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“Sean los orientales tan ilustrados como valientes"

José Gervasio Artigas

All that is gold does not glitter,

Not all those who wander are lost;

The old that is strong does not wither,

Deep roots are not reached by the frost.

From the ashes, a fire shall be woken,

A light from the shadows shall spring;

Renewed shall be blade that was broken,

The crownless again shall be king.

The Riddle of Strider by J. R. R. Tolkien
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On the Convergence of Big Data Analytics and High-Performance

Computing: A Novel Approach for Runtime Interoperability

by Silvina CAÍNO-LORES

Convergence between high-performance computing (HPC) and Big Data

analytics (BDA) is currently an established research area that spawned new

opportunities for unifying the platform layer and data abstractions in these

ecosystems. This thesis builds on the hypothesis that HPC-BDA convergence

at platform level can be attained by enabling runtime interoperability in a

way that preserves BDA platform usability and productivity, exploits HPC

scalability and performance, and expands both BDA and HPC capabilities

to cope with prospect hybrid application models. The goal is to architect an

abstract system that enables the interoperability of established BDA and HPC

runtimes.

In order to exploit the benefits of BDA data-centric paradigms, this thesis

presents a data-centric transformation methodology to allow process-centric

workloads the interaction with BDA platforms and storage infrastructures.

Furthermore, an architecture to achieve full runtime interoperability is pro-

posed. It reflects the key design features that interest both the HPC and BDA

communities, and includes an abstract data collection and operational model

that generates a unified interface for hybrid applications. It also incorporates

http://www.uc3m.es
http://inf.uc3m.es


a mechanism to transfer each stage of the application to the appropriate

runtime.

This architecture can be implemented in different ways depending on the

process- and data-centric runtimes of choice, and the mechanisms put in

place to effectively meet the requirements of the architecture. The Spark-DIY

platform is introduced as a possible implementation. It preserves the inter-

faces and execution environment of the popular BDA platform Apache Spark

–thus making it compatible with any Spark-based application and tool– while

providing efficient communication and kernel execution via DIY, a powerful

communication pattern library built on top of MPI.

Finally, these solutions are analysed in terms of performance by applying

them to a representative use case, EnKF-HGS. This application is a clear ex-

ample of how current HPC simulations are evolving towards hybrid HPC-BDA

applications, integrating HPC simulations within a BDA environment. Other

auxiliary use cases –like an application from the railway domain and a BDA

benchmark operator– are also introduced to support other specific contribu-

tions of this thesis.
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Sobre la Convergencia del Análisis de Macrodatos y la Computación de

Altas Prestaciones: Un Nuevo Enfoque para la Interoperabilidad entre

Entornos de Ejecución

por Silvina CAÍNO-LORES

La convergencia entre la computación de altas prestaciones (HPC) y el análisis

de macrodatos (BDA) es actualmente un área de investigación establecida

que ha generado nuevas oportunidades para la unificación de la capa de

plataforma y las abstracciones de datos en estos ecosistemas. Esta tesis de-

sarrolla la hipótesis de que la convergencia HPC-BDA a nivel de plataforma

puede ser obtenida con la habilitación de mecanismos de interoperabilidad

entre entornos de ejecución, de modo que se preserve la usabilidad y produc-

tividad de las plataformas BDA, se explote la escalabilidad y rendimiento de

HPC, y se expandan las capacidades de HPC y BDA para tratar futuros mode-

los híbridos de aplicación. El objetivo es desarrollar un sistema abstracto que

permita la interoperabilidad de entornos de ejecución ya establecidos en los

ecosistemas BDA y HPC.

Con el fin de explotar los beneficios de los paradigmas orientados a datos

en BDA, esta tesis presenta una metodología de transformación también

orientada a datos que permite a las aplicaciones orientadas a proceso in-

teractuar con plataformas BDA y sus correspondientes infraestructuras de



almacenamiento. Además, se propone una arquitectura para obtener inter-

operabilidad total entre entornos de ejecución. Ésta refleja las características

de diseño clave que interesan a las comunidades BDA y HPC, e incluye una

abstracción de colección de datos y modelo operacional que genera una inter-

faz unificada para aplicaciones híbridas. Además, incorpora un mecanismo

para transferir cada etapa de la aplicación al entorno de ejecución adecuado.

Esta arquitectura puede ser implementada de distintas maneras dependi-

endo de los entornos de ejecución orientados a datos y proceso seleccionados,

y las tćnicas utilizadas para cumplir de manera efectiva con los requisitos

de la arquitectura. La plataforma Spark-DIY se introduce como posible im-

plementación. Preserva las interfaces y entorno de ejecución de la popular

plataforma BDA Apache Spark –haciéndola compatible con cualquier apli-

cación o herramienta basada en Spark–, mientras provee comunicación y

ejecución eficiente de núcleos de simulación y análisis a través de DIY, una

potente biblioteca de patrones de comunicación construida sobre MPI.

Finalmente, estas soluciones son analizadas en términos de rendimiento al

aplicarlas a un caso de uso representativo, EnKF-HGS. Esta aplicación es

un ejemplo claro de cómo las simulaciones HPC están evolucionando hacia

aplicaciones HPC-BDA híbridas, integrando simulaciones HPC dentro de un

entorno BDA. Otros casos de uso auxiliares –como una aplicación del ámbito

ferroviario y un operador referente de BDA– son introducidos para apoyar

otras contribuciones específicas de esta tesis.
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CHAPTER 1

INTRODUCTION

The information technology ecosystem is currently in transition to a new

generation of applications requiring intensive data acquisition, processing

and storage. As a result of this shift towards data-intensive computing, there is

a growing confluence between high-performance computing (HPC) and Big

Data analytics (BDA), given that many HPC applications produce Big Data to

be manipulated with analytics techniques, while BDA is a growing consumer

of HPC capabilities.

More precisely, HPC scientific applications are key tools in many research

areas that rely on multiple, diverse, and distributed operations over vari-

ous datasets, usually yielding significant computational complexity and data

dependencies. Nowadays, HPC applications are increasingly demanding

data analysis and visualisation over major datasets, which is shifting these

originally computationally intensive systems towards parallel data-intensive

problems. On the other hand, BDA applications are demanding the perfor-

mance level of the supercomputing ecosystem, thus requiring acceleration

and increased scalability. As a result, this general trend is leading to greater

confluence between the HPC and BDA paradigms.

Nevertheless, HPC and BDA systems have been traditionally built to solve dif-

ferent problems: HPC focuses on computationally-intensive tightly-coupled

applications, and BDA tackles large volumes of loosely-coupled tasks. These

objectives have determined the underlying architectures of HPC and BDA

infrastructures. In a typical HPC infrastructure, compute and data subsystems

are totally decoupled, using parallel file systems for data storage, but con-

nected through high-speed interconnections, as in grids or clusters. On the

1
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other hand, BDA systems co-locate computation and data on the same node

and focus on elasticity, thus clouds become their preferred infrastructure [1].

The tools and cultures of HPC and BDA have also diverged to solve their canon-

ical problems. However, between both worlds there are different degrees of

intermediate HPC-BDA applications that portray mixed requirements. These

applications could be executed on both platforms, but none of them are fully

ideal in their current state, mainly due to requirements such as scalability,

performance, and resource efficiency.

In this scenario, upcoming applications will suffer the lack of an ideal environ-

ment able to cope with their computing and data requirements. Recent works

have suggested the opportunity of combining the HPC and BDA approaches

to alleviate this issue [2]. For example, typical BDA programming models

have been considered to substitute MPI parallelism induction mechanisms,

following a data-centric approach. In addition, we can also see this oppor-

tunity affecting the underlying computing infrastructures. Indeed, typical

BDA infrastructures like clouds could inspire hybrid platforms for exascale

scientific workflows [3].

Applying some of these BDA mechanisms can improve scalability in parameter-

based HPC applications relying on a large pool of loosely-coupled tasks. How-

ever, other types of applications were not able to benefit from this, as they did

not fit the prototypical structural model of BDA platforms. Due to the former

reasons, there is currently an increasing agreement on the need for those

ecosystems to converge to produce environments that have the performance

of HPC and the usability and flexibility of the BDA stack. As a consequence,

our research question is how can we build a platform able to manage applica-

tions built for computationally-intensive simulations, data-intensive analysis,

or both, without hurting performance and data-awareness?.

To answer this question, this thesis explores the key features of BDA and

HPC ecosystems, with a focus on the platform layer and the core runtimes
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that support BDA and HPC processing frameworks, which we will refer to

in this document as data-centric and process-centric runtimes, respectively.

We will take this knowledge as baseline to elaborate a theoretical frame for

the development of generalist solutions for runtime convergence of BDA and

HPC platforms.

1.1 Objectives

Current trends in scientific computing highlight that interoperability and

scaling convergence of HPC and BDA runtimes is crucial to the future, and

unification is essential to address a spectrum of major research domains. This

is especially true when targeting the scalability of data-intensive applications,

making massive data transmissions, applying complex analysis on data, or

storing large amounts of data.

The main goal of this thesis is to research new approaches to facilitate the

convergence of HPC and BDA paradigms by providing common abstrac-

tions and mechanisms for improving scalability, data locality exploita-

tion, and execution adaptivity on large scale systems, while preserving the

most relevant features for their corresponding communities, in order to pro-

vide a system suitable for the composition of applications with mixed BDA

and HPC stages.

To achieve this goal, this thesis aims to accomplish the following specific

objectives:

O1 Analyse the key features that characterise HPC and BDA ecosystems.

O2 Provide a mechanism to reshape HPC-oriented workflows in order to

adapt them to data-centric environments.

O3 Design and develop an architecture that offers runtime interoperability

for hybrid HPC-BDA applications, incorporating unified operational
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and data models that support high-level analytics methods and high-

performance kernels for composite applications.

O4 Evaluate on meaningful use cases, representative of target hybrid appli-

cations.

1.2 Contributions

The main contributions of this thesis are:

C1 A methodology to adapt iterative scientific applications to a data-centric

paradigm.

C2 A formal definition of a generic unified distributed data abstraction

and unified operational model, which sets the foundation of a theo-

retical frame for the analysis and definition of composite HPC-BDA

applications.

C3 A generalist runtime interoperability architecture for HPC-BDA applica-

tions, which includes a delegation mechanism to select the appropriate

runtime (process- or data-centric) for each stage of the composite ap-

plication.

C4 An implementation of the former architecture based on Spark and MPI.

C5 An implementation of a real-world use case from the hydrogeology

domain, enriched with features enabled by our architecture like cloud

and streaming support for delocalisation and data assimilation.

1.3 Structure and Contents

This document details the work conducted through the development of this

thesis, and it is structured as follows:



Chapter 1. Introduction 5

• Chapter 1, Introduction, has briefly presented the scope, motivation and

objectives of this thesis in the context of HPC and BDA convergence.

• Chapter 2, State of the Art, establishes the foundation for the contribu-

tions of this thesis, depicting the current state of both BDA and HPC

ecosystems in terms of their infrastructures, platforms and applica-

tions. This chapter also compares their features, communities, and

prospective evolution in order to derive the characteristics that will be

beneficial in a future hybrid setting, and presents relevant advances on

convergence found in the literature.

• Chapter 3, Problem Statement, deepens the motivation of this work

in light of the challenges found for each ecosystem, and presents the

hypothesis and top-level approach for the rest of the thesis.

• Chapter 4, Data-Centric Transformation Methodology for HPC Process-

Centric Applications, introduces a data-centric platform enablement

methodology, which allows HPC applications to exploit the benefits of

data-centric computing paradigms and resources.

• Chapter 5, Data-Centric Transformation of HPC Scientific Applications,

applies the former methodology to representative use cases and presents

evaluation results.

• Chapter 6, Generalist Interoperability Architecture for Hybrid HPC-BDA

Applications, depicts the proposed global architecture for runtime inter-

operability. This chapter also discusses the design and implementation

of a prototype platform to enable the composition of applications with

both HPC and BDA stages.

• Chapter 7, Evaluation of Spark-DIY with HPC and BDA Applications,

shows how hybrid HPC-BDA applications can be built using an imple-

mentation of the former architecture, and presents evaluation results

to support the viability of the interoperability model.
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• Chapter 8, Conclusions, summarises this thesis and its objectives, detail-

ing its contributions and results, while discussing potential directions

for future research enabled by this work.



CHAPTER 2

STATE OF THE ART

This chapter includes an overview of the different fields related to this the-

sis. A literature review of these topics is provided, with special emphasis in

high-performance computing (HPC) ecosystem, Big Data analytics (BDA)

ecosystem, and current trends in HPC and BDA convergence.

2.1 Big Data Analytics Ecosystem

Big Data affects many different ecosystems and areas of research and business,

thus there is no unique definition for it and its scope is still a controversial

topic in these communities. From the data analysis perspective, the multi-V

model reflects a way to define Big Data by describing several of its features,

and it keeps evolving over time adding more attributes as needed [4]. The

core characteristics included in this model are:

• Volume of data. Volume is necessary in order to get valuable insight

from analytics tools. It is usual to find volumes in the order of peta or

terabytes at the enterprise level. These volumes can also be quantified in

the order of billions of records, tables, files or transactions depending on

the data structure required by the underlying storage system. In order to

provide sufficient quality of service, Big Data systems and applications

must be designed to handle such large data volumes efficiently and

reliably.

7
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• Velocity of data production and processing. Data can be produced

and consumed at different rates. Big Data systems can even incorpo-

rate diverse source frequencies and processing speeds including batch

processing, streaming, near- and real-time speed.

• Variety of data types. Nowadays a data source can be anything –

sensors, web applications, mobile devices, etc.–, hence data can be

highly heterogeneous and may be unstructured. In addition, data types

depend greatly on the application and its domain: we find structured

statistical data in business intelligence, time series and geospatial data

in Internet-of-Things (IoT), and media, text and graph data in social

environments. Platforms must be able to understand and integrate this

diverse data to aggregate the knowledge from different sources.

In addition, from the business perspective the following features are also key

[5]:

• Veracity of data. The volume of data is key to obtain knowledge, but

the derived information would be flawed if the quality of data is low.

High-quality Big Data must be reliable in terms of trust and integrity to

attain acceptable veracity.

• Value in business terms. The model or analysis that results from pro-

cessing Big Data must provide enterprise value to make up for the in-

vestment expenses necessary to collect and analyse data.

These definitions have a key aspect in common: Big Data focuses on data, in

particular, on data that is perceived as large in volume. This paradigm-shift

centred towards data has affected all areas of computing from data acquisition,

transfer and storage; to data analysis and visualisation. This reflected on

traditional areas of business and science –like genomics, climatology, finance,

and business intelligence– that were able to obtain better knowledge with

existing methods, but also promoted novel areas of research to exploit the
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intrinsic value of data and improve the system’s capability to cope with the

requirements of data processing and storage. Areas like Internet-of-things

(IoT) and Big Data analytics (BDA) developed greatly thanks to the advances

in Big Data.

Big Data analytics (BDA) is one of the best examples of how Big Data disrupted

an established area like business intelligence, exploiting advanced analytics

techniques operating on Big Data to evolve from descriptive tools to predic-

tive and prescriptive models. Today, enterprises are exploring Big Data to

incorporate knowledge discovery into their business to detect interrelations

among apparently unrelated attributes of datasets [6]. Enterprises can now

understand the current state of the business and customer behaviour through

complex techniques like predictive analytics, data mining, statistical analysis,

data visualisation, artificial intelligence, and natural language processing,

paired with support platforms such as map-reduce, in-database analytics,

in-memory databases, and columnar data stores. Some of these techniques

have been around for years and they have been revamped due to their good

adaptability to very large data sets with minimal data preparation. In addition,

infrastructures like cloud computing offer the possibility to lower the eco-

nomical costs of deploying BDA, and building analytics workflows at different

levels of abstractions.

Figure 2.1 represents the traditional knowledge discovery workflow for BDA,

which includes dealing with data acquisition from diverse sources, processing

and combining data in many ways in order to build a model that can be used

for analysis and visualisation, finally incorporating feedback mechanisms to

refine data processing and modelling stages. This workflow has been usually

combined with the lambda architecture [7] to provide scalable integration

and interoperability across different datasets trough real-time analytics. This

architecture was proposed with the goal of providing a generalist platform to

serve different applications with diverse latency needs in a streaming envi-

ronment. As shown in Fig. 2.2, the lambda architecture includes a speed layer
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FIGURE 2.1: Typical workflow of a BDA application.

FIGURE 2.2: Representation of the lambda architecture.

for pure stream processing in real-time, a batch layer for storing raw data and

processing higher quality views of long-term data, and a presentation layer

that manages queries and output visualisation.

Looking ahead, it is expected that areas such as mobile technology, social

media, IoT and data-driven sciences will generate data to a global total in the

order of dozens of zettabytes [8]. This data will yield valuable information for

smart applications, science and decision making processes in business.

2.1.1 Cloud Computing and Beyond

BDA faces the challenge of continuously adapting to increasing data volume

and complexity. This translated to a continuous need to scale out reliably

when scale up becomes infeasible [9]. In this context, cloud computing be-

came a widely adopted infrastructure for BDA [10].
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Cloud computing is a popular paradigm that relies on resource sharing and

virtualisation to provide the end-user with a transparent, scalable and elastic

system that can be expanded or reduced on-the-fly. It emerged with the idea

of virtually unlimited resources obtainable on-demand [11], and its popularity

is a consequence of some of the core features of cloud service models, such

as:

• Minimal management effort, as the infrastructure is maintained and

administrated by a third-party and system deployment can be eased by

relying on high-level service models from Platform-as-a-Service up to

Analytics-as-a-Service [12].

• Automatic or manual scale up or down according to utilisation, thus

supporting elasticity.

• Potential to reduce economical costs, as it follows a pay-as-you-go

model.

• Flexible data sharing and platform integration for heterogeneous ana-

lytics workloads.

Given these benefits, enterprises and scientific institutions have been mak-

ing efforts to make their applications cloud-ready [13]. Nevertheless, cloud

computing presents challenges related to the lack of control of the underlying

hardware infrastructure, the privacy concerns that arise from hosting data

sets on third-party servers, and the transfer time and cost required to upload

and download large quantities of data [14]. For some applications relying

on many data sources generating large volumes of data at high velocities,

centralising all data to a very limited number of data centres is no longer

viable, especially if low latency is required by the end users.

These limitations led to models that evolved cloud architectures aiming to

alleviate the data centralisation problem by combining processing, storage
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FIGURE 2.3: Architecture of a massively distributed infrastructure
comprising edge devices, intermediate fog nodes, and core cloud
datacentres.

and communication in distributed services that run closer to the data pro-

duction environment in a hierarchical multi-tiered manner. These paradigms

include mobile cloud computing [15], edge computing [16, 17] and fog com-

puting [18]. Figure 2.3 shows how edge devices interact with intermediate

aggregation and processing components to derive local analytics and reduce

the volume of data to be transferred to higher-level layers. Fog data centres

orchestrate and abstract their network and computing resources in order

to relay aggregated data to the final cloud, where data are finally stored for

archival purposes, and broad analysis is conducted.

Upcoming scenarios might provide terabytes of data per hour, making ef-

ficient real-time operations critical for monitoring, decision making, and

digital twin coordination. In addition to highly-distributed platforms, high-

performance computing infrastructures and methods are expected to improve

the processing capabilities of cloud providers to cope with these extreme data

and computation requirements [8].

2.1.2 Data-Centric Batch and Stream Processing

Minimising data movements is very important for the final performance. At

the application development stage, working with programming models that
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provide a data processing layer able to abstract resource allocation, data man-

agement and task execution can result in an improvement of performance

and locality.

The map-reduce [19] data processing model was the most relevant data-

centric model when BDA research took off, as it enables analytics on big

datasets by parallelising computations for HPC and multi-core environments

[20]. A map-reduce-based algorithm consists of a two-phase algorithm that

takes as input a set of key-value pairs retrieved from the input files. The input

is split across a group of homogeneous map functions, which process the

data and forward the result to the reduce tasks in order to aggregate and write

the final result. The original map-reduce implementation by Google relies on

the Google File System (GFS) [21] to achieve locality by block replication, and

considers data-aware task scheduling. A similar approach is followed by the

open map-reduce implementation, Hadoop [22], and its partner file system

Hadoop Distributed File System (HDFS) [23]. Map-reduce applications work

with many large files and need to execute fast transfers and operations on a

wide and diverse dataset. Besides the numerous works that took advantage

of it to improve performance of a wide range of applications, it had a major

impact in subsequent map-reduce-inspired models.

One of the models that emerged from map-reduce is map-reduce-merge [24],

a model that adds a merge phase that can efficiently aggregate the data already

partitioned and sorted by the map and reduce modules. Map-reduce does

not directly support processing multiple related heterogeneous datasets, lim-

itation that causes efficiency issues when map-reduce is applied in relational

operations like joins. The map-reduce-merge model can, on the other hand,

express relational algebra operators and implement several join algorithms.

Map-iterative-reduce [25] is an alternative model that extends map-reduce to

better support reduce-intensive applications, while substantially improving

its efficiency by eliminating the implicit synchronisation barrier between the
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map and the reduce phases. Among implementations of map-iterative-reduce

we can find Twister [26], Haloop [27] and Twister4Azure [28].

The work in [29] suggests that iterative and interactive applications are the

ones that could take the highest advantage of in-memory data storage for

fast reuse. The Spark [30] programming model supports a wide range of

functionalities that enable the development of applications that do not fit

nicely the map-reduce paradigm, such as many iterative machine learning

algorithms and interactive data analysis tools. The Spark framework relies

heavily in the concept of resilient distributed dataset (RDD) [31] to provide this

functionality. RDDs are in-memory collections of data, and the operations

on them are tracked in order to provide significant fault tolerance. According

to its authors, the system has proven to be highly scalable and fault tolerant.

However, in most Java-based map-reduce platforms [32] the deep component

stack and its dependence on the JVM yield a significant memory consumption

that also affects execution time due to frequent garbage collection operations

[33] and serialisation if bindings to other languages are used [34].

