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CHAPTER 0. ABSTRACT

Dissertation Advisor: Miguel A. Delgado Yuhao Li

Econometric Modeling of Self-Exciting Process

Abstract

This thesis focuses on modeling state dependence, a phenomenon where past experiences

do alter the path of future events. The general idea behind this concept is that differences

among individuals are not merely explained by their characteristics, but also by their past

experiences. Typical examples of state dependence in economics include the incidence of

accidents, labor force participation and unemployment, consumer’s purchase behaviors,

learning etc.

I use the self-exciting process to incorporate the state dependent structure in

economic models. The self-exciting process is a counting process whose filtration includes

a σ-field that is generated by the process itself.

Chapter I introduces notation and provides an introduction to the self-exciting

process. A minimum distance estimation (MDE) method is also introduced. Monte

Carlo exercises are performed to investigate the MDE performance. I also provide a

comparison among the self-exciting process approach and existing methods such as

counting data regression and duration models.

Chapter II studies how past doctor visiting records could alter the preference

individuals’ future medical consumption choices, especially through the channel of

a cost-sharing health insurance plan. This study contributes to the existing health

insurance literature by providing additional evidence that supports the shadow price

theory. While most previous studies that endorse the shadow price use specific company
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CHAPTER 0. ABSTRACT

or social security designs, I investigate the shadow price using a genuine health insurance

contract where medical cost has multiple sources.

Chapter III contributes to the study of work absence. Early works in this literature

usually focus on absence duration and assume independence among the duration. I took

another approach in this study where both absence duration and working duration (the

length of a working spell until an absence occurred) are analyzed. Special attention is

given to studying how the state dependent absence score could affect these duration. I

study a particular firm who has installed a experience-rated work absence regulation.

I also distinguish between short and long term absences and find that individuals have

different state dependent reaction to different types of absences.

Chapter IV investigates the classical unemployment duration problem. I restrict

the attention to Spanish Youth, who are well known for their high job turnover rate.

A crucial element in this literature is the separation of the state dependent and the

unobserved heterogeneity. I did so by assuming a multiplicative duration structure and

perform a first ratio transformation on the individual’s unemployment duration to swipe

out the unobserved heterogeneity. The new estimator could be regarded as an extension

to the existing dynamic panel data model but it avoids using instrumental variables and

could allow unit root autoregressive coefficient and non-stationarity process.
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Chapter 1

Introduction

In many economic studies, history is a key component of the theory and the decision

making process. Examples can be found in consumer behavior, unemployment and

discrete choice models. The phenomenon that the past experience could alter the taste

of future choices are known as the state dependence in the literature.

Conventionally, researchers tend to use dynamic panel data models or structural

models to describe the state dependent structure. However, dynamic panel data requires

the underlying processes to be stationary autoregressive, while structural models impose

some restrictions that might be not realistic (e.g., individual are risk neutral) for the

sake of easing computation burden. Moreover, sometimes it is too complicated to build

a structural model, for example, when state variables are updated by both internal and

external processes.

In this thesis, I use the self-exciting process to study the state dependent structure.

Compare to existing methods, the self-exciting process is flexible in modelling, stationary
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CHAPTER 1. INTRODUCTION

assumption is not required as in the dynamic panel data models. The self-exciting

process is a statistical model that does not dependent on economic theories, thus we are

in the spectral of reduced form model.

Three papers are included in this thesis. The first paper studies the shadow price

of health insurance, namely how the cumulative medical cost would alter an individual’s

utilization of medical service. The second paper investigate the dynamic behavior of

a worker’s work absence under a experience-rated absence regulation. The last paper

focuses on the state dependent structure in unemployment.

All three applications are state-dependent in nature. The first application

contributes to the health economic literature by providing additional evidence that

supports the shadow price theory. Previous literature either use specific company or

social security program policies to study the shadow price effect (Aron-Dine et al. 2015;

Einav et al. 2015), while in this paper, we investigate this effect under a genuine health

insurance where medical cost come from multiple sources (e.g., doctor-visitings, drug

purchases). The second paper contributes the study of work absence. To author’s best

knowledge, it is one of very few works that takes dynamic into consideration. Early

work absence literature focus on the absence duration, very often the duration are

assumed to be i.i.d (Barmby et al. 1991; Markussen et al. 2011; Delgado & Kniesner

1997). The last paper studies the classical unemployment problem on how to separate

the state-dependent effect and the unobserved heterogeneity (Heckman 1981).

The rest of this introduction chapter is dedicated to provide necessary knowledge on

the self-exciting process. The estimating method for a parametric self-exciting process

as well as the simulation exercises are also included in this chapter. I end this chapter

2



CHAPTER 1. INTRODUCTION

by comparing the self-exciting process with classical count data regression and duration

models.

1.1 Some Notations and Basic Concepts about

Self-Exciting Process

Briefly speaking, a self-exciting process is a counting process (point process) whose

filtration includes the counting process itself. We first introduce the idea of counting

process. A counting process is expressed as:

N(t) =
∞∑
i=1

I{ti ≤ t} (1.1)

where ti, i ∈ N+ are occurrence times of realized events, I{·} is the indicator function.

An example of such a counting process is illustrated in figure 1.1

We may include marks in the counting process by extending the definition:

N(t, R+) =
∞∑
i=1

I{ti ≤ t, xi ∈ R+} (1.2)

where xi is the mark associated with ith event. In our health insurance application, an

event is a medical utilization (e.g., a visit to a doctor) and a mark is the cumulative

expenditure x(ti) upon that visiting.

In order to study the definition of the counting process in a rigorous way, introduction

of some concepts is in order.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: A possible realization of a counting process

To begin with, let’s first introduce the ‘working’ space. Let E be a locally compact

Hausdorff space1 whose topology has a countable base (LCCB), with Borel σ− algebra

ε. Denote β the algebra (ring) of bounded Borel set.

Let ME be the space of all bounded finite measures on β(E), the random measure

maps from probability space (Ω,F ,P) to the measurable space (ME, β(ME)). Notice

that on ME we usually define the σ− ring M generated by the coordinate mappings:

µ→ µ(f) =
∫
fdµ

where µ is a Borel measure and f ranges over the set Ck of continuous functions whose

support is compact.

1The Hausdorff space, also known as the separated space, is a topological space where for any two
distinct points there exists a neighbourhood of each which is disjoint from the neighbourhood of the
other.

4
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Definition A counting process on E is a measurable mapping N of (Ω,F) into

(Mp,Mp), where Mp = {µ ∈ ME : µ(A) ∈ N+ for allA ∈ β}, Mp =M∩Mp and N+ is

non-negative nature numbers.

In this paper, we focus on the case where the space E is actually a time space, hence

loosely speaking, we can define the point process in a counting process way:

Nt =
∑∞

i=0 I(ti ≤ t)

Moreover, throughout the whole paper unless other mentioned, we restrict the point

process to be simple, i.e., Pr{N({[t, t+ ∆t]}) = 0 or 1 for all t} = 1, that is no common

jumps are allowed.

Remark With every sample point ω ∈ Ω, we associate a particular realization that is

a boundedly finite Borel measure on E: it may denoted by N(·, ω). While for each fixed

set A, N(A, ·) is a non-negative random variable. In practice, the latter means if we fix a

time period A = [0, t], the count data Yt = Nt is the number of events happened during

this period.

We can easily extend the definition to a marked point process, let Nt =
∑∞

i=0 I(ti ≤ t)

be a point process on E and let E
′

be a second LCCB. We define the marked point

process with underlying process N and realization marks {xi}i as any point process that,

Nt(E
′
) =

∑∞
i=0 I(ti ≤ t,Xi ∈ E

′
)

on E × E ′ . The random element Xi of E
′

is called the mark associated with ti.

5



CHAPTER 1. INTRODUCTION

1.1.1 Intensity

The intensity λ of a counting process is a measure of the rate of change of its predictable

part. Conditional on a time dependent filtration Ft−, the intensity is defined as:

λ(t|Ft−) = lim
∆t→0

E(N([t, t+ ∆t])|Ft−)

∆t
(1.3)

In a similar way, we define the intensity for a marked counting process as:

λ(t, x|Ft−) = lim
∆t→0,∆x→0

E(N([t, t+ ∆t], [x, x+ ∆x])|Ft−)

∆t∆x
(1.4)

By construction, the counting process N(t) is a sub-martingale, therefore the

intensity is non-negative.

The cumulative intensity, as its name suggests, is defined as the integral of an

intensity over a period of time, say [0, t]:

Λ(t|Ft−) =

∫ t

0

λ(s|Fs−)ds (1.5)

The self-exciting process is characterized by its filtration: if the filtration is generated

by the counting process itself: Ft = σ(N(s) : s ≤ t), we call this counting process a

self-exciting process. We dedicate the next subsection to discuss the issue of filtration.

Here, to streamline the illustration, we suppress reference Ft− in λ and Λ .

The cumulative intensity and the counting process are connected by the well-known

6
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Doob-Meyer decomposition theorem:

N(t) = Λ(t) +M(t) (1.6)

This theorem states that any counting process can be decomposed as the sum of a

cumulative intensity (also known as compensator in some literature) and a martingale

M(t). Moreover, the cumulative intensity is predictable and unique. By the martingale

property we have,

E(N(t)) = EΛ(t) (1.7)

We can interpret the cumulative intensity as the mean of the underlying counting

process at t,∀t. From an economic perspective, we may say that the cumulative

intensity summarizes all the systematic parts of a counting process, while the martingale

accounts for the stochastic part. Notice that the cumulative intensity Λ(t) may not be

absolutely continuous. One common assumption regarding this (e.g.,Kopperschmidt &

Stute (2013)) is to let the process t → Λ(t) be almost surely continuous, while allows

unexpected jumps in the intensity function λ(t).

The intensity also connects to the probability density of the underlying counting

process. Let Un+1 = Tn+1 − Tn be the duration between nth and n+ 1th arrivals, for each

arrival n, let Fn(du) = Pr{Un+1 ∈ du} then

Λ(t) = Λ(Tn) +

∫ t−Tn

0

Fn(dx)

Fn[x,∞)
, t ∈ (Tn, Tn+1]

where Ti is stopping time 2. The proof can be found in Karr (1991).

2Appendix B contains an introduction to the concept of stopping time.

7



CHAPTER 1. INTRODUCTION

1.1.2 Filtration and Marks

As mentioned before, in the case of self-exciting, the filtration is generated by the marked

counting process itself Ft = σ(N(s, xs) : s ≤ t, xs ∈ R+). Thus, the history, such as the

timings of occurrences and their marks, is contained in this filtration. However, the order

of timings and marks are different. This difference is crucial to properly understand the

filtration Ft−, usually referred as the strict history. Intuitively, we will never know the

values of marks without the occurrences of events. This suggests that marks are adjuncts

to the occurrences.

Notice that the compensator is conditioning on a filtration Ft− interpreted as strict

past or strict history. It is natural to ask ‘how to define history’ and ‘what is filtration’?

It turns out that one can use filtration to define history, hence next we are going to

carefully define filtration and discuss its structure.

Let the marked point process Nt be defined as before on N+ with mark space (E
′
, ε),

for B ∈ ε, let Nt(B) =
∑∞

i=1 I(ti ≤ t, xi ∈ B). Define the filtration as,

Ft = σ(Ns(B) : 0 ≤ s ≤ t, B ∈ ε) (1.8)

We term such filtration as the internal history of N . Notice that the filtration defined in

this way is right continuous in a sense that for each t, Ft = ∩h>0Ft+h.

To describe the structure of the filtration, we need two more concepts, stopping

times and predictability. The former one is a necessary tool to describe a counting

process and define history, while the latter is the key ingredient of the Doob-Meyer

decomposition, upon which the minimal distance estimation method is based.
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Definition A random variable T with values in [0,∞] is a stopping time if {T ≤ t} ∈ Ft

for every t. Intuitively, time T of a random event is a stopping time if at each fixed time

t, one can observe whether or not the event has already occurred.

Associated with the stopping time T are the σ− algebra,

FT = σ{Λ ∈ F∞ : Λ ∩ {T ≤ t} ∈ Ft for all t}

which sometimes be called ‘the past before T ’ and the σ− algebra

FT− = σ{Λ ∩ {T > t} : t ≥ 0,Λ ∈ Ft} ∨ F0

which comprises the strict past of N̄

In the above two equations, F0 is the filtration that stores some foreknowledge of

the marked point process, that is,

F0 = lim inft>0Ft

And the the filtration F∞ contains the common information among all the filtrations,

F∞ = ∩t>0Ft

Next, we study the predictability, a key ingredient of Doob-Meyer decomposition.

For simplicity, we restrict ourselves to finitely many t’s, say 0 = t0 < t1 < t2 < · · · < tk.

Put Ni = Nti for short. At time ti, only N0, N1, · · · , Ni are known, but not necessarily

Ni+1, Ni+2, · · · , Nk. We are concerned about how to predict future values of Nj given the

information at t = ti. For a variable Λi+1 to be a predictor for Ni+1 at ti means this Λi+1

needs to be known at ti. Thus

9
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Definition Let (Fi)0≤i≤k be some increasing filtration, and let (Λi)0≤i≤k be a sequence

of random variables. Then we call

(Λi)i predictable w.r.t(Fi)i iff Λi+1 is Fi -measurable

Now, we can describe the structure of the filtrations F = (Ft) as follow:

Proposition For each n, if Tn is a stopping time of F and At(E
′) is a predictable

process, then we have,

FTn = σ((T1, X1), · · · , (Tn, Xn))

FTn− = σ((T1, X1), · · · , (Tn−1, Xn−1), Tn)

The proof can be found in Karr (1991) Karr (1991). Intuitively, the accumulating

information changes only at the arrival times Ti, whereas Ti ∈ FTi−, the mark Xi belongs

to FTi but not FTi− and finally, Xi is the only information in FTi not contained in FTi− .

Once we understand the term ‘strict past’ and ‘filtration’, we can re-define the

compensator in a more rigorous way.

Definition Assume that E(Nt) < ∞ for every t, then the compensator of a standard

point process (absent of marks) N respect a whole history H such that Ft ∈ Ht for each

t is the unique random measure Λ on R+ such that

• The process (Λt) is H-predictable

10
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• For every non-negative H-predictable process C:

E[
∫∞

0
CdN ] = E[

∫∞
0
CdΛ]

A similar definition can be applied to the marked point process after adding some

appropriated mark spaces.

