domain conversion. Hence, our
measurements will emulate the delays experienced by actual
RF transmissions and receptions. In order to test the functional
validity of the IEEE 802.15.4 MAC and PHY, we communicate
to a Zolertia firefly in the broadcast mode using our setup.
Component Delays This paper defines seven different delays
for the purpose of finding performance bottlenecks introduced
by different software and hardware components in this imple-
mentation. The reasoning behind the choice of delays are as
follows:

1) GNU Radio TX Processing Delay This provides the
delays incurred to complete the signal processing of
IEEE 802.15.4 PHY modulation.

2) LimeSDR TX Driver Delay The time it takes the driver
to pack the data into the data packet structure understood
by the LimeSDR FPGA can be an important metric to
show if the driver needs a closer look for optimization.

3) User Space to Kernel Space Delay This delay high-
lights the impact of Linux process scheduler and context
switching from user space to kernel space on the per-
formance.

4) LimeSDR loopback Delay The time taken by the USB
3.0 bus transfer, the buffering in the LimeSDR FIFOs
and the hardware processing delays provides an insight
on how the transfer of data from the host computer to
the LimeSDR and vice versa impacts the performance.

5) Kernel Space to User Space Delay It is similar to the
user space to the kernel space delay specified earlier. It
is measured on the RX path of the setup, whereas user
space to kernel space delay is measured on the TX path.

6) LimeSDR RX Driver Delay It provides the time needed
to unpack the data packets coming from the LimeSDR
and forward the samples to the GNU Radio flow graph.
It also includes the buffering time in case the GNU
Radio RX flow graph is unable to process the samples
at the rate they are being generated.

7) GNU Radio RX Processing Delay It provides the
delays introduced by the RX processing in GNU Radio.

Component delay measurements In order to quantitatively
evaluate these delays, we timestamp the experimental setup at
different layers of the software process. The timestamp method
allows us to measure the actual delays at execution time. This
method introduces very low overhead, hence it does not alter
the actual measurements which we tested by doing a latency
(T8-T1) comparison with and without the timestamps.

We define eight different timestamps for the measurements
of the component delays mentioned previously. The experi-
mental setup shown in Fig. 4 exhibits the different interacting
software layers in our system and the corresponding time-
stamps for each software layer. We concentrate on finding the
last execution statement applied to the data in each software
layer using static code analysis. For the TX path, we take the
timestamps at the output of each layer as shown in Fig. 4.
For the RX path, we take the timestamps at the input of each
layer. Note that we measure T8 when the IEEE 802.15.4 Start
of Frame Delimiter (SFD) is detected in the IEEE 802.15.4
packet detector. This allows us to evaluate the latency (T8 -
T1) as per standard definition.

We define the following relationship between these times-
tamps and the component delays:

• T2-T1: GNU Radio TX Processing Delay
• T3-T2: LimeSDR TX Driver Delay
• T4-T3: User Space to Kernel Space Delay
• T5-T4: LimeSDR loopback Delay
• T6-T5: Kernel Space to User Space Delay

3



Periodic
Message
Source

802_15_4
MAC+PHY

LimeSDR Driver 

USB Host
Controller

USBMON
main

Timing
Measurements

Program

LIMESDR

T1 T8

T5T4

Kernel Space

User Space

File

T2 T7 

T3 T6 

GNURadio

LimeSDR

TX

RX

TX
Path

RX
Path

Fig. 4. Experimental Setup Overview of various timestamps and their
association to the software layers.

• T7-T6: LimeSDR RX Driver Delay
• T8-T7: GNU Radio RX Processing Delay
In order to ensure that the LimeSDR loopback delay is as

accurate as possible to the delay contributed by the buffering
in LimeSDR and bus transfer delays, we decided to measure
T4 and T5 using the timestamps from the USB host con-
troller. We use the USBMon kernel utility to monitor the
urb_submit and urb_request calls to and from the
USB host controller. Each USB Request Block (URB) has
an associated timestamp which is generated by the kernel
USB driver and the USB host controller for urb_submit
and urb_request respectively. Once the events have been
received from the USBMon event queue, it is necessary to find
the relevant USB transfers in these events. We adopt an offline
processing approach, as compared to runtime measurement.
Runtime measurements add processing overhead which will
impact the component delays. A separate program Timing
Measurement Program (shown in Fig. 4) collects all the
events and writes the relevant samples together with the URB
timestamps to a file. We measure the timestamps T4 and T5
from this data file after the execution of the experiments.