Map-reduce-based programming models have also evolved into language

frameworks that provide a data access layer through a set of APIs, thus elim-

inating the need to re-implement repetitive tasks by working on top of the

processing layer [35]. For example, Spark has inspired subsequent works like

GraphX [36], which extends the framework to support graph parallel comput-

ing. Working with graphs has, as indicated by the authors, specific challenges

and requirements that were not fully addressed by previous works. In a similar

trend, several frameworks have explored the possibility of building rich data

SQL-like abstractions for database processing. For example, Pig Latin [37],

HiveQL [38] and REX [39] rely on high-level data-flow languages and execu-

tion frameworks whose compilers produce sequences of batch processing

map-reduce programs.

Moreover, some models evolved into workflow frameworks to support the
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composition of heterogeneous and coupled components to simulate differ-

ent aspects of an application model [40]. As these modules interact and

exchange significant volumes of data at runtime, minimising these transfers

and making them efficient has a major impact in the overall performance

[41]. Consequently, data locality enforcement has been studied in several

works tackling task and job scheduling [42], data-flow optimisation [43], and

resource allocation [44].

In-memory computing has also affected database oriented platforms with

approaches like Phoenix [45] for shared and distributed memory machines.

Shark [46], which supports the Hive warehousing system [47] on Spark, is a

popular similar approach, but oriented towards SQL-based data analytics by

means of machine learning. These algorithms are typically iterative, thus in-

memory computing suits well the need for cached data to be reused. Similarly,

pure map-reduce paradigms have benefited from in-memory trends resulting

in platforms for memory-intensive workloads such as Mammoth [32], Piccolo

[48], Main-Memory Map-Reduce (M3R) [49], and Hyracks [50].

Some of the former works indicate that in-memory databases and computing

are able to scale to petascale systems. No further work has found indicating

whether this could hold for exascale systems though. New technologies based

in multi-core processors can improve the performance of applications by

favouring locality through intra-node data sharing, which minimises data

exchanges across compute nodes [41]. The prospective usage of map-reduce

based models at different levels of parallelism within the computing infras-

tructure, as typically done in HPC systems, might provide a shared space

programming abstraction that replaces existing parallel programming mod-

els such as message passing.
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2.2 High-Performance Computing Ecosystem

High-performance computing (HPC) refers to the usage of aggregated com-

puting power in order to run complex parallel programs efficiently and as

fast as possible. This term is tightly related to the concept of supercomputing,

which pushes HPC to the highest operational rate of the available technology.

Nowadays, top modern supercomputers perform in the order of one hundred

petaflops, and a machine capable of delivering one exaflop is expected to

appear around 2020 [51].

All this computational power and sophisticated infrastructures involve mas-

sive investment in hardware development, runtime design, and daily opera-

tional costs. Naturally, these means have been put to the service of strategic

areas of science and industry that rely on complex numerical applications

that cannot be run on commodity machines due to their performance require-

ments. This includes sectors like aviation, energy, pharmaceutical, oil and

gas, and automotive; and high-end scientific research on climate, medicine,

bioinformatics, and physics.

To exploit the scalability and performance of supercomputers, HPC appli-

cations rely heavily on parallelism techniques to maximise the usage of re-

sources. Supported by advanced runtimes, these applications coordinate

parallel processing on many cores and nodes with network-intensive data

transfers between compute and storage nodes. In addition, some applica-

tions need to iterate to refine their results, modify the underlying model, or

incorporate new data. Figure 2.4 depicts these relationships which form the

structure of many HPC applications. The core simulated models are typically

initialised with a combination of input data and base environmental condi-

tions as parameters, and the simulation domain is distributed so that kernel

computations can be conducted in parallel. Ideally, these simulations are

pleasingly parallel and computations can be executed independently while

incorporating partial new data. Once kernels converge, the resulting data are
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FIGURE 2.4: Application model for the typical HPC scientific application.

merged with the results coming from the other processing units in order to up-

date the model, typically leading to a communication-intensive process that

results in the input that will be fed to the following step. As a fault-tolerance

measure, most simulations include check-pointing procedures to store in-

termediate models and restore the simulation from them in case of failure.

Finally, simulation results are written to storage.

HPC is not unaffected by current data-centric trends, and scientists are al-

ready tackling how HPC can benefit from the availability of Big Data and

analytics techniques. High-performance data analytics, data-intensive scien-

tific computing, visualisation and machine learning are areas of research that

currently inherit the performance and scalability aspirations of traditional

HPC, while incorporating new challenges that affect how data are managed

and transmitted at all levels of the system and software stack.

2.2.1 Supercomputers and Data-Intensive Clusters

Large scale HPC infrastructures –such as supercomputers, grids, clouds and

clusters– have been widely developed with the objective of providing a suitable
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platform for high-performance and high-throughput computing. As these

paradigms typically require massive hardware resources and dedicated mid-

dleware, large scale computing holds specific challenges in order to achieve

sufficient efficiency in terms of memory, CPU, I/O, network latencies, and

power consumption, to name a few. These systems are oriented towards sup-

porting resource-demanding and complex applications with heavy resource

requirements, thus they need dedicated platforms that orchestrate tasks and

manage resources in order to behave in a coordinated manner. These pieces

of software constitute the middleware that permits node intercommunication,

data transmission, load balancing, task assignment and fault tolerance.

Traditional HPC infrastructures are built in such way that storage and compu-

tation are not located in the same nodes, following the schema depicted in

Fig. 2.5. Networks are also isolated to avoid the interference of I/O operations

to the parallel file system with computation communications. Parallel file

systems maintain a logical space view and provide an efficient access to data,

which can be distributed through several sites and among multiple I/O servers

and disks to deliver higher degree of parallelism.

There are several issues that are still not solved by the academia with regard to

these infrastructures. In particular, computer scientists have realised that, as

problems become larger and more complex, a powerful infrastructure is not

sufficient to achieve proper scalability, both in terms of overall performance,

resource utilisation, and power efficiency. With the advent of data-centric

trends, recent works have suggested that improving data locality across all

layers of the system stack is key to move towards exascale infrastructures

efficiently [52].

Some authors claim that the current architecture of high-end computing

systems is inefficient because storage is completely segregated from the com-

pute resources, thus further network interconnections are needed to access

storage [53]. Storage systems constitute one of the greatest bottlenecks when

dealing with data-intensive computations. Therefore, data awareness in file
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FIGURE 2.5: Traditional architecture of a HPC infrastructure, with isolated
storage and computation networks.

systems and storage infrastructures can significantly improve the system’s

overall locality, as other layers can benefit from the system’s knowledge of

data placement. To avoid the drawbacks of traditional parallel file systems, a

new generation of distributed file systems has emerged as support layers for

data-centric frameworks like map-reduce. The Hadoop File System (HDFS)

[54] and the Google File System (GFS) [21] are relevant examples of such

file systems portraying a focus on data locality. Work in this area has also

been conducted to improve locality by moving data to the node’s memory to

minimise interaction with storage nodes. This resulted in new infrastructure

architectures that incorporate deeper memory hierarchies and local storage

in compute nodes, following the model of cloud-oriented data-centres [55].

The influence of Big Data and analytics in supercomputing is also reflected in

the incorporation of new hardware architectures tailored for deep learning

and data-intensive computing [3], resulting in dedicated accelerators like

vector processors, tensor processing units (TPUs), general purpose graphi-

cal processing units (GPGPUs), and field programmable gate arrays (FPGAs).
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FIGURE 2.6: Parallelism layers in HPC programming models, including
inter- and intra-node parallelism.

These new technologies provide further computational power for applica-

tions, but it is still unclear which areas will require the full exascale power

that will be provided by impending heterogeneous infrastructures, as the

bottleneck might remain at upper layers of the software stack like monitoring,

resource management, data management, and communications [56]. In ad-

dition, applications are also evolving towards complex workflows involving

iterative analytics, data-intensive operations and compute-intensive compu-

tations. Making an efficient usage of supercomputers in this landscape will

require algorithm, runtime and data management refinements to support

applications with mixed requirements, without diminishing usability.

2.2.2 Parallel Programming Models and Runtimes

HPC applications aim to run at the maximum level of parallelism provided by

supercomputers in order to reduce execution time and increase scalability. On

submission, applications are provided with a set of allocated processing units

distributed across several nodes, and optionally different types of accelerators

might be assigned if present in the infrastructure. Figure 2.6 represents these

diverse processing units.
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The message passing interface (MPI) standard is the most common procedure

to exploit inter-node parallelism in HPC environments, and is the basis for

numerous runtimes and workflows for scientific computing. The implementa-

tions of MPI allow the execution of standard operations comprising multiple

processes on distributed memory platforms, which provides coarse-grained

parallelism sufficient for terascale applications.

Thread-level parallelism is the basis for fine-grained intra-node parallelism

for multi-core CPUs. Developers can choose from a wide range of threading

libraries like POSIX threads, Intel’s threading building blocks (TBB) [57], and

Microsoft’s parallel patterns library (PPL) [58]. Nowadays, the open specifica-

tion for multi-processing (OpenMP) [59] is still one of the most used tools for

parallelisation, mostly because its annotation-based nature minimises the

impact on sequential code. As machines reached petascale, combining MPI

and OpenMP became a common procedure to reach massive parallelism on

machines supporting distributed and shared memory [60–62].

Current HPC infrastructures have incorporated different types of accelerators

to enhance the performance of specific applications. Programming models

adapted accordingly to ease the access to further finer-grain intra-node par-

allelism. GPGPUs are the most widely adopted accelerator in current HPC

machines given they power efficiency and their many-core architecture, which

pushes forward massive parallelism to the order of thousands of cores in a sin-

gle chip. There are several libraries that enable the interaction with GPGPUs,

such as OpenCL [63], Nvidia CUDA [64], and OpenACC [65], supporting data

offload to the accelerators, kernel operator definition, direct execution of such

code on the device, and result retrieval back to the host CPU. Accelerator run-

times have also been integrated with intra-node parallelism through OpenMP

[66], and inter-node parallelism via MPI [67, 68]. The mechanisms to build

hybrid runtimes exploting both intra- and inter-node parallelism had major

influence in subsequence advances in further parallelism integration, and

they are expected to be present in future exascale systems to cope with the
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need for adaptive hybrid programming models for heterogeneous extreme

scale machines [69].

2.3 Current Trends in HPC and BDA Convergence

In the literature we can find many attempts to incorporate the beneficial fea-

tures of HPC and BDA into their corresponding areas. Section 2.3.1 presents

relevant works trying to accelerate BDA by means of HPC computing models

(mainly MPI) and advanced techniques to interact with the underlying net-

work and accelerators. Correspondingly, Sec. 2.3.2 presents how data-centric

paradigms and BDA infrastructures (primarly clouds) have been exploited to

enhance HPC.

Finally, Sec. 2.3.3 analyses the most relevant endeavours towards HPC and

BDA interoperability for hybrid applications, not necessarily attempting to

improve one model or the other, but focusing on the goal of coexisting both

paradigms in a single application. These works are scarcer than others that

focus on improving a single ecosystem, but are highly relevant since they

share the same scope than this thesis.

2.3.1 Usage of HPC to Enhance BDA

The focus on performance of HPC is very attractive for BDA users who must

deal with increasing problems but limited processing time. We hereby intro-

duce how previous works accelerated BDA by exploiting the high-performance

and scalability of computing models like MPI, and specific architectural fea-

tures of HPC infrastructures.

Process-Centric Computing Models: MPI and OpenMP

Implementations of traditionally data-centric frameworks like map-reduce

have been developed using MPI. The main limitation of these solutions is



Chapter 2. State of the Art 23

that significant reimplementation effort is required to modify tools, libraries

and applications to use these frameworks, which can impede adoption and

introduce overheads. One of such frameworks was proposed in [70], which is

a parallel library that allows algorithms to be expressed in the map-reduce

paradigm, simplifying programming by using map and reduce operations

callable from C++, C, Fortran, or scripting languages such as Python. Another

related work is Smart [71], a framework that mimics map-reduce to execute

data analytics algorithms alongside computational simulations –in a process

known as in-situ analytics– in time-sharing or space-sharing modes. The

framework uses both MPI and OpenMP to parallelise tasks over distributed

and shared memory. A more recent map-reduce framework over MPI is Mimir

[72]. It includes a redesign of the execution model with optimisation tech-

niques to increase performance, reduce memory usage, and improve scala-

bility. Another variant is FT-MRMPI [73], an extension that provides a fault

tolerant map-reduce framework on MPI for HPC clusters.

Other works attempted to develop novel approaches to data-centric program-

ming. For example, in [74] the authors proposed an event-driven pipeline and

in-memory shuffle using DataMPI-Iteration, which provided overlapping of

computation and communication for iterative BDA computing and showed

a speedup of 9x-21x over Apache Hadoop, and 2x-3x over Apache Spark for

PageRank and K-means. Another approach for running data-centric applica-

tions on MPI beyond the map-reduce model was proposed in [75], where the

authors presented a set of building blocks that provide scalable data move-

ment capability to computational scientists and visualisation researchers for

writing their own parallel analysis. This work is the origin of the Do-It-Yourself

parallel runtime (DIY) [76], a full data-driven runtime usable for any topology

defined by the user.

Infrastructure: Networking and Accelerators

Optimising data-centric platforms for specific heterogeneous architectures is
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a popular direction to accelerate BDA. MrPhi [77] targets Intel Xeon Phi copro-

cessors. A solution for hybrid cloud bursting is discussed in [78] and extended

with a detailed performance model [79]. A similar solution for Spark on GPUs

was IBMSparkGPU [80], but it is valid for local tasks only. Trace [81], is a high-

throughput tomographic reconstruction engine for large-scale datasets using

both (thread-level) shared memory and (process-level) distributed memory

parallelisation using a special data structure called a replicated reconstruction

object. The authors also studied in [82] various frameworks for deep learning

networks that can scale across multiple machines with full parallel support

and distributed execution, such us Tensorflow, CNTK, Deeplearning4j, MXNet,

H2O, Caffe, Theano, and Torch.

Networking and storage are closely related and have been exploited to im-

prove BDA platforms. A first attempt to optimise map-reduce storage on HPC

clusters by utilising Lustre as the storage provider for RDMA intermediate

data was presented in [83]. Other works tried to adapt map-reduce and its

underlying HDFS to use GPFS [84–86]. Results indicated that BDA platforms

still suffered from the reduced locality offered by such setting. Consequently,

the authors in [87] proposed a two-layer storage system that exploits PFS

performance but incorporated an intermediate in-memory storage system

with good results.

A proposal to accelerate Spark communication was presented in [88], which

used a high-performance RDMA-accelerated data shuffle in the Spark frame-

work on high-performance networks and provided a performance improve-

ment of 80%. Finally, we can see interest in the usage of HPC systems for BDA

in the commercial sector. For example, PayPal has shown how the high con-

currency and low latency of HPC systems can be used for fraud detection [89].
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2.3.2 Usage of BDA to Enhance HPC

Evidence of convergence in the opposite direction also appears, specially

works aiming to incorporate data-centric computing models like map-reduce

in HPC applications, and efforts to exploit BDA computing facilities like clouds

to scale scientific computing.

Data-Centric Computing Models: Map-Reduce

Scientific applications and their adaptability to new computing paradigms

have dragged increasing attention from the scientific community. The appli-

cability of the map-reduce scheme for scientific analysis has been notably

studied, specially for data-intensive applications, resulting in an overall in-

creased scalability for large data sets, even for tightly coupled applications

[90].

Several works have analysed how current HPC applications could be adapted

to map-reduce models. In [91], Srirama, Jakovits and Vainikko study how some

scientific algorithms could be adapted to the Hadoop map-reduce framework.

They establish a classification of algorithms according to the structure of

the map-reduce schema these would be transformed to. They suggest that

not all of them would be optimally adapted by their selected map-reduce

implementation, yet they would suit other similar platforms such as Twister

or Spark. They focus on the transformation of particular algorithms to map-

reduce by redesigning the algorithms themselves. A similar approach is HAMA

[92], a framework which provides matrix and graph computation primitives

on the top of map-reduce. An advantage of this framework over traditional

MPI approaches to matrix computations is the fault tolerance provided by

the underlying Hadoop framework. Finally, an approach for using Hadoop

map-reduce in scientific workflows is that explained in [93], whose authors

propose a new architecture named SciFlow. This architecture consists on a

new layer added on the top of Hadoop, enhancing the patterns exposed by

the framework with new operations (join, merge, etc.). Scientific workflows
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are represented as a DAG composed of these operations. Finally, a theoretical

analysis of migrating common HPC-oriented workflows to a BDA processing

platform (i.e., Apache Hadoop) was made in [94]. Authors implemented six

representatives of common scientific workflow patterns in Apache Hadoop

environment and discussed implementation challenges as well as Hadoop

environment applicability for each of the basic patterns.

Other works have attempted to tailor map-reduce and data analytics frame-

works have been developed for HPC. These environments target a particular

family of applications or processor architecture, but they are not generalised

for reuse in other contexts. A preliminary work was ROOT [95], an object-

oriented C++ high-energy physics (HEP) framework designed for storing and

analysing petabytes of data efficiently by using an object container optimised

for statistical data analysis over very large data sets. Another attempt is an

extension of map-reduce with access patterns (MRAP) [96], which targets

HPC analytics with a focus on data locality.

BDA analytics tools –like Hadoop and Spark– are being explored to provide

straightforward data distribution and caching mechanisms in data-intensive

HPC applications. Their data-centric nature permits reasoning about tasks

over distributed data abstractions without worrying about task scheduling,

which is managed by the middleware to enforce data locality and minimise

transfers. The inherent parallelism of these tools has resulted in positive exper-

imental results showing their suitability for massively parallel workloads like

MTC-like workflows [97]. Other works explored the usage of high-level ma-

chine learning libraries for HPC ptychographic reconstruction [98] with good

results. Nevertheless, challenges remain with respect to workflows built with

a pure HPC focus, which rely on MPI and traditional storage infrastructures

[99].

Because Spark underlies many BDA tools, the performance of Spark for sci-

entific computing has been studied in several works. Sherish et al. recently

showed in [100] how BDA tools can be used for HEP data analysis because
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extremely large HEP datasets can be represented and held in memory across

the system and accessed interactively by encoding an analysis using the high-

level programming abstractions in Spark. Kira [101], a flexible and distributed

astronomy image processing toolkit using Apache Spark, was used to imple-

ment a source extractor application called Kira SE for astronomy images. The

study shows that Spark may be an alternative to an equivalent C program for

many-task applications. Another interesting study was shown in [102], where

the performance of a Spark implementation of a classification algorithm in

the domain of High Energy Physics (HEP) was evaluated. The results showed

that the implementation scaled well, but the performance was poor compared

with the results of an untuned MPI implementation of the same algorithm.

Infrastructure: Distributed Storage and Cloud Computing

Scientific workflows are composed of heterogeneous and coupled compo-

nents that interact and exchange significant volumes of data at runtime.

Making these transfers efficient has a potential major impact in the over-

all performance of the resulting application [103]. As a consequence, both

the storage infrastructure and the logical file system abstractions could affect

performance and scalability, thus making data management a key aspect in

workflow design and implementation [104]. In order to support the degree of

scalability and performance required by modern simulators, one of the key

elements to take into consideration is the avoidance of I/O bottlenecks [105].

Given the workflow nature of many state-of-the-art simulators for scientific

computing, Srirama et al. [106] proposed a workflow-partitioning strategy

to reduce the data communication in the resulting deployment. Matri et al.

[107, 108] analysed the applicability of binary large objects (known as blobs)

and object storage systems to solve the problems with POSIX-IO-compliant

file systems and as a mechanism to replace distributed file systems for BDA

analytics.
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Several works have addressed the opportunities of shifting scientific work-

flows from traditional HPC and HTC infrastructures to BDA computing in-

frastructures like clouds. In particular, authors have focused on exploring

data-intensive workflows, since they are the most tightly related to conven-

tional BDA applications in terms of data volumes [109, 110]. Experimentation

with well known workflows shows that running costs could be significantly

decreased with BDA infrastructures, but performance would suffer from vir-

tualisation and latency overheads [111–113]. The relationship between map-

reduce and the cloud for scientific applications has also been tackled in [114],

which establishes that performance and scalability tests results are similar be-

tween traditional clusters and virtualised infrastructures. Nonetheless, these

results for map-reduce workflows are not generalisable to other application

models found in HPC, since the performance of network in cloud is worse

than that of HPC by one to two orders of magnitude [115, 116]. Other authors

indicate, however, that the low maintenance and economical cost of clouds

made it a viable option for small scale clusters with a tolerable performance

loss [117, 118]. Consequently, cloud computing has been proved as a good so-

lution for scientists who need resources instantly and temporarily for fulfilling

their computing needs [119].

In this context, trends evolved to migrate scientific applications to the cloud

by means of several techniques. D’Angelo [120] described a Simulation-as-

a-Service schema in which parallel and distributed simulations could be

executed transparently, which requires dealing with model partitioning, data

distribution and synchronisation. He concludes that the potential challenges

concerning hardware, performance, usability and cost that could arise could

be overcome and optimised with the proper simulation model partitioning.

Following a similar approach, Yu et al. [121] proposed an application adapta-

tion middleware to allow legacy code migration to the cloud. In this work, a

virtualisation architecture is implemented by means of a web interface and

a Software-as-a-Service market and development platform. Similarly, [122]

proposes moving desktop simulation applications to the cloud via virtualised
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bundled images. These are generalist approaches that do not take into consid-

eration the internal structure of the HPC applications, thus might not suffice

for the resource-intensive computations required by HPC simulations.

2.3.3 Endeavours Towards HPC and BDA Interoperability

The scientific community is aware that tools like Apache Spark1 provide an

interesting baseline for integration of scientific simulations in BDA environ-

ments. However, the data abstraction and application model of Spark are not

easily supported using MPI, which is the main programming model in HPC

[123]. Using Spark for HPC applications, while appealing, poses important

convergence challenges.