In many economic studies it is of interest to introduce some external information. In

the example of health insurance, we may investigate the impact of income or education

on the usage of medical services. We can, in fact, enrich this filtration to include these

covariates. Let Ht− = H0∨Ft− be the conditioned filtration, where H0 is the σ−algebra

generated by some external covariates, such as age, sex, race, income, etc. We interpret

this filtration as the ‘whole history’. Notice that H0 can also be time-dependent, i.e.,

H0 = H0(t−).

The fact that marks are adjuncts to occurrence times inspires us to separate timings

and marks. Intuitively we may re-write the intensity for the marked counting process as:

λ(t, x|Ht−) = lim
|∆t∆x|→0

Pr

(
t < T ≤ t+ ∆t, x < X ≤ x+ ∆x|Ht−

)
∆t∆x

= lim
∆t→0

Pr

(
t < T ≤ t+ ∆t|Ht−

)
∆t

f(x|Ht−, t)

= λg(t|Ht−)f(x|t,Ht−)

(1.9)

where we call λg(t|Ht−) the ground intensity, and it happens to be the intensity of the

original marked counting process if marks are ignored, or the ground counting process:

Ng(t) =
∑
i

I{Ti ≤ t} (1.10)

11
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The second part f(x|t,Ht−) is called the conditioned mark density since it is not only

conditioned on the filtration, but also conditioned on the occurrence time t. In appendix

C, we use the Janossy measurement language to discuss this separation in a more

rigorous way.

1.2 Estimation and Simulation

Since one can separate the marked intensity into a multiplicative form of ground intensity

and conditional mark density, it would be straightforward to estimate these two parts

separately. In this study, we mainly focus on the estimation of the ground intensity.

In the counting process literature, likelihood based methods are the most commonly

used estimation tools, (e.g.,Ogata & Katsura (1988),Zhuang et al. (2002),Aı̈t-Sahalia

et al. (2015),Bacry & Muzy (2014) and Mohler et al. (2012)). One requirement of using

them is the predictability of the cumulative intensity Λ with respect to the filtration

σ(Ng(s) : s ≤ t). That is, conditional on the filtration, the values of all the explanatory

variables at time t should be known and observed just before t. However, as pointed out

by Kopperschmidt & Stute (2013), in many complicated economic situations, there is

little reason to maintain such an assumption. Instead, the cumulative intensity should

respect external shocks or impulses. In that case, the model is most likely not dominated

and the likelihood methods are difficult to apply.

In our application, a core task is to update the cumulative individual cost whenever

an event occurs. Two sources of cost are considered, the first one comes from the main

counting process N1(t) in which an event is a doctor visit and a mark is the associated

12
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individual cost. Another one is the drug purchase cost, represented by a mark linked

to a drug purchase counting process N2(t). As a result, the individual cost coming

from the drug purchase serves as an external shock to the main counting process.

More precisely, the conditional filtration Ht− in our model is generated not only by the

main counting process, but also by the external drug purchase counting process, i.e.,

Ht− = H0 ∨ Ft− ∨ Gt−, where Ft = σ(N1(s) : s ≤ t),Gt− = σ(N2(s) : s ≤ t).

Figure 1.2 helps to understand. Here ti are occurrence times of interested events (in

0 t1 τ1 τ2 t2 Time

Figure 1.2: A possible realization of event occurrences

our medical utilization application, they are doctor-visiting times) and τi are secondary

event occurrence times (in our medical utilization application, they are drug purchase

times). The interested intensity λ is not predictable with respect to the filtration F

generated only by N1 since the cumulative individual cost is updated due to drug

purchase events. But λ is predictable with respect to H.

1.2.1 Minimum Distance Estimation

To overcome this problem,Kopperschmidt & Stute (2013) develop a parametric

minimum distance estimation method. The basic idea consists of using the Doob-Meyer

decomposition to minimize the distance between the counting process and its cumulative

intensity. This method only requires the observations to be i.i.d. It does not assume the

differentiability of the cumulative intensity and allows unexpected jumps in the intensity

function.

13



CHAPTER 1. INTRODUCTION

Formally, let v0 ∈ Θ ⊂ Rd be the true parameters, and let Ng,1, ..., Ng,n be i.i.d copies

of n observed ground counting process. For each 1 ≤ i ≤ n, let Hi(t) be an increasing

filtration comprising the relevant information about the marked counting process Ni as

well as some other external information. Let Λg,v,i with v ∈ Θ ⊂ Rd be a given class of

parametric cumulative ground intensities. Let the true one be Λg,i = Λg,v0,i.

Let,

N̄g,n =
1

n

n∑
i=1

Ng,i; Λ̄g,v,n =
1

n

n∑
i=1

Λg,v,i (1.11)

We call the former averaged (ground) point process and the latter averaged cumulative

(ground) intensity. Naturally the associated averaged innovation martingale is,

dM̄g,n = dN̄g,n − dΛ̄g,v0,n (1.12)

The optimization object is:

||N̄g,n − Λ̄g,v,n||N̄g,n
, (1.13)

where

||f ||µ = [
∫ T

0
f 2dµ]1/2

T is a terminating time. This statistic 1.13 is an overall measurement of fitness of Λ̄g,v,n

to N̄g,n. The estimator vn is computed as,

vn = arg inf
v∈Θ
||N̄g,n − Λ̄g,v,n||N̄g,n

(1.14)
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Kopperschmidt & Stute (2013) show this estimator is consistency and its asymptotic

behaviour is

√
nΦ0(v0)(vn − v0)→ Nd(0, C(v0)) (1.15)

where

Φ0(v) =
∂

∂v

∫
E

(EΛg,v(t)− EΛg,v0(t))E
∂

∂v
Λg,v(t)

TEΛg,v0(dt) (1.16)

C(v0) is a d× d matrix with entries

Cij(v0) =

∫
E

φi(x)φj(x)EΛg,v0(dx) (1.17)

and

φi(x) =

∫
[x,t̄]

E
∂

∂vi
Λg,v(t)EΛg,v0(dt) |v=v0 , t ≤ x ≤ t̄ (1.18)

Remark Let Φn be the empirical analog of Φ0,

Φn(v) =
∂

∂v

∫
E

(Λ̄g,v,n(t)− Λ̄g,v0,n(t))
∂

∂v
Λ̄g,v,n(t)T Λ̄g,v0,n(dt) (1.19)

Since all Λ̄g,v,n are sample means of i.i.d non-decreasing processes, a Glivenko-Cantelli

argument yields, with probability one, uniform convergence of Λ̄g,v,n → EΛg,v(t) in each

t on compact subsets of Θ, we have the expansion,

Φn(v) = Φ0(v) + op(1) (1.20)

Such expansion guarantees that in a finite sample situation, we can replace the unknown

matrix Φ0(v0) by Φn(vn) and C(v0) by Cn(vn) without destroying the distributional
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approximation through Nd(0, C(v0)), where Cn is the sample analog of C. In practice,

one needs to plug and replace the true ones with estimators and replace EΛg,v0(dt) with

its empirical counterpart N̄g(dt).

1.2.2 Simulation Study

In the original Kopperschmidt & Stute (2013) paper, the authors do not provide a

numerical simulation study. Here we provide finite sample evidence by generating a

self-exciting process and examining the performance of the minimum distance estimator.

The data generating process we picked is the ETAS (epidemic type aftershock

sequence) model. It was first introduced by Ogata & Katsura (1988) and ever since has

been widely used in seismology (e.g. Zhuang et al. (2002)). It characterizes earthquake

times and magnitudes and belongs to a marked Hawkes process family. The ETAS model

has the probabilistic structure we desire: marks are part of the ground intensity and can

be separated into ground intensity and conditioned mark density.

The ground intensity of a ETAS model, for its simplest form, could be:

λg(t|Ft−) = µ+
∑
i:ti<t

eαxi

(
1 +

t− ti
c

)−1

(1.21)

where xi is the magnitude of an earthquake occurring at time ti, and the mark density,

for simplicity, is assumed to be independent:

f(x|t,Ft−) = δe−δx (1.22)
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In this simulation study, we focus on the ground intensity since the mark density is

the well-known exponential density whose best estimator is trivial: the inverse of sample

mean.

We set the true parameters as µ = 0.007 , α = 1.98 , c = 0.008 and δ = log(10).

The simulation method we used is called the thinning method, introduced by Ogata

(1981), Lewis & Shedler (1979). Briefly, this method first calculates an upper bound for

the intensity function in a small time interval, simulating a value for the time to the

next possible event using this upper bound, and then calculating the intensity at this

simulated point. However these ‘events’ are known to be simulated too frequently (Lewis

& Shedler 1979). To overcome this, the method will compare the ratio of the calculated

rate with the upper bound to a uniform random number to randomly determine whether

the simulated time is treated as an event or not (i.e. thinning). A full description of the

algorithm is provided in Appendix D.

We generate N = 50, N = 100 and N = 200 individual counting processes for each

simulation and in total we have B = 1000 replications. The time-intervals are set to be

[0, 3000], [0, 500] and [0, 100].

Figure 1.3 presents three quite different individual’s event histories simulated by

this ETAS DGP using the identical parameter settings as stated before.

Individual 1 has the most frequent events experience, the total number of events

is 92. Individual 2 is somewhat moderate, with 37 events. Individual 3 has the least

frequent events with only 2 during the time interval [0, 100]. Despite the hugely different

behaviors, they are actually governed by the same intensity function. This example

demonstrates that a self-exciting process can generate enough heterogeneity without
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(a) Individual 1, Event Time (b) Individual 2, Event Time

(c) Individual 3, Event Time

(d) Individual 1, log of intenstiy (e) Individual 2, log of intenstiy

(f) Individual 3, log of intenstiy

Figure 1.3: Three individual’s events histories

18



CHAPTER 1. INTRODUCTION

introducing a latent variable to represent the unobserved heterogeneity.

The estimation results are presented in Tables 1.1-1.3. As the number of observations

N increase, the estimators become more stable and their empirical coverage rate gets

closer to the theoretical ones. It is also noticeable that the performance of estimators is

closely related to the number of events per person. (We increase the length of the time

horizon to increase such a number under the same true parameters.)

Table 1.1:: Minimum Distance Estimator Results, with T = 3000

N = 400 True MDE sd se CI95 CI90
µ 0.007 0.006957441 0.0005575073 0.0006271522 94.9% 92. 5%
α 1.98 1.978269 0.04350423 0.07331051 93.5% 90.8%
c 0.008 0.008130796 0.001105742 0.001724244 93.9% 91.3%

Distance 1.48622 0.715594
N = 200

µ 0.007 0.006960397 0.0008548692 0.0008400477 93.6% 88.3%
α 1.98 1.984108 0.08547141 0.1086315 93.2% 90.9%
c 0.008 0.008042743 0.001568495 0.002413533 92.6% 90.3%

Distance 2.183783 1.226474
N = 100

µ 0.007 0.00684719 0.001007428 0.0011465 93.4% 90.9%
α 1.98 1.964071 0.06827856 0.1654297 92.1% 90.1%
c 0.008 0.008570634 0.001945219 0.003605053 92.3% 90.5%

Distance 3.169824 2.388298
N = 50

µ 0.007 0.006809876 0.001673515 0.001541488 89.1% 84.9%
α 1.98 1.974604 0.1713249 0.2765146 87.9% 83.7%
c 0.008 0.008979804 0.004142383 0.005475683 86.9% 83.1%

Distance 4.293006 3.474963
Note: The distance is calculated using the semi-norm ?? with true parameters and the
minimum distance estimators, respectively. sd is the standard deviation generated by
the Monte Carlo simulation estimates. se is the mean of the standard error of each
simulation. CI95(CI90) is the percentage of the 95%(90%) confidence interval generated
by se that covers the true parameter.
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Table 1.2:: Minimum Distance Estimator Results, with T = 500

N = 400 True MDE sd se CI95 CI90
µ 0.007 0.006818704 0.001200632 0.001282338 95.3% 93%
α 1.98 1.985548 0.05759593 0.2580961 96.3% 93.7%
c 0.008 0.008327916 0.002161951 0.005313165 96% 92%

Distance 0.2336264 0.1619424
N = 200

µ 0.007 0.007056179 0.001633427 0.001783448 92.5% 89.6%
α 1.98 1.977045 0.1709611 0.4486648 91.9% 90.6%
c 0.008 0.009058691 0.004623662 0.008174076 91.5% 89.9%

Distance 0.3579916 0.2119269
N = 100

µ 0.007 0.00660844 0.003243934 0.002295691 90.1% 86.1%
α 1.98 1.76104 0.4963242 0.85060127 86.6% 83%
c 0.008 0.01662388 0.0151135 0.0174853 86.7% 83.7%

Distance 0.477976 0.4551476
N = 50

µ 0.007 0.006672302 0.005083828 0.002964079 90.3% 88%
α 1.98 1.761366 0.5886596 2.207844 91.4% 88.9%
c 0.008 0.01808354 0.01897789 0.02508167 90.6% 87.8%

Distance 0.6452985 1.087129
Note: The distance is calculated using the semi-norm ?? with true parameters and the
minimum distance estimators respectively. sd is the standard deviation generated by the
Monte Carlo simulation estimates. se is the mean of the standard error of each
simulation. CI95(CI90) is the percentage of the 95%(90%) confidence interval generated
by se that covers the true parameter.

20



CHAPTER 1. INTRODUCTION

Table 1.3:: Minimum Distance Estimator Results, with T = 100

N = 400 True MDE sd se CI95 CI90
µ 0.007 0.0067466 0.001766587 0.002320197 95.2% 92.9%
α 1.98 1.980313 0.2536825 1.687546 95.1% 94%
c 0.008 0.01027362 0.007087134 0.01646008 95.4% 93.9%

Distance 0.0365799 0.0204637
N = 200

µ 0.007 0.006614259 0.003093314 0.002845468 93.6% 90.6%
α 1.98 1.91999 0.434588 2.273823 94.5% 93.3%
c 0.008 0.01357907 0.01251991 0.02549106 93.2% 92.1%

Distance 0.05125482 0.03664879
N = 100

µ 0.007 0.01317505 0.01093067 0.005716749 81.5% 75.7%
α 1.98 1.719879 0.7325846 2.227818 92.2% 89.6%
c 0.008 0.02089188 0.02165684 0.03664059 89% 86.9%

Distance 0.6294044 0.1808156
N = 50

µ 0.007 0.01273163 0.007051629 0.006974369 85.9% 82.9%
α 1.98 1.87436 0.8308396 3.961052 95.6% 93.5%
c 0.008 0.02130184 0.02805238 0.04548218 89.2% 87.2%

Distance 0.639077 0.1674467
Note: The distance is calculated using the semi-norm ?? with true parameters and the
minimum distance estimators respectively. sd is the standard deviation generated by the
Monte Carlo simulation estimates. se is the mean of the standard error of each
simulation. CI95(CI90) is the percentage of the 95%(90%) confidence interval generated
by se that covers the true parameter.
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1.3 Self-Exciting Process as a Complementary Tool

to Conventional Methods

In this section, we compare the differences between the self-exciting process and two

widely used conventional econometric tools in microdata analysis: count data regression

and duration analysis. We argue that many major issues in these two conventional

tools can be easily overcome by using a self-exciting process. We also highlight the fact

that despite the numerous advantages of using self-exciting process, it can not replace

conventional methods completely. Researchers should adopt proper econometric tools to

their specific needs.