Since we use analog loopback, the TX sample value changes
as it is converted to analog domain and again sampled to digital
RX samples. For this reason, the sample values in the TX and
RX USB packets cannot be directly compared to find when
the same sample is returned. Hence, we use cross-correlation
to match the TX and RX USB transfers and find the time shift
of the RX samples from the TX samples. The time axis for
both the TX and RX samples is enumerated with the URB
timestamps of the USB packets. The cross-correlation gives
us the URB timestamp for the starting of the relevant samples

of the received IEEE 802.15.4 packet, which we define as our
T5. As the TX stream only contains samples from sent TX
packets,we use a threshold on the digital sample values to
find T4.

In order to minimize the processing overhead and file
operations, we measure T6 and T7 for all execution calls
in the LimeSDR driver and the GNU Radio. This creates a
problem of correlating the timestamps together as there are
multiple T6 and T7 for a single T5, T8 combination. We use the
knowledge that the processing time in each of these software
layers should be finitely positive, so all the relevant timestamps
should follow the relation T8 > T7 > T6 > T5 to find all
possible values of T6 and T7 which satisfy this condition. We
take the first value among these possibility sets as our T6 and
T7.
Measurement Setup We add a periodic message source in our
measurement setup for generating MAC payloads of a specific
size, which allows us to evaluate the impact of MAC payload
size on the different component delays. The periodicity of the
MAC payload generation is set to 500 ms in order to make
each measurement independent of the previous. We run our
experiments for 500 seconds. This results in 999 messages
for measuring the components delays over wider experimental
dataset. As the software computation is CPU intensive, we
use two host computers in order to evaluate the impact of the
host computer processing resources on the characteristics of
the component delays. We refer to the two host computers as
’laptop’ and ’desktop computer’, the hardware specifications
for these are shown in Table I. The ’desktop computer’ has
better processing resources, because of higher CPU clock
speed, and two more hardware CPU cores. It uses Ubuntu
16.04.5 LTS as the operating system whereas the laptop uses
Elementary OS built on Ubuntu 16.04.5 LTS as its operating
system.

TABLE I
HARDWARE SPECIFICATIONS

Resource Laptop Desktop Computer

CPU Intel i5-4300U Intel i5-3470
CPU Clock

Speed 1.9 GHz 3.2 GHz

CPU Cores 2 4
CPU threads 4 4

RAM 7.9 GB 15.6 GB

B. Understanding delays

We performed two experiments for understanding the com-
ponent delays and the impact of two parameters: MAC data
payload size and USB transfer size on these delays. The results
and our analysis are summarized below.
Experiment 1:
Motivation The impact of data size on the component delays
is necessary to understand how the delays scale if we want
to use large packet sizes in our system. This experiment is
designed to provide a comprehensive understanding of the
component delays and how different MAC payload size and

4



host computer configuration affect the system performance.
Setup As our IEEE 802.15.4 MAC adds a header of 15 bytes
to the data packet, the maximum data payload we can use for
a valid IEEE 802.15.4 packet is 112 bytes. We chose three
message sizes: 1 byte, 56 bytes and 112 bytes to understand
the impact of different MAC payload sizes. We use the same
measurement setup described in our experimental setup.
Results We present our results for this experiment in Fig. 5.
The results show an increase in TX software delays (T4−T1)

1 56 112
Message Size (in bytes)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(

s)

1.9 GHz
1.9 GHz

1.9 GHz

3.2 GHz 3.2 GHz 3.2 GHz

TX Software Delay[T4-T1]
RX Software Delay[T8-T5]
LimeSDR loopback delay[T5-T4]

Fig. 5. Component Delays vs MAC data payload size: The message sizes
are shown along the horizontal axis, with time along the vertical axis. The
results for the two host computers for a particular MAC data payload size
is shown side by side, with the clock rates identifying the computer used.
The component delays have been labeled with different colors. The number
of samples in all these results has been set to 1020.