The work in [124] introduced a methodology for graph processing to bridge the

gap between Spark-based graph computing and HPC. Evaluations made in the

Blue Waters supercomputer showed poor scalability of Spark vs. MPI+OpenMP

for graph operations. In an effort to progress, Fox et al. presented in [125] a

framework named HPC-ABDS, which detected points for possible integration,

but also identified problems with workflow systems, data transport, and file

management layers. Gittens et al. explored in [126] the trade-offs of perform-

ing linear algebra using Apache Spark, compared to traditional C and MPI

implementations on HPC platforms. The results showed a poor performance

of Spark vs. MPI for matrix multiplications: from 2x to 25x performance gap.

However, the authors highlight the potential of incorporating MPI-based run-

times to Spark, indicating that overheads might be tolerable. In this context,

achieving a data model fully compatible for Spark and MPI that provides

scalability, performance and interoperability suitable for scientific data as-

similation remains a challenge not fully satisfied by any existing platform, but

would be desired by the scientific community.
1See https://spark.apache.org/
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This thesis presents an abstract architecture for runtime interoperability that,

to the best of our knowledge, has not been introduced before in the literature.

In addition, we provide an implementation that allows users to benefit from

efficient MPI libraries accessible from Spark with little effort on their parts. As

a result, we achieved a platform (called Spark-DIY) that provides advanced

capability compared with other related solutions in the literature. For example,

compared with [88], we provide compatible block management between the

native side and Spark by using JNI. Compared with [83], our solution provides

not only powerful I/O through MPI, but also computing scalability. Moreover,

our implementation constitutes a general solution that is not specific to any

domain of data type, unlike the work presented in [100]. Our approach is

more similar to the solution proposed in [127], but Anderson et al. use HDFS

to exchange data among Spark and MPI, while we use memory directly for

increased efficiency. Moreover, we rely on an intermediate library based on

MPI that manages the block communication graph, which avoids the burden

of direct MPI usage.

Besides the former works, there are two platforms that are very close to

Spark-DIY in terms of aim and functionality. Spark-DIY is similar to Spark-

MPI [128], a solution that extends the Spark ecosystem with the MPI appli-

cations using the Process Management Interface (PMI) to allow the creation

of MPI processes from Spark. We relied on Spark-MPI to inspire the deploy-

ment mechanism of Spark-DIY, and we incorporated significant architectural

and implementation features that make Spark-DIY much more complete and

general. Alchemist [129] is another effort in this direction, focusing on the

ability to call MPI-based libraries from Spark. Using Alchemist with Spark

helps accelerate HPC computations, while still retaining the benefits of work-

ing within the Spark environment. The differences between Spark-DIYand

Alchemist are mainly in terms of internal implementation.
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2.4 Summary

This chapter presented a depiction of the HPC and BDA ecosystems, diving

into relevant works covering their convergence at different levels. Although

there are numerous efforts related to the enhancement of one model with

elements of the other, works covering true interoperability between platforms

for hybrid applications are scarce and inconclusive, and are mainly focused

on specific runtimes like MPI and Spark.

We could not find abstract architectures and theoretical work regarding HPC

and BDA runtime interoperability, which is the main topic in this thesis. How-

ever, there are similar works related to our final implementation of a platform

for HPC-BDA applications, but they lack the generality and flexibility of our

solution.

With the objective of establishing the foundation of the work in this thesis,

the following chapter analyses which are the most valuable features of the

ecosystems hereby presented, describing exactly the scope of this work and

the challenges that must be faced to achieve convergence in this context.

This chapter includes content published in:

• S. Caíno-Lores, J. Carretero, B. Nicolae, O. Yildiz, and T. Peterka, "Spark-

DIY: A Framework for Interoperable Spark Operations with High Perfor-

mance Block-Based Data Models" [130].

• S. Caíno-Lores, J. Carretero, "A Survey on Data-Centric and Data-Aware

Techniques for Large Scale Infrastructures" [131].





CHAPTER 3

PROBLEM STATEMENT

HPC and BDA applications have conditioned their traditional solutions to the

infrastructure and software architectures found in their respective ecosystems.

Nowadays, with the advent of new problems requiring hybrid approaches,

convergence became a critical priority for the industry and the academia,

which brings new opportunities and vast challenges at all levels of the system

stack.

This chapter presents a deep motivation of this thesis, comparing side by side

both ecosystems, analysing why convergence is so difficult to attain out-of-

the-box, and introducing the trade-offs that must be balanced depending on

the final goal and target use case that are selected. In light of this information,

this chapter also presents the specific problem covered by this thesis, stat-

ing the hypothesis and overall approach that will be developed in following

chapters.

3.1 Problem Analysis

The divergence between HPC and BDA software ecosystems emerged early

this century when software infrastructure and tools for data analytics that had

been developed by online service providers were open sourced and picked up

by various scientific communities to solve their own data analysis challenges

[132]. HPC-BDA convergence became a hot-topic as applications and their

associated data evolved outside from their original ecosystems. At that time,

the problem for HPC was how can we cope with increasing datasets?, while

BDA was wondering how can be run analytics faster?. Studying the existing

33
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trade-offs, various experts considered there was a need for convergence of

the classical HPC and BDA software stacks.

While each of these domains has its set of unique requirements in terms of

the underlying infrastructure, there is an increased pressure for leveraging

technology, methods and tools from across these domains. Major technical

differences between HPC and BDA ecosystems include software development

paradigms and tools, virtualisation and scheduling strategies, storage and net-

working models, resource allocation policies, and strategies for redundancy

and fault tolerance [133]. These technical differences, in turn, tend to make

future cross-boundary collaboration and progress increasingly problematic.

This leads to a challenging scenario that involves understanding a different

community and computing model in order to inspire new approaches to

replicate features that become necessary, and managing a computing infras-

tructure built for a completely different paradigm. This situation led to the

advent of specific research topics like high-performance data analytics and

data-driven science.

Many challenges remain unsolved and this situation has been worsened by

the appearance of new application domains that are completely hybrid in na-

ture, like autonomous vehicles, surveillance, e-science with Big Data sources,

monitoring of large scale infrastructures, and smart cities, to name a few.

These domains have in common the need to support the simulation of very

complex models, assimilating voluminous and variable real-time data in or-

der to generate refined models for better understanding of the domain, to

prescribe pattern-based control actions, or to predict a future behaviour. In

this circumstances, borrowing features from the other paradigm proves in-

sufficient, and deeper convergence becomes necessary to cope with mixed

requirements, new infrastructures, and upcoming performance expectations.

Major technical requirements involved in this process include highly scal-

able performance, high memory bandwidth, low power consumption and

excellent short arithmetic performance.
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Consequently, BDA and HPC platforms today remain largely incompatible.

The following paragraphs detail the causes identified in this thesis that affect

further convergence.

3.1.1 Programming and Data Models

Operations in BDA and HPC are defined using different programming models,

in particular there is a huge gap between functional and procedural program-

ming, which yields complex variety for hybrid workloads in terms of their

algorithmic structure [134]. In addition, it is sometimes required to incorpo-

rate legacy kernels and specialised components, making necessary to leverage

HPC mathematical libraries for BDA, incorporate specialised numerical li-

braries for accelerators, and interoperate data formats.

As a result, programming models and software development tools in the

BDA and HPC worlds are inconsistent [135], and trying to mix both models

out-of-the-box generates memory overheads and poor scalability in a HPC

environment [136]. In addition, the usage of merged BDA models presents

limitations, such as high memory consumption and low efficiency in com-

munication between cooperating processes [137].

Some BDA-oriented platforms also show drawbacks in terms of generality and

versatility, since the offered functionality is limited to the common operations

needed for data analysis. As a consequence, there is a need for a hybrid

paradigm with coherent memory and a unified programming environment.

Interoperability and data locality should be a priority, since data movement

dominates performance and energy at scale.

3.1.2 Runtimes and Platforms

Middleware is built with different performance, multi-tenancy, and fault-

tolerance expectations. Moreover, some of these requirements may not be
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present in both models (i.e. MPI-based workloads implement fault-tolerance

assuming check-pointing instead of transparent re-execution, as in BDA plat-

forms). Thus, besides the importance of additional functionality, the core

operational behaviour of these runtimes is currently tailored for diverse re-

quirements in terms of size and volume of tasks, which is deeply related to

the degree of parallelism and tenancy.

BDA platforms –like Hadoop and Spark– and infrastructures –such as clouds–

could be used to improve the efficiency and scalability of some types of sci-

entific applications with minor modifications aimed towards introducing

the required degree of data locality. More specifically, simulators relying on

parameter-sweep and partitionable domains, and kernel-based workflows

comprising many loosely-coupled tasks, could greatly benefit from the mas-

sive parallelism of BDA paradigms. Another main benefit of having BDA

frameworks as execution engines are their underlying resource manager and

distributed file systems, which ease data distribution and task management.

However, the disparity between collocated and distributed storage architec-

tures in BDA and HPC systems, respectively, degrades performance when

running BDA applications on HPC systems [138].

Finally, there is a general lack of performance metrics for hybrid applications,

which are not purely compute-intensive any more, and may be borrowed

from each ecosystem as required by each stage in the application.

3.1.3 Computing and Storage Infrastructures

To efficiently support new application domains, it is necessary to facilitate

convergence below the upper system layers, exposing access to accelerators,

local, distributed and parallel storage. In addition, building a solution for BDA

environments like clouds expands the potential flexibility to configure the

necessary hardware at each stage of the application.
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Current application domains have shown a huge increase in the complexity of

BDA applications, usually driven by the computation-intensive simulations,

which are based on complex models and generate enormous amounts of

output data. On the other hand, users need to apply advanced and tightly

complex analytics and processing to this data to generate insights, which

usually means that data analytic has to take place in-situ, using complex

workflows and in synchrony with computing platforms. This requires novel

BDA architectures, which will exploit the advantages of HPC infrastructure

and distributed processing, and arises the challenges of maintaining efficient

distributed data access and energy efficiency in such architectures.

Nowadays, innovative computing platforms are being proposed to cope with

the requirements of modern applications. On one hand, new storage tech-

nologies like flash-based solid-state drives (SSDs) assisted supercomputers

in their search for BDA support by providing deeper storage hierarchy that

reduced the latency gap between main memory and the parallel file system

[55, 139, 140]. On the other hand, clouds have revamped their underlying

data centres to provide bare metal access to cutting-edge processors and

accelerators on demand, both dedicated to mimic traditional clusters, and

virtualised offering high-performance and heterogeneous cloud computing

capabilities [141]. Both approaches are fusing into hybrid architecture models

–like edge with supercomputing support– that bring many opportunities and

challenges for software platforms [8].

3.2 Convergence Challenges and Opportunities

In order to study the convergence challenges and opportunities for conver-

gence, we have summarised the main features of both ecosystems in Tab. 3.1.

We now proceed to analyse the challenges and opportunities they yield for

future convergence.
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TABLE 3.1: Summary of the main features of BDA and the HPC ecosystems.

BIG DATA ANALYTICS ECOSYSTEM

DATA-CENTRIC PLATFORMS CLOUD, FOG

Pros

Fault-tolerance by design Flexibility through virtualisation
Transparent data locality Diverse local storage (NVRAM, SSD, scratch)
Productive programming interface Elasticity
Synergetic pre-built tools for composite jobs Massive geographic distribution

Cons

Low resource management control Resource sharing
Significant memory overhead High latency
Poor support of binary input Enterprise hardware
Deep software and communication stack Privacy concerns
Poor integration with simulation kernels

HIGH PERFORMANCE COMPUTING ECOSYSTEM

PARALLEL PROGRAMMING PLATFORMS SUPERCOMPUTER

Pros

Exploit maximum parallelism Top-tier hardware including accelerators
Low overhead Centralised
Generalist interface Fast interconnections
Bare-metal access

Cons

Limited data abstractions Decoupled storage
Steep learning curve Limited availability
No native provenance nor replication
Low portability

From the domain perspective, it is clear that the iterative nature of the sim-

ulation algorithms yield collective operations that do not fit nicely into the

typical BDA paradigms. Therefore, significant efforts must be conducted to

converge simulations and BDA algorithms [142].

Regarding workflow development and deployment, we conclude that a promis-

ing research line for large scale scientific workflows would be working towards

an hybrid approach between MPI and BDA-oriented data abstractions. Such

model would blend the slim MPI processes and their generalist nature, with

the ability to reason about data processing without explicitly implementing

data parallelism that BDA platforms provide. The former features are highly

desired by scientists who want to focus on their problem, rather than the

computational elements of their work. As we have seen, they come at the cost
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of large amounts of memory overhead. This would result in a highly produc-

tive and efficient mechanism to build and deploy both scientific workflows

and BDA applications, which is currently desired by the exascale community

[142, 143].

Another major point arising related to data management in BDA solutions

is the lack of flexibility for programmers to express complex data structures.

This approach does not fit the complexity of data in HPC applications that

need to show complex views of data to the users and the underlying system

software. The data requirements of scientific applications are expected to

become larger in the next few years, increasing the pressure on the parallel

file systems, which are currently seen as a serious performance bottleneck.

It becomes increasingly important to better understand application data

models and to be able to efficiently map them on the underlying storage

through novel techniques.

In addition, upcoming platforms shall take into consideration other middle-

ware aspects that made BDA platforms so successful, such as transparent fault-

tolerance. As a consequence, there is a need to integrate the fault-tolerance

techniques found in HPC, mostly oriented towards batch and iterative work-

loads (e.g. multi-level check-pointing), with the methods from the BDA side

that tackle large volumes of tasks (e.g. data replication and provenance). This

also has an effect in locality, and trade-off between these techniques must be

addressed.

From the infrastructure side, we have seen that memory has become the

limiting factor for new BDA platforms. We also factor that emerging MTC sci-

entific workflows also require significant amounts of memory for processing,

caching, and exploiting in-memory solutions for enhanced performance. As

a consequence, instead of tailoring the hardware to the execution of many

small tasks, upcoming data-intensive infrastructures should heavily invest in

both volatile and non-volatile memory and deepen the storage stack. Hence,

increasing memory in commodity clusters and clouds is key to support the
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upcoming execution platforms. These additional resources could mitigate

the requirements of new workloads, and they would help the support of the

emerging in-memory and caching mechanisms coming from data-aware

computing. In addition, it is expected that this integration with more BDA-

oriented infrastructures will benefit pure HPC workloads in the near future

[144].

To summarise, this desired confluence of BDA and HPC raises a number of

challenges: overcoming the differences in cultures and tools; adopting new

infrastructure architectures; ensuring the coexistence of stream and batch

models; and implementing virtualisation for sharing, resource allocation,

and efficiency. Software libraries for common intermediate processing tasks

need to be promoted, and a complete software ecosystem for application

development is needed. Finally, the divergence of programming models and

languages poses a convergence issue, not only with regard to interoperability

of the applications, but also to the interoperability between data formats from

different programming languages.

3.3 Proposal

The former chapters and sections have provided a deep motivation and con-

textualisation of the topics covered in this thesis, and have detailed the current

challenges and open problems in this field. At this point, we introduce the

novel approach proposed in this work to tackle the problem of BDA and HPC

convergence at the software level by defining, firstly, the guiding hypothesis,

followed by the thesis and an overall view of our proposed approach.

3.3.1 Hypothesis

In the context of HPC-BDA convergence, we formulate that:
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HPC-BDA convergence at the platform level can be attained by

enabling interoperability of existing process- and data-centric run-

times.

This must be done in a way that addresses a subset of the major challenges

found in our analysis, namely preserving BDA platform usability and produc-

tivity, exploiting HPC scalability, and expanding both BDA and HPC capabili-

ties to cope with prospect hybrid application models.

3.3.2 Thesis

The purpose of this thesis is to research new approaches to facilitate the con-

vergence of HPC and BDA paradigms by providing common abstractions and

mechanisms for improving scalability, data locality exploitation, and execu-

tion adaptivity on large scale computers.

This thesis shall outcome compromise solutions for generality, performance

and efficiency, taking into consideration the many convergence challenges

covered in the previous sections. More precisely, this thesis will focus on

infrastructure independence, the need to conduct minimal changes to the

platforms (none if possible), seamless integration, and the minimisation of

interoperability overhead between runtimes.

3.3.3 Approach

To achieve the former goal, after analysing the key features that characterise

HPC and BDA ecosystems (O1), we will design and develop an architecture

that offers runtime interoperability for hybrid HPC-BDA applications (O3).

Such an architecture will rely on an auxiliary mechanism to reshape HPC-

oriented workflows in order to adapt them to data-centric environments

(O2); a unified operational and data model of BDA and HPC; and support for
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FIGURE 3.1: Overall thesis approach, depicting the core elements involved
in the interoperation process.

high-level analytics methods and high-performance kernels for composite

applications.

Given the context of this thesis and its main purpose, we propose to divide

the architectural proposal in two core parts: one is related to the data-centric

platforms that run beneath BDA workloads, and the other is related to the

process-centric frameworks that support HPC applications. Figure 3.1 repre-

sents this duality and portrays the confluence of both runtimes.

In order to exploit the benefits of data-centric programming, task, and data
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models, first of all we shall provide a data-centric transformation mechanism

that allows process-centric workloads to interact with BDA platforms and

storage infrastructures (O2), including local storage for cached resources,

intermediate results, and auxiliary data; distributed storage for historic data,

immutable input datasets, batch results, and precomputed models in the con-

text of lambda models; and edge devices for stream-like input. This supports

complex data aggregation and massive task-parallelism. There are plenty of

benefits from adopting a data-centric view on computing problems, namely

the side effect of cloud enablement, portability, and strong usability.

On the other hand, we need support for tightly-coupled tasks, which might

also rely on acceleration kernels and data coming from isolated networks

(e.g. parallel file system). The integration of process-centric runtimes en-

hances data-centric workloads with the possibility of exploiting upcoming

architectures –such as edge with supercomputing assistance– and specialised

hardware for common tasks –e.g. deep learning–.

These elements will be exposed through a common data abstraction and

operational model that provides transparent access to the features desired

at each stage of the workflow, which can be composed by typical HPC tasks

like simulations, or operations that are usual in BDA settings, like visualisa-

tion and filtering. This approach offers enhanced usability for HPC users,

extended functionality for BDA users, potential performance and scalability

improvement in hybrid scenarios, and efficient workload integration through

seamless runtime interoperation.

To asses the feasibility of the proposed architecture for HPC-BDA, we will

explore the trade-offs between transparency, flexibility, and performance that

appear in the former design by using synthetic benchmarks and real-worlds

applications. Performance and scalability will be also assessed through evalu-

ation on a meaningful use case, representative of target hybrid applications

(O4).



Chapter 3. Problem Statement 44

3.4 Summary

Convergence between HPC and BDA is now an established research area that

has spawned new research topics such as data-intensive scientific computing,

high-performance data analytics, and hybrid platforms and infrastructures

based on virtualisation techniques and novel storage hierarchies. Therefore,

the HPC [145] and BDA [8] communities have recognised new opportunities

in unifying the platform layer and data abstractions for both HPC and BDA

[3].

This thesis builds on the hypothesis that HPC-BDA convergence at platform

level can be attained by enabling runtime interoperability in a way that pre-

serves the beneficial features of BDA and HPC platforms, and expands both

BDA and HPC capabilities to cope with prospect hybrid application models.

Our approach is to architect an abstract system that enables the interop-

erability of established BDA and HPC runtimes, in light of their canonical

underlying infrastructures, and considering the requirements of hybrid appli-

cations, which we have analysed in depth. The following chapters develop

this approach, detailing the architectural details of each component, while

supporting its viability with evaluations conducted on synthetic and real use

cases built for an implementation of this architecture.

This chapter includes content published in:

• S. Caíno-Lores, F. Isaila, and J. Carretero,"Data-Aware Support for Hybrid

HPC and Big Data Applications" [146].

• S. Caíno-Lores, A. Lapin, J. Carretero, and P. Kropf, "Applying big data

paradigms to a large scale scientific workflow: Lessons learned and future

directions" [147].
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• S. Caíno-Lores, J. Carretero, B. Nicolae, O. Yildiz, and T. Peterka, "Spark-

DIY: A Framework for Interoperable Spark Operations with High Perfor-

mance Block-Based Data Models" [130].





CHAPTER 4

DATA-CENTRIC TRANSFORMATION

METHODOLOGY FOR HPC PROCESS-CENTRIC

APPLICATIONS

Process-centric workloads, like HPC scientific applications, are key tools in

many research areas that rely on multiple, diverse, and distributed operations

over various datasets, usually yielding major computational complexity and

data dependencies. While current process-centric workloads rely on hundreds

of gigabytes of intermediate data [148], trends show that large scale scientific

applications would have to address increasing data sizes, easily reaching

petascale [149]. In this context, such applications face new performance and

scalability challenges [150]

Recent works have suggested the opportunity of combining the traditional

HPC approaches with BDA paradigms [2]. For example, typical BDA program-

ming models –such as Apache Hadoop– have been considered to substitute

MPI parallelism techniques, following a data-centric approach. In addition,

we can also see this opportunity affecting the underlying computing infras-

tructures. Indeed, cloud computing –a key element in current BDA systems–

could inspire hybrid platforms for exascale scientific workflows in which stor-

age is not completely isolated from computing nodes [3, 151]. Applying some

of these BDA techniques could improve scalability in certain types of scien-

tific applications, especially those with many loosely-coupled tasks [152], or

heterogeneous tasks with few interdependences [153].

In order to exploit the benefits of data-centric programming, task, and data

models in a hybrid setting, first we must expose a mechanism to allow the inter-

action of process-centric workloads with BDA-oriented platforms and storage

47
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facilities. In this chapter, we introduce a data-centric transformation method-

ology that enables complex data aggregation, massive task-parallelism, and

infrastructure portability for existing process-centric applications. The fol-

lowing sections define the structural requirements of the applications that

can be adapted with the guidelines provided by this technique, and describe

the methodology itself.

4.1 Structure of HPC Process-Centric Applications

HPC scientific applications represent large-scale computational experiments

in different domains. A scientific application aims to organise computational

steps into a logical series in order to prove a scientific hypothesis based on

a mathematical model. A good representative of such applications, which

provides an execution environment and tools for data management, analysis,

simulation, and visualisation, is a simulator. Simulators firstly emerged in

meteorology and nuclear physics, then they became crucial in many other

disciplines like economics, sociology, biology, geology, hydrology [154].