1.3.1 Compare to the Count Data Regression

Many count data display over-dispersion property: the variance of data exceeds the

mean of data. One source of such over-dispersion is excess zeros: the dataset may have

more zero observations than is consistent with the basic Poisson model.

Unlike the count data regression, where the discrete counts y is treated as a random

variable, in a self-exciting process, the outcome is a time depended counting process

N(t). The additional time dimension enables us to generate excess zeros. The intuition

of our argument is quite simple: if the terminated time is small (relative to the intensity),

we can easily generate a high proportion of zeros. More precisely, we treat the zero

event as an end-of-study censoring problem: events will happen in the future, but they

are censored due to an end of the study. Also in the generalised count data models (e.g.

Zero inflation and Hurdle), zeros and non-zeros (positives) are assumed to come from
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two different data generating processes (DGPs). Whereas in the self-exciting process,

zeros and positives are generated from the same stochastic process.

We use two DGPs to illustrate our argument. The first is the standard Poisson

process and the second is a self-exciting process. The Poisson process serves as our

baseline model (same as the Poisson regression in count data). Simulations will show

that although by setting a small time interval, we can generate a high proportion of

zeros, the Poisson process is still equidispersion. The self-exciting process, on the other

hand, can mimic the over-dispersion property of data through excess zeros.

Poisson DGP The intensity for a (homogeneous) Poisson process is a constant

λ = µ. We set µ = 5.5, and let the time interval to be [0, T ∗] = [0, 0.2]. We run

100 trials of simulation. For each Poisson process, we record its corresponding counts:

Yi = Ni(T
∗), i = 1, 2, · · · , 100. The following histogram displays our simulation results.
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Figure 1.4: Result of Poisson Process Simulation

Self-Exciting DGP The DGP for the self-exciting process is the same as in the

simulation study in previous section. Like before, we run 100 simulations and record their

corresponding counts at the terminal time T ∗. With these parameters, we can generate

44 zero observations out of 100. The largest count is at 92. We plot its histogram as

below.

24



CHAPTER 1. INTRODUCTION

Figure 1.5: Result of Self-Exciting Process Simulation

The self-exciting data exhibits the over-dispersion property: Ȳ = 3.27,

V̂ (Y ) = 108.5425.

1.3.2 Compare to the Duration Analysis

Unlike the counting process where the interested subject is the time stamps of events (by

modelling the intensity function), in duration analysis, the subject under investigation

is the duration of a default state (by modelling the hazard rate). The intensity function

and hazard rate are, in some sense, quite similar but conceptually different.

Consider a self-exciting process, let τ be the time of the last event before time t and
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F be the filtration. Denote the conditional distribution of the time of the next event as:

G(t|F(τ)) = Pr(T ≥ t|F(τ))

and g(t|F(τ)) as the corresponding conditional density function. Then from the

definition of intensity (equation (??)),

λ(t|F(τ)) =
g(t|F(τ))

1−G(t|F(τ))
(1.23)

Now, consider a system begins in time 0 and fails at some random time T > 0. The

hazard rate (or hazard function) h(t) is defined as:

h(t) = lim
∆t→0

Pr{T ∈ (t, t+ ∆t)}
Pr{T > t}∆t

=
fT (t)

1− FT (t)

(1.24)

Where t here is the duration of a state. The hazard rate tells us the conditional

probability of the system failing in the interval (t, t + ∆t] conditioned on the system is

working at time t.

Despite the similarity between (1.23) and (1.24), the intensity and the hazard rate

are conceptually different. Intensity deals with recurrent arrivals with a focus on the

timing per se, while the hazard rate deals with the duration or the length of only one

spell. Most duration analysis can only study the recurrent events with the i.i.d of events

assumption holds. It is difficult to employ this method when recurrent events are state

dependent. A self-exciting process, on the other hand, is free from these problems since

the state dependence is included in the filtration.
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The Cost-Sharing, Shadow Price and

Cluster in Medical Care Utilization

Abstract

In this chapter, a self-exciting counting process modelling method is proposed to study

the frequency of medical care service utilization under a non-linear budget constraint

health insurance policy. This modelling strategy enables researchers to investigate

individual’s dynamic behavior in a more detailed way. Specifically, for each individual,

every doctor visiting record is represented as a point in a self-exciting counting process.

Cost associated with such visiting is included in this counting process as a mark. A

minimum distance method is employed to find the estimators. Using the Rand Health

Insurance Experiment data, we find that individuals respond to a change of shadow

price. In addition, we use a matured cluster analysis algorithm to investigate the cluster

patterns and discover that compared to free plan, cost-sharing insurance plan with
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out-of-pocket fees suppress the use of medical services by limiting the number of clusters

as well as follow-up visiting within each cluster.

2.1 Introduction

In this paper, we aim to model medical utilization (outpatient only) under a non-linear

cost environment using a self-exciting process. Recent studies on health insurance (e.g.,

Aron-Dine et al. (2012), Einav et al. (2015)) deviate from the classical assumption that

individuals only respond to a single linear spot cost1 and find strong evidence that

individuals respond to the dynamic incentives associated with the non-linear nature of

a typical health insurance contract. These conclusions suggest that ‘it is unlikely that

a single elasticity estimate can summarize the spending response to changes in health

insurance’ and ’such an estimate is not conceptually well defined.’ (Aron-Dine et al.

2012).

The driving forces of such a non-linear nature are cost-sharing policies implemented

in a health insurance contract. The most common ones are the deductible, the

co-insurance rate and the out-of-pocket fee cap (OPC). In a typical setup, individuals

need to cover all their medical expenditures below the deductible. Once the threshold is

passed, co-insurance is applied, where individuals pay part of the expenditures based on

the co-insurance rate. Finally, if the total expenditure paid by the individual passes the

OPC, no cost (or very little cost) would be paid by this individual. Figure 2.1 illustrates

such a typical non-linear budget constraint.

1That is, a linear budget constraint.
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The total expenditure is the sum of individual costs and costs paid by the insurance. Points A and B
are the deductible threshold and OPC, respectively. When the total expenditure is below A, the
co-insurance is 100% (individuals pay all cost) and the slope is 1. Between A and B, a co-insurance rate
(the slope) 0 < r < 1 is applied. Whenever the total expenditure is beyond B, there is no cost for
individuals (the slope is 0).

Figure 2.1: Non-linear Individual Cost (Medical Price)

At the heart of this non-linearity is the stochastic cumulative individual cost X(t)2.

Keeler et al. (1977) is the first theoretical paper that studies the consumer’s optimal

choice under such a non-linear medical price schedule. Using a dynamic programming

model, they show that the shadow price of jth episode is a function of demand prior to

this episode (hence the cumulative individual cost). One may construct the shadow price

(co-insurance rate) as:

ps(t) = 1− V (X(t))

where 0 ≤ V (X(t)) ≤ 1 is a bonus that is related to the cumulative individual cost with

V
′
> 0. The intuition behind this equation is simple: under the range of deductibles,

although individuals need to fully bear the medical cost, each time this person consumes,

2Or equivalently, the total expenditure. Because there is a clear insurance regulation on individual’s
out-of-pocket cost, cumulative individual cost and total expenditure are one-to-one mapped.

29



CHAPTER 2. HEALTH INSURANCE

the remaining deductible is reduced and the next instance consumption is more easily to

exceed the deductible. As a result, the shadow price for the next purchase is cheaper

than the price of the current one ( hence the name ‘bonus’). Moreover, as the cumulative

individual cost gets closer to the deductible, individuals have greater incentive to

consume3. That is, there should be a positive (negative) relationship between cumulative

individual cost X(t) (remaining deductibles) and the probability of medical utilization.

For the purpose of self-contain, we review this theory in detail in Appendix A.

The shadow price theory has profound implications on estimating medical demand.

First, it suggests one should not use the nominal price. Since the difference between the

nominal price and shadow price is not randomly generated, an incorrectly chosen nominal

price would lead to a biased estimation. Second, because the shadow co-insurance rate

is a function of cumulative individual cost, it implies that individuals will make medical

service utilization decisions in a sequential and contingent way. Figure 2.2 illustrates the

situation.

Different sources of stochastic disturbances should be distinguished in order to

properly model X(t). The first source of randomness is that at any given time t̄ within

the insurance year, X(t̄) is a random variable satisfying X(t̄) ≥ X(s),∀s ≤ t̄. This

non-decreasing random process is difficult to model directly. However, notice that

X(t) is a piece-wise constant step function. We may then decompose X(t) as 1) the

occurrence time of ith illness episode ti (the position of ith jump in this step function)

and 2) conditional on the occurrence of ith illness, the individual cost x(ti) for such

illness (the size of ith jump). Thus, we could represent the cumulative individual cost as

3We assume that medical service is a normal good
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Points A and B are the deductible threshold and OPC, respectively. When the total expenditure is
below B, the co-insurance rate (the slope) 0 < r(X) < 1 is a function of cumulative individual cost with
r
′
< 0. Whenever the total expenditure is beyond B, there is no cost for individuals.

Figure 2.2: Non-linear Individual Shadow Cost (Medical Price)

a compound counting process: X(t) =
∑∞

i=1 x(ti)I{ti ≤ t}. This structure suggests that

we could model the time ti and the cost x(ti) separately. Medical costs are convenient

to assume to be i.i.d and their distribution is well approximated by a log-normal. This

is known among literatures (Keeler & Rolph 1988; Handel et al. 2015). Thus the key to

model X(t) is to model its occurrence times {ti}i∈N+ .

The second source of randomness comes from other contributions to the individual

cost. For example, in this paper, we mainly focus on the outpatient medical utilization.

But the costs associated with doctor visits are not the only source of individual cost;

other sources could be inpatient expenditures and drug purchase costs. These random

costs serve as external shocks to our interested outpatient costs.

The primary goal of this paper is to model X(t), especially the occurrence times of

illness episodes. Since the stochastic cumulative individual cost can be represented as

a compound counting process, we advocate to use the counting process as our analysis
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workhorse. In particular, a marked self-exciting process, whose filtration is generated

by the counting process itself, is employed to contain the historical information. This

information includes both the occurrence time and the non-covered individual charge of

each illness episode.

We also aim to model the dependence structure among episodes and to study the

effects of cost-sharing policies on episode cluster structures. Episodes are often in a

form of a cluster, this is known among medical literatures. A typical example is chronic

diseases where patients need to receive treatment periodically.

As will be shown later, the self-exciting process can 1) fully account for different

sources of stochastic disturbances of cumulative individual cost X(t), 2) capture the

essence of the shadow price: the negative relationship between shadow price and

medical utilization (or equivalently, the positive relationship between X(t) and medical

utilization) and 3) model the dependence structure among episodes. In comparison,

conventional methods such as count data regression and duration models are inadequate

to deal with the randomness of individual cost X(t) and the episode cluster structure.

As both methods assume events to be i.i.d, which excludes the non-linear price system

that we aim to address.

We use the Rand Health Insurance Experiment dataset. Besides it is widely used

in the health insurance literature, one advantage of this dataset is that it includes a

detailed episode-level claim-by-claim data. We can then update X(t) whenever an event

or external shock occurs.

We use a minimum distance method to obtain the estimators. This method is first

introduced by Kopperschmidt & Stute (2013) and has the advantage to incorporate
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external shocks.

This paper contributes three strands of literatures. First, we enrich the ever-

expanding literatures that aim to study individual response to a non-linear budget

constraint. Second, we introduce a new econometric tool that can be applied beyond

health insurance studies. Potential applications include but not limited to labour

economics (studies of multiple unemployment, work absences), industry organization

(sequential entry games) and criminology etc. Last, we provide a simulation study to

exam the performance of this new minimum distance estimation method.

The paper is constructed as follow. Section 2.2 provids a brief literature review on

non-linear budget constraint problem in health insurance. Section Section 2.3 discuss

the issue of heterogeneity and Section 2.4 introduces the dataset. Section 2.5 presents

our model, in which the stochastic property of cumulative individual cost, the effect

of cost-sharing policy and the dependence structure of episodes are fully considered.

Section 2.6 presents estimation results of the model. We also use a mature machine

learning algorithm to analyse the cluster structure of episodes in this section. In section

2.7 we discuss the advantages of our modeling strategy over other conventional reduced

form or structural form methods. Section 2.8 concludes the paper.

2.2 Literature Review

We briefly review some literatures that try to include the non-linear budget constraint

in their models.
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Aron-Dine et al. (2012) construct a future price pf = 1−Pr(X(T ) ≥ X̃) in order to

reject the null hypothesis that individuals only respond to a single spot price. Here X(T )

is the cumulative individual cost on the last day of an insurance contract year, and X̃ is

the deductible. They find a negative relationship between the future price and the initial

medical use. Notice that in their construction of future price, only X(T ) is used, the rest

of X(t),∀t < T is ignored. In principle, one could construct future price as a function of

time using the same method: pf (t) = 1−Pr(X(t) ≥ X̃). But in practice this would lead

to a complicated procedure as one needs to use simulated future price to instrument the

future price to correct the estimation bias, see Aron-Dine et al. (2012) for details.

Brot-Goldberg et al. (2017) define their shadow expected marginal end-of-year price

at month m as a conditional expectation: pem = E(rEOY |X(m), Z,H) where rEOY is the

end-of-year co-insurance rate, Z is a vector of covariates and H is a measurement of

health stock. They non-parametrically estimate the probability density function on cells

of equivalent consumers using triple (X(m), Z,H). In practice, they only use age as their

sole explanatory variable. Their results suggest that shadow price have a limited impact

on spending reduction.