with increase in message size for both the laptop and desktop
computer. This is understandable as the TX software chain
needs to process more data for higher data payload size.
Although the rate of increase is different for both the com-
puters, with the ’laptop’ measurements showing a faster rate
of increase compared to the ’desktop computer’. The GNU
Radio TX flow graph is signal processing intensive, the higher
CPU clock speed and a higher number of CPU cores help
the ’desktop computer’ to process faster. The RX software
delay (T8 − T5) is more or less constant across the different
message sizes. It is primarily because of our definition of T8,
the RX software chain needs to process the same amount of
data regardless of the data payload size.

The LimeSDR loopback delay (T5 − T4) decreases with
increase in message size. We hypothesize this pattern is caused
by the buffering of data between the LimeSDR FPGA and
Cypress EZ-USB FX3 on the TX Path of the LimeSDR.
The shift clock for the LimeSDR FIFOs is dependent on
the sampling rate, which is 4 MHz while the buffer write
clock is 100 MHz. For larger message sizes, the buffer is
filled up faster at the higher clock rate. Hence the data
need to shift through the buffers for significantly shorter
periods of time before being transmitted using the TX signal
processing chain of the LimeSDR. The measurements across
both the computers have similar LimeSDR loopback delays,

TABLE II
BREAKDOWN OF THE SOFTWARE DELAYS

Message Size GNU Radio Processing
(µs)

LimeSDR Driver
(µs)

User Space to Kernel Space
(µs)

TX RX TX RX TX RX
1 318 ± 87 325 ± 259 24 ± 43 18 ± 5 18 ± 24 10 ± 4
56 426 ± 111 315 ± 253 44 ± 46 17 ± 4 9 ± 13 10 ± 4

112 532 ± 237 295 ± 252 59 ± 82 17 ± 4 9 ± 9 11 ± 15

indicating that the placement for our time probes are correct
and the measurements are independent of the host computer
processing resources.

These subsequent breakdowns of the TX and RX software
delays for the ’desktop computer’ are shown in Table II. The
GNU Radio Processing for both the TX and RX paths adds the
maximum delay and jitter, with the LimeSDR driver and User
Space to Kernel Space only adding very small fractions. From
these results, we can highlight LimeSDR loopback delay and
GNU Radio processing as our main two bottlenecks in this
architecture.
Experiment 2:
Motivation It is necessary to understand how the amount of
data in one bus transfer affects the overall latency (T8 - T1)
and the LimeSDR loopback delay as it has been highlighted in
previous studies [12], [14] that bus transfer delays are the most
significant. However, the study of the impact of bus transfer
size on the latency is missing in these previous studies.
Setup In this experiment, we vary the USB bus transfer
size by varying the number of samples batched together in
one transfer. We choose three different input configuration:
1020 (minimum possible by software configuration), 4080
(the default configuration) and 8160 samples in one USB
transfer. The MAC data payload size is set to 56 bytes and
the experiment is conducted on the ’desktop computer’.
Results Fig. 6 shows the latency, summation of the component
delays, increases with increase in the number of samples. The
increase of LimeSDR loopback delay contributes significantly
to the increase of overall latency. It takes 255 µs to generate
1020 samples with 4 MHz sampling rate, while it takes
1020 µs and 2040 µs to generate 4080 and 8160 samples
respectively. For this reason, the LimeSDR loopback delay
increases with the number of samples in one USB transfer
because of the queuing time increases with the increase of
number of samples in one USB transfer. The RX software
chain delays increases with the USB transfer size, as the GNU
Radio blocks are now scheduled to process more data samples
in one execution.