Simulators differ based on four main types of simulation problems defined in

the literature, namely equation-based, agent-based, multi-scale, and Monte-

Carlo simulations [155–157]. While equation-based and agent-based simula-

tions are widely adopted and well-studied types, two other types –multi-scale

and Monte Carlo simulations– were developed later due to the requirement

of much greater computational power. Nevertheless, all of them share their

iterative nature: a simulation relies upon a pre-defined algorithm that takes

as an input a specific state of the system at a given time, and calculates its

state at the next time slot under certain conditions.

This general structure of a HPC scientific application is thus depicted in Fig.

4.1, highlighting the key regions we will focus on:
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FIGURE 4.1: General structure of a HPC scientific application, with
highlighted parallel and model update regions.

Parallel Computation Region. Most simulations start from a base model

that is instanced according to variations on some of its parameters. If

the simulation of these variations can be conducted independently,

then we call this a parameter sweep process. In addition, each partic-

ular scenario may comprise further fine-grain levels of parallelism for

concurrent computation of changes in portions of the domain, or in

sections of the simulation algorithms that can be parallelised. These

parts of the overall application conform its parallel computation region.

Model Update Region. The computations in the parallel region must be inte-

grated somehow to reach consensus on how the application model will

evolve for the following time step [94]. This is typically a communication-

intensive process because data must be exchanged across all the pro-

cessing units in execution. Furthermore, the results may be collected in

a single processing unit, thus incorporating significant stress to mem-

ory management and usage. These procedures constitute the model

update region of the application.
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With the objective of making such existing HPC applications suitable for their

integration to a hybrid HPC-BDA environment, we need to find a method

to transform them with minimal impact on the original code and without

disrupting the structure of their parallel and model update regions. However,

the architectural differences between the analytics and scientific worlds re-

quire novel approaches to achieve satisfactory results in this transformation

procedure. In the following section we provide a methodology to incorpo-

rate data-oriented mechanisms into production-ready scientific ensemble

applications.

4.2 Transforming Iterative Process-Centric Workloads

to a Data-Centric Model

The methodology we propose aims to (a) guide the transformation of an

iterative parallel scientific application to a data-centric paradigm, while (b)

maintaining a comparable level of performance against a traditional design.

To achieve this, we have built this methodology in a data-aware manner, as

data locality plays a major role in the final performance and scalability of

these applications.

Inspired by iterative map-reduce schemes from the BDA ecosystem, the key

to provide locality within our model is that independent simulation steps

may rely on different node-local data, with no need for further communica-

tion. This perspective provides a high degree of parallelism that matches the

parallel region of these applications, and also provides support for iterative

applications, considering their need for a model update region.

The map-reduce paradigm that assists the methodology consists of two user-

defined operations: map and reduce. The former takes the input and produces

a set of intermediate (ke y, value) pairs that will be organised by key, so that

every reducer gets a set of values that correspond to a particular key [19]. As a
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data-centric paradigm, in which large amounts of information can be poten-

tially processed, these operations run independently and only rely upon the

input data they are fed with. Thus, several instances can run simultaneously

with no further interdependence. Moreover, data can be spread across as

many nodes as needed to deal with scalability issues.

4.2.1 Application Requirements

Our purpose is to divide the application into smaller simulations that can

run with the same simulation kernel, but on a fragment of the full partitioned

data set. As a consequence, this SPMD scheme matches the parallel region

of the application. However, not every application can be transformed using

this method, so first it is necessary to state which features must be found in

suitable applications. First of all, we must analyse the original simulation

domain in order to find an independent variable, k, that can act as index for

the partitioned input data and the following procedures. This independent

variable would be present either in the input data or the simulation param-

eters and it could represent, for example, independent time-domain steps,

spatial divisions, or a range of simulation parameters. The existence of such

independent variable is an absolute requirement of this methodology because

we need a key for subsequent steps.

Once such index is found within the simulation domain, we must analyse

the input data needed to run the simulation kernels. There are no specific

requirements regarding the scope of input data, but it is necessary so establish,

for each input element, to which of the following subsets it belongs to:

1. Data that is required for every value of k, this is shared data that needs

to be made available to each independent execution.

2. Data that is only required for a specific value of k.
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FIGURE 4.2: Overview of the data-centric transformation methodology.
Dashed boxes indicate optional stages, which may not be necessary for
every application. Red boxes highlight the parallel computation region,
and the blue box represents the model update region.

Once the application is shown suitable for the process and all input data has

been categorised, it can be transformed by conducting the steps indicated in

the following section.

4.2.2 Transformation Process

The proposed methodology is depicted in Fig. 4.2. It consists of the definition

of the following steps:

Key Selection. First, it is necessary to conduct an analysis of the original

application in order to find a domain suitable for parallelisation, which

is necessary to apply the methodology. As a result, we will find inde-

pendent variables that constitute potential keys, and we must select

one of them to act as the partitioning key, k, that will guide the domain

distribution and the following stages.

Domain Distribution. Once the parallelisable domain is selected, we can

model how the input will be distributed across the nodes to mimic the
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behaviour of the parallel region of the application. This parallelisation

stage distributes the proper portion of the input, for each value of k.

This sets the fraction of the input data or model that will be processed

for each instantiation of the guiding independent variable. This stage

has critical effects in the final degree of data locality achievable by

the simulation, since the proper preparation of the input data and

parameters can save subsequent data transfers and communication

between the simulations associated with each subdomain.

Data Adaptation. The input data for each partition of the domain might not

be originally arranged in the way the simulations will expect. Therefore,

in some cases one or more data adaptation stages would be required to

aggregate all the necessary data for each value of k.

Simulation. One or more simulation stages wrap the kernels involved in the

simulation workflow, in order to simulate each portion of the domain

independently and autonomously. This yields the execution of not one,

but many smaller simulations. The large number of simulations to be

executed factors the inherent complexity of the simulation process, yet

it can be massively distributed due to the independent nature of each

simulation. Considering the previous domain partitioning stage, each

simulation will be scheduled in the computing node that holds each

domain partition as it would occur in a map-reduce application, so that

no data transfers are required at this point. Therefore, we process the

key-specific input in a way that exploits data locality, and minimises

data transfers.

Partial Evaluation. Optionally, one or more reduction stages can be defined

to filter or join partial outputs before the overall collection and eval-

uation of results to reduce contention in the synchronisation point

for the model update region. This stage can also be used to aggregate

node-local data to minimise transfer sizes for the following procedures.
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Output Analysis. This constitutes an analysis stage for updating the model

after the simulation, in which the processing methods in charge of cre-

ating the input for the following iteration take place. In this step, the

output evaluation must be defined to reflect the end criteria, the gener-

ation of the following input, and the validity of the results per iteration.

In the worst-case scenario, a collection point is typically needed to con-

duct such analysis. However, in some cases these procedures can be

executed in a distributed manner, but this depends heavily in the use

case and the selected implementation platform.

The objective of the former steps is to find a parallelisable simulation domain,

in which we are able to select an independent variable to act as index for

subsequent steps. This shall support the parallelisation of the domain in

a key-value manner, so that further simulation pipes and optional partial

evaluations can take place independently, as seen in massively-parallel data

analytics frameworks. Of course, any partition-specific data will only con-

cern the node that is going to process such domain partition, hence we can

schedule the computation in the proper node to support data locality. This is

particularly interesting if several simulation stages are involved, since they

can be scheduled together to benefit from local intermediate files. After these

procedures, partial results can be filtered and assessed in parallel as well,

again following the initial domain distribution. Finally, these partial results

can be analysed and processed to build the next iteration, but the effects of

this synchronisation point can be alleviated by previous partial reductions.

4.3 Summary

This chapter described a data-centric methodological approach to enable

the usage of BDA-oriented infrastructures and platforms in HPC scientific

iterative workflows, which is one of the main contributions of this thesis. The

main objective of this methodology is to define the common stages we can
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find in these kinds of high-performance applications, and model them in such

way we can maximise parallelism and data locality in the resulting workflow.

This would allow scientists to benefit from elements in the BDA ecosystem

with minimal development efforts, or to modernise their legacy applications

systematically.

This data-centric methodology results in a redesign of the application that

maximises simulation kernel reusage, because we only need to rearrange

input and output data to reduce the scope of each problem. The way data

is reorganised is, however, dependant on the particular simulation and the

BDA platform used to implement the resulting design. The following chapter

exemplifies how this methodology is applied to real use cases.

This chapter includes content published in:

• S. Caíno-Lores, A. Lapin, J. Carretero, and P. Kropf, "Applying big data

paradigms to a large scale scientific workflow: Lessons learned and future

directions" [158].

• S. Caíno-Lores, A. Lapin, P. Kropf, and J. Carretero, "Methodological Ap-

proach to Data-Centric Cloudification of Scientific Iterative Workflows"

[159].

• S. Caíno-Lores, A. García, F. García-Carballeira, and J. Carretero, "A

Cloudification Methodology for Multidimensional Analysis: Implemen-

tation and Application to a Railway Power Simulator" [137].





CHAPTER 5

DATA-CENTRIC TRANSFORMATION OF HPC

SCIENTIFIC APPLICATIONS

In this chapter we show how to apply the proposed transformation method-

ology to two real-world use cases: one from the family of parameter sweep

applications, and one representing iterative simulation ensembles. The first

use case is a railway power consumption simulator (RPCS) that assists in the

design, simulation and evaluation of railway electric infrastructures [160].

The second, EnKF-HGS [161], implements the ensemble Kalman filter (EnKF)

technique for data assimilation into a hydrogeologic model (HGS) [162].

We have chosen RPCS and EnKF-HGS as case studies because they are a

real-world applications in the process of being integrated with other BDA

components, hence the need for them to be transformed to a data-centric

form. Additionally, scalability is key in these scientific and industrial fields, as

the resulting applications must be able to cope with larger experiments and

new environmental models with increased complexity. Therefore, these use

cases are representative of the simulations we tackle with our methodology,

both in terms of complexity and resource consumption.

The following sections describe the applications in detail and elaborate on

how the methodology is applied to attain a data-centric implementation. We

will also analyse different metrics to evaluate the performance of the resulting

transformed application.

57
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5.1 The RPCS Railway Electric Infrastructure Simula-

tion Tool

Power dimensioning and energy saving have been traditionally two main

issues regarding the deployment of electrical grids. Railway electric lines, as a

particular case of electric grids, are also concerned about these issues, trying

to supply a steady flow of energy to the moving trains while saving as much

energy as possible.

Simulators and expert systems are frequently used to design and test railway

electric lines, prior to their installation, modelling the infrastructure and the

train traffic in order to check the behaviour of the system. In particular, RPCS

uses train movement information (i.e. train position and power consumption)

to calculate the instantaneous power demand taking into account all railway

elements such as tracks, overhead lines, and external consumers, which can

be translated to an electric circuit as depicted in Fig. 5.1. As a result, the simu-

lation indicates whether the power provisioned by power stations is enough

or not. Simulator internals consist on composing the electric circuit on each

instant, and solving that circuit using modified nodal analysis (MNA). RPCS

is a multi-threading application that is memory bounded, strongly limited by

the number of instants to be simulated simultaneously, and therefore by the

number of available threads.

Nowadays, modern industrial expert systems are expected to go beyond be-

havioural simulation, assisting in the process of proposing new designs, taking

into account all possible issues that may affect, or even determine, the final

validity of a solution. In the context of RPCS, this means supporting the abil-

ity to generate different scenarios with variations in the characteristics of

the infrastructure (e.g. the position of the electrical substations). Further

assistance would involve searching for the best solutions across the problem

domain, considering generation and evaluation heuristics extracted from

expert’s knowledge. This allows choosing the solutions that best fit to specific
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FIGURE 5.1: Railway infrastructure and its translation into an electric
circuit.

criteria, and even evolve them in order to improve them following an iterative

scheme.

Figure 5.2 represents the aforementioned process as a search engine that

generates and evaluates solutions varying a set of parameters, performing

the search across the solution space to meet user-defined restrictions and

objectives. This engine would rely on RPCS for the simulation of each scenario

through a common model ontology that translates the components of the

infrastructure into elements of an electric circuit: voltage sources, branches,

and consumers (current sources).

However, exploring the search space of a problem in several dimensions (e.g.

sweeping different parameters of the simulation) may lead to perform hun-

dreds or thousands of simulations, requiring thousands of hours of computing

resources, limiting the number of experiments end-users are able to conduct.

In this context, elastic BDA infrastructures like cloud computing raise as an

option to scale to larger and more numerous experiments by requesting a
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.

distributed pool of virtual resources on-demand. The pay-per-use model of

cloud computing frees the user from the burden of maintaining the infrastruc-

ture and brings the opportunity to tailor the hardware resources according to

specific user needs or simulation characteristics.

In order to adapt the core simulation engine, RPCS, to said BDA environment,

we first need to be able to distribute its workload across several nodes exploit-

ing data locality as much as possible to reduce the effects of its memory-bound

nature. This makes RPCS a suitable use case for our data-centric transforma-

tion methodology.

5.1.1 Simulator Description

The aim of RPCS is, provided a number of trains circulating across the lines,

to calculate if the amount of power supplied by the electrical substations is
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enough or not. RPCS depends on the definition of a infrastructure represent-

ing the railway installation, which contains a set of stations linked by tracks

at a specific milemarker.

A number of trains circulate with a pre-defined profile along these stations,

and through the tracks, according to their electric properties. This profile

is constituted by a collection of records that relate the power consumption

of the train with a specific instant and position, expressed as a milemarker

of a track. More specifically, we define the profile of a specific train, P , as

a set of tuples (t ,m,P ) where t is the instant in the simulated time in which

we know the position of the train on the track, m, and its instantaneous

power consumption, P . The electric circuit formed by the trains and the

infrastructure is thus composed and solved using MNA.

The overall structure of RPCS is shown in Fig. 5.3. It consists of a preparation

phase in which all the required input data are read and partitioned to be

executed in a predefined number of threads. Two classes of input files are

handled:

• A common infrastructure specification file containing the initial and

final time of the simulation, besides a wide range of domain-specific

simulation parameters such as station and railway specifications and

power supply definition.

• A set of train movement files, referred to as circulation files), structured

in a time-based manner. Each line contains the calculation of speed

and distance profiles for a particular train at a specific instant regarding

the infrastructure constraints, with a one second interval.

Each of the threads then performs the actual simulation by means of an

electric iterative algorithm, storing in shared memory the results that will be

merged in the main thread to constitute the final output files.
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FIGURE 5.3: Detailed view of RPCS internal simulation structure.

The application is multi-threaded, so simulation workload is split among the

available cores in the computer. Each thread simulates a different subset of

the total simulated time. This split is performed as follows: let ti ni and tend

the initial and final simulated times defined in the input files, respectively,

and let T0,T1, ...,Tn−1 the n threads of the application, the thread T j simulates

all ti ∈ [ti ni j , tend j ) following Eq. 5.1.

ti ni j = j
tend − ti ni

n
+ ti ni

tend j = ( j +1)
tend − ti ni

n
+ ti ni

(5.1)
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5.1.2 Application of the Methodology

The key to transform RPCS to a data-centric model resides in its input cir-

culation files, for they hold an indexed structure that stores in each line an

(i nst ant , par ameter s) pair. As we said before, each simulated instant is in-

dependent from the others, because for each instant the circuit has to be

composed, solved, and the results obtained, so we can divide the whole simu-

lation period in multiple smaller simulations, each one of covering one second.

Therefore, we can consider the temporal key as the independent variable. This

covers the first application requirement to apply the methodology.

Regarding shared input data, each sub-simulation requires the overall in-

frastructure information, plus certain simulation parameters that are shared

across all time steps. Independent simulations will also require the train cir-

culation information at the specific time step, so the circulation files need

to be partitioned and rearranged to aggregate all the necessary circulation

data to simulate one single instant. This establishes the foundation for the

distribution of the input data for the simulations.

At this point we can use the methodology to adapt RPCS. The transformed

structure of RPCS is portrayed in Fig. 5.4, and represents the steps defined in

Sec. 4.2:

Key Selection. As introduced before, the temporal domain of RPCS can be

easily manipulated to distribute the problem. Consequently, the inde-

pendent variable k will represent each of the time steps ti to be simu-

lated.

Domain Distribution. For each time step we need to conduct the usual

RPCS simulation, as if the overall domain comprised a single instant. To

achieve this, we need the information of the infrastructure, additional

global parameters, and the circulation profiles of all the trains operating

at instant ti . Shared data can be replicated to each node for local access,
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FIGURE 5.4: Structure of RPCS after applying the data-centric
transformation methodology.

but circulation data needs to be rearranged, making a data adaptation

phase necessary.

Data Adaptation. RPCS handles a circulation file per train in the railway

system. Each file, C j , contains the profile of a train with relevant in-

formation for the simulation at each instant ti . The data adaptation

phase rearranges this data to aggregate the circulation data of all trains

operating at a given ti .

Simulation. The previous output is used as input to the simulation stage.

Then, the data for the instant being processed is passed to the electric

algorithm itself along with the scenario information obtained from the

infrastructure file that is also incorporated at this point. The output

of the simulation represents different metrics, so for each of them the

simulation will generate a specific record Ri ,k .

Partial Evaluation. RPCS does not present a model update region. How-

ever, the resulting data needs to be aggregated to recreate each file Fk ,

conducting the opposite process of the data adaptation step.
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Output Analysis. No analysis is required, the output is directly merged as in

the original application, in which each output file contains the results

for the whole temporal interval of the simulation.

5.1.3 Implementation on a BDA Platform

The previous design could be implemented in any of the available map-reduce

frameworks. Among them, we selected Apache Hadoop 2.2.0 platform [22]

given its popularity and community support. Its distributed file system is

a great addition to the framework, since it allows automatic load balance.

Moreover, it includes a distributed cache that supports auxiliary read-only file

storage for tasks among all nodes, which suits neatly the needs of the shared

infrastructure parameter file. Besides the former technical features, Hadoop

has been adopted into many cloud environments resulting in reduced costs

given its parallelism exploitation capabilities [163], which will help us scale

the problem to a distributed environment.

We implemented this design via Hadoop Pipes API, since the original code

was written in C++ and we wanted to maximise code reuse. Despite Pipes

does not allow taking full advantage of Hadoop’s potential given its limited

functionality, it provided all the necessary tools to execute our framework,

including map and reduce interfaces, basic data type support, and distributed

cache access on job submission.

5.1.4 Evaluation

In order to asses the performance of the application, we compared its execu-

tion times on a cluster node against the original multi-thread implementation.

In addition, we assessed the scalability of the distributed data-centric appli-

cation on the public Amazon Elastic Compute Cloud (EC2). The following

paragraphs describe the utilised resources and the obtained outcome.
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Experimental Setup

First, we tested the performance of the original multi-thread application on a

cluster node consisting of a 48 Xeon E7 cores and 110GB of RAM. This node

was also used to test the resulting transformed application to avoid variations

that may arise from heterogeneous configuration, resource differences, or

network latency in case of the map-reduce application [117]. This isolation

favours the multi-thread application, which is especially designed to perform

in standalone environments. However, it allows to focus on the actual lim-

iting factors that may affect scalability in large test cases like I/O, memory

consumption and CPU usage.

Then, the Hadoop application was deployed on EC2 to assess scalability. The

selected cloud infrastructure consisted of a general purpose m1.medium node

as dedicated master and several memory optimised m2.xlarge machines as

workers. Table 5.1 shows the main aspects of the selected instances, which

were selected in order to maximise the number of cores for the data adaptation

stage, while holding enough memory to execute as many containers as cores

with sufficient memory for the simulation stage. The scalability tests varied the

number of workers in order to check if scalability issues arise as the number

of nodes increases.

Four test cases were considered with variations on the circuit size, simulation’s

initial and final time and, consequently, input data volume, execution time,

and memory consumption. A description of these simulations is provided in

Tab. 5.2. Cases I and II should not yield any significant load, yet simulation

III is expected to reflect the system’s behaviour under average problems. The

biggest experiment, case IV, should reveal the platforms’ actual limitations

as simulations become larger, if any. These tests are meant to indicate the

performance of the data-centric adaptation versus the original application

under an increasing amount of input data and simulation time. All test cases

are based on the same real case, a particular railway line at Madrid surround-

ings, with increasingly levels of detail and simulation periods. This line has
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TABLE 5.1: EC2 instances used in the evaluation of RPCS.

Type Role Virtual CPUs Memory (GB) Local storage (GB)

m1.medium master 1 3.75 410

m2.xlarge worker 2 17.1 420

TABLE 5.2: Definition of test cases for RPCS.

Experiment Average elements per instant Simulated time (h) Input size (MB)

I 77 1 1.7

II 179 33 170

III 525 177 1228.8

IV 755 224 5324.8

been used before in other works [164] because it is a good example in size

and complexity of a real railway project.

We will now analyse whether the transformed application behaves as expected

in relation to performance and scalability by examining its execution times

on two different environments. Figure 5.5 shows these results.

Programming Models: Hadoop vs. Multi-Threading

In Figure 5.5 (a) we observe the overall execution time for the transformed

application including the map-reduce stages and input data upload. The lat-

ter has to be considered given that replication and balance must be achieved

by the platform to distribute load evenly. The graph indicates that the per-

formance obtained with map-reduce on Hadoop is remarkably better than

the original multi-thread application, in particular, 68% less total simulation

time for the largest experiment. The shared memory simulator’s results might

be caused by the bottleneck constituted by the physical memory and the disk.

The latter is particularly critical, as all threads write their results to disk while

they perform their computations in the original simulator.
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FIGURE 5.5: Evaluation results for the multi-threading and Hadoop
implementations of RPCS.

The smallest experiment is an interesting exception, with execution times ten

times greater than the original application. This reflects how the map-reduce

framework’s overhead significantly affects the time taken to complete such a

small simulation compared to the original application benchmark.