Einav et al. (2015) construct and estimate a dynamic economic model to study

individual’s drug purchase behavior. In each period, the cumulative individual cost is

updated by: X(t) = X(t − 1) + x(t), where x(t) is the aggregate individual cost in the

current period. Thus X(t) here is not ‘totally’ stochastic: the occurrence time of illness is

ignored and x(t) =
∑

i:ti∈current period x(ti) is an aggregate random variable. Moreover, one

may find difficulties to model the shadow price in a structural model, since the shadow

budget constraint (as illustrated in figure 2) is actually unobserved by researchers.
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The X(t) is a compound process and is difficult to analysis. Luckily, one can

actually identify it with the marked counting process (see Karr (1991)). One advantage

to do so is that the intensity of a marked counting process can be separated as a ground

intensity and a conditional mark density. This separation allows us to concentrate on

the occurrence times of events.

To the best of our knowledge, no literature has ever explicitly taken the sources of

stochastic disturbances mentioned before into consideration. In addition, no literature

has ever measured the individuals’ responds to the shadow price on a episode level. The

main contribution of this paper is to fill this gap from a self-exciting process perspective.

2.3 Heterogeneity in a Self-Exciting Process

In a variety of contexts, it is often noticed that individuals who have experienced an

event in the past are more likely to experience the event again in the future than are

individuals who have not experienced the event (Heckman 1981). One explanation, best

known as the unobserved heterogeneity, is that in addition to the observed variables,

there are other relevant variables that are unobserved but correlated with the observed

ones. Unobserved heterogeneity (UH) is an important issue in health insurance literature.

This is because prices are endogenous: they are lower on average for those who tend to

have more episodes. Sickly individuals tend to consume more care services and hence are

likely to exceed their OPCs. Therefore, it is crucial to separate the sickliness effect from

the shadow price effect. In models like count data regression and duration analysis, the

most common way to characterize UH is through the random effect: integrate out the

UH term to obtain a marginal distribution.
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This strategy faces two problems: 1) A lack of economic theory supporting the choice

of the unobserved heterogeneity distribution G. In most duration analysis literature, G

is chosen to be Gamma, it is more mathematical convenience than anything else, since

by doing so, one can have a closed form of the marginal distribution. 2) It is well known

among literatures that there is severe damage of misspecification of G. Van den Berg

(2001) provides a theoretical example, and Heckman & Singer (1984) use real application

data and various G distributions (Normal, Log Normal and Gamma) to demonstrate

that the estimation results tend to be unstable.

Another explanation of heterogeneity is related to state dependence (SD). This

concept says that past experience has a genuine effect on future events in a sense that an

otherwise identical individual who did not experience the event would behave differently

in the future. The definition of the self-exciting process naturally includes the idea of

state dependence. Thus in this study, we advocate to assume the state dependence as the

source of individual heterogeneity. Specific to our application, individuals are assumed

to have no knowledge about their health status at first but gradually update their

awareness as episodes and medical utilization are experienced. Different past experiences

will generate different behaviors even if the underlying intensity is the same. In the next

section, we will demonstrate this fact by a simulation.

SD shares many common properties with random effect. For example, in the mixed

proportional hazard model, it is well known that unobserved heterogeneity leads to a

‘weeding out’ or ‘sorting’ phenomenon (Van den Berg 2001). That is, individuals with

the highest values of UH term leave the default state quickest on average, and the

individuals who are still in the state tend to have lower values of UH term. In our

medical utilization application, the state of interest is the duration of keeping healthy.
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A high value of UH term means a bad health condition (or high level of sickness), and

on average it means the duration of being health is short. If only the outpatient is

interested, this means on average, we would observe more doctor visiting histories among

these individuals on a defined time period. Thus, simply by counting the number of past

events, we can capture this ‘weeding out’ phenomenon.

The SD term can be flexibly modelled. In this study, we suggest the form

∑
i:ti<t

K(ti, t) (2.1)

and include it in the intensity function.

There are three advantages to do so. First, the SD term is time dependent, which

means that it can be updated. Compared to the conventional time-invariant unobserved

heterogeneity term, we believe such a modelling method is more realistic in our empirical

study.

Second, the choice of K(ti, t) is flexible and can be consistent with economic

theory. For example, we may capture the seasonality effect by setting K(ti, t) =

αsin(β(t− ti) + γ) + δ, or in our application, as explained later, we may study the cluster

phenomenon of medical care utilization by letting K(ti, t) = µexp(−µ(t− ti)), µ > 0.

2.4 The Data

The data we used come from the well-known RAND Health Insurance Experiment

(RAND HIE), one of the most important health insurance studies ever conducted. It
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addressed two key questions in health care financing:

1. How much more medical care will people use if it is provided free of charge?

2. What are the consequences for their health?

The HIE project was started in 1971 and was funded by the Department of Health,

Education, and Welfare. The company randomly assigned 5809 people to insurance plans

that either had no cost-sharing, 25%, 50% or 95% coinsurance rates. The out-of-pocket

cap varied among different plans. The HIE was conducted from 1974 to 1982 in six sites

across the USA: Dayton, Ohio, Seattle, Washington, Fitchburg-Leominster and Franklin

County, Massachusetts, and Charleston and Georgetown County, South Carolina. These

sites represent four census regions (Midwest, West, Northeast, and South), as well as

urban and rural areas.

Early literatures that use this data usually avoid the problem of non-linear budget

constraint by assuming that individuals only respond to one price system. Typical

econometric tools involved are the linear regression (after aggregating the data), the

count data regression and the duration analysis. None of them is capable to fully model

the stochastic structure of cumulative individual cost X(t).

Because the complicated structure of our self-exciting process, to ease the burden

of computation, we only use data from Seattle, which has the largest medical claim

records available. We separate the data according to two different insurance plans: zero

coinsurance rate plan (free plan, denoted as P0), in which the patient does not pay

anything; and a cost-sharing plan (denoted as P95) in which a coinsurance rate of 95%
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applied and OPC is 150 USD per person or 450 USD per family4(i.e., before exceeding

the OPC, individuals need to pay 95% of the medical care cost, once the OPC is reached,

all the cost is paid by the insurance.). The OPC and coinsurance rate in this plan only

applied to ambulatory services; inpatient services were free. Both plans covered a wide

range of services. Medical expenses included services provided by non-physicians such

as chiropractors and optometrists, and prescription drugs and supplies. There is no

deductible in this insurance contract. The following figure summarizes the P95 contract

design.
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Point A is the OPC . When the total expenditure is below A, the co-insurance (slope) r = 0.95 is
applied. Whenever the total expenditure is beyond A, there is no cost for individuals.

Figure 2.3: Contract design for P95

We also include the data of drug purchase records with information such as the

purchase dates and the values of non-covered charges. As discussed in the previous

section, we may treat the drug purchase as another counting process and as an external

shock to our primary one (doctor-visiting counting process). In the original dataset,

4In 1973 dollars.
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one individual may have several claims in one day, and we combine all claims with an

identical date into one and sum the non-covered charges.

The occurrence time stamp is defined as the annual duration between the beginning

date of the insurance policy and the date this person visited a health care institution.

For example, if the insurance begins on Jan-01-1977 and the date of a doctor visit is

Oct-01-1977, the time stamp is then 0.748 (years). When preparing the dataset, we

delete all the records with missing duration information. (Hence we exclude the cases of

censoring.)

When analyzing the cost-sharing plan, we restrict our dataset within the contract

year 1977-1978 since the cost-sharing policies are renewed annually. But such restriction

is not needed for the free plan since there is no within-year cost sharing policy. For this

plan, the time horizon ranges from 1975 to 1980. When the individual cost information

is missing, we replace it with zero. In the end, we have 243 individuals in the free plan

with 7638 claims over the years and 131 individuals in the cost-sharing plan and the

total number of claims is 1103 within the 1977-1978 contract year.

We also include some demographic covariates: age, sex, education (in terms of

schooling years) and log-income. For simplicity, we fixed all ages at the enrolment time.

Thus all covariates are time-independent. More covariates can be added, but we are

limited by computation capacity.
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2.5 The Model

As discussed before, the focal point of the self-exciting counting process approach is

to model the ground (cumulative) intensity function. We construct the intensities by

explicitly taking different randomness sources of cumulative individual cost X(t) and

episode dependence structure into consideration.

2.5.1 Free Insurance Plan

Our ground intensity λg(t) for each individual5 who belongs to the free insurance plan

consists of two parts:λg(t) = λ1λ2(t). λ1 deals with the covariates effect, while λ2 is the

SD term discussed above.

Like many count data regression and duration models, the covariates effect is

presented as an exponential function:

λ1(Z) = exp(γTZ) (2.2)

where Z is a vector of individual characteristics including age, sex, education and

log-income, etc.

The SD term is specified as:

λ2(t) =

N(t−)∑
i=1

µ · exp(−µ(t− ti)), µ > 0 (2.3)

5Therefore, we ignore the individual subscript.
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When no event occurs before time t, we normalize the SD term to unit. That is

λ2(t) = 1 if N(t−) = 0. The ground intensity is then degenerated to λg(t) = exp(γTZ).

Implicitly, we assume that before the first doctor visit, the individuals do not understand

their own health status and therefore, there is no individual heterogeneity.

The ‘kernel’ µ · exp(·) characterizes the episode dependence structure. More

specifically, the propensity of a follow-up visit is governed by such a ‘kernel’: the intensity

is high when the elapsed time is short and will gradually decrease as time goes by. We

will argue such an assumption is reasonable: the individual is vulnerable when she just

receives the treatment and is more likely to be sick again, but she will gradually recover

as time goes by and will be less likely to experience sickness. The summation over these

‘kernels’ means we take all the past episodes into consideration. But the weight for

each episode is different. By construction, the effects of far away past experiences will

deteriorate, but the latest ones have the most important influences.

The usual method to model such phenomena in a structural form model is to assume

health events arrive periodically with a probability S
′
, which is drawn from F (S

′ |S)

where S is the arrival probability from a previous period. Einav et al. (2015) further

simplify this assumption by letting S take one of two values, SL and SH (with SL < SH),

and that Pr(S
′

= SJ |S = SJ) ≥ 0.5, J ∈ {L,H}, so there is weakly positive serial

correlation. This exceedingly simplified assumption is made mainly for computational

reasons. And the above Markov process is most likely inadequate to model the episode

cluster structure. We conclude that our cluster set up is more realistic and is quite

difficult, if not impossible, to build within the conventional econometric models.
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To sum up, for the free insurance plan, P0, the intensity is expressed as:

λP0(t) = λ1(Z)λ2(t) (2.4)

2.5.2 Cost-Sharing Insurance Plan

As for the cost-sharing plan, λ1 does not change. The cost sharing policy has two

hypothetical effects: 1) The late year effect, that is when the contract year is near the

end, individuals, especially those who have already exceeded the OPC may use the

medical service more frequently than before (cash-in effect) since the cost-sharing policy

will be set to default next year and the shadow co-insurance rate would be expensive

once again. 2) The shadow price effect discussed in the introduction section. We update

the cumulative individual cost whenever an event occurs. To account for the cost-sharing

effects, we modify λ2 as follows:

λ∗2(t) = β1exp(β1t) +

Ng(t−)∑
i=1

b exp(β2X(ti))µexp(−µ(t− ti)) (2.5)

here X(t) is the cumulative individual cost at time t. It includes the non-covered charge

from outpatient medical utilization as well as drug purchase:

X(t) =

N1
g (t−)∑
i=1

xi +

N2
g (t−)∑
i=1

yi (2.6)

where xi is the non-covered charge for ith doctor visiting, N1
g (t) is the associated ground

counting process. yi is the non-covered charge for ith drug purchase and N2
g (t) is the
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drug purchase ground counting process. The construction of X(t) essentially follows the

definition of cumulative individual cost mentioned in the introduction section. Recall the

shadow price is defined as 1 − V (X(t)), where V (X(t)) is the bonus which depends on

the cumulative individual cost. If V (X(t)) ∝ exp(β2X(t)), then the term b exp(β2X(t))

can be thought of as a measure of medical utilization bonus. We would expect β2 > 0 to

be significant if individuals do respond to shadow price.

We use the term β1exp(β1t) to model the late year effect: we would observe β1

significantly greater than zero if such an effect is true.

To summarize, the ground intensity for the cost-sharing plan is:

λP95(t) = λ1(Z)λ∗2(t) (2.7)

There are several pieces to put together in order to estimate the parameters of the

cost-sharing effects model. As Keeler & Rolph (1988), we assume that there are no

interactions between within-year cost sharing effects and the effects of other explanatory

variables, so that all the effects of explanatory variables other than cost sharing on

frequencies of episodes are summarized in λ1(Z) and all episode dependence structure is

captured by λ2(t) (λ
′
2(t)). We first estimate the free plan by minimizing

||N̄P0
g − λ1(Z)

∫ T
0
λ2(t)dt||N̄P0

g

thus, the individual heterogeneity and the episode dependence structure of the intensity

are estimated by λ̂1(Z) and λ̂2(t). When estimating the cost-sharing plan, these two

parts are then treated as fixed, which leaves us with only cost-sharing effect parameters
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(i.e.,β1, β2 and b ) to be estimated6. Thus the minimization object is:

||N̄P95
g − λ̂1(Z)

∫ T
0

(
β1exp(β1t) +

∑Ng(t−)
i=1 b exp(β2X(ti))µ̂exp(−µ̂(t− ti))

)
dt||N̄P95

g

2.6 Main Results

The main results are presented in Table 2.2. Some words on the numerical optimization

are in order. Because of the non-linear nature and complexity of the cumulative intensity

function, it is impossible to write down a closed form solution for this minimization

problem. And some numerical algorithms are implemented to find the optimization.

For the free plan, we first run a simulated annealing (SA) routine to assess reasonable

ranges for all the parameters, then a down-hill (Nelder-Mead) optimization algorithm

is employed to refine the results. Similar steps are used for the cost-sharing plan

with individual specific parts of cumulative intensity fixed. We manually stop the SA

algorithm after 24 hours but do not intervene with the down-hill algorithm until it

reports success.

2.6.1 Interpreting the Covariates

The interpretation of coefficients is not as straightforward as in linear regression.