C. Improving the performance

The results in our previous experiments show that the
LimeSDR loopback delay and GNU Radio processing delay
are the two most significant delays in our system. Although
the GNU Radio processing delay is quite significant, the
difference in results across the two host computers indicates
that these delays are because of limited host computer pro-
cessing capability and can be mitigated to some extent by

5



1020 4080 8160
Number of samples in one USB transfer

0

500

1000

1500

2000

2500

Ti
m

e 
(

s)

TX Software Delay[T4-T1]
RX Software Delay[T8-T5]
LimeSDR loopback delay[T5-T4]

Fig. 6. Component Delays vs Number of samples in one USB transfer:
The number of samples in one USB packet is shown along the horizontal axis,
with time along the vertical axis. The component delays have been labeled
with different colors. We observe the LimeSDR loopback delay and overall
latency increases with the increase of number of samples in one USB Transfer.

upgrading the host computer resources. On the other hand,
the LimeSDR loopback delay is more or less constant across
both the computers for similar input parameters and hence can
be classified as a delay contributed by the LimeSDR platform
and will affect all systems using this platform. We therefore
aim at decreasing the LimeSDR loopback delay.

Fig. 6 indicates that we can reduce the LimeSDR loopback
delay by lowering the number of samples in one USB Transfer.
The data communication between the LimeSDR and the host
computer takes place in the form of LimeSDR FPGA packets.
The packet size is configured in hardware to be 4096 bytes.
We reconfigure the LimeSDR FPGA to use smaller packet
sizes for smaller USB Transfer sizes.

In order to understand the implications of this modifica-
tion we segment the RX delays into two parts: processing
delay (RX software processing delay) and buffering delays
(LimeSDR loopback delay). The results of Experiment 1
(Fig. 5) show that the processing delay is lower than the buffer-
ing delay. This causes inefficient utilization of the computing
resources on the host computer as the processing is halted
because of unavailability of samples for processing. Ideally, we
want the processing delay to be equal to the buffering delay for
the efficient pipelined processing of samples. Decreasing the
USB transfer size helps us decrease the buffering delay but the
processing overhead is increased with extra context switches,
GNU Radio control signals and system calls. To obtain the best
performance, we need to find the balance point of decrease of
buffering delay and increase of processing overhead.
Experiment 3:
Motivation The computing resources available on the host
computer dictate the processing delay and hence the balance
point for a particular host computer. We need to investigate the
impact of the LimeSDR FPGA packet size and host computer
processing resources to find the balance point for a host
computer.
Setup We use pidstat to monitor the resource utilization

of the process on the host computer. The LimeSDR hardware
is modified to use 1024 bytes, 2048 bytes and 3072 bytes as
the LimeSDR FPGA packet size.
Results The result for the ’desktop computer’ shown in Fig. 7

1024 2048 3072 4096
LimeSDR FPGA Packet Size(in bytes)

0

500

1000

1500

2000

2500

La
te

nc
y 

(
s)

Laptop @ 1.9 GHz
Desktop Computer @ 3.2 GHz

Fig. 7. Latency (T8 -T1) vs LimeSDR FPGA packet size: The LimeSDR
FPGA packet size is shown along the horizontal axis and latency in µs is
shown along the vertical axis. The MAC data payload size is set to 10 bytes
for these results. The ’desktop computer’ shows the lowest latency for the
LimeSDR FPGA packet size of 1024 bytes whereas the ’laptop’ has the best
results for LimeSDR FPGA packet size of 3072 bytes.

exhibits that lower LimeSDR FPGA packet sizes lead to lower
latency with less standard deviation. We achieve the lowest
mean latency (706 µs) and standard deviation (248 µs) when
we set the LimeSDR FPGA packet size of 1024 bytes as
compared to 1135 µs and 414 µs for the default configuration.

On the other hand for the laptop, we obtain the lowest
mean (1165 µs) and standard deviation of latency (478 µs)
for LimeSDR FPGA packet size set to 3072 bytes. The results
for LimeSDR FPGA sizes of 1024 bytes and 2048 bytes show
high mean and standard deviations in latency which are in
contrast to the trend shown in Fig. 6.

Fig. 8 shows that the ’laptop’ has very high CPU usage
for LimeSDR FPGA packet size of 1024 and 2048 bytes.
The presence of processing overhead for smaller LimeSDR
FPGA packet sizes causes the laptop processing resources
to throttle as it is already processing close to its maximum
capacity (95%). This lack of further processing resources
results in increased buffering and unpredictable processing
which explains the higher mean and standard deviation of the
latency for the LimeSDR packet size of 1024 byte and 2048
bytes in Fig. 7. In case of the desktop computer, it operates
at close to 87% for LimeSDR packet size of 1024 bytes, so it
still has processing resources available. Hence it can continue
processing the data packets at the incoming data rate resulting
in lower mean and standard deviation of the latency.