Scaling-out to a Public Cloud

In Fig. 5.5 (b) we observe the speed-up obtained on EC2 when the number

of workers is increased. The speed-up shown in the figure is related to the

execution times obtained on a five-worker cluster as baseline, because these

nodes represent similar resources than the local cluster node. As the figure

indicates, increasing the number of workers decreases the total simulation

time. However, the performance does not scale up linearly with the number of

nodes: while with 16 nodes the speed-up is 3.3, with 64 nodes it is only 7.6. The

reason behind this result is that the problem size becomes small for the cluster

size as more nodes are added. Hence, less data is assigned to each worker

and some resources become underutilised. Moreover, as we mentioned in

the previous paragraph, in very small experiments the measured execution

time is mostly spent in the platform’s task preparation and scheduling, and

not in the actual simulation. This results in degraded performance due to

platform overhead. Therefore, it is necessary to increase the problem size as

well as the number of worker nodes in order to achieve linear scalability.
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5.2 The EnKF-HGS Hydrogeologic Data Assimilation

Workflow

Having good quality predictions of the behaviour of hydrological environ-

mental systems is key for water management. Such systems rely on complex

multi-scale non-linear processes and matrix operations. The inherent compu-

tational complexity of these tasks have lead scientists to implement parallel

versions of these models in the form of tailored simulators for multi-core

environments. Some communities have also used grid-like HTC technologies

to increase the scale, size and complexity of the addressable problems. Never-

theless, the ever-increasing datasets have shifted the interest towards more

data-intensive infrastructures, like compute clouds, looking for flexibility,

elasticity, and a satisfactory cost-performance trade-off.

Studies have shown the feasibility of running BDA-based frameworks for

multi-scale data analysis, with complexities comparable to the hydrology

domain [165, 166]. These works have shown that data and tool integration

are easier for end-users in these BDA environments, while performance and

storage capability remained comparable to grids. Other works approached

the benefits of BDA infrastructures from a hybrid perspective, integrating

data and computing infrastructures from grids with external cloud providers

[167]. This work is particularly relevant, as it shows the feasibility of clouds

for a wide range of hydrological problems, covering both computationally

intensive HPC simulators, and MTC-like applications with multiple scenarios.

Recent technological and mathematical advances allowed to improve sig-

nificantly the precision of the simulations by integrating data acquisition

techniques with the modelling process [168]. HydroCloud [169] allows to

aggregate data from different sources and present it to the user in a single

format for further analysis, by using a cloud-based data integration system

to store and explore data. A similar research line is followed by the team
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involved in the development of EnKF-HGS, since they propose an architec-

ture for a system combining a wireless environmental monitoring module as

data source, and a cloud-based computing service to perform environmental

simulations [170]. Even though the system was tested in a real-world deploy-

ment in the Emmental area in Switzerland, and proven to be operable, the

performance of the core simulation procedures have not been built for the

target infrastructure. This motivates the need to apply our transformation

methodology, which will assist in the process of developing a version of the

simulator able to exploit BDA features like cloud and streaming support with

minimal development.

Using a classification of common scientific workflow patterns [94], the EnKF-

HGS workflow represents a combination of four basic patterns: data-parallel,

single input, and iteration patterns are used in the first phase of the hydro-

logical workflow, while the multi-stage pattern is used in the second phase.

These features make EnKF-HGS a representative use case of many applica-

tions currently found in scientific computing [171–174] that can be solved

by the Monte Carlo method. Even though the simulators directed at solving

these problems vary but they all share the same structure, which involves a

large random sampling to determine the properties of some phenomenon or

system behaviour.

Applications like EnKF-HGS perform reasonably well in regular HPC envi-

ronments due to the availability of a high performance network storage and

low-latency broadband network connection. However, when moved to a

BDA environment, as required by this application, performance might drop

drastically. In order to be able to benefit from the advantages of these BDA set-

tings, while maintaining the performance at an acceptable level, we show in

the following sections how this application could be shifted to a data-centric

paradigm using the transformation methodology to guide its implementation.
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5.2.1 Simulator Description

EnKF-HGS is one of the state-of-the-art simulators in the hydrology domain to

provide functionality for real-time stochastic simulations of the groundwater

and surface water profiles, with an optional real-time control of water resource

systems through a feedback mechanism.

The core of the simulator is the data assimilation process, which allows to

incorporate observations of an actual environmental system into a numeri-

cal model of that system. This process allows to continuously improve the

simulated model and to minimise the deviation of the model from the state

of the actual system. In EnKF-HGS, data assimilation is implemented via the

ensemble Kalman filter technique [162, 175], which approximates the uncer-

tainty of model prediction through the forward simulation of an ensemble

of model instantiations. These instantiations are called realisations in this

application.

Each simulation in the ensemble of realisations represents a long-running I/O-

and compute-intensive process, which comprises the sequential execution

of two proprietary simulation kernels: HydroGeoSphere (HGS) and GROK

[176]. Each model realisation represents an instantiation of the numerical

model provided with a different combination of input parameters and system

conditions. In our case the numerical model is the integrated hydrological

modelling software HGS. HGS is able to perform dynamic stochastic simula-

tions between water profiles composed of numerous elements, like the ones

depicted in Fig. 5.6. It has been successfully used to simulate many complex

problems involving surface water, groundwater and vegetation processes

[177, 178]. The model is designed to take into account all key components

of the hydrologic cycle using a rigorous conceptualisation of the hydrologic

system [179, 180]. Based on these parameters, HGS allows the simulation of a

wide range of physical characteristics and hydrological objects, such as wells,

tile drains, and thermal energy transport. HGS mainly relies on the CPU to
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FIGURE 5.6: Typical surface
water and groundwater
processes in a pre-alpine type
of valleys [181].
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real-time environmental
monitoring and hydrological
modelling system depicted in
[170].

solve complex differential equations and matrix operations, which makes it

CPU-intensive. GROK is a preprocessor that prepares the input files for HGS,

which makes GROK an I/O intensive application.

The ensemble Kalman filter is an implementation of the Monte Carlo method

that consist of two distinct steps: the forward propagation of the ensemble of

model realisations (i.e. forward propagation phase), and an update of the sim-

ulated model state with the measurements (i.e. filtering phase). The forward

propagation phase comprises a large pool of independent model realisations,

which introduces a tremendous demand for computing power, especially if

combined with a complex numerical model such as HGS. The filtering phase

is a relatively short-lasting but tightly-coupled process that performs a set of

matrix operations and requires multiple data synchronisation points. Conse-

quently, the first stage constitutes the parallel region of the application, and

the second represents its model update region. On top of that, the iterative

nature of the data assimilation process imposes that the two phases have to

be repeated continuously, thus shifting the demand even further.
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Even though this method results in higher quality model predictions than the

conventional simulation methods, the high resource demand of the method

remains an unsolved problem for many environmental scientists. The re-

quired amount of computations implies having a dedicated HPC infrastruc-

ture, which is not always available to the end-users. Moreover, data acquisi-

tion, integration and storage follows the scheme in Fig. 5.7, thus incorporates

BDA elements like data streaming from sensors and cloud storage. Therefore,

transforming EnKF-HGS to a data-centric application would not just help

hydrogeologists to increase their addressable problem size without a heavy

infrastructure investment, but would also ease its integration with this BDA

ecosystem.

EnKF-HGS is originally implemented using MPI, which makes it a perfect

representative of a complex and compute-intensive scientific application

built on a process-centric runtime. In this case, MPI is used to distribute the

simulations of the ensemble members over available CPUs, as each individual

member represents a completely self-contained instantiation of the model.

Figure 5.8 shows a simplified execution model of the MPI implementation of

EnKF-HGS. The procedures executed in the MPI root process are identified

using Roman numerals (from I to III), while numbers (1 to 3) refer to tasks that

are computed distributively in MPI processes. There are three main stages

in the workflow that comprise ensemble preparation, the iterative process

of simulating the ensemble, and the final treatment of the results after the

simulation. These stages are matched with the procedures in the figure as

follows:

Ensemble Preparation Stage

I. Initialisation

At the beginning of the workflow, the root MPI process initialises global

data structures and reads the provided model parameters from the

input files.
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FIGURE 5.8: Original workflow of the MPI implementation of EnKF-HGS.

II. Data distribution

According to the initial model parameters, the root MPI process gener-

ates input files for each model realisation and stores the files in separate

directories on the network storage.

Iterative Ensemble Simulation

1. Data pre-processing (GROK)

After all running MPI processes reach the first synchronisation point

(an MPI barrier), each process execute the preprocessor GROK on the

corresponding input directory in order to generate HGS-specific input

files that will be written in the network file system.
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2. Model simulation (HGS)

HGS reads the output of GROK, runs the model realisation and writes

the output to the network storage. At this point, all MPI processes

synchronise for the second time using an MPI all-reduce directive, since

further data updates require simulation results of all model realisations.

This is a very compute-intensive and memory-consuming stage.

3. Distributed post-processing

During the data update process, each model realisation is optimally

weighted and updated with the most recent field measurements in order

to reduce the simulation error. Each process is in charge of updating

its block, and results are afterwards merged through another MPI all-

reduce call.

Output Management

III. Aggregation and persistence

After all iterations are completed and all MPI processes reach the barrier,

the root MPI process aggregates the model simulation data from the

realisation directories and updates the global data structures. Before the

program terminates, the root MPI process writes the model simulation

results to the output files.

In this description, stages (1) and (2) represent the parallel region of the

application, and stage (3) constitutes the model update region. Finally, the

repetition of stages (1), (2) and (3) shows the iterative structure of EnKF-HGS.

5.2.2 Application of the Methodology

As described, the original application consisted of an MPI implementation of

an ensemble Kalman filter, which relied on two legacy binaries to execute the
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simulation (GROK and HGS). EnKF-HGS operates with a set of realisations,

which constitute independent instantiations of the model with different pa-

rameters, meeting the need for the existence of an independent variable in

the application.

In terms of input, there are several files that describe the parameters of the

hydrogeological model for the iterative process and the GROK kernel. All of

these files are used by the ensemble as a whole, regardless of the realisation.

On the other hand, HGS requires specific input for each realisation ri , which

can be found in two two-dimensional matrices M1 and M2 as columns c1,i

and c2,i , respectively. This data needs to be distributed to each simulation.

The transformation EnKF-HGS is shown in Fig. 5.9, and represents the follow-

ing steps:

Key Selection. We selected the set of realisations as parallelisable domain.

Hence, the realisation identifier, ri , constitutes the key, and the collec-

tion of the data and parameters per realisation of the model, ci ,1,ci ,2, is

the value.

Domain Distribution. The former key-value pairs are created after the main

matrices M1 and M2 are generated, and are distributed afterwards.

Data Adaptation. Not required in this case, since realisation data is already

shaped as needed.

Simulation. Realisations are executed independently across the nodes, as

pipelines of the GROK and HGS kernels. The result of the HGS simula-

tion corresponds to the updated columns for ri , ĉ1,i and ĉ2,i .

Partial Evaluation. All data needs to be gathered as it is generated by the

simulation, thus this step is not needed.

Output Analysis. The simulation results are finally gathered to recreate the

matrices for the model update region, which will result in new data for

the following iteration.
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FIGURE 5.9: Structure of EnKF-HGS after applying the data-centric
transformation methodology.

5.2.3 Implementation on a BDA Platform

Since the resulting application is iterative, we implemented it using the Apache

Spark platform, which is currently a major representative of the BDA ecosys-

tem [182], and similar in performance to other platforms [183].

Spark reuses a working set of data, known as resilient distributed dataset

(RDD), through multiple parallel operations, built around an acyclic data flow

model. It retains, however, the scalability, fault tolerance of map-reduce and

its relevant data-locality features, in particular for MTC [184].

A particularity of the kernel binaries is that they are third-party pre-built black

boxes. An effect of this is that they rely on hard-coded input paths for the

intermediate files they handle. Nevertheless, in order to improve locality, our

methodology approaches the simulation stages as a pipeline, so we can ensure

the execution of HGS with the input generated by its corresponding execution

of GROK. To achieve this we exploited Spark’s partitioning mechanisms to

ensure that each full realisation is computed in the same node in a pipelined

manner.
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FIGURE 5.10: Final workflow of the transformed EnKF-HGS application,
matching stages 1, 2 and 3 with Fig. 5.8. Dashed lines indicate that the
iteration is executed over a distributed dataset.

Figure 5.10 depicts the stages that belong to the final implementation of the

workflow in Spark. The procedures executed in the Spark driver process are

identified using letters (from A to D), while numbers (1 to 6) refer to tasks

that are computed distributively in the Spark executors. Similarly as in Fig.

5.8, the most relevant design and implementation details are described in the

following paragraphs, along with the association of these procedures to the

core stages in the workflow.

Ensemble Preparation Stage

A. Data distribution

The first step is to load the necessary auxiliary files that every executor

will need to properly run its data partition. This includes, for instance,
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the kernel binaries. Spark guarantees that these files will be available

for the worker nodes in their current working directory.

B. Input matrix composition

Input data are read in the driver process in order to initialise the base

model, composed of two main matrices, M1 and M2, in which each

column c1,i and c2,i corresponds to an instantiation, ri , of the model.

Additional data structures are created and initialised, and the parame-

ters of the simulation are obtained.

C. Column distribution

Both matrices are distributed by columns in order to build the real-

isation set, R. Each realisation ri is composed of the corresponding

columns from both matrices, c1,i and c2,i . Figure 5.11 illustrates the re-

alisation data distribution process, which yields the distributed dataset

that will be transformed in the following stages and iterations. Addition-

ally, we forced each partition to hold the data for a single realisation in

order to induce fine-grained parallelism, as each task will only handle

one realisation.

Iterative Ensemble Simulation

1. Data pre-processing (GROK)

After realisations are distributed, the GROK kernel writes the realisation

input data to a local file. HGS will read the realisations from these file

in order to conduct the simulation of the model.

2. Model simulation (HGS)

With the input files from GROK, HGS simulates the model and writes

its output for subsequent analysis. In steps 1 and 2 we must ensure that

both binaries will be executed in the same node to exploit data locality.

To achieve this, we run GROK and HGS in the same map function, which
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FIGURE 5.11: EnKF-HGS column distribution procedure. Both matrices are
split column-wise, and realisations are built with the corresponding
column from both matrices.

is an indivisible task in Spark. They thus act as an inner pipeline within

the workflow.

3. Distributed post-processing

The post-processing stage is partially distributed. First, the output

from each HGS execution is read in each executor in order to create

an updated realisation set, R ′. With this information we create auxil-

iary distributed matrices and conduct several distributed operations to

avoid gathering the whole matrix in the driver.

4. Data analysis

Further operations with auxiliary matrices are executed in the driver in

order to filter and randomise the input for the following iteration. The

goal of this stage is to minimise the size of the dataset that needs to be

collected in the driver prior the model update. Note that to achieve this,

significant data shuffles must be executed.
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D. Data aggregation

Unlike in the MPI design, not every stage of the analysis could be dis-

tributed in this implementation. There is a step in which we aggregate

a final matrix that will be used to compute an update matrix.

5. Data update and caching

The update matrix is used to update every realisation. The resulting

realisation set is persisted to the local storage of the nodes as a fault-

tolerance mechanism, and the following iteration starts.

Output Management

6. Output persistence

After every iteration is executed, the output is stored to HDFS. Unlike

the MPI version of the workflow, the new solution can execute I/O in

parallel, as every partition is stored independently. Model aggregation

can be conducted off-line if needed.

The following section presents a performance evaluation of the resulting ap-

plication against its original implementation in order to analyse even further

which elements must be taken into account to design a generalist architecture

for HPC-BDA runtime convergence.

5.2.4 Evaluation

This evaluation focuses on absolute execution time and speed-up to analyse

the effects of overheads in BDA environments. These may include commu-

nication overhead and increased memory consumption, given the deeper

software stack and heavier resource usage of these platforms, and higher

execution time if we consider the execution of the application in a BDA envi-

ronment like a virtualised cloud setting.
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TABLE 5.3: Technical specifications of the local cluster (testbed A) and the
private cloud (testbed B) for the evaluation of EnKF-HGS.

Infrastructure Cluster OpenNebula

CPU 2 x Intel Xeon E5405 @2.00GHz 2 x Intel Xeon L5420 @2.50GHz

Total cores 8 8

Memory 8GB 8GB

OS Linux Ubuntu 14.04.1 LTS Linux Ubuntu LTS 14.0.4

Storage 2 x HD 1000GB + GlusterFS 3.6.9 HD 500GB

Network 1Gb/s Ethernet 1Gb/s Ethernet

Experimental Setup

In order to assess the performance and scalability of the application, we

selected three different execution infrastructures: a cluster, a private cloud

running OpenNebula, and a virtual cluster on the Amazon EC2 public cloud.

The specifications and limitations of these testbeds are described as follows.

Testbed A: Local Cluster. This infrastructure comprised 11 worker nodes,

with the specifications shown in Tab. 5.3. Each worker node holds 8GB

of RAM and two Intel Xeon E5405 @2.00GHz processors, with four cores

each. In addition, an auxiliary node was necessary to host the driver

process of the Spark implementation, which required 7GB in the largest

experiment we conducted. This means that the container in charge of

running the driver would require 7GB plus a 10% memory overhead (as

configured by default in the platform), 512MB extra memory for heap

space, and other overhead sources like serialisation buffers. Since Spark

adds significant memory overhead to drivers and executors, we had

to add a larger node to bypass the memory constraints in the worker

nodes. As a consequence, we added a node with an overall amount of

94GB of RAM and four Intel Xeon E7-4807 @1.87GHz processors with

six cores each. The local cluster had already a pre-installed network file
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system GlusterFS (a scalable and production-ready network file system,

which was necessary for the MPI implementation execution.

Testbed B: Private Cloud. We relied on a virtual cluster running OpenNeb-

ula with the hardware described in Tab. 5.3. Notice that the main dif-

ference between this infrastructure and the cluster is the clock speed,

which would benefit this testbed in the evaluation. To build the vir-

tual cluster, we spawned 32 8-core virtual machines (VMs) with 7.5GB

of RAM each, the maximum available memory per VM. Notice that

this memory limitation is relevant, as there was no workaround to fit

the driver safely in the largest experiments. For the network file sys-

tem, we deployed the latest version of GlusterFS on three additional

storage nodes, which were organised in a distributed volume with no

data-replication in order to maximise the storage performance. On the

computing nodes side, we exploited the FUSE-based Gluster Native

Client for highly concurrent access to the file system.

Testbed C: Public Cloud. We selected c4.2xlarge instances from the Amazon

EC2 catalogue to act as workers due to their balance between number

of cores and amount of memory, and a r3.xlarge instance with larger

memory to hold the driver. The virtual cluster for Spark was composed

of 16 workers (128 cores in total), an m3.medium master, and the addi-

tional dedicated VM for the driver. MPI ran on a virtual cluster built with

identical workers, plus three additional c4.large storage nodes running

GlusterFS with the configuration similar to the previous testbed. Each

storage node was provisioned with an 5GB general purpose SSD brick.

Table 5.4 shows a summary of the selected instances and their assigned

roles in both the Spark and MPI execution platforms. In addition, Tab.

5.5 describes the hardware characteristics published by the provider2.

Given its public nature, this testbed could yield the largest differences
2Retrieved from https://aws.amazon.com/ec2/instance-types/
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TABLE 5.4: Amazon EC2 instance selection for the virtual clusters running
EnKF-HGS on testbed C.

Platform Spark MPI

Node role master driver worker compute storage

Type m3.medium r3.xlarge c4.2xlarge c4.2xlarge c4.large

Amount 1 1 16 16 3

TABLE 5.5: Technical specifications of the selected public cloud instances
for testbed C, as provided by the Amazon EC2 documentation.

Type Processor(∗) vCPU
Memory

(GiB)

Storage

(GB)

Network

Performance

m3.medium
Intel Xeon E5-2670 v2 @2.5GHz

Intel Xeon E5-2670 @2.6GHz
1 3.75 SSD Moderate

r3.xlarge Intel Xeon E5-2670 v2 @2.5GHz 4 30.5 SSD Moderate

c4.2xlarge Intel Xeon E5-2666 v3 @2.9GHz 8 15 EBS High

c4.large Intel Xeon E5-2666 v3 @2.9GHz 2 3.75 EBS Moderate
(∗) More than one item is listed if VMs can be indistinctively launched on different physical processors.

in performance among independent executions. To assess this possi-

bility, we conducted five runs of both applications for a small example

comprising eight realisations and eight cores, and detected that the

standard deviation is never higher than 5% of the average execution

time.

Programming Models: Spark vs. MPI

The objective of these experiments is to detect the effects the execution models

have on the performance of the workflow execution. We analysed the MPI

implementation of EnKF-HGS, and its data-centric version built in Spark,

both running in the local cluster formerly described.

We allocated Spark executors with one core in order to fairly compare scala-

bility against single-core MPI processes. We experimented with increasing
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FIGURE 5.12: Execution time and speed-up for the MPI and Spark
implementations running on a local cluster.

realisation volumes and executor number, we measured the absolute exe-

cution time for a single execution (including the job launch time required

by Spark), and we computed the speed-ups. The results for this execution

on a local cluster are shown in Fig. 5.12, in which (a) and (c) correspond to

MPI, and (b) and (d) correspond to Spark. Remarkably, Spark yields better

execution times for every experiment, and its speed-ups are better the larger

is the experiment for a given number of workers. This might be a result of the

redesign process. However, the speed-up in Spark for the largest experiment

(i.e. 64 realisations on 64 executors) is lower than in the MPI case. The prob-

lem in this case is that the 64 executors cannot be scheduled at once due to

their large memory requirements.

The main conclusion from this experiment is that, while the BDA-inspired
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approach shows positive performance results, the memory overhead of the

execution framework hurts scalability, as less parallel executors can be allo-

cated in the same infrastructure. As a result, the slimmer MPI processes seem

more suitable for large scale execution of this workflow. Another interesting

aspect is related to the post-processing stage of the workflow and its effect

on the overall execution time. At some point, with the growing number of

the parallel executors, the post-processing computation becomes shorter in

time than the data transferring time. As a result, the post-processing stage

starts to affect the overall execution time more than with a fewer number of

the parallel executors.