However, we may fix a time period and treat the counting process as count data. The

interpretation is then identical to that of a count data regression analysis. Formally,

6We exploit the fact that all individuals are assigned to different plans randomly. By plugging the
individual specific estimators from the free plan into the cost-sharing plan, we can still have consistent
estimators.
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Table 2.1:: Basic Results

Estimator Description

µ 27.87126321∗∗∗ coefficient of the episode dependent structure
(8.39814247)

age -0.13394806∗∗∗

(0.03122223)

age2 0.15470947∗∗∗ (age)2/100
(0.04225468)

male -0.71703944
(0.4738397)

edu -0.35495029∗∗∗

(0.0858603)

edu2 0.99428386∗∗∗ (edu)2/100
(0.3361197)

log income 0.59265516∗∗∗

(0.03643453)

b 0.65898635∗∗∗

(0.0580308)

β1 0.1068388 coefficient of late year effect
(0.27547018)

β2 0.00383393∗∗∗ coefficient of non-covered charge
(0.00061892885)

Distance 0.898473 Free Plan
Distance 1.10226 Cost-Sharing Plan

Note: standard errors in brackets, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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recall the Doob-Meyer decomposition, for a fixed time period [0, t],∀t ∈ [t, t̄], we have

E(Λg(t|Z)) = E(Ng(t)|Z) = E(Yt|Z)

The count data Yt is the number of events occurring during this time period. Let scalar

zj denote the jth covariate. Differentiating

∂E(Yt|Z)

∂zj
= γjE(Λg(t|Z))

by the exponential structure of λ1(Z). That is, for example, if γ̂j = 0.2, Λ̄n(t|Z) = 2.5,

then one-unit change in the jth covariate increases the expectation of Yt by 0.5 units.

Two remarks are in order. First, notice that the sign of the response ∂E(Yt|Z)/∂zj

is given by the sign of γj since the accumulated intensity Λt is always positive. Second, if

one covariate coefficient is twice as large as another, then the effect of a one-unit change

of the associated covariate is double that of the other. This result follows from

∂E(Yt|Z)/∂zj
∂E(Yt|Z)/∂zi

=
γjE(Λg(t|Z))

γiE(Λg(t|Z))
=
γj
γi

With these in mind, we can interpret our results. Age. The overall effect for age is

as follows: at first, the intensity will decrease as age increases, after one passes the age of

43, the intensity and age are positively correlated. It is well-known that the youngsters

are more risky compared to their mid-age counterparts. While as individuals begin to
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age, they become physically weaker and more prone to sickness.

Sex. Females seem to be more likely to go the doctor, but the result is not significant.

Education. There are two explanations about the correlation between education

and frequency of doctor visits. One is that individuals with a higher level of education

are positioned in more important jobs and their absence from work may damage not

only their output but also that of their peers’, thus the potential cost of going to

hospital is much higher which leads to a negative correlation. The other explanation

says that with higher education, people are more aware of the importance of good health

and are willing to go to the doctor more frequently, besides, education and income

are known to be positively linked, thus education should be correlated to intensity

positively. Our results suggest that with education of less than 17 years (roughly

equivalent to a Master’s degree), the overall effect favors the first explanation. But with a

higher education level (Master and above) the overall effect favors the second explanation.

Income. Income is positively related to the use of medical services, which is not

surprising. A higher income gives individuals the ability to cover the opportunity cost

related to absence from work (to visit a doctor).

2.6.2 Cost-Sharing Effects

There is weak evidence supporting the existence of the late year effect (t-ratio of

0.387842).

The shadow price effect is captured by b exp(β2R(t)). The most important parameter
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here is β2. If β2 is close enough to zero, we may observe a flat, almost linear curve, which

indicates that individuals only respond to one price system (the spot price system).

However, if β2 is positively away from zero, we can safely claim that individuals do

understand the design of the insurance policy and take advantage of the shadow price.

Our result provides strong evidence for the shadow price effect and we are confident to

reject the null hypothesis: β2 = 0. Figure 2.4 shows the graphical result.

Figure 2.4: The shadow price effect

Overall, the model fits the data well. To assess the goodness of fit, we generate

estimated (averaged) cumulative intensity against the observed (averaged) counting

process. Figure 3.1 presents the results. The patterns of estimated and observed are

quite similar in both free plan and cost-sharing plan.
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(a) free plan (b) cost-sharing plan

Figure 2.5: Goodness of fit

2.6.3 Mark Density

To complete our model, we will non-parametrically estimate the conditional mark

density. The interested mark in this application should be the non-covered charge.

However, in the free plan, such marks are zero in most records. Because of this, and for

the purpose of comparison between these two plans, we instead use total charge as our

marks. Since insurance plans have clear regulation on the cost-sharing policies, once we

observe the total charge, there is no ambiguity in knowing the non-covered charge.

We assume the nominal price are i.i.d distributed. Thus we have f(x|t,Ht−) = f(x).

A standard kernel density estimation is used to analyse this mark density. The bandwidth

selection results are 3.84075 and 5.79464 for cost-sharing and free plans respectively. We

plot the densities and distributions in Figure 2.6.

It is not hard to tell that the densities in the two different plans are similar,

indicating the charge per episode is stable across various insurance plans. This result is

consistent with previous studies (e.g. Keeler & Rolph (1988))
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(a) (b)

(c) (d)

Figure 2.6: Plots of total charge empirical distributions with a Gaussian kernel
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2.6.4 Cluster Analysis

The episodes tend to be clustered or grouped together (i.e., we are rejecting the

assumption that episodes are independent). One reason is because of the nature of

chronic diseases: regular or frequent treatments are needed to ease or eliminate the pain.

Another explanation is because one disease may trigger the occurrence of another one in

the short term.

As mentioned before, the dependent structure (or the cluster structure) is governed

by exp(−µt). Figure 2.7 presents such a structure using our estimator µ̂.

It is not hard to tell that the densities in the two different plans are similar,

indicating the charge per episode is stable across various insurance plans. This result is

consistent with previous studies (e.g. Keeler & Rolph (1988))

Figure 2.7: The cluster structure among episodes
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The likelihood of follow-up visiting is high at the beginning and then decreases as

time goes by. After roughly 3 weeks to one month, the likelihood is small enough to

ignore.

Literatures have documented that cost-sharing policies reduce the frequency of

medical utilization (e.g. Keeler & Rolph (1988); Aron-Dine et al. (2015)). Our question

is how do these policies affect the cluster structure among doctor visiting? Will they

reduce the average number of clusters per person? Will they reduce the average follow-up

visits inside a cluster? To the best of our knowledge, few literature has considered these

issues, since most of them use the hypothesis that episodes are independent.

Here we use a cluster analysis algorithm called DBSCAN (Density-based spatial

clustering of applications with noise) that is widely used in computer science and

statistical learning.

For this algorithm, there are two inputs: Eps, the radius of one density region, and

minPts, the minimum number of points required to form a dense region. For the purpose

of DBSCAN clustering, all points are classified as core points, border points and noise

points. Core and border points form a cluster via different definitions of ‘reachable’.

Noise points are the points that do not belong to any cluster. We provide details of this

algorithm and the definition of a cluster in Appendix.

The ability of this algorithm to identify ‘noise’ points is particularly appealing to

us. This is because some acute episodes are small in scale and only need one doctor visit

to fully recover. They are not linked to the rest of episodes.

Based on the estimation of the SD term, we set Eps = 21 days and as a rule of
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thumb minPts = 27. For the purpose of comparison, we restrict the time horizon in both

plans to 1977-1978 insurance year. For each individual (both free plan and cost-sharing

plan), we run the DBSCAN algorithm, document the number of clusters, the average

number of instances per cluster and the number of noise points. For each insurance

plan, we then compute the average number of clusters per person, the average number

of instances per cluster per person and the average noise points per person. Table 2.2

summarizes the results.

Table 2.2:: Cluster Analysis

avg cluster number avg cluster members avg noise points
free plan 1.2287 4.55187 1.62332
Cost-sharing plan 0.862595 3.3625 1.47328

The effects of cost-sharing policies on cluster structure are threefold. First, they

reduce the average number of clusters per person. That means for the initial episode,

the cost-sharing policies suppress the first doctor visiting behaviors. Second, within each

cluster, they reduce the number of follow-up visits. Third, cost-sharing policies reduce

the average number of noise points per person, i.e., they discourage individuals to use

medical services when they have small episodes like minor injuries.

2.7 Discussion

Our model characterizes the individual’s decision making process in both free and

cost-sharing plans. The results show that individuals react to shadow price systems.

7The rule of thumb is minPts = dimension +1
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The method we adopted is different than conventional reduced form or structural form

econometrics tools used in non-linear budget constraint studies.

In the literature of medical utilization, how to quantify the response of medical

spending with respect to its price is at the core of the debate. Cutler & Zeckhauser (2000)

summarize a long list of literature all reporting an estimate of a single price elasticity

of demand for medical care with respect to the out-of-pocket price. Particular to the

data we used, the RAND HIE, such an estimate is -0.2(Manning et al. 1987),(Keeler &

Rolph 1988)). Most of these literatures obtain the estimate of such single elasticity by

assuming individuals only respond to the spot (out-of-pocket) price. Recent literatures

(e.g. Cardon & Hendel (2001), Dalton (2014), Kowalski (2015),Aron-Dine et al. (2015)

and Einav et al. (2015)) deviate from this assumption and find strong evidence for such

deviation.

Aron-Dine et al. (2015) proposes to use two different elasticities in a classical

reduced form: one with respect to spot price and the other with respect to future price.

They define the future price as the expected end-of-year price, with expectations taken

over all individuals in the same insurance plan. Such future price depends on three

elements: the cost-sharing features of the insurance plan, the duration of the insurance

plan and the expected spending of individuals. Thus, essentially, they impose a strong

assumption that individuals have no private information about their health conditions

and health shocks. Although using a firm-level data, they find strong evidence rejecting

the null hypothesis that individuals only respond to spot price, they fail to find similar

conclusions using the Rand HIE data. The explanation they give for this result is the

relatively small sample size.
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Our method, on the other hand, tackles the problem of quantifying the response of

medical spending from a different perspective: rather than estimating the elasticities

directly, we try to measure the bonus V (X) as a function of cumulative individual cost.

By doing so, we avoid unrealistic assumptions made by Aron-Dine et al. (2015) but at

the same time manage to keep the non-linear property. In addition, we exploit the data

in its maximum capacity. Instead of just looking X(T ) like Aron-Dine et al. (2015), we

use all the cumulative individual cost information: X(t) : t ≤ T . Thus, in our method, a

more direct measurement of responses to the out-of-pocket spending up until now (β in

our model) is estimated instead of the elasticities. We believe such features explain our

success in finding evidence supporting the non-linear budget constraint in the Rand HIE

data.

In a structural paper,Einav, Finkelstein, & Schrimpf (2015) build and estimate a

simple dynamic model of optimizing agent’s drug utilization decisions given a non-linear

insurance contract design. They also find evidence supporting the hypothesis that

individuals take into account the dynamic incentives by showing the discount factor of

their value function is non-zero. The shortcoming of this structural form is that it fails to

address the stochastic nature of the occurrences. What structural models do is to divide

the time line into several equispaced cells, and within each cell, one only needs to concern

whether an event is occurred or not. As for how many events occurred in that cell

and more importantly the timings of occurrences, they are irrelevant. The self-exciting

approach, on the other hand, is more adequate to model the stochastic properties of

individual cost X(t): the events’ occurrence times {ti}i∈N+ are at the central of our

model objectives. In addition, compared to the structural form, our method is much

simpler and only requires minimal assumptions. For example, it is a common practice in

56



CHAPTER 2. HEALTH INSURANCE

structural form to use a Markov transition probability to describe the shock dependence.

Einav et al. (2015) further simplify it by restricting the shocks to be either big or small.

These assumptions are mainly made for computational purpose. There is littler reason

to believe that the real mechanism would follow such restriction. In comparison, our

approach allows all the past experiences contribute to future randomness in a form of

state dependence. This is a much less restricted and more realistic and complicated

assumption. Despite that, our model is still computationally easier than a typical

structural form econometric model.

2.8 Conclusion

In this paper, we provide a methodology to construct a behavioral model of medical

care utilization. At the core of this method is the self-exciting counting process. It

allows researchers to take historical information into the model. A minimum distance

estimation is advocated instead of the conventional likelihood-based methods. By

doing so, one may introduce external shocks to the self-exciting process. This enables

researchers to use more realistic model settings. We use such a methodology to build a

decision making process model of medical care utilization and find that individuals are

responsive to shadow price and take into account the dynamic incentives. Furthermore,

we use a matured statistical learning algorithm to analyze the cluster structure of doctor

visiting behaviors. We find cost-sharing policies do affect the clusters in numerous ways.
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Appendix

2.A The KNP Theorem

Keeler,Newhouse and Phelps (1977) Keeler et al. (1977) considered the theory of a

consumer facing a deductible health insurance contract. There are two differences

from the usual consumer theory: 1) the price per unit in a specified amount of

medical care services bought within a specified period is changeable and 2) illness

uncertainty is present regarding the future medical service demand. When uncertainly

is present, any cost below the range of deductible limit has the bonus of reducing

the remaining deductible, and hence reducing the future cost. That is the greater

the chance that future expenditures will exceed the deductible, the cheaper today’s

purchase of medical care service. They argue that when analysing the reaction to

the deductible of a consumer, one needs to take account of the sequential decision problem.

Formally, they assume a rational agent whose object is to maximize a sequence of utilities

(U(et, Ht))t under illness uncertainty, where, after ignoring the time subscription, e is the

flow of other consumption goods and H, in terms of dollar, is the stock of health which
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is related to the medical care service h. The evolution of the perceived health stock is

Ht = Ht−1 − lt + g(ht, lt), where l, in terms of dollar, is the random loss of health from

illness and g(h, l) is the production function of the stock of health. Before exceeding the

deductible, denote ot = ph × ht as the out-of-pocket payments for medical care at time t

where ph is the medical service price, after reaching the deductible, the co-insurance rate

C would apply to the consumers, we normalize the price of other goods to 1. Let (dt)t

be a sequence of the remaining deductibles.

The one-period demand case is shown in the figure 2.A.1

Figure 2.A.1: An insurance policy with a deductible equal to d

They have shown that in this one-decision case that consumers with smooth indif-

ference curves would never be observed purchasing exactly d units of medical care

and, in general, would not be near the kink in the budget line. Furthermore, with
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a normal utility function, there exists a critical level of illness ld. All losses smaller

than ld will produce purchases of h less than d, and losses greater than ld will lead to h > d.

Suppose U(X,H) applies only to the stocks of other goods and health at the end of the

deductible period. The multi-periods problem can be represented formally as a consumer

trying to maximize the expected value of:

∑
Ut(et, Ht) + U(X,H) (2.8)

subject to the budget constraint:

X +
∑

(et + ot) = Income (2.9)

Notice that it is easy to see that the medical service needed to cure the illness is related

the scale of illness l, hence we should let the other consumption and the medical service

be functions of l: e(l), h(l).