These results show that we are able to decrease the latency
and standard deviation in our system by decreasing the buffer-
ing delay. But the performance improvement is heavily de-
pendent on the available host computer processing resources.
The ’desktop computer’ is able to achieve an improvement of
37% in mean latency with the standard deviation decreasing by

6



1024 2048 3072 4096
LimeSDR Packet Size(bytes)

0

20

40

60

80

100
%

CP
U 

Us
ag

e
87.0

73.0
67.2 65.5

1024 2048 3072 4096
LimeSDR Packet Size(bytes)

0

20

40

60

80

100

%
CP

U 
Us

ag
e

95.0
89.6

80.0 77.2

Fig. 8. CPU utilization vs LimeSDR FPGA packet size: The LimeSDR
FPGA packet size is shown along the horizontal axis and CPU utilization is
shown along the vertical axis. The results for the ’desktop computer’ is shown
on the top subplot with the ’laptop’ shown at the bottom subplot. The MAC
data payload size is set to 10 bytes for these results. Both the host computers
show a trend of increase in CPU utilization with smaller LimeSDR FPGA
packet size.

40%, while it was 12% and 20% respectively for the ’laptop’.
Experiment 4:
Motivation Decreasing the LimeSDR FPGA packet size de-
creases the buffering delays. In this case, although we achieve
lower latency, the throughput of the entire system can be
affected because of the increase of the processing and transfer
overhead for handling the same amount of data. We need to
evaluate how the throughput is affected by this modification.
Setup We send a controlled MAC data payload size from the
periodic message source using the experimental setup shown in
Fig. 4. The time when the SFD is detected is noted as TSFD,
when the complete packet is decoded, we note the time as
TComplete. We can then define throughput as:

Throughput =
MAC data payload size
TComplete − TSFD

(1)

We compare the throughput for LimeSDR packet sizes of
1024 bytes (lowest latency) with the one for the 4096 bytes
(Default configuration) for MAC data payload size of 112
bytes.
Results The results shown in Fig. 9 highlight that although
the variation in throughput is much larger for the best latency
case, all the measured throughput values are higher than the
one for the default configuration. The median of the throughput
measurements shows a slight increase of approximately 5 kbps
for LimeSDR FPGA packet size of 1024 bytes. We conclude
that the throughput of the system is not affected by our method
to reduce delays.

D. Discussion

Even with these improvements, we cannot match the tim-
ing specification required for the round-trip acknowledgment
time of IEEE 802.15.4 with a software-only implementation.
Hence, we need to relax the timing specifications in order to
support IEEE 802.15.4 devices using this architecture. Other

1024 4096
LimeSDR FPGA packet size(bytes)

220

222

224

226

228

230

232

Th
ro

ug
hp

ut
(k

bp
s)

Fig. 9. Throughput vs LimeSDR FPGA packet size: The LimeSDR FPGA
packet size is shown along the horizontal axis with throughput in kbps is
shown along the vertical axis. We observe a slight increase in the throughput
for LimeSDR FPGA packet size of 1024 bytes.

protocols like BLE and LoRa that have less strict timing
requirements [20], [21] are more suitable for our architecture.
Another possibility could be to implement Time Division
Multiple Access (TDMA) protocols such as Time Slotted
Channel Hopping (TSCH) [22] using our architecture. TSCH
lets us define our own timeslot timing template and the round
trip acknowledgment time can also be defined. For TDMA
protocols, we will need to address the problems of timing
synchronization with other nodes in the presence of these
delays.

V. RELATED WORK

In this section, we discuss the previous relevant studies
in two different contexts: studies related to architectures for
heterogeneous IoT gateways and previous work on the delay
analysis in SDRs.