Computing Models: Cluster vs. Private Cloud

After analysing the programming models, we focused on the underlying com-

puting models to assess their impact in performance. Hence, we conducted

further experiments on the OpenNebula private cloud with the Spark and

MPI implementations.

Figure 5.13 reflects analogous evaluation metrics, but for the experiments

conducted in OpenNebula. Regarding the results for Spark, which is the

approach that should benefit the most from BDA-oriented environments like

clouds, while the overall evolution of speed-up seems similar in relative terms,

we can clearly see that in OpenNebula the results are much more extreme, with

even lower execution times, but also smaller speed-ups. Interestingly, MPI also

shows a similar behaviour, with lower execution times and degraded speed-

ups. These results could be related to the larger frequency in the physical

processors of the virtual cluster, which yields faster executions, and the lower

memory per core ratio, which hurts scalability.

With respect to the results for Spark, there are two remarkable exceptions.

The first one is the 64 realisation execution with 64 workers, which failed

as the container corresponding to the driver violates the system’s memory

limit, hence this result is not included. The other one is that the result for
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FIGURE 5.13: Execution time and speed-up for the MPI and Spark
implementations running on a private OpenNebula cloud.

32 realisations with 32 workers shows the same result as the 16-worker one.

We noticed that this is due to the lack of resources to launch a new container

once the system is fully running tasks, which means the platform has to wait

for an executor to finish, and then launch the former tasks. Considering

that there is a synchronisation point after the concurrent computation of the

realisations, the result is that the execution time is doubled, thus matching

the time obtained for 16 executors.

Scaling-out to a Public Cloud

Given the resource limitations in our private infrastructures, we moved both

execution paradigms to the Amazon EC2 public cloud to test further scaling.

We incrementally increased the size of the virtual cluster and conducted
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FIGURE 5.14: Execution time and speed-up for the MPI and Spark
implementations running on a virtual cluster on the Amazon EC2 cloud.

experiments until one of the implementation showed significant scalability

issues that made further increases in problem size or number of workers

infeasible. Our goal was to determine which paradigm showed the most

limitations to support large-scale executions.

We considered the set-up described in Sec. 5.2.4 enough to run 64 realisa-

tions smoothly in both MPI and Spark, and we attempted 128 realisations

to check whether we could exploit all the cores in the system with the Spark

implementation.

Figure 5.14 shows results coherent with the fast speed-up degradation shown

in OpenNebula, since driver and executor memory sizes increase to the point

in which all the realisations cannot be computed in parallel (i.e. memory per
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core increased beyond 2GB). The major problem is not performance degrada-

tion, however, but the possibility to not being able to run the experiment: a

job simply will not be launched if memory is not enough to host the driver or

executor container, or their related overheads.

The former experiments, clearly indicate that the Spark implementation will

not scale due to its memory requirements when running on the Spark stack.

This is also problematic if cost is taken into consideration, as it would be

required to select machines with larger memory per core, thus more expensive.

On the other hand, the MPI-based workflow does not show an outstanding

performance nor speed-up, but it is able to scale further with less resources,

and in a stabler manner.

5.3 Discussion

The former evaluations show that BDA platforms –like Hadoop and Spark– and

infrastructures –such as clouds– could be used to improve the efficiency and

scalability of some types of scientific applications with minor modifications.

More specifically, we detected that simulators relying on parameter-sweep

and partitionable domains, and kernel-based workflows comprising many,

loosely-coupled tasks could greatly benefit from the massive parallelism of

BDA paradigms. This is the case for RPCS. Nevertheless, these results also

indicate that these techniques are still far from disrupting the vast set of Monte

Carlo workflows, in particular as the scale increases, as seen for EnKF-HGS.

We used Spark, a framework specially built for iterative processes, yet the

iterative workflow we implemented was not able to scale properly, mainly due

to memory overhead and bottlenecks introduced by the execution environ-

ment, as present in other Java-based map-reduce platforms [32] and Spark

itself [35]. The deep component stack and its dependence on the JVM yield

a significant memory consumption that also affects execution time due to
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frequent garbage collection operations [33] and serialisation if bindings to

other languages are used [34].

Another observation is the rough fitness of the simulation ensemble paradigm

to the target use cases of the language, which yielded suboptimal performance

as it is not possible to attain an implementation that exploits the full potential

of both the Spark platform and the ensemble algorithm. This is mainly due to

the limitations on matrix operations and data collection stages. However, the

scalability issues we found in Spark for this use case are still valid, since they

are tightly related to its overhead in the driver process.

There is another major problem we found with BDA-oriented frameworks,

which is the problems they are built to solve. Some BDA-oriented frameworks

show drawbacks in terms of generality and versatility. For example, our major

development issue was dealing with operations involving the large matrices

needed in the post-processing stage of the workflow. Although there are li-

braries to handle distributed matrices, like Spark’s MLLib, the functionality is

limited to the common operations needed for data analysis. Hence, we had to

create ad-hoc workarounds to implement some matrix-dependant sections

of the workflow, which degraded our development experience. Further par-

allelisations on the post-processing stage could be feasible, but they would

require a full re-engineering of the workflow to the limitations on minimise

the matrix operation limitations and to reduce the size of collected data. All

of these aspects could hurt the behaviour of the BDA-based implementation

against the solution built for MPI.

Despite the former, we experienced that building data-centric solutions for

a BDA environment using Spark and Hadoop, and a consolidated cloud like

Amazon EC2, definitely reduced development time given the abstract nature

of data and objects in analytics. We were able to tailor the infrastructure as

desired, without worrying about other users or software compatibility issues.

We only had to consider the design of the workflow after applying the data-

centric methodology, and some specific implementation particularities of
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the language and the available functionalities. Moreover, we found that I/O

management could become a bottleneck, in particular for RPCS, and being

able to distribute data and access it locally was key for achieving a competitive

workflow.

Another main benefit of having such BDA execution engines was their un-

derlying resource manager and distributed file system, which had a major

impact in easing data distribution and task management. However, it was

necessary to conduct a very time-consuming tailoring of the configuration

given its outstanding impact in the final performance and stability [185].

These observations provide further support for the motivation of having a

HPC-BDA-capable platform that bridges the gap between process- and data-

centric applications, since shifting HPC applications to a data-centric model

is not sufficient to attain full convergence. Such platform must be based on a

architecture that could blend the generalist nature and efficiency of process-

centric runtimes, with the ability to reason about data processing without

explicitly implementing data parallelism that BDA data-centric frameworks

provide. The former features are highly desired by scientists who want to

focus on their problem, rather than the computational elements of their work.

As we have seen, they come at the cost of large amounts of memory overhead,

which we could not fit in our private infrastructures. This would result in a

highly productive and efficient mechanism to build and deploy both HPC

and BDA applications.

5.4 Summary

This chapter presented and discussed our experience with the application

of paradigms, platforms and infrastructures currently used in BDA, to two

typical scientific HPC workflows through the data-centric transformation

methodology described in Ch. 4. As a result, we provide the following contri-

butions:
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• The transformation of two HPC scientific applications, RPCS and EnKF-

HGS, to a data-centric model.

• The implementations of the transformed applications on BDA plat-

forms.

• An evaluation of these implementations taking into consideration their

programming and computing models, with the goal of further under-

standing the BDA and HPC features that affect scalability and perfor-

mance.

• An analysis of the strengths, weaknesses and limitations of the BDA

and HPC paradigms derived from the former results, which support our

analysis of the state of the literature and further motivate the develop-

ment of the unified architecture.
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CHAPTER 6

GENERALIST INTEROPERABILITY

ARCHITECTURE FOR HYBRID HPC-BDA

APPLICATIONS

This chapter presents a generalist architecture to interoperate data- and

process-centric runtimes, which allows building a platform suitable for ap-

plications with HPC and BDA needs. Following this design, we introduce an

implementation and deployment using two specific platforms as building

blocks, and present a series of optimisations to enhance the performance and

functionality of said implementation.

6.1 Architecture Design

Our approach is to integrate the data-centric and process-centric runtimes

without enforcing the usage of one model or the other, by allowing the user to

freely switch between the two models and select the one that adapts better

to each stage of the problem. There are three motivations for pursuing the

interoperability between said runtimes:

1. BDA users can rely on process-centric runtimes to accelerate and scale

their workloads.

2. HPC users gain access to high-level BDA libraries and increase their

productivity.

3. Both types of users benefit from the flexibility to select the paradigm

that matches their infrastructure, whether it is a cloud –BDA-oriented,

95
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and suitable for data-centric computing– or a supercomputer –HPC-

oriented, and tailored for maximum communication and processing

performance–. Furthermore, they could incorporate operations not

typically available in their native settings.

Guided by our objective to offer the user the best features from each ecosystem,

we formulate the following design goals for the integrated architecture:

D1 - Interoperability. Process- and data-centric platforms target different

canonical problems; therefore adapting a problem from one to the other

should be explicit. To make the user aware of which model is currently

active, we must keep both platforms separated, but unified in terms of

programmability, and interoperable through explicit conversions.

D2 - Production-readiness. We believe that the viability of our solution will

depend on being able to use standard versions of the underlying run-

times without any changes. Thus, interoperability must be enabled

through a middle-ware layer transparently to the users, so that applica-

tions built for pure platforms could run almost out-of-the-box.

D3 - Usability. Although the user must be aware of the explicit interoper-

ability, including overheads associated with switching contexts, the

knowledge of the underlying data model and interoperation mecha-

nisms should be minimal to preserve the nature of the programming

and data interface. This would reduce the learning curve and minimise

the impact on existing code.

D4 - Flexibility We want to support multiple data types and provide flex-

ibility for different datasets to coexist in the same application. This

includes the need to support stateful and stateless datasets.

D5 - Performance The data locality capability of data-centric runtimes is

one of its key features and must be enforced as much as possible. On the
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other hand, the efficiency and scalability of process-centric runtimes

should be exploited whenever possible to accelerate communication-

and compute-intensive operations.

These design goals are embodied in Fig. 6.1, which depicts the interactions

between the main components of our envisioned architecture:

• A unified distributed data abstraction for generic data types (D1, D3,

D4).

• An associated unified operational model to interact with said data ab-

straction (D1, D3).

• A runtime delegation system capable of selecting the appropriate run-

time for each step in the application (D1, D2, D5).

These elements are detailed in depth in the following sections, and refer

directly to the overall thesis approach presented in Ch. 3.

6.1.1 Unified Distributed Data Abstraction

BDA data abstractions rely heavily on the concept of partition, block or chunk

to manipulate large collections of records in a SPMD manner. By distributing

the overall data volume in chunks, data-centric platforms naturally obtain par-

allelism, workload balance, and efficient allocation of computing resources

with minimal intercommunication. In addition, these abstractions are typi-

cally immutable and stateless, in the sense that operations on these datasets

result in a new dataset containing the updated records.

On the other hand, HPC applications are not enforced to use any specific

abstraction, given their process-centric nature. Nevertheless, such applica-

tions are usually built for primitive data types, since input and output data

are normally stored in binary files, and most operations are numerical. As
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FIGURE 6.1: Overview of the abstract generalist architecture for HPC-BDA.

opposed to the BDA abstractions, a key feature of HPC datasets is their need

for statefulness, required to preserve the results from previous operations

since data structures are reused.

Any architecture that aims to interoperate process- and data-centric runtimes

must be able to cope with the core characteristics of their respective data

abstractions. In our design, we propose having a unified distributed data ab-

straction (UDDA) inspired by the data-awareness and task-based parallelism

of data-centric abstractions (D3), but with the possibility to preserve state

as required by HPC applications (D4). As shown in Fig. 6.1, this abstraction

represents a distributed collection of data organised in chunks, which can be

locally accessible by both process- and data-centric computing units (D1).

Formally, a UDDA of type t , Ut , can be defined as:
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Definition 6.1. Unified distributed data abstraction (UDDA)

Ut = (At , s), where s ∈ {0,1} indicates whether its state must be preserved, and

At = {C0, · · · ,Cc−1} is a collection of c ∈N∗ data chunks.

A chunk Ci ∈ At , with i ∈N∗, i ≤ c is defined as:

Definition 6.2. Data chunk

Ci = {r : r ∈ T }, where T is the set of possible values limited by t .

Finally, the smallest discrete information unit in this abstraction is the data

record:

Definition 6.3. Data record

Given a data type t , and the set of possible values limited by such data type,

T , an element r is a data record in a UDDA of type t iff r ∈ T and ∃Ci ∈ At

such that r ∈Ci .

Our analysis of features and requirements for HPC and BDA applications sug-

gest that, in order to implement this data abstraction, the following properties

should be enforced:

Property 6.1. Generality of a UDDA data record

Internal data types contained in the distributed data abstraction should not be

limited. Collections of user-defined data types should be possible to preserve

the semantic richness of BDA abstractions (D4). Therefore

∃ Ut ∀t

Property 6.2. Type consistency of a UDDA

In order to ensure that the BDA SPMD operations and HPC process-centric

computations hold simultaneously given a UDDA, the records contained in

the collection must all belong to the same data type, thus

{r ∈Ci ,Ci ∈ At } ⇒ r ∈ T
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Property 6.3. Cardinality of a UDDA

The number of data chunks in a UDDA should be set automatically for the

users’ convenience, following the trend in BDA platforms. However, HPC users

sometimes need to impose a specific number of chunks to meet application

domain limitations (e.g. when each data chunk represents an individual

parametrisation of a domain). Therefore, data redistribution should be made

available to support interoperability between datasets representing different

domain topologies. Consequently

∀At ∃ f (At , N ) = A′
t , such that |A′

t | = N

where N is the desired number of chunks specified by the user. Function f

could be used to implement different rebalancing and redistribution mecha-

nisms.

Property 6.4. Locality of a UDDA data chunk

Location of data chunks should be transparent to the user, and respected as

much as possible by the execution runtimes. In addition, users should not

be aware of the underlying topological relationships between data chunks,

neither for interacting with individual records or defining new operations on

the overall dataset (D3). Nevertheless, implementations of a UDDA will have

to rely on locality information to track chunks, leading to the property that

∀At ∃g (Ci ) = l

where l is the location of chunk Ci . Function g could be used to implement

different locality policies that adapt to the underlying infrastructure running

the UDDAs.

Once the features of a unified dataset are defined, in the next section we

proceed to elaborate on the operational model that derives from its definition

and internal properties.
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6.1.2 Unified Operational Model

BDA programming models are typically based on data flow, assuming that

operations manipulate distributed datasets, and generate new datasets as

result. They are massively inspired by functional programming, thus tend

to avoid state changes, mutable data, and dependencies to global or local

state. This has the benefit of providing identical results each time a function

is called with the same input, regardless of previous operations. If there is

no data dependency between such expressions, their order can be reversed,

or they can be performed in parallel and they will not interfere with one

another. These features made these paradigms very popular because it is

easy to reason about data in this way, and building parallel program becomes

less error-prone if the user does not have to take state into consideration.

Statefulness also assists provenance, since operations can be reexecuted in

case of failure.

In contrast, HPC programming interfaces rely heavily on in-place stateful

paradigms, in which computation, communication and data updates occur

under the same programming scope. Intra- and inter-node level parallelism

occurs at different levels, and the memory model is key to build an application

since operations on data remain stateful and affect subsequent control flow

and output results. Consequently, HPC applications are complex to design

and code, and users are required to be much more aware of the implications

of every change they conduct on the dataset.

Consequently, the flexibility of HPC programming paradigms can be some-

times overwhelming, while semantically rich paradigms are usually favoured

by end users due to higher productivity and smoother learning curve. Nonethe-

less, the declarative nature of BDA approaches excels in usability and adop-

tion, but lacks the capability to express the stateful procedural methods re-

quired in HPC.
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Keeping hybrid applications in mind, which are composed of interleaving BDA

and HPC stages, it is clear that a unified architecture for BDA and HPC must

support traditional data-centric operations and incorporate HPC-oriented

functionality (D1). In addition, as shown in Fig. 6.1, it must also support the

definition of operators for lambda expressions, while remaining compati-

ble with existing implementations of high-level libraries –e.g. for machine

learning or graph processing– and computing kernels (D3).

To formalise the different operations we could conduct on a UDDA, we pro-

pose a unified operational model (UOM) that represents the function space

derived from the definition and properties of the UDDA itself:

Definition 6.4. Unified operational model (UOM) function space

Given a UDDA, Ut = (At , s), there is a function space (Vu)Ut that maps (At , s) →
(Bu , s′), where Vu = (Bu , s′) corresponds to a new UDDA of type u, Vu . Notice

that t = u and s = s′ are not necessarily enforced.

It is important to highlight that the UOM does not represent an API on its own,

since it is a formal definition of the function space inherent to the UDDA,

which creates a theoretical frame to define operations in terms of their ex-

pected behaviour. Implementations of the UOM will generate an associated

API by defining the particular functions supported, their properties, and their

syntactic specification.

Among all the theoretical functions that can be defined in (Vu)Ut , our analysis

indicates that certain specialisations are completely necessary to expose a set

of operations capable of meeting the requirements of composite applications:

Definition 6.5. Stateless functions

A function f ∈ (Vu)Ut is a stateless function if f ((At , s)) = (Bu ,0).

Definition 6.6. Stateful functions

A function f ∈ (Vu)Ut is a stateful function if f ((At , s)) = (Bu ,1).
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Definition 6.7. Type-constrained functions

A function f ∈ (Vu)Ut is a type-constrained function if u = t .

Definition 6.8. Cardinality-preserving functions

A function f ∈ (Vu)Ut is a cardinality-preserving function if |At | = |Bu |, this is,

the number of chunks remains constant.

Definition 6.9. Tuple-based functions

A function f ∈ (Vu)Ut is a tuple-based function if t defines an n1-tuple set, T ,

and respectively, u defines an n2-tuple set, U , with n1,n2 ∈N∗ n1,n2 > 1.

These definitions can be used to characterise common operations in BDA

and HPC environments and implement an application programming inter-

face (API) suitable for the selected process- and data-centric runtimes. For

example, a reduce from the traditional map-reduce paradigm is classified as

a stateless type-constrained function, acting on tuples of one or more ele-

ments. Also, the UDDA resulting from a reduce operation will typically have

less elements and chunks than the input UDDA, thus does not preserve cardi-

nality. Another example is the in-place all-reduce operation, typical in HPC

paradigms, which can classified as a stateful type-constrained function, since

it preserves the nature and results of the dataset, including its cardinality.

Implementations of this interface should make the addition of new operators

as simple as possible, without losing the flexibility inherited by the UDDA

and the function space it defines.

At this point, the theoretical frame defined by the UDDA and its associated

UOM allows the formal definition of composite applications with interopera-

ble steps. The next section describes how such stages can be matched to the

appropriate runtime.
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6.1.3 Runtime Delegation System

As depicted in Fig. 6.1, the proposed architecture follows a master-worker

scheme. Using this structure, the definition of the application and the runtime-

dependent parallel execution can be isolated, thus making clear for the user

whether a task will be conducted locally or in a distributed manner (D1). The

master entity holds the application, which defines the required UDDAs, and

relies on the the implementation of the UOM to interact with their content

and to describe the steps it is composed of. On execution, parallel steps will

be delegated to the worker entities through the runtime delegation system

(RDS), which will interpret the requested operations and select the appro-

priate runtime (D5). For increased adoption and simplicity to the end user,

the RDS constitutes an entity that is independent of the underlying runtimes,

and acts only as in intermediary without disrupting them (D2).

Formally, given a UOM function space, (Vu)Ut , there is a set D ⊆ (Vu)Ut that

corresponds to the subset of functions that map to the data-centric runtime,

and a set P ⊆ (Vu)Ut that corresponds to the subset of functions that map

to the process-centric runtime. The objective of the RDS is to enable the

delegation of said operations to the appropriate runtime, further defining

sets D and P in relation to the runtimes it must interact with.

Notice that we cannot impose D ∩P = ; because some operations may

map by definition to either runtime. For instance, the map function from

the map-reduce model can be implemented in either a data-centric (e.g.

Hadoop) or process-centric runtime (e.g. MPI). Consequently, it is up to the

RDS implementation to impose further constraints and limitations to these

subsets. Typically, stateful functions will map to the process-centric runtime,

and functions that are not type-constrained or cardinality-preserving could

have a better fit in the data-centric runtime due to their increased flexibility,

but this will ultimately depend on the selected underlying runtimes.
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6.2 An Implementation of the Architecture: The Spark-

DIY Platform

In this section we introduce an implementation of our generalist architecture

for BDA and HPC, named Spark-DIY, based on Apache Spark and the highly-

scalable data-intensive communication pattern library DIY (Do-It-Yourself

Block Parallelism) [187]. As a result, Spark-DIY is able to run Spark ultimately

on top of MPI to enable the efficient execution of HPC operations on a super-

computer, to assist in the integration of existing scientific codes into a BDA

environment, and to preserve the usability and flexibility BDA tools.

Figure 6.2 shows the interactions between the main components of the pro-

posed implementation in relation to the abstract entities described in the

generalist architecture. The following sections explain their role from the end

users’ perspective and the accompanying internal behaviour of the system.

6.2.1 Selected Runtimes

All implementations of the generalist HPC-BDA architecture must build upon

existing runtimes as building blocks. Their data abstractions, programming

interfaces and execution models will impose technical limitations to the

necessary interoperation mechanisms for each element in the architecture.

Therefore, it is necessary to analyse in depth each runtime to find the key

features that will enable the implementation of the architecture.

Below we describe major features of the runtimes selected for this implemen-

tation.

Data-Centric Runtime: Apache Spark

Spark is arguably the most popular BDA processing framework, and it also sup-

ports numerous other tools for machine learning, graph analytics, and stream
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FIGURE 6.2: Implementation of the generalist architecture for HPC-BDA
using Spark and DIY (Spark-DIY).

processing, among others. Being initially inspired by the map-reduce model,

Spark supports extended functionality and operates primarily in memory by

means of its core data abstraction: the resilient distributed dataset (RDD)[31].