Such problem can be formulated as a dynamic program. Let W (xt, Ht, dt, t) be the

expected sum of utility from t to the end of the deductible period, for an agent who at

the start of period t has wealth xt, health Ht and remaining deductibles dt. We suppose
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that the distribution of illness, f(l, Ht), also depends on Ht. Then:

W (xt, Ht, dt, t) =

∫
max
e(l),h(l)

U{e(l), Ht−l+g[h(l)]}+W (xt−e(l)−phh(l), Ht+1, dt+1, t+1)f(l, Ht)dl

(2.10)

where dt+1 = max(0, dt−ot). The formula for the remaining deductibles means one needs

to take this optimization problem in a sequential and contingent way: all the history

deductible information should be included to calculate the current remaining deductible.

W can be calculated backwards from the end of the period to his present position.

Such results have important implications for estimating demand curves for medical

services. For a person’s jth illness, the demand can be expressed as:

qj = f(pj, Z) + εj

where qj is the quantity demanded by this individual in the jth episode, pj is the shadow

price for jth episode, Z is vector of other variables that may affect the demand, and εj is

a random error term with E(εj) = 0, var(εj) <∞.

Given the existence of remaining deductible, the model suggests that each pj is a function

of demands (hence out-of-pocket fees) prior to the jth episode and of time remaining in

the period,

pj = g
( j∑
k=1

qk, tj
)
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Suppose T is the number of episodes occurring during one year and there is no variation

in T across individuals, then the average effective price is

p =
T∑
j=1

pj/T (2.11)

Most of the literature did not use the p as the measurement of price; instead, they use the

fraction of annual expenditures paid out of pocket p̄. However, p̄ measures the effective

price with error: (p̄ − p) = δ. The authors argue that since the price measurement

error δ is not random but is generally correlated with the true price, the estimated price

coefficient could be inconsistent.

2.B Janossy representation of generic probabilistic

structure of marked point process

Definition The Janossy measures are non-probability measures for point process N

and are defined as the measures satisfying,

Jn(A1×, · · · ,×An) = pn
∑
perm

Πn(Ai1×, · · · ,×Ain) (2.12)

For marked point process N̄ they are,

Jn(A
′

1×, · · · ,×A
′

n) = pn
∑
perm

Πn(A
′

i1
×, · · · ,×A′in) (2.13)
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Where A
′
i = Ai ×Bi, Bi are the mark spaces.

The Janossy measure has a nice interpretation, if E = R and jn(t1, · · · , tn) denotes the

density of Jn(·) with respect to a Lebesgue measure on (R)n with ti 6= tj if i 6= j, then

jn(t1, · · · , tn)dt1 · · · dtn = Pr{ there are exactly n points in the process one in each of the

n distinct infinitesimal regions (ti, ti +dti) }. Its marked counterpart density is defined as

jn(t1, · · · , tn, x1, · · · , xn)dt1 · · · dtndx1 · · · dxn (2.14)

with interpretation as Pr{ points around {t1,· · · ,tn} with marks around (x1, · · · , xn) }.

These interpretations, are in fact indicating that the Janossy density is nothing but the

likelihood of a point process.

Definition The likelihood of a realization of a point process N on a bounded Borel set

E ⊆ Rd, when n = N(E), is the local Janossy density

LE(t1, · · · , tn) = jn(t1, · · · , tn|E) (2.15)

In the formation of Janossy measure, the condition
∑
pn = 1 can take the form of

∑∞
n=0(n!)−1Jn(E(n)) = 1

It turns out that the Janossy measures can uniquely determine the point process, one

can find the proof as well as a more detailed introduction of Janossy measure in Chapter
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5,7 of Daley et al (2007)Daley & Vere-Jones (2007)

We now use the Janossy measure to describe the probability of the marked point process.

Let Sn(t|Ft−) = 1 −
∫ t
tn−1

pn(u|(t1, x1). · · · , (tn−1, xn−1))du be the conditional survival

function. The probability structure of the marked point process can be viewed as

J0(T ) = S1(T ),

j1(t1, x1|T ) = p1(t1)f1(x1|t1)S2(T |(t1, x1)) as (0 < t1 < T )

j2(t1, t2, x1, x2|T ) = p1(t1)f1(x1|t1)p2(t2|(t1, x1))f2(x2|(t1, x1), t2)S3(T |(t1, t2), (x1, x2))

as (0 < t1 < t2 < T )

(2.16)

where T is the endpoint (length of the time interval), pi are the densities, suitably

conditioned, for the locations in the ground process, and the fi(·) refer to the densities,

again suitably conditioned, for the marks.

The interpretation is just like the one mentioned at very beginning of this subsection, take

j1(t1, x1|T ) as an example, it says the likelihood of there is one point locates in the time

interval [0, T ] with mark value x1 is equal to the probability of only one event happened

times the density of the mark of being x1 conditional on such event happened at time

t1, also we need to multiple the survival function conditional on the first event information.
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We now make a critical shift of view. Instead of specifying the conditional density pn, we

express them in terms of conditional hazard functions,

hn(t|t1, · · · , tn−1) =
pn(t|t1, · · · , tn−1)

Sn(t|t1, · · · , tn−1)
(2.17)

Equivalently, pn(t|t1, · · · , tn−1) = hn(t|t1, · · · , tn−1) exp(−
∫ t
tn−1

hn(u|t1, · · · , tn−1)du).

Plug it into Equation 2.16, and recall from Equation ?? the likelihood of a counting

process is

L(·) = Πiλti(B) exp
(
−
∫
λu(B)du

)

we have,

jn(t1, · · · , tn, x1, · · · , xn|T ) = h1(t1) · · ·hn(tn|t1, · · · , tn−1, x1, · · · , xn−1)×

f1(x1|t1) · · · fn(xn|t1, · · · , tn, x1, · · · , xn−1)×

exp
(
−
∫ t1

0

h1(u)du
)
· · · exp

(
−
∫ T

tn

hn+1(T |t1, · · · , tn, x1, · · · , xn)
)

= L(·)

(2.18)

Thus, the densities for the locations can be expressed in terms of corresponding hazard

functions. And the conditioning in the hazard functions now can include the values of
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the preceding marks as well as the length of the current and preceding intervals.

λ(t, x|Ft−) =



h1(t)f1(x|t)

...

hn(t|(t1, x1), · · · , (tn−1, xn−1)× fn(x|(t1, x1), · · · , (tn−1, xn−1, t), (tn−1 < t ≤ tn, n ≥ 2)

...

(2.19)

Where Ft− again is the internal history of the marked point process and hi(·) are the

corresponding hazard functions,suitably conditioned. Notice that an generalization from

internal history to a whole history Ht− can be done quite easily, we just need to let the

Janossy density to be conditional on the external history information. We can rewrite

the above as

λ(t, x|Ft−) = λg(t, x|Ft−)f(x|t,Ft−) (2.20)

where λg is the ground intensity. When the mark space is continuous, we have

λ(t, x|Ft−)dtdx = E[N̄(dt× dx)|Ft−] = λg(t, x|Ft−)f(x|t,Ft−)dtdx.

2.C The Thinning Method for Simulation

The detailed thinning method steps can be summarised as:

1. Let τ be the start point of a small simulation interval

2. Take a small interval (τ, τ + δ)

66



CHAPTER 2. HEALTH INSURANCE

3. Calculate the maximum of λg(t|Ft−) in the interval as

λmax = max
t∈(τ,τ+δ)

λg(t|Ft−)

4. Simulate an exponential random number ξ with rate λmax

5. if

λg(τ+ξ|Ft−)

λmax
< 1

go to step 6.

Else no events occurred in interval (τ, τ + δ), and set the start point at

τ ← τ + δ and return to step 2

6. Simulate a uniform random number U on the interval (0, 1)

7. If

U ≤ λg(τ+ξ|Ft−)

λmax

then a new ‘event’ occurs at time ti = τ + ξ. Simulate the associated marks for this

new event.

8. Increase τ ← τ + ξ for the next event simulation

9. Return to step 2
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2.D DBSCAN Cluster Analysis

The DBSCAN algorithm classified all points into three: core points, border points and

noise points. We start by defining these points. For a set of points X = {x1, x2, · · · , xN}.

Definition ε neighbourhood of a point x, denoted by Nε(x) is defined by Nε(x) = {y ∈

X : d(y, x) ≤ ε}. Where d() is a metric.

Definition Density is defined as ρ(x) = |Nε(x)|, the number of points in a ε

neighbourhood.

Definition Core point: let x ∈ X, if ρ(x) ≥ minPts, then we call x a core point. The

set of all core points is denoted as Xc, let Xnc = X \Xc be the set of all non-core points.

Definition Border point: if x ∈ Xnc and ∃y ∈ X such that y ∈ Nε(x) ∩Xc, then x is

called a border point. Let Xbd be the set of all border points.

Definition Noise point: let Xnoise = X \ (Xc ∪Xbd), if x ∈ Xnoise, then we call x is a

noise point.

To define what is a cluster under the DBSCAN setting, we need a few more definitions

about ‘reachable’.
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Definition Directly density-reachable: if x ∈ Xc and y ∈ Nε(x), we may say y is

directly reachable from x.

Definition Density-reachable: let x1, x2, · · · , xm ∈ X,m ≥ 2. If xi+1 is directly

density-reachable from xi, i = 1, 2, · · · ,m− 1. We call xm is density-reachable from x1.

Definition Density-connected: a point x is density connected to a point y if there

exists another point z ∈ X such that both y and x are density-reachable from z.

Definition Cluster: a non-empty subset C of X is called cluster if it satisfies:

• (Maximality) ∀x, y: if x ∈ C and y is density-reachable from x, then y ∈ C.

• (Connectivity) ∀x, y ∈ C: x is density-reachable to y.

For a detailed algorithm description, we refer to the original Ester et al.(1996)Ester et al.

(1996) paper.
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Chapter 3

The Dynamic Behavior in Work

Absence

Abstract

We use the self-exciting processes to study individuals’ absence behaviors. Such behaviors

are dynamic because of the firm’s absence regulation, where a worker’s absence records

determine her absence benefit. The self-exciting process is state-dependent and enables

us to include the individual’s absence records into the model. We decompose an absence

into an incidence event (‘asking for absence’) and a recovery event (‘returning to work’).

For each absence, we also distinguish short-term from long-term. Using firm-level data,

we find that workers do consider absence records when they make short-term incidence

and recovery decisions, but this is not the case for long-term events. Inspired by the

empirical results, we build a simple economic model.
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3.1 Introduction

The primary purpose of this chapter is to investigate the dynamic behaviors in work

absences, where individuals may take past experiences into absence decision-making

considerations. Dynamic here means preferences or constraints to future choices are

altered by past experiences. A typical source of such behavior is the absence score that

most firms employed in their work absence regulations. Absence scores are accumulated

over time and are based on individuals’ absence records. In principle, higher absence

scores lead to more severe penalties (e.g., fall of income or even possible layout) and vice

verse. Individuals then have to dynamically make their absence decisions. In this paper,

we use the self-exciting process, a special counting process, to model the dynamic and

state-dependent absence decision-making processes.

Work absence is not uncommon among both developed and developing countries.

U.S Bureau of Labour Statistics (2005) data reveals that, on any given day, approximately

3.3% of the U.S. workforce does not report to work. Duflo et al. (2012) reports the

absence rate in an Indian NGO teacher program could be as high as 35%. Moreover,

work absences are costly for both workers and firms. For workers, although the social

security covers illness-related absences in some countries in the form of sick pay, the

replacement rates are in general less than 100%. For firms, arguably, labour costs are the

single most considerable budgetary expense. Fister-Gale (2003) cites research showing

that absenteeism costs in one survey population accounted as high as 14.3% of total

payroll.

Despite the sizable number of work-hours involved and impacts on productivity,

economists have paid little attention to the issue of absenteeism. Early works by Allen
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(1981) and Barmby et al. (1991) demonstrate the importance of financial aspects in

explaining absence behavior. A group of Norwegian economists contribute significantly

to this filed. Markussen et al. (2011) show that employee heterogeneity drives most of

the cross-section variation in absenteeism. Fevang et al. (2014) show that Norway’s social

security system of short-term pay liability creates a sick pay trap: firms are discouraged

from letting long-term sick workers back into work.

Applied psychologists and management specialists contribute most in the work

absenteeism literature. In general, psychological literature argues, according to

Steers & Rhodes (1978), that the job dissatisfaction represents the primary cause

of absenteeism. In management literature, however, this view has been challenged.

Increased understanding of the importance of so-called trigger absence behavior has

emerged from the management literature (Steel et al. 2007). These literature argue that

absence scores is a significant work absence decision-making factor. However, no satisfied

empirical work has been done to support this claim.

In this paper, we aim to provide empirical evidence on the existence of this trigger

absence behavior. The inclusion of absence score creates a state-dependent structure in

the econometric models. We use self-exciting processes to incorporate such structure.

The self-exciting process is a counting process whose filtration is generated by the

counting process itself. Thus, a self-exciting process is state dependent: past experience

has effects on the future events. Throughout the analysis, we try to avoid making further

assumptions other than the independent, identical distributed individuals. However,

within a single individual, absences are not independent.

To fully explore the features of the self-exciting process, we decompose a work
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absence into two decision making processes: an incidence process and a recovery process.

An event in the incidence process is defined as a worker asking for an absence. An

event in the recovery process happens when a worker decides to return to work from

the absence. Incidence processes and recovery processes are different. Individuals

may encounter shocks (e.g. illness) and seek absences, but at first, they do not have

full information about the shock sizes. However, such information is available when

individuals make the returning decisions. The stochastic interpretation is also different.

For example, the likelihood for a hard-working individual to ask for a leave is low, while

the likelihood for the same individual to return to work quickly is high. To this end, we

will model these two processes separately.

We also distinguish between the short-term and the long-term absences. Short-term

absences are more voluntary than the long ones. The motivation for such absences can

be interpreted as maximising one’s leisure time under a reasonable budget constraint.

The long-term absences, on the other hand, are often related to ‘involuntary’ causes. A

typical example is the sick-leave. Thus, in total, we will construct four types of models:

short-term incidence, short-term recovery, long-term incidence and long-term recovery.