A. IoT gateway architecture context

Gioia et al. [8] discuss the development of the AMBER
gateway based on three main tenets: scalability, flexibility
and modularity. The modularity is provided by ’Extender’
sockets which connect to dedicated transceivers for the the
supported communication protocols. Previous studies [7], [9],
[11] propose similar gateways with added features like security
and capillary networks.

Morabito et al. [10] and Karhula et al. [23] propose an edge-
based architecture for the IoT gateway. The different function-
ality of the gateway is virtualized using containers similar to
VGATE. But these architectures use regular hardware modules
instead of SDRs thus limiting the scope of supported protocols
and experimentation offered by VGATE.

Surligas et al. [24] show the possibility of simultaneous
operation of IEEE 802.11 and IEEE 802.15.4 using a SDR.
In their work, they design dedicated kernel drivers for each of
these protocols. Dongare et al. [25] propose a cloud-based
LoRaWAN gateway using SDR. Their work highlights the
that coherent combination of received samples across multiple

7



gateways can be used to increase the range and battery life
of the sensor nodes. These works highlight the flexibility of
an SDR based gateway can be leveraged for providing better
connectivity to multiple protocols.

Narayanan et al. [26] propose an SDR-based IoT gateway to
address the problem of cross-technology interference. In their
architecture, they use the cloud to concurrently decode LoRa,
Zigbee and Z-Wave using the physical layer differences across
the different protocols. One of the central assumptions in this
work is that these protocols have lax latency requirements.
In contrast, we consider latency as an important metric, and
hence we highlight and minimize the problems associated with
latency in our work.

B. SDR delay analysis context

A number of previous research articles [12], [13], [14] study
the delays inherent in an USRP platform based IEEE 802.15.4
setup. These previous works focus on coarse-grained mea-
surements whereas in this study we focus on comprehensive
evaluation with timestamps at each individual component. In
the VGATE architecture, we envision a software transceiver
and hence took a system evaluation approach as compared to
measuring these delays in isolation. This approach takes into
consideration the impact of the system computational load on
the delays, which is missing in these previous works.

Truong et al. [13] and Puschmann et al. [27] have showcased
that the overall latency in USRP based setups can be decreased
by USRP driver buffer tuning. We improve upon their work
by addressing the queuing delay in the SDR buffers.

VI. CONCLUSIONS

This paper introduces the VGATE architecture for hetero-
geneous IoT gateways. In this paper, we study the delays
associated with the use of SDRs and highlight the GNU
Radio processing time and USB bus transfer time as the major
delays. We investigate the impact of USB Transfer size and
host computer resources and reduce the mean and standard
deviation of latency by 37% and 40% respectively.

ACKNOWLEDGMENTS

This work has been partially funded by the H2020 collabo-
rative Europe/Taiwan research project 5G-CORAL (grant num.
761586).

REFERENCES

[1] Ericsson, “Internet of things outlook.” online, 2017.
[2] C. Doukas and I. Maglogiannis, “Bringing iot and cloud computing

towards pervasive healthcare,” in International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, pp. 922–926,
IEEE, 2012.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things journal, vol. 1, no. 1,
pp. 22–32, 2014.

[4] J. Lee, E. Lapira, B. Bagheri, and H.-a. Kao, “Recent advances and
trends in predictive manufacturing systems in big data environment,”
Manufacturing Letters, vol. 1, no. 1, pp. 38–41, 2013.

[5] M. T. Lazarescu, “Design of a wsn platform for long-term environmental
monitoring for iot applications,” IEEE Journal on emerging and selected
topics in circuits and systems, vol. 3, no. 1, pp. 45–54, 2013.

[6] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller, “A survey of
commercial frameworks for the internet of things,” in IEEE International
Conference on Emerging Technologies and Factory Automation, IEEE
Communications Society, 2015.

[7] A. Amiruddin, A. A. P. Ratna, R. Harwahyu, and R. F. Sari, “Secure
multi-protocol gateway for internet of things,” in Wireless Telecommu-
nications Symposium, pp. 1–8, IEEE, 2018.

[8] E. Gioia, P. Passaro, and M. Petracca, “Amber: An advanced gate-
way solution to support heterogeneous iot technologies,” in Software,
Telecommunications and Computer Networks, pp. 1–5, IEEE, 2016.