A RDD is a read-only, resilient collection of objects partitioned across multi-

ple nodes that hold provenance information (lineage) and can be rebuilt in

case of failures by partial recomputation from ancestor RDDs. RDDs are by

default ephemeral, which means that once computed and consumed, they

are discarded from memory. However, since some RDDs might be repeatedly

needed during computations, the user can explicitly mark them as persistent,

which moves them in a dedicated cache for persistent objects, or moves them

to local or distributed storage.

Two types of operations can be executed in Spark: transformations that exe-

cute a function independently in each partition, and actions that trigger data
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shuffles between the partitions. Transformations are executed in a lazy man-

ner and are triggered by actions. The operations that are contained between

two communication points are called stages.

Spark can be executed in standalone mode or on top of several resource

managers such as YARN [188] and Mesos [189], and it allows the main driver

process of a job to be placed inside one of its workers (cluster mode) or in the

machine that submits the job (client mode). In any case, all Spark components

run ultimately on top of a Java virtual machine (JVM).

Process-Centric Runtime: DIY

DIY is an C++ and MPI library that offers efficient and highly scalable commu-

nication patterns over a generic block-based data model. In DIY, algorithms

are written in terms of data blocks that constitute the basic units of domain

decomposition and parallel work. Blocks are linked forming neighbourhoods

that represent the domain in a distributed manner. The assignment of blocks

to MPI processes, often multiple DIY blocks per MPI rank, is controlled by the

DIY runtime transparently to the user.

Given a block decomposition and assignment to MPI processes, the user

is able to run reusable communication patterns between the blocks in a

neighbourhood, and global operations over all blocks, such as reductions.

Therefore, DIY users can execute common communication patterns just by

defining the block type and domain topology, without knowledge of the un-

derlying communication details. Table 6.1 shows the contrast between using

pure MPI and the DIY interface for a simple program.

Consequently, a problem can be decomposed into a large number of data-

parallel sub-problems, and data can be efficiently exchanged among them

using regular local and global communication patterns whose implemen-

tation has been tuned for HPC. DIY has been applied in a diverse array of

science and analysis codes [190–194], and has demonstrated efficient scaling

on leadership-class supercomputers. For example, benchmarks of strong and
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TABLE 6.1: Transformation of a MPI program using DIY patterns.

MPI DIY

void ParallelAlgorithm () {

...

MPI_Send ();

...

MPI_Recv ();

...

MPI_Barrier ();

...

MPI_File_write ();

}

void ParallelAlgorithm () {

...

foreach (& LocalAlgorithm);

exchange ();

reduce ();

write_blocks ();

}

void LocalAlgorithm () {

...

}

weak scaling of parallel Delaunay tessellations [76], one of the libraries built

on top of DIY, demonstrated parallel efficiency of over 90% on up to 128K MPI

processes.

6.2.2 Interoperation Mechanisms

The similarity between Spark RDDs and DIY block parallelism, and the resem-

blance between Spark map-reduce and DIY merge-reduce communication

patterns are the basis for our integration of these two models. We will em-

phasise the data and programming interfaces exposed by Spark as much as

possible to preserve its compatibility with other tools, libraries and platforms

in the BDA ecosystem. Moreover, we will incorporate HPC features through

the careful inclusion of DIY.

Given the design of the generalist architecture, three aspects of Spark and DIY

need to be connected:

• Their data abstractions, to implement the UDDA.

• Their programming models, to implement the UOM.

• Their execution models, to implement the RDS.
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FIGURE 6.3: Interoperation mechanisms between Spark and DIY in the
Spark-DIY platform.

The implementation details needed to connect each of these components

between the two runtimes are summarised in Fig. 6.3 and detailed in the

following sections.

Implementation of the Unified Distributed Data Abstraction

Both in the case of Spark and DIY, the way data are arranged determines

the development of algorithms and the behaviour of the runtime. This also

happens with respect to the UDDA defined in the architecture. Consequently,

the first aspect that must be aligned is the way in which both frameworks

represent their data abstractions, conforming to the definition of the UDDA.

In a nutshell, UDDAs rely on a set of chunks and their associated state. Both

Spark and DIY build upon the concept of partitioned datasets –RDDs and

DIY block topologies, respectively–, so first we need to establish a mapping

between these two data abstractions.

If we think of the RDD as the equivalent of the distributed domain represented

by a DIY block topology, each data partition in a RDD maps directly to a data

block in DIY. In this context, the RDD dataset is partitioned into independent
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FIGURE 6.4: Mapping of RDD data partitions to DIY blocks.

DIY blocks, as shown in Fig. 6.4, where each partition Pi maps to a corre-

sponding block Bi , preserving the same data elements inside the partition

and respecting locality and order relationships, since no data transfers occur

to build this mapping.

As a consequence, the resulting dataset constitutes a distributed collection

that reflects the inner structure of a RDD, while adding topology information

for the DIY-based communication patterns. This is the basis for the imple-

mentation of the UDDA, since at this point we already have two mechanisms

to handle distributed collections of data, and a suitable mapping between the

data chunks.

In technical terms, many challenges appear when we attempt to interoperate

DIY blocks with RDDs. In particular, partitions of RDDs live in the JVM as

Java or Scala objects, while DIY blocks are specified using a native language

like C/C++. Since UDDAs are required to be generic, data serialisation and

type conversion will be necessary to generate appropriate bindings between

both programming environments. The implementation of Spark-DIY relies

heavily on JNI to manage memory buffers as transparently as possible, and

collections of common data types (e.g. primitive types, tuples, strings) are

offered in a catalogue for the users’ convenience. Although user-defined data
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types can be supported and there are several tools to assist in binding gen-

eration (e.g. the Simplified Wrapper and Interface Generator (SWIG) [195]),

incorporating them efficiently requires tailoring the generated interface and

significant knowledge of JNI, the JVM, and Spark-DIY internals. In any case,

RDDs are sufficiently semantically rich for BDA usage, and it is unusual for

HPC operations to depend on very complex data structures, thus we intro-

duced important optimisations for collections of primitive data types, which

are elaborated in Sec. 6.2.3.

There is an additional benefit of relying heavily on RDDs to implement the

UDDA: we can exploit the Spark framework to control data partitioning and

enforce locality. These two features are closely related to the locality and

cardinality properties of UDDAs. Nevertheless, RDDs are stateless and UDDAs

require the possibility to include statefulness in their definition. This is a

complex technical challenge we tackle in Sec. 6.2.3.

Implementation of the Unified Operational Model

Spark actions and transformations conform a complete interface that cov-

ers many functions in the UOM, with the particularity that all of them are

stateless. On the other hand, DIY offers further flexibility to incorporate its

communication patterns and stateful operations, while providing support to

interact with native code and existing simulation kernels.

Since the Spark API already offers a comprehensible programming inter-

face that is easily expandable, we preserve it in our implementation of the

Spark-DIY API with the addition of new operations. Ultimately, users would

write a Spark program that can be enriched with these new functionality. In

particular, further features like interaction with native kernels and PFS sup-

port can be introduced by extending the Spark API with a similar interface. For

example, we specifically define the offload operator to delegate computations

to native simulation kernels.
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With respect to the operations that already exist in Spark, Spark-DIY exposes

the pure Spark version, and a similar operation that is translated to an al-

gorithm built on top of DIY communication patterns. Since the mapping

between RDDs and DIY block topologies is already established, this trans-

lation follows naturally because we are able to preserve the independence

between partitions, and we can map data shuffles to underlying DIY algo-

rithms. Consequently, these Spark-based operations on RDDs are internally

expressed as algorithms that mimic the functionality expected from Spark.

For example, the map and filter transformations in Spark can be translated

to a foreach pattern in DIY, since both of them represent parallel and inde-

pendent operations on the dataset; reduceByKey in Spark was translated to

an algorithm based on the swap-reduce DIY pattern, which conducts several

rounds of data exchanges between blocks, effectively shuffling data across the

partitions; analogously, Spark’s reduce corresponds to a merge-reduce pattern,

similar to swap-reduce but merging the results in a single value.

Spark-DIY operations on partitions are triggered by the inner algorithms in

DIY, but expressed as user-defined callbacks written by the user in Scala as

part of the driver code, who also defines the data type of the records and the

supported operators (e.g. unary for independent transformations, binary

for reductions, hash for partitioning, and kernel for invoking native code).

Moreover, high-level libraries remain available through the usual Spark API.

Table 6.2 shows a sample of the Spark-DIY API and its relation with the callback

definitions.

Implementation of the Runtime Delegation System

Figure 6.2 shows the deployment of Spark-DIY and the interaction of the Spark

and DIY components that constitute this implementation of the RDS. Starting

from the Spark driver, which is the component that guides the entire execution,

tasks will be executed either as executors spawned inside the Spark workers,

or as DIY processes. Spark workers are deployed as an MPI application so that



Chapter 6. Interoperability Architecture for HPC-BDA Applications 113

TABLE 6.2: Sample of the Spark-DIY API in contrast with the native Spark
API, including the required callback definitions. The syntax is purely
illustrative and does not reflect minor Scala-specific details.

Spark-DIY Spark

Callback extends DIYCallback {

override unary(x) = {f(x)}

}

DIYmap(Callback ())

map(x => f(x))

Callback extends DIYCallback {

override unary(x) = {f(x)}

}

DIYfilter(Callback ())

filter(x => f(x))

Callback extends DIYCallback {

override binary(x,y) = {f(x,y)}

}

DIYreduce(Callback ())

reduce ((x,y) => f(x,y))

Callback extends DIYCallback {

override binary(x,y) = {f(x,y)}

}

DIYreduceByKey(Callback ())

reduceByKey ((x,y) => f(x,y))

Callback extends DIYCallback {

override kernel () = {f()}

}

DIYoffload(Callback ())

N/A

a valid communicator exists for DIY operations before their execution. This

assists the adaptation of the dynamic task-based execution model from the

Spark framework to the static set of MPI processes used by DIY.

The RDS relies on the Spark context for data partitioning and the Spark master

for task scheduling and serialisation. Moreover, there is a middle layer that

handles task delegation to DIY processes for specific Spark-DIY functions,

and the implementation of the data mapping for the UDDA.

Given the previous implementation of the UOM, it is clear that pure Spark
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operations will be delegated to the data-centric runtime, namely Spark ex-

ecutors. The remaining operations will be delegated to the DIY runtime, thus

being executed in MPI processes. Ultimately, all Spark-DIY operations start

by spawning Spark executors which will then delegate the operation to DIY

code. Upon invoking a function that is delegated to DIY, several tasks are

conducted internally:

1. Spawn executors. Since DIY algorithms are block-parallel, we exploit

the one-to-one association between each partition of an RDD and the

corresponding block in the DIY domain. We let Spark handle data seri-

alisation, partitioning, and executor creation by wrapping the partition-

block conversion in a function that is passed to a mapPartitions Spark

operator. This creates executors that live in the MPI environment and

contain the data of the corresponding partition, which enforces locality.

2. Map RDD partitions to DIY blocks. The partition set is converted to

a DIY domain, where each partition corresponds to a block. Transfor-

mations can be conducted with independent blocks following a similar

approach to the Spark counterpart, while shuffle operations are trans-

lated to DIY communication patterns. To achieve this, data needs to be

copied from the Java to the native side.

3. Delegate operation to DIY: Once the domain is established, we can

run the DIY operations through a wrapper in JNI that executes the user-

defined callbacks for computation. The results are retrieved afterwards

and converted back to an RDD, and the execution is resumed in Spark.

6.2.3 Optimisations and Enhancements

Given the state of the implementation at this point, we can observe that the

specific features of each runtime sometimes limit the potential performance

and functionality that can be attained. For example, dealing with generic user-

defined data types on the DIY side involves conducting more serialisation
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steps than would be required for primitive data types. Another issue is that

stateful functions cannot be supported without external assistance. This

section describes the optimisations and extensions we incorporated into this

implementation to fully support the generalised architecture, and extend the

functionality enabled by the selected runtimes.

We have conducted optimisations to solve two kinds of issues: limitations to

the implementation the UDDA and UOM, and performance problems related

to the way in which runtimes interoperate. For the first case, we have to find

a way to support stateful functions and persistent datasets, which cannot be

done out-of-the-box since we ultimately rely on Spark RDDs and executors,

which do not preserve state even if the DIY block topology exists at certain

times during the execution. For the second case, it must be acknowledged

that the need for generality in the data abstractions adds significant overhead

in terms of memory and execution time due to the need for additional seriali-

sation. Moreover, HPC-oriented storage is currently not supported because

all data I/O is supposed to be handled through the Spark context, thus forcing

applications to conduct additional stages to make input data suitable for

subsequent process-centric operations. These circumstances add significant

overhead and limit the performance and scalability of applications built with

this platform.

Figure 6.5 presents the Spark-DIY platform and new elements used to incor-

porate optimisations and enhancements that alleviate the former issues. The

following paragraphs describe them in detail.

Shared Memory Regions for Stateful Operations

The implementation of Spark-DIY relies heavily on RDDs for data distribution

and API support since they provide a straightforward mechanism to induce

data locality and data-centric semantics into the DIY block topology. Nonethe-

less, RDDs are stateless, and the definition of UDDAs forces the inclusion of a

state management mechanism.
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FIGURE 6.5: Optimised and enhanced implementation of Spark-DIY.

In order to coexist RDDs and stateful functions, we introduce a new architec-

tonic element capable of preserving state after a RDD operation. This entity

is depicted in Fig. 6.5 as a companion server that is intrinsically associated to

a specific Spark worker, and can communicate with the executors spawned

in it.

The companion server is responsible for managing a shared memory region

that can hold a data chunk and maintain it even after the operation finishes

and the executor dies. This allows functions to update the values in the data

chunk and preserve the results without returning a new dataset, effectively

meeting the statefulness requirement.

As a result, this implementation splits the data sharing area defined in the gen-

eralist architecture in two regions: a stateful data sharing area maintained by
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the companion server, and a stateless data sharing area used as intermediate

in-memory storage for communicating the Spark and DIY runtimes.

Data Serialisation Minimisation

The Spark-DIY API exposes operations on data abstractions that are generic

and can be tailored for user-defined data types. This, however, has significant

performance implications since the internal memory management involves

several serialisation and de-serialisation steps not just in the Spark side, but

also in the DIY side, and the code that bridges them.

Nevertheless, optimisations can be conducted if collections are limited to

native data types (byte, short, int, long, char, float, double). Spark-DIY offers an

interface for these types with reduced overhead, since serialisation between

Spark and DIY is not required. This is especially useful for scientific tasks

since most of their data are numeric.

To conduct this optimisation, we map data internally to on-heap buffers

managed directly by the JNI interface and the DIY functors. Since the size

of each record is fixed, we can conduct allocation optimisations and avoid

the need for a user-defined serialisation method. In addition, for datasets

containing primitive data types, data can be shared directly between the RDD

partition and the DIY block, which reduces the number of copies conducted

during the delegation process.

External Data Management via MPI I/O

Data-centric runtimes interact with storage through limited interfaces that

assume the most common characteristics of input data used in BDA applica-

tions, mainly text files and data coming from non-relational databases. The

current Spark-DIY implementation relies on the Spark context to interact

with storage, thus limiting the I/O possibilities for HPC-oriented stages and

forcing the addition of auxiliary operations to make input data suitable for

subsequent process-centric operations.
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To overcome this issue, we exploit once again the companion server entity

to act as intermediary proxy to the storage system, which can now also be a

HPC-oriented parallel file system. The companion server is implemented as

an MPI algorithm capable of conducting collective and parallel operations

on input data that is placed in the stateful shared data region for subsequent

usage. This enables all the potential of MPI I/O to benefit from the highly

optimised parallel I/O in HPC systems as an alternative to current storage

systems like HDFS.

6.2.4 Usage

End users are exposed to a limited number of additional elements of the

interoperation layer in addition to the basic Spark API. The driver code of the

Spark application (in Scala or Java) must define and use these components as

follows:

1. Select the record data type. The RDDs to be processed through DIY

are collections of data records that we can convert to C++ data types

through JNI. To ease this process, a catalogue is offered where users can

select a pre-built data type that handles type conversion and memory

management from and to the C++ code. Since users may want to use a

custom data type not present in the catalogue, we have also developed

the internals of Spark-DIY in a generic manner. New data types can

be defined in a helper file later used by the JNI code generation utility

of choice, which is SWIG in our particular case. New data types must

define serialisation and deserialisation functions, since both RDD and

DIY block elements need to be serialisable.

2. Define the callback operators for the record. Similarly as in Spark,

the operations to be conducted on records must be defined. In order

to access these operators from DIY, users must implement the proper

method as an object that extends the Spark-DIY callback interface.
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1 class WordcountCallback extends PairDIYCallback {

2 override def binary(x:PairRecord, y:PairRecord): PairRecord = {

3 return new PairRecord(x.first, x.second + y.second)

4 }

5 override def key_hash(x:PairRecord): Long = { return x.first.## }

6 }

7

8 def main() {

9 // ...

10 val mapRDD = spark_context.textFile(file)

11 .flatMap(_.split(" "))

12 .map(x => new PairRecord(x, 1))

13

14 val mapDDD = new PairDDD(mapRDD, numBlocks, sparkContext, statefulness)

15 val outRDD = mapDDD.DIYreduceByKey(new WordcountCallback())

16 // ...

17 }

LISTING 6.1: Example of a word count application written with the
Spark-DIY DIYreduceByKey operator.

3. Delegate execution on a DIY dataset. A DIY dataset contains an RDD

and mimics the operations the user would normally run on the RDD,

with additional functionality. Once an RDD is created along with its

operators, we can run the Spark-equivalent transformations and ac-

tions implemented using the communication patterns of DIY, offload

computations to native kernels, or execute read and write operations

in the PFS via MPI. The result of this operation is a new RDD that can

be further used in the driver with subsequent combinations of Spark

functions or DIY algorithms.

Listing 6.1 shows a simple word count application written in Spark-DIY. Line

12 conducts a pure Spark map, but creates an RDD of the DIY data type

PairRecord. This RDD is used as input to generate a unified DIY dataset in

line 14, which is the input for the DIY reduction in line 15. Notice that the

creation of such dataset involves the specification of the base RDD, the final

cardinality of the dataset (variable numBlocks), the Spark context that will
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assist task management, and the desired level of statefulness. The output

dataset is an RDD of the same data type that can be used in subsequent Spark

operations. Lines 1 to 6 contain the definition of the callbacks required for

the reduction and the key-based partitioning of data records. These functions

will be invoked by the underlying DIY algorithms, so they must comply with

the callback interface exposed by Spark-DIY.

6.3 Summary

This chapter highlighted the key design features that would interest both

the HPC and BDA communities to build hybrid applications, and proposed

an architecture to attain them. It included the formal definition of the core

elements that constitute our proposed generic architecture for HPC-BDA

runtime interoperability: the unified distributed data abstraction (UDDA),

that can be used to share data between runtimes; the unified operational

model (UOM), which defines the function space derived from such data

collections; and the runtime delegation system (RDS), which maps each

function in the UOM to the appropriate runtime.

This architecture can be implemented in different ways depending on the

process- and data-centric runtimes of choice, and the mechanisms put in

place to effectively meet the requirements of the architecture. We have ex-

plored the potential benefits of integrating a popular BDA platform like Apache

Spark with HPC-oriented communication techniques represented by DIY

block parallelism. We developed the Spark-DIY framework with these run-

times. Spark-DIY preserves the API and execution environment of Spark,

thus making it compatible with any Spark-based application and tool, while

providing efficient shuffle, collectives, and kernel offload by using DIY, a pow-

erful library built on top of MPI. Finally, we remarked the optimisations and

enhancements implemented in Spark-DIY to fully comply with the formal
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architecture, improve performance, and extend the functionality to support

HPC-oriented storage.

To summarise, this chapter presents the following contributions:

• The theoretical frame for the formal definitions of the UDDA and UOM

of the generic HPC-BDA architecture, keeping into consideration a well-

defined set of design goals.

• The construction of the generalist architecture to support workload

delegation to the process- and data-centric runtimes.

• An implementation of the architecture, Spark-DIY, based on Apache

Spark as data-centric runtime, and DIY as process-centric runtime.

• Additional optimisations and enhancements to ensure full coverage of

the design goals and enable supplementary functionality.

This chapter includes content published in:

• S. Caíno-Lores, J. Carretero, B. Nicolae, O. Yildiz, and T. Peterka, "Spark-

DIY: A Framework for Interoperable Spark Operations with High Perfor-

mance Block-Based Data Models" [130].





CHAPTER 7

EVALUATION OF SPARK-DIY WITH HPC AND BDA

APPLICATIONS

We selected two applications to analyse the behaviour of a prototype of the

Spark-DIY platform: a typical tuple-based operator requiring heavy shuffling,

and the EnKF-HGS HPC use case introduced in Sec. 5.2. While the first case

aims to isolate potential communication and memory related bottlenecks,

the latter exploits many features offered by the framework and showcases its

potential against other traditional implementations like MPI or pure Spark.

We have evaluated these applications on bare metal nodes of the Chameleon

cloud at the University of Chicago running Apache Spark version 2.2.0. Each

node has an Intel Xeon CPU E5-2670v3@2.30GH processor with 12 physical

cores and 135GB of RAM each. Both the Spark and Spark-DIY clusters were

configured with single-core workers to limit the number of executors in order

to obtain a fair comparison against the MPI deployment. Therefore, each

executor is mapped to one worker, and each worker is mapped to an MPI

process.

The following sections present and analyse the results of these evaluations.

7.1 Evaluation with a Typical BDA Benchmark

The literature indicates that communication-intensive operations generate

most of the scalability issues. For example, EnKF-HGS makes extensive use of

reductions in the post-processing stage, since the simulation results of each

instantiation of the model need to be shared among them.
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Therefore, our experiments will focus on reduceByKey operations, as a canon-

ical example of a Spark operation requiring shuffles, similar to groupByKey,

one of the basic benchmarks offered by Spark developers. We evaluated

Spark-DIY for reduceByKey on synthetic data generated in the driver that is

evenly distributed across a number of partitions, which is equal to the num-

ber of workers in the deployment. Results for the generic and primitive type

implementations of reduceByKey in Spark-DIY are shown in comparison with

Spark’s native method as the number of workers varies from 8 to 128.