Comparing to the conventional econometric tools used in work absenteeism: the

count data regressions (Delgado & Kniesner 1997) and the duration models (Barmby

et al. 1991; Markussen et al. 2011; Fevang et al. 2014), the self-exciting process has

the advantage of modelling the dynamic decision-making process. In the count data

regression literature, the study subject is the counts of events during a period. Thus,

count data models lose the dynamic information by aggregating the absence records over

the defined period. Duration models often assume that absence durations are i.i.d, which

is incompatible with the state-dependent setting. Lagged duration models (Honoré 1993)
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do exist, but they are difficult to apply.

Structural econometric models can be used to include the state-dependence.

However, it would be quite complicated when one tries to model four decision making

processes (short (long)-term ask for leaves, short (long)-term return to work) with only

one economic model.

The modelling strategy we used (i.e., the separation of incidence and recovery

decision making processes and the distinction between short-term and long-term

absences) requires a raw absence records dataset, in which the researchers should have

access to the details of each absence, including the beginning and ending dates as well

as necessary individual demographic information. In our empirical study, a firm-level

administration dataset is used. We will formally introduce the data in the later section.

This paper contributes to two strands of literature. First, we provide substantial

evidence on the existence of dynamic behavior in the work absences. Specifically, we

observe workers dynamically make absence decisions in short-term absences in both

incidence and recovery processes. While in the long-term absences, such dynamic

behavior plays an insignificant role in the decision making processes.

Second, we provide a modelling method that complements to the conventional

methods (structural models, count data regression and duration analysis models.)

Instead of focusing on the events per se, we try to model the whole behavior process.

Thus we require i.i.d of individuals, but not the events.

The paper is structured as follow. Section 2 introduces the data and provides

some preliminary results based on conventional count data regression and duration

models. The aims of these preliminary results are mainly to show the existence of
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strategic behavior in work absences, to highlight the incompatibility of the conventional

methods and to illustrate the nature of the problem. In section 3, we first introduce

some notations and basics about the self-exciting process, followed by the presentation

of our model. We also discuss the difficulties to include the unobserved heterogeneity

in the model and some workarounds. In section 4 the estimating results are presented

and discussed. Based on the empirical findings, we develop a simple economic model

in section 5. Section 6 compares the self-exciting process to count data regression and

duration analysis models. Finally, section 7 concludes the whole paper.

3.2 Data and Preliminary Results

In this section, we briefly introduce the data and present some preliminary results based

on conventional count data regression and duration models. Following the procedure

proposed by Heckman (1981), we also provide some evidence that support the existence

of state dependence in the data. At the end of this section, we will illustrate the nature

of the work absenteeism problem.

3.2.1 The Data

The data we used come from a UK based manufacturing firm, which produces a

homogeneous product using production lines. Other publications that use the same data

(or a subset of the data) are Barmby et al. (1991), Barmby et al. (1995), etc. In 1983, the

firm introduced an experience rated sick-pay scheme where workers with less cumulative

absence scores receive a better sick-pay benefit. More specifically, the scheme provides
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the sick-pay benefit at three levels: Grade A workers are paid with their full normal wage

including bonuses less the statutory sick-pay (SSP) of the UK social security; Grade B

workers are paid with their basic wages less SSP; Grade C workers receive no benefits

from the firm. All the workers are eligible to the SSP.

To be eligible to the SSP, workers should be absent from work for more than three

consecutive days. Because of this requirement, we define the short-term absences as

the ones whose duration are less or equal to 3 days, and the others are categorised as

long-term.

Workers are categorised into these three grades based on the absence records over

the previous two years: at any given time, individuals need to consider both last year’s

and current year’s absence scores, since these scores will decide next year’s benefit. Each

day of absence attracts a certain number of ‘points’, mostly 1 point, depending on the

cause of this absence. To simplify our analysis, we assume that one day off is 1 point of

absence score. Grade A workers have less than 21 points, Grade B workers have 21 to 41

points, and Grade C workers are those above 41 points.

We believe there is no abnormal behavior occurs around the cut-off points 21 and

41. To show it, we non-parametrically estimate the absence score density function at

the end of the year 1987 and 1988. Figure 4.1 plots the result. The P.D.Fs are smooth

around these cut-off absence scores. Some possible explanations to this smoothness

could be 1) It is difficult to foresee the occurrence of a future absence, 2) the absence

regulation renews every two years, the last year’s absence records (1988) to determine

1989’s sick pay benefit is also the middle year to determine the benefit for 1990, hence

the absence score is updated in a ’smooth’ way, and 3) the absence score will only affect
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the sick-pay benefit (which is stochastic: only receive the benefit when ill) not the salary

(which is deterministic), hence the incentive to ‘control’ the absence scores around the

cut-off points are not strong.

(a) At the end of 1987 (b) At the end of 1988

Figure 3.1: Non-parametric P.D.F of absence scores

A worker’s decision to be absent will not only lead to a loss of earnings1 but also

affect the eligibility for the sick-pay at some point in future, usually in a stochastic

fashion. The incentives to take a leave and to return to work from an absence created by

this scheme are complex and raise challenges for econometric modeling.

The data consists of detailed absence records: the beginning and ending dates of

absences, type of absences (sick-leave, maternity release, jury service, work accident etc.)

as well as individual characteristics such as age, gender, contract type, etc. In this paper,

we will deal with the ‘working age’, which is the real age subtracts the legal working

age (16 in the UK). Some common covariates such as education, wage and job hierarchy

are not included in this dataset. However, we do not think these covariates could play

significant roles: most workers are blue-colour, who have similar education backgrounds,

1That is not the case for class A workers whose benefit will not be affected during an absence. However,
for the other two classes, some loss of income is a certain.
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receive similar wages and their job levels are more or less the same. We use the data from

calendar year 1987 to 1988. In total, we have 878 workers with 5718 absence records.

Figure 3.2 shows the histogram distribution of the length of absences. Among all

the absences, 1-day off leaves account for more than half. Around 78.1% are short-term

absences. Long-term absences, especially those longer than ten days are rare.

Figure 3.2: Most frequent absence durations

3.2.2 Preliminary Results

Conventionally, count data regression (Delgado & Kniesner 1997) and duration models

(Markussen et al. 2011) are commonly used in the analysis of sickness absences. In this

subsection, we provide some preliminary results using these methods.
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The subject under study in the count data regressions is the counts of occurred

events over a period. In our application, this subject would be the number of absence

records in the year 1988. We use four count data regressions: the Poisson, the negative

binomial, the zero-inflation and the hurdle models. The Poisson regression is the basic

model for count data analysis. One restriction to this model is the equidispersion

assumption: the mean of the counts must be equal to the variance. To overcome this

restriction, researchers have proposed more general over-dispersion model. Negative

binomial model is particularly popular. One source of over-dispersion is the excess of

zeros. Two models are often used to deal with this property: zero-inflation and hurdle

models. The general idea is first to use a binomial distribution describing the zeros and

then to use another probability distribution to describe positives. In the zero-inflation

model, the second probability distribution can generate both zeros and positives. While

in the hurdle model, this probability distribution is truncated at zero. We left the

technical description of these count data regression models in the Appendix. One

important trait that we include in the models are the absence counts in the previous

year (1987). The goal of this trait is to obtain some insights on how past experiences

could alter future decisions.

Table 3.1 summarizes our count data regression results. One crucial explanatory

variable is the number of times of absences in 1987, which are used as an approximation

of heterogeneities of individuals. The results are quite similar across different models.

This conclusion is consistent with previous literature (Delgado & Kniesner 1997).

Another commonly used tool is the duration analysis. Here, we study the duration

of attendance until the first absence in a year. The workhorse in the duration analysis

is the hazard rate, which is the ratio of the probability density function to the survival
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Table 3.1:: Count Data Regression Results

Dependent variable:

count88

Poisson negative hurdle zero-inflated
binomial count part count part

(1) (2) (3) (4)

age -0.005 -0.006 -0.017 -0.005
(0.011) (0.016) (0.012) (0.012)

age2 0.007 0.008 0.015 0.0002
(0.014) (0.019) (0.014) (0.016)

male -0.249∗∗∗ -0.224∗∗∗ -0.230∗∗∗ -0.236∗∗∗

(0.045) (0.065) (0.046) (0.048)

full 0.104∗∗ 0.115 0.094∗ 0.115∗∗

(0.049) (0.074) (0.050) (0.052)

marriage -0.066 -0.076 0.002 -0.011
(0.052) (0.075) (0.056) (0.059)

count87 0.131∗∗∗ 0.156∗∗∗ 0.086∗∗∗ 0.101∗∗∗

(0.005) (0.008) (0.006) (0.006)

Constant 0.944∗∗∗ 0.866∗∗∗ 1.565∗∗∗ 1.234∗∗∗

(0.193) (0.284) (0.205) (0.220)

Observations 874 874 874 874
Log Likelihood -1,991.314 -1,878.365 -1,965.877 -1,940.922
θ 3.445∗∗∗ (0.383)
Akaike Inf. Crit. 3,996.627 3,770.731

age2 = age2/100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. This table presents the four counting data
regression results. For the zero-inflation and hurdle models, we only present the count parts.
The dependent variables are the counts of absences in the year 1988. One important trait is
the counts of absences in the previous year, which is positively correlated with the dependent
variable. It would be wrong to interpret the results as causal, since otherwise it implies the
work discipline regulation play exactly the opposite role: encourage more absences. Instead,
this trait should be interpreted as the approximation of the unobserved heterogeneity.
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function. It can be interpreted as the failure rate or the force of mortality. We study a

baseline duration model, where the hazard rate is constant over time and no presence of

the unobserved heterogeneity. Appendix documents the details of this model. The first

column in Table 3.2 reports the estimation results of this standard duration model.

We also study a more commonly used duration model where the unobserved

heterogeneity is introduced. This hazard rate has a multiplicative form of the unobserved

heterogeneity term, a random variable, and the remaining part. As proposed by Heckman

& Singer (1984), we use discrete distribution to approximate the true random variable

distribution, and obtain the non-parametric maximum likelihood estimator (NPMLE).

Detailed description about this extension model as well as the NPMLE can also be found

in Appendix. Note that one requirement to use the NPMLE is the independent of the

unobserved heterogeneity with all other covariates. In our application, this is clearly

violated, as the absence counts in the previous year is correlated with the heterogeneity

term. Nevertheless, we still present the results.

Column 2 of Table 3.2 presents the estimation results for this model. The

log-likelihood value for two mass points and three mass points are almost the same and

the probability associated with the third mass point is close to zero. Based on these

information, we believe, two mass points would be good enough.

Count data regressions and duration models are incapable of studying the strategic

behavior. For count data regressions, the information is aggregated at the end of one

year. Hence the dependent structures among events are lost. For duration models,

one needs to maintain the events independence assumption. Thus, by design, the

duration models assume that past events are uncorrelated with future ones. Notice some
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Table 3.2:: Duration Analysis Results

Dependent variable:

duration

Standard Heckman & Singer

age -0.028∗∗∗ -0.068∗∗∗

(0.006) (0.026)

age2 0.047∗∗∗ 0.094∗∗∗

(0.010) (0.032)

male -0.115 -0.133
(0.093) (0.113)

full 0.163 0.147
(0.105) (0.133)

marriage 0.076 0.119
(0.099) (0.127)

count87 0.254∗∗∗ 0.264∗∗∗

(0.010) (0.013)

Observations 878 878
Log Likelihood −248.668 -224.8397
χ2 576.961∗∗∗ (df = 5)
Number of Mass Points 2

Note: This table presents the duration analysis results. The subject under study is the
attendance duration before 1988’s first absence. No short and long-term absence distin-
guishing in this table. Heckman and Singer’s NPMLE is employed to approximate the
distribution of unobserved heterogeneity. We found 2 mass points are good enough. The
counts in 1987 is positive, indicating that the more absences in the previous year, the
higher the likelihood to ask leaves. This result can not be interpreted as casual, instead,
it approximate the unobserved heterogeneity. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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multiple-spell models break the independence assumption and allow lagged duration

dependence (Honoré 1993). However, this lagged duration model is in a panel setting,

and its hazard rate can be very difficult to study, since one needs to separate the state

dependence from the unobserved heterogeneity. This difficulty is even more intimidating

when one distinguishes short-term and long-term absences, as these two panels are

shocks for each other.

From the preliminary results of both count data regression and duration analysis,

we have seen that the counts of previous year’s absences are positively correlated with

the dependent variable (count data regression) and the hazard rate. It would be wired

to interpret these results as causal since it implies the more absences one took last year,

the more absences one would ask for in this year; or the more absences one took last

year, the higher hazard (hence, the shorter the attendance duration) one would have.

This interpretation contradicts the intention of the firm’s absence benefit program. The

proper interpretation of this trait should be an approximation of heterogeneities of

individuals: frequent-absence workers tend to have more absences all the time, while less

frequent workers should have fewer absence records in the future.

3.2.3 The Nature of the Problem

In this subsection, we try to illustrate the econometric challenges when modelling the

strategic behavior. In order to provide a better understanding, consider Figure 3.3,

which shows a possible realisation of work absences. The dash lines here are absence

periods, and the solid lines are the attendance periods. Lower case ‘s’ and ‘r’ are the

starting and recovery dates of a short-term absence respectively, and upper case ‘S’ and
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‘R’ are the starting and recovery dates for a long-term absence. In this example, we have

two short-term absences before a long-term absence.

0 s1 r1 s2 r2 S R

Figure 3.3: A possible realization of absences

Suppose now we are at t ∈ [r1, s2) and the goal consists of investigating how likely

is next absence at time t + dt. To account for the strategic behavior, one needs to

include previous absence records. In our application, it is the cumulative absence time

that matters most. Hence d1 = r1 − s1 should be in the model. We would expect

the coefficient of the cumulative absence time is negative if the firm’s absence benefit

program is working. That is, larger cumulative absence time will discourage any further

absence behavior.

Besides, we would also like to investigate whether asking for leaves is duration

dependent. Therefore, we need to include a time dependence term t− r1.

The distinction between short term and long term absences also creates a challenge.

Since the economic motivations behind these two different absences are disparate, one

should model them separately. However, the cumulative absence time is the summation

of these two. Thus these two models depend on each other, creating a quasi-simultaneous

equation system.

At this moment, it is evident that conventional micro-econometric tools such as

count data regression and duration analysis offer no satisfying solution to this problem.

The nature of this strategic behavior problem is the state dependence. In the next

section, we are going to introduce the self-exciting process, that by definition is state
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dependent and can model the strategic behavior among work absences.