[9] N. Gyory and M. Chuah, “Iotone: Integrated platform for heterogeneous
iot devices,” in International Conference on Computing, Networking and
Communications, pp. 783–787, IEEE, 2017.

[10] R. Morabito, R. Petrolo, V. Loscri, and N. Mitton, “Legiot: a lightweight
edge gateway for the internet of things,” Future Generation Computer
Systems, vol. 81, pp. 1–15, 2018.

[11] J. Kaur and M. Singh, “Multiprotocol gateway for wireless commu-
nication in embedded systems,” International Journal of Computer
Applications, vol. 72, no. 18, 2013.

[12] T. Schmid, O. Sekkat, and M. B. Srivastava, “An experimental study of
network performance impact of increased latency in software defined
radios,” p. 59, ACM Press, 2007.

[13] N. B. Truong and C. Yu, “Investigating Latency in GNU Software
Radio with USRP Embedded Series SDR Platform,” in International
Conference on Broadband and Wireless Computing, Communication and
Applications, pp. 9–14, Oct. 2013.

[14] G. Nychis and T. Hottelier, “Enabling MAC Protocol Implementations
on Software-Defined Radios,” in USENIX Symposium on Networked
Systems Design and Implementation, pp. 91–105, 2009.

[15] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[16] C.-Y. Chang, N. Nikaein, R. Knopp, T. Spyropoulos, and S. S. Kumar,
“Flexcran: A flexible functional split framework over ethernet fronthaul
in cloud-ran,” in IEEE International Conference on Communications,
pp. 1–7, IEEE, 2017.

[17] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: A receiver-
driven low-latency transport protocol using network priorities,” arXiv
preprint arXiv:1803.09615, 2018.

[18] M. Miao, F. Ren, X. Luo, J. Xie, Q. Meng, and W. Cheng, “Softrdma:
Rekindling high performance software rdma over commodity ethernet,”
in Proceedings of the First Asia-Pacific Workshop on Networking,
pp. 43–49, ACM, 2017.

[19] B. Bloessl, C. Leitner, F. Dressler, and C. Sommer, “A GNU Radio-
based IEEE 802.15.4 Testbed,” in 12. GI/ITG KuVS Fachgespräch
Drahtlose Sensornetze, pp. 37–40, September 2013.

[20] J. Nieminen, C. Gomez, M. Isomaki, T. Savolainen, B. Patil, Z. Shelby,
M. Xi, and J. Oller, “Networking solutions for connecting bluetooth
low energy enabled machines to the internet of things,” IEEE network,
vol. 28, no. 6, pp. 83–90, 2014.

[21] LoRa Alliance, LoRaWAN Specification, 1 2015. V 1.0.
[22] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-

2015 (Revision of IEEE Std 802.15.4-2011), pp. 1–709, Apr. 2016.
[23] P. Karhula, J. Mäkelä, H. Rivas, and M. Valta, “Internet of things con-

nectivity with gateway functionality virtualization,” in Global Internet
of Things Summit, pp. 1–6, IEEE, 2017.

[24] M. Surligas, A. Makrogiannakis, and S. Papadakis, “Empowering the
iot heterogeneous wireless networking with software defined radio,” in
Vehicular Technology Conference, pp. 1–5, IEEE, 2015.

[25] A. Dongare, R. Narayanan, A. Gadre, A. Luong, A. Balanuta, S. Kumar,
B. Iannucci, and A. Rowe, “Charm: exploiting geographical diversity
through coherent combining in low-power wide-area networks,” in
International Conference on Information Processing in Sensor Networks
(IPSN), pp. 60–71, IEEE, 2018.

[26] R. Narayanan and S. Kumar, “Revisiting software defined radios in the
iot era,” in Proceedings of the 17th ACM Workshop on Hot Topics in
Networks, HotNets ’18, pp. 43–49, ACM, 2018.

[27] A. Puschmann, M. A. Kalil, and A. Mitschele-Thiel, “Implementation
and evaluation of a practical SDR testbed,” in Proceedings of the 4th
International Conference on Cognitive Radio and Advanced Spectrum
Management, pp. 1–5, ACM Press, 2011.

8