Weak scaling was tested on a dataset holding a constant problem-per-worker

of two million records per partition. The objective is to determine how the

behaviour of both frameworks evolves as communication for data distribution

increases between workers. Additionally, strong scaling was analysed on

datasets ranging 8 to 128 millions of records in total in order to assess the

impact of the partition size on the execution time.

7.1.1 Performance with Generic Data Types

Figure 7.1 depicts the evaluation results for reduceByKey on (string, integer)

pairs, thus showing the behaviour of the generic implementation of Spark-DIY

against a Spark application that uses the same data interface. As indicated by

Fig.7.1 (a), Spark-DIY offers competitive performance and a similar scaling

trend against Spark, although they both fail to scale linearly as the problem size

increases. Besides preserving the scaling trend of Spark, Spark-DIY reduces

the execution time an average of 25.6%, but this improvement is reduced in

the case of 128 workers and 256 millions of records. This shared trend and the

reduction in the speed-up provided by Spark-DIY indicates an issue in the

Spark platform, which is in charge of parallelisation and task generation in

both cases, and this is the price we pay for keeping compatibility and native

Spark and DIY frameworks unmodified.



Chapter 7. Evaluation of Spark-DIY with HPC-BDA Applications 125

20

40

60

80

100

120

140

160

180

8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(s

)

Number of workers

Spark
Spark-DIY

(a) Weak scaling.

0

50

100

150

200

250

300

350

400

8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(s

)

Number of workers

8
16
32
64

128

(b) Strong scaling (Spark).

0

50

100

150

200

250

300

350

400

8 16 32 64 128

Ex
ec

ut
io

n
tim

e
(s

)

Number of workers

8
16
32
64

128

(c) Strong scaling (Spark-DIY).

FIGURE 7.1: Evaluation results for reduceByKey on Spark and Spark-DIY in
terms of weak scaling for a constant problem size of 2 millions of records
(a); and strong scaling with variable dataset size of 8 to 128 millions of
records (b and c). Records are collections of string-integer pairs.
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Since we have shown the behaviour of the Spark-DIY reduceByKey is compa-

rable to the Spark counterpart, we now focus on its scalability as the problem

size increases for a fixed number of workers. Figure 7.1 shows execution times

as the number of workers and the problem size increases for Spark (b) and

Spark-DIY (c). The beneficial effects of DIY communication can be clearly

appreciated in the figure, in comparison to the lower scale cases. As seen in

the weak scaling results, data parallelisation and task management take a

large portion of the overall execution time. Therefore, Spark-DIY operations

are meaningful in those cases where there is communication involved, and it

represents a significant portion of the problem. This effect is clearer as the

dataset size increases, which again is a good feature of Spark-DIY, as it is in-

tended for very large datasets. Although Spark-DIY delivers better execution

time than Spark for the largest test case (128M records on 128 workers), the

comparison against the behaviour of Spark-DIY for 64 workers indicates the

existence of a scalability issue.

7.1.2 Performance with Primitive Data Types

Although the results in the previous section show promising performance,

even considering the need for interoperability, a pure Spark application writ-

ten with data types native to the selected programming language will de-

liver much better performance since less conversion and serialisation steps

would be needed. With this in mind, and considering that our target use

cases (namely applications from the scientific domain) typically rely on prim-

itive data types, we now compare a native Spark implementation against a

Spark-DIY implementation using the optimisations for primitive data types

described in Sec. 6.2.3. These experiments using reduceByKey on (integer,

integer) pairs are reflected on Fig. 7.2.

Interestingly, the scaling curves of both platforms do not indicate the same

trend as it occurred in the generic case. Although at a smaller scale Spark

performs better, Spark-DIY delivers 14.66% and 32% less execution time for
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FIGURE 7.2: Evaluation results for reduceByKey on Spark and Spark-DIY for
primitive data types in terms of weak scaling for a constant problem size of
2 millions of records (a); and strong scaling with variable dataset size of 8 to
128 millions of records (b and c). Records are collections of 4-byte integers.
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64 and 128 workers respectively. This is also supported by the strong scaling

results portrayed in (b) and (c): Spark shows a flat curve, which contrasts

with the rough slope in Spark-DIY for 128 millions of records. As a result,

Spark-DIY is 52.1% and 14.6% faster than Spark using 128 and 64 workers

respectively, but slower if the number of workers is less.

Consequently, there is a trade-off between the scale of the problem, the plat-

form used, and the performance obtained. At scale, the performance of

Spark-DIY for this use case is at least equivalent, and end users could exploit

the flexibility and interoperability offered by Spark-DIY to enable the usage

of higher-level Spark libraries and external HPC elements.

7.2 Evaluation with a Real-World Application

The use case presented in Sec. 5.2, EnKF-HGS, was originally designed as

a HPC workflow to model the behaviour of hydrogeological systems, but

the evolution of this scientific domain brought new challenges related to

the opportunities found as decentralised infrastructures advanced. Besides

specific models for pre-alpine valleys in the Swiss Emmental region, the tool

can also incorporate real-time sensor data to refine its predictions. Figure

7.3 depicts the elements involved in EnKF-HGS operations with real-time

data assimilation in the cloud: the user provides a base model that will be

distributed, simulated with EnKF-HGS kernels, and updated with the data fed

by the sensor network deployed in the Swiss valleys; after each step, results

are stored in a distributed manner in cloud storage for subsequent iterations.

This use case relies on cloud services for computation, data assimilation

and storage. In addition, BDA computing platforms constitute a natural fit

for EnKF-HGS because they provide facilities to collect data from streaming

sources. On the other hand, this tool must handle many MPI simulations

running in parallel, and high-performance is required as in any other scientific

application. The combination of these requirements and features makes a
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FIGURE 7.3: Interoperation of EnKF-HGS with the data assimilation sensor
network and its supporting cloud infrastructure.

case for the need of scalable HPC-BDA convergence in EnKF-HGS. Moreover,

other applications show similar needs to fuse sensor and simulation data,

including weather forecasting [196], and carbon cycle [197] studies.

In Ch. 5 we reported our experience combining traditional HPC with BDA-

inspired paradigms and platforms, in the context of scientific ensemble work-

flows like EnKF-HGS. Our goal was to provide a suitable environment that

combined the HPC and BDA elements required by EnKF-HGS, so we inte-

grated the simulation kernels with the Apache Spark framework, which also

supports streaming, using the methodology in Ch. 4. We found that Spark

was unable to scale due to the large memory requirements, and it gener-

ated errors and did not scale well for the Kalman filter cooperative processes,

mainly due to the shuffle phase in large-scale reductions, combined with the

platform’s overhead. Limitations of the shuffle phase have been reported by

others [198, 199] as well. They can be traced back to multiple causes: high

memory utilisation for buffering of shuffle blocks, load imbalance, explosion

of files, high I/O contention, etc.
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The following sections describe how this application can be enhanced to cope

with its scalability and interoperability requirements through Spark-DIY and

its composition capabilities, and present the results of its optimisations as

scale increases.

7.2.1 Building EnKF-HGS with Spark-DIY

The result of implementing the data-centric EnKF-HGS in Spark was an ap-

plication with a parallel region in charge of executing the GROK and HGS

kernels in Spark tasks, and a model update region that required all data to be

collected in the driver process to reassemble the matrices of the model. As

seen in its evaluation, this version of the application shows scalability issues

do to the bottleneck found in the model update region.

Spark-DIY can help to mitigate this problem by delegating the analysis to DIY

as an MPI kernel through the offload operator. This division in the parallel

and model update regions is highlighted in Fig. 7.4.

This new implementation of EnKF-HGS combines the shared memory en-

hancements of Spark-DIY to enable statefulness in the model evaluation

region of the application. Delegated DIY tasks are also used to incorporate

the base input data in the appropriate columnar view, reading through the

companion servers via MPI I/O, and getting the result into Spark by means

of DIY operations. The legacy kernels can be executed as usual afterwards,

and the results are fed to the MPI analysis kernel invoked by DIY, which will

execute the filtering stage and update the model in-place without needing

any collection in the driver process. Subsequent iterations will continue to

operate in a distributed manner, until the final output is stored in chunks.

An additional benefit of using Spark-DIY in this case is that we can reuse

the original analysis kernel implemented in MPI, which reduces drastically

the development effort to obtain a full implementation of a BDA-capable
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FIGURE 7.4: Implementation of data-centric EnKF-HGS on Spark-DIY. The
parallel region is mapped to Spark tasks, and the model update region is
delegated to DIY processes. Input data are read via MPI I/O through DIY
tasks in collaboration with the companion servers.

EnKF-HGS. Moreover, we can exploit some features specific to Spark-DIY to

our advantage:

• The shared memory regions that support stateful operations have a

main role in this implementation because the in-place update of the

model is absolutely necessary to eliminate the need to collect the ma-

trices in the driver process. This is due to the analysis kernel being

inherently stateful. Furthermore, these regions minimise the seriali-

sations between iterations because they remain active after they are

created by the companion servers. This has a positive effect in the

reduction of data management overhead.

• The optimisations introduced in Spark-DIY tackling primitive data

types also contribute to reduce the negative effects of serialisation in

performance. Since EnKF-HGS relies on numeric algorithms, all of its

data are handled in terms of floats or integers, and this simplifies the

management of shared buffers through JNI.
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• The MPI I/O external data management represents a major benefit ver-

sus a pure Spark implementation due to the way in which input data is

organised. Input files can be read in parallel to retrieve the particular

data required in each process, exactly in the way in which it is needed

(i.e. in columns). This is advantageous because MPI I/O has good per-

formance and scalability, and enables future optimisations for data

management. Moreover, data are read directly into the shared mem-

ory region of the companion server, reducing the overhead of passing

data from Spark to DIY. Although this has the drawback of adding some

overhead due to the need to involve the companion servers, it effec-

tively removes any input bottlenecks in the driver. A similar argument

could be provided in favour of storing the output directly through this

mechanism.

We now analyse the behaviour of EnKF-HGS implemented in Spark-DIY against

the original MPI implementation and the version written in pure Spark result-

ing from Ch. 5.

7.2.2 Performance Results

Figure 7.5 shows the results of the evaluation of EnKF-HGS on Spark-DIY to

compare its performance –measured in execution time– against the pure

Spark implementation of EnKF-HGS introduced in Ch. 5, and its original MPI

implementation taken as baseline. The three implementations are evaluated

on the Chameleon testbed with real initial input data and synthetic data for

assimilation to limit the heavy stochastic nature of the simulation kernels.

We only report results for one and two iterations of the Kalman filter because

succeeding iterations will incorporate further randomness that could lead to

inadequate comparisons. In any case, both the parallel and model update

regions are triggered with more than one iteration, so we cover the entire

application workflow.
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FIGURE 7.5: Evaluation results of EnKF-HGS on Spark-DIY measured in
execution time (in seconds) for one (a) and two (b) iterations.

The results for one iteration show that Spark-DIY performs very similarly to

Spark, which is positive because this means the delegation layer is not intro-

ducing significant overheads. In addition, both implementations show good

results against MPI when more than one node is involved in the computation.

This reinforces the idea that data awareness can accelerate massively-parallel

computations, as introduced in Ch. 5.

In the case of two iterations, the Spark implementation is outperformed by

MPI and also by Spark-DIY an average of 14% for 1 to 128 workers. This is

related to the need for data collection for the the analysis stage that must
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be conducted to prepare the model for following iterations after the paral-

lel region. This step is necessary in the Spark implementation because we

cannot conduct in-place computations, but it is not the case for the current

implementation of Spark-DIY, which shares the analysis kernel with the MPI

implementation. The most remarkable result is, however, that the Spark im-

plementation fails to scale properly beyond 128 workers. We tracked this issue

to a series of structural bottlenecks in the driver process, and are related to

I/O management of the initial dataset and the final output. In addition, Spark

does not support stateful operations, which implies that data resulting from

the parallel region must be collected to conduct the model update, creating a

bottleneck that limits scalability beyond 128 realisations.

As a consequence of the I/O and shared memory management capabilities of

Spark-DIY, the Spark-DIY implementation is consistently competitive against

MPI as the number of realisations increases and achieves comparable scalabil-

ity. The reason for this is the key effect of statefulness in the overall application:

not only improves performance by eliminating overheads related to data being

serialised and moved around as the procedure advances, but also eliminates

the need of collecting data to conduct the update of the model. These mem-

ory regions allow the analysis kernels to conduct the model update in-place,

without involving the driver process at all. Furthermore, initial input data can

be read in parallel and placed directly in the corresponding memory region,

eliminating the input data processing bottleneck.

Nonetheless, the detrimental effects of Spark task generation, scheduling and

management are visible when the number of workers becomes very high. For

example, Spark-DIY takes 16% more execution time than MPI for 512 workers,

which highlights the slim nature of the MPI environment. We believe this

is a reasonable trade-off for the flexibility of incorporating the elements of

a whole new ecosystem into a HPC application, and further optimisations

might alleviate this issue in future works.



Chapter 7. Evaluation of Spark-DIY with HPC-BDA Applications 135

7.3 Summary

This chapter presented the evaluation results of the implementation of the

reduceByKey benchmark and the EnKF-HGS use case on the Spark-DIY plat-

form, our implementation of the HPC-BDA architecture.

This platform showed good scalability and performance results against Spark

and MPI. In particular, the evaluation of the EnKF-HGS use case indicated that

Spark-DIY enables the integration of elements from both the BDA and HPC

ecosystems for applications with diverse requirements without sacrificing

scalability and performance. Spark-DIY introduced limited overheads in

exchange for this flexibility, and allowed a level of scalability that would not

be attainable by Spark on its own.

This chapter includes content published in:

• S. Caíno-Lores, J. Carretero, B. Nicolae, O. Yildiz, and T. Peterka, "Spark-

DIY: A Framework for Interoperable Spark Operations with High Perfor-

mance Block-Based Data Models" [130].





CHAPTER 8

CONCLUSIONS

Nowadays, there is a need for software solutions able to integrate the benefits

of the BDA and HPC ecosystems for the development of applications that

present requirements from both paradigms. This thesis presented advances

in the context of BDA and HPC convergence, more specifically with respect

to the interoperation of runtimes to support the composition and execution

of hybrid applications.

The main goal of this thesis was to research new approaches to facilitate the

convergence of HPC and BDA paradigms by providing common abstrac-

tions and mechanisms for improving scalability, data locality exploita-

tion, and execution adaptivity on large scale systems, while preserving the

most relevant features for their corresponding communities, in order to pro-

vide a system suitable for the composition of applications with BDA and HPC

stages. This work achieved such goal by meeting its complementary objectives

as follows:

O1 Analyse the key features that characterise HPC and BDA ecosystems.

Chapter 2 introduced a deep analysis of the literature and current state

of the HPC and BDA ecosystems, considering their traditional focus,

and the most recent advances in terms of infrastructure, storage, pro-

gramming model, execution model, and application domains. As a

result, Ch. 3 elaborated on the challenges opened by the search for con-

vergence and defined the characteristics that should be present in an

ideal system for hybrid applications. With these in mind, we extracted

a set of key design goals that guided the rest of our work.

137
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O2 Provide a mechanism to reshape HPC-oriented workflows in order

to adapt them to data-centric environments. The need for a tech-

nique to adapt HPC applications to a BDA-oriented environment was

tackled in Ch. 4. This chapter presented a data-centric transformation

methodology for iterative scientific applications, which constitute the

majority of the applications in various scientific domains. Being able

to incorporate the data-centric features of BDA platforms proved rel-

evant to improve scalability and the possibility to interoperate such

applications with higher-level analytics jobs, and new data sources like

streamed data.

O3 Design and develop an architecture that offers runtime interoper-

ability for hybrid HPC-BDA applications, incorporating unified op-

erational and data models that support high-level analytics meth-

ods and high-performance kernels for composite applications. The

ability to reason about data in such a natural manner made BDA-oriented

programming models popular and easier to learn that the process-

centric interfaces for HPC. With this into consideration, Ch. 6 intro-

duced a new data abstraction that unifies the requirements of the dis-

tributed datasets found in BDA and HPC platforms, and a formal defini-

tion of an operational model suitable for HPC-BDA applications based

on such abstraction. These elements are the core of the architecture in-

troduced in Ch.6, which allows the composition of hybrid applications

since data can be seamlessly fed to a data-centric or process-centric

feature using the same interface. Their execution is managed by a

runtime delegation entity that acts as bridge between both runtimes,

without requiring changes in neither of them. Finally, we developed

an implementation of this architecture based on Spark and an MPI-

based library –DIY–, which we called Spark-DIY. Once the data model

was unified, we were able to enrich the traditional approach to data-

centric programming of the Spark API with operators that allow the
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delegation of HPC operations to the process-centric runtime. For ex-

ample, this includes the execution of legacy simulation kernels and

communication-intensive stages for matrix operations. In addition,

we incorporated optimisations to our Spark-DIY framework to support

MPI I/O for further flexibility and support of traditional HPC storage

systems. Since Spark-DIY runs with an unmodified version of Spark,

higher-level libraries built on the RDD abstraction remain compatible

with our implementation.

O4 Evaluate on meaningful use cases, representative of target hybrid

applications. Chapter 5 presented EnKF-HGS, a real-world use case

from the hydrogeology domain that embodies the nature of the applica-

tions our architecture aims to assist: it presents both HPC characteristics

–as the need to preserve the state of the model between iterations, to ex-

ecute compute-intensive simulations, and to update shared matrices in

a all-to-all communication pattern–, and BDA features –like the need to

support streamed data and run on cloud services–. After adapting this

workflow to a data-centric approach, using the methods in Ch. 4, Ch.

7 presented its full implementation as a Spark-DIY application able to

cope with the challenges of an evolving domain. Additional evaluation

was also provided in said chapter for a reduceByKey benchmark.

This thesis yields the following contributions from the accomplishment of

the former objectives:

C1 A data-centric enablement methodology aimed at reshaping HPC it-

erative scientific applications to match the data-centric paradigm of

BDA platforms. This can be used to incorporate simulation stages to

BDA applications, and update legacy HPC applications either by adapt-

ing them to new computing infrastructures like clouds, or incorporating

BDA techniques that empower their flexibility such as data streaming

and visualisation.



Chapter 8. Conclusions 140

C2 A formal definition of a generic unified distributed data abstraction

(UDDA) and its associated unified operational model (UOM), which

sets the foundation of a theoretical frame for the analysis and definition

of composite HPC-BDA applications. This data abstraction embodies a

careful selection of the features required to interoperate BDA and HPC

operations, and generates a theoretical frame that must be enforced by

implementations of the architecture to preserve interoperability and

formal correctness.

C3 A generalist runtime interoperability architecture for HPC-BDA ap-

plications based on the UDDA and UOM definitions. It includes a

transparent runtime delegation system (RDS) that transfers each stage

of the composite application to the appropriate runtime (process- or

data-centric).

C4 An implementation of the former architecture –based on Spark and

MPI–, which we named Spark-DIY. This framework is suitable for state-

ful and stateless operations on generalist data types, and it is optimised

for primitive data types as well. It allows the composition of applications

with HPC and BDA stages, including different mechanisms to interact

with parallel and distributed storage.

C5 An implementation of a real-world use case from the hydrogeology

domain enriched with features enabled by our architecture like cloud

and streaming support for de-localisation and data assimilation, re-

spectively.

8.1 Future Directions

At the moment, the data-centric transformation methodology involves steps

that must be conducted by direct examination of the original application. As

this process is critical, and it is intimately related with the structure and input
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of the application, it should be conducted by an expert in the simulator to

be transformed. Future work could simplify this stage by mean of automatic

analysis and variable proposal, yet an expert would still be needed to assess the

correctness of the suggestion. Furthermore, another future direction for this

methodology is the analysis of the model update region of HPC applications,

in order to assess which communication patterns could be transformed in a

data-centric manner as well.

The architecture could be enhanced to support heterogeneity, which would

be beneficial for users relying on these hardware elements for the scalability of

their HPC applications (e.g. image processing), or aiming to accelerate specific

portions of their BDA workloads (e.g. deep learning). Future advancements

should also aim to reincorporate some features that are desired by BDA users

in production environments, yet are left behind by the architecture in its

current state, such as multi-tenancy, fault-tolerance and elasticity. In addition,

usability and productivity could be addressed with formal studies on the BDA

and HPC user communities.

The implemented framework shows good performance and scalability for

communication-intensive operations in comparison to Spark, and enables the

integration of elements from both the BDA and HPC ecosystems for applica-

tions with diverse requirements. This is relevant for the BDA community since

we offer improved performance and reduced latency for shuffle and other

communication-intensive phases of Spark workflows. In addition, we expose

the benefits of using supercomputing infrastructures without changing the

Spark framework because we exploit MPI-based communication. Future work

could improve these benefits by extending the Spark programming model

to exploit other DIY communication patterns such as local neighbourhood

block exchanges that are available in DIY, but have no Spark counterpart.

Finally, further real-world use cases could be built using Spark-DIY to incor-

porate the potential of higher-level libraries, so that the HPC community can

benefit from the myriad libraries and platforms built on top of Spark without
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giving away scalability. Spark’s ease of use are lacking in the HPC software

stack, and Spark-DIY affords HPC practitioners of such characteristics that

are commonplace in the BDA world. Demonstrators from the BDA side –like

HPDA or IoT applications– would be particularly interesting, since they are

not covered in this thesis.

8.2 Thesis Results and Achievements
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Future Directions", in Future Generation Computer Systems, April 2018.

Impact factor: 3.997, Q1.

2. S. Caíno-Lores, A. García, F. García-Carballeira, and J. Carretero, "Effi-
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vol. 24, pp. 57–72, December 2016. Impact factor: 5.264, Q1.

3. S. Caíno-Lores, A. García, F. García-Carballeira, and J. Carretero, "A

cloudification methodology for multidimensional analysis: Implemen-

tation and application to a railway power simulator", in Simulation

Modelling Practice and Theory, vol. 55, pp. 46–62, June 2015. Impact
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