3.3 Econometric Models for Work Absenteeism

3.3.1 The Work Absenteeism Models

For each individual i, define an incidence counting process that records all the starting

dates of absences:

N1
i (t) =

∞∑
j=1

I{tj ≤ t} (3.1)

define a recovery counting process that stores all the ending dates of absences:

N2
i (τ) =

∞∑
j=1

I{τj ≤ τ} (3.2)

We use t and τ to distinguish the times of beginning and ending dates of absences. Thus

the ith absence duration is just di = τi − ti. The time here is in terms of years: t ∈ [0, 2]

and τ ∈ [0, 2] (Two years data).

Recall that by the eligible condition for the SSP, we category any absences that

is less or equal to 3 days as short-term and other absences as long term. Define three

alternative states, k = 1, 2, 3, that an individual can occupy in our model: attendance

(k = 1), short-term absence (k = 2) and long-term absence (k = 3). Thus λ12(t) is the

short-term incidence intensity function (from attendance state to short-term absence),

and λ21(t) is the short-term recovery intensity function, other two long-term intensity

functions follow the same index rule.
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Furthermore, we define attendance periods as any time intervals between the last

recovery dates and the next starting dates of absences. Define absence periods as any

time intervals between the starting dates and the recovery dates of absences. Figure 3.3

in section 2 describes the situation. We assume that a new absence cannot occur without

the end of current absence. That is the incidence intensity is zero in the absence period.

Similarly, recovery events cannot occur before any absences ever started: the recovery

intensity is zero in attendance period.

A Model for Incidence Processes

The self-exciting has the advantage of including history information, but if there is no

previous absence records (both long term and short term), one might instead use the

duration analysis and study this constant hazard rate:

h(Xi, νi) = exp(νi)exp(X
′
iγ1k) (3.3)

where Xi is a vector of covariates, and the random variable ν is used to represent the

heterogeneity in the intensity. As usual, we will use the Heckman and Singer’s NPMLE

to handle the random effect term. Notice that for individuals that have no absence

records during the investigation period, we may treat them as censoring individuals in

this duration analysis.

If previous absence records exist, for individual i, the overall incidence intensity is
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specified as:

λi,1k(t) =

 λ1,k(Xi)λ2,k(t)
(
λ3,k(t) + λ4,k(t)

)
, t ∈ attendance period

0, t ∈ absence period

(3.4)

Notice here we allow both short-term and long-term incidence intensities to be positive

during the same attendance period. Furthermore, we assume that conditional on

current common filtration, the occurrences of short-term and long-term incidences are

independent. That is when studying the short-term (long-term) incidence process, we

consider absences are due to short-term (long-term) causes and long-term (short-term)

causes are independent censoring. This assumption resembles the cause-specific hazard

model rather than the competing risk model in the duration analysis.

The four components are:

λ1,k(Xi) = exp(X′iγ1k); k = 2, 3

λ1,k(Xi) contains all the time-invariant covariates such as age,gender and labour contract

status (full time or part-time). The exponential form guarantees the intensity is positive,

and it is also commonly used in duration analysis.

λ2,k(t) = exp(β1kHi(t)); k = 2, 3

λ2,k(t) governs the response of one worker to her own cumulative absence time Hi(t)

(in terms of days). β1k are our primary interested parameters. We expect they are

significantly negative (at least for the short-term absences) if the strategic behavior plays
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some roles in the decision making processes.

λ3,k(t) = 1 + |α1k|exp(α1k(t− τN1
i (t−))); k = 2, 3

Some absences might trigger further absences (e.g. minor illness might lead to a second

doctor-visiting). We use λ3,k(t) to measure the time dependence since previous recovery

date. The form of |α1k|exp(α1k(t− τN1
i (t−))) is mainly for the convenient of integration.

Lastly, we need one part to measure the individual’s response to Mondays and

Fridays. One would expect workers tend to ask for leaving more frequently on Mondays

or Fridays, as along with weekends, it would generate three consecutive off-duty days.

One straightforward modeling strategy is to use indicators for Mon/Fridays, but this will

create sudden jumps in the intensity function. When integrating w.r.t time to obtain the

cumulative intensity, such indicators would be lost as they have zero Lebesgue measure

in a continuous time framework. Thus we need a periodic continuous function with peaks

on Mon/Fridays. In the end, we choose the sine function:

λ4,k(t) = a1k(1 + sin(b+ c1kt)); k = 2, 3

We set c = 327.6 such that the distance between two peaks in the sine function is equal

to 7/365 years, or one week’s time, we would expect b ≈ 2.5 to match Monday/Friday’s

location and a to be significant if our hypothesis is correct. Figure 3.1 illustrate the idea.
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Mon/Friday Mon/Friday

one week

Figure 3.1: Mon/Friday Sine Function

The additive structure between λ3,k(t) and λ4,k(t) is mainly for the simplicity of

integration.

A Model for Recovery Processes

The recovery intensity has the following parts:

λ5,k(Xi) = exp(X ′iγk1)

λ6,k(τ) = |βk1|exp(βk1Hi(τ))

λ7(τ) = 1 + |βk2|exp(βk2(τ − tN1
i,13(τ−))); k = 2, 3

(3.5)

these parts have similar roles as in the incidence intensities: λ5,k(Xi) contains the

individual’s covariates, λ6,k(τ) measures an individual’s response to the absence score

and lastly λ7(τ) captures the duration dependence effect.

Notice in λ6,k(τ), the structure is different than λ2,k(τ). This difference is for the

convenient of integration. Unlike in the incidence intensity, the absence score is fixed for

each attendance period (using Figure 3.3’s notation, H(t1) = H(t2), t1, t2 ∈ [rj−1, sj)), in

the recovery intensity, during each absence period, the absence score evolves continuously

89



CHAPTER 3. WORK ABSENCE

(H(t2) = H(t1) + t2 − t1, t1 < t2 ∈ [sj, rj)). When integrate with respect to time, the

structure of λ6,k(τ) facilitates the computation.

The recovery intensities are specified as:

λi,k1(τ) =

 λ5,k(Xi)(λ6,k(τ) + λ7(τ)), τ ∈ k-term absence period

0, τ ∈ Otherwise

(3.6)

We assume that once an individual asks for a leave, she immediately knows the type

of absence (short or long-term). Hence, for each absence period, only one type of the

recovery intensity could be positive.

Notice that unlike the incidence processes, the recovery processes are by design

conditioned on the existence of occurrence of absences. Thus they always have history

information such as Hi(τ) and τ − tN1
i,13(τ−).

State dependence assumption in the incidence processes is verified in the previous

section. To verify the state dependent structure in the recovery intensity, one notices

that if the state-dependent hypothesis is correct, coefficients of the cumulative absence

time βk1, k = 2, 3 should be significantly away from zero. If one (or both) of the recovery

processes do not show the state dependent structure, it would be plausible to assume

that the absence duration are i.i.d. In that case, a standard duration analysis would be

a useful modeling alternative.
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The Heterogeneity Issue and Workarounds

So far, our models have not addressed the issue of the unobserved heterogeneity. In this

subsection, we briefly discuss the difficulties of including the heterogeneity in the model

and some workaround methods.

Considering the following intensity,

λi(t|νi,F it−) = νiλ0(t|F it−)

where ν ∼ G(ν) is the unobserved heterogeneity with distribution G. Note that the

cumulative intensity Λi(t|νi,F it−) = νiΛ0(t|F it−) is not predictable w.r.t F it−. Hence

Ni(t)− Λi(t|νi,F it−) can not be a martingale.

One may try to integrate out with respect to ν in order to get rid of the unobserved

heterogeneity as in the mixed proportional hazard (MPH) model. However, this strategy

is difficult without assuming that ν is uncorrelated with the filtration, which is hard to

be held in the self-exciting framework: We are conditional on past events, which, by

construction, are correlated with ν.

Even one overcomes the integration problem, the difference between the observed

counting process and the marginal cumulative intensity is not a martingale. By the

uniqueness of the Doob-Meyer decomposition, the observed counting process is not

paired with the marginal cumulative intensity.

In general, it is hard to distinguish the state dependent effect and individual

heterogeneity. Heckman (1991) concluded that ‘The ability to distinguish between

heterogeneity and duration dependence in single spell duration models rests critically on
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maintaining explicit assumptions about the way unobservable and observables interact.’

and ‘... Economically extraneous statistical assumptions drive the answer...Viewed as the

prototype for identification in general nonergodic models, these results are not encourag-

ing.’ Nerlove (2014) holds a similar view: ‘Unfortunately, in my view, in the more than 35

years since the Paris Conference in 1977 no solution has been found to the general prob-

lem of distinguishing between ”the hidden hand of the past” and individual heterogeneity.’

Approximating the Heterogeneity

One workaround is to use the history information to approximate the unobserved

heterogeneity. In the short-term incidence process, the primary unobserved heterogeneity

is an individual’s working attitude, while in the long-term incidence process, the primary

unobserved heterogeneity is one’s health status. We may approximate these two terms

using the (moving) average attendance duration d̃(t) along with some absence score

adjustments.

Using Figure 3.3 and its notation to help define d̃(t):

d̃(t) =

∑
i:ri≤t si − ri−1

#{i : si ≤ t}

Notice here, we only consider the short-term attendance duration in the short-term

process and vice versa for the long-term process.
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We assume d̃(t) has the following structure:

log(d̃(t)) = I(t) +G(H(t)) + ε

where I(t) is the incidence index at time t. A higher index suggests a more hard-working

individual in the short-term process (or better health condition in the long-term case).

G(·) is an increasing function of the absence score H(t). ε is a random variable with

zero mean. This structure indicates that a hard-working individual on average tends

to have longer work attendance period. In the meantime, a higher absence score also

suppress one’s further absences, generating a longer work attendance period. Notice

that, unlike the conventional method, where the unobserved heterogeneity is assumed

to be time-persistent, we express the working attitude to be time-variant. We argue

such assumption is more realistic: as time goes by, one’s attitude might be ‘modified’ or

‘educated’ by firm’s absence policy such that it evolves constantly.

We approximate the index I(t) by Ĩ(t):

Ĩ(t) = log(d̃(t))−G(H(t)) = I(t) + ε

In practice, we let G(H(t)) = log(1 +H(t)), and to make sure log(d̃(t)) has mathematical

meaning in the case of d̃(t) = 0, we replace it as log(1 + d̃(t)).

We modify the λ1,k as:

λ1,k = exp(X′iγ1k)exp(γ
′
Ĩ(t))

the structural of the overall incidence intensity remains the same.
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In the long-term recovery processes, the primary unobserved heterogeneity is an

individual’s ability to recovery, while in the short-term, it is the willingness to return.

Similarly, we could use history information to approximate them. This time, we choose

the (moving) average recovery time c̃(t), which is defined as (again, use Figure 3.3’s

notation),

c̃(t) =

∑
i:ri≤t ri − si

#{i : ri ≤ t}

We also only consider the short-term absence duration in the short-term process and

vice versa for the long-term process.

Assuming c̃(t) has the following structure:

log(c̃(t)) = R(t)−G(H(t)) + ε

where R(t) is the recovery process index with decreasing order: a higher recover index

means a longer recovery time in the long-term process (or a less willing to return in the

short-term case). G(·) is an increasing function of the absence score H(t) and ε is a

random variable with zero mean. As usual, we may approximate R(t) by R̃(t):

R̃(t) = log(c̃(t)) +G(H(t)) = R(t) + ε

Just like before, we set G(H(t)) = log(1 +H(t)).

We modify λ5,k as:

λ5,k = exp(X ′iγk1)exp(γ
′
R̃(t))

and the overall recovery intensities structure remain the same.
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To maintain the differences between counting processes and their cumulative

intensities are martingale, we need to assume that the true measurements used by

individuals for working attitudes and recovery abilities are Ĩ(t) and R̃(t) respectively

instead of I(t) and R(t).

Group Heterogeneity

Another workaround is to assume group heterogeneity instead of individual

heterogeneity and to reveal the unobserved heterogeneity through an external model.

Recall in the incidence processes, the primary unobserved heterogeneity is the individual’s

working attitude, which is correlated with the number of absences: a group of hard-

working individuals have in general fewer absences, while less hard-working individuals

tend to have more absences. We may then build and estimate a finite mixture count

data model, and use the Bayesian rule to ‘reveal’ individual’s group affiliation.

Now assume individuals belong to k different groups. Each individual’s group

affiliation is of course unobserved by the researchers. Assume the numbers of absences

y = (y1, · · · , yN)
′

over a period are governed by a finite mixture Poisson:

p(y|Θ) = w1f1(y|Θ1) + w2f2(y|Θ2) + · · ·+ wkfk(y|Θk)

where Θ = (Θ1,Θ2, · · · ,Θk,w)
′

denotes the vector of all parameters, w =

(w1, w2, · · · , wk)
′

is a vector of weight whose elements are restricted to be posi-

tive and sum to unity. fk(·|Θk) is a Poisson density with the vector of parameters

Θk.
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Additionally, we may equivalently model the finite mixture model in a hierarchical

manner using a latent variable li, which represents the allocation of each observation yi

to one of the components:

p(yi|Θk, li = k) = fk(yi|Θk)

p(li = k) = wk

One may have the group affiliation posterior by the Bayesian rule:

p(li = k|yi,Θk) =
p(yi|li = k,Θk) ∗ p(li = k)

p(yi|Θk)

=
p(yi|li = k,Θk) ∗ wk∑K
k=1 p(yi|li = k,Θk) ∗ wk

we may then assign the group affiliation according to the posteriors.

Admittedly, this workaround is not perfect. The choice of k is somehow arbitrary.

The classification of groups in the finite mixture model is ‘fuzziness’: a certain

observation yi has probability wk to belong to component k. However, we ‘force’ each

observation to fit into one group by posterior, and modify the fuzzy classification into

a sharp classification. In this case, some information loss is inevitable. In addition,

this method only works for incidence processes. Since for the recovery processes, the

primary unobserved heterogeneity is one’s recovery ability, which can not be represented

as counts.

Thus, we will use the group heterogeneity as a robustness tool for the incidence

intensities against different heterogeneity assumptions.
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3.4 Main Results

In this section, we present the estimation results along with the discussions. We first

report the results for incidence processes where the decisions of asking for leave is

modelled.

3.4.1 Incidence Processes Estimation Results

We will first present the results for absences that have no previous absence records

(including both short term and long term records). The subject under study is the

attendance duration, that is the time intervals individuals took to ask for their initial

absences. Two groups of individuals may have such absences. Individuals that have no

absence records in the past but have absences during the investigation period naturally

fit this situation. Although we do not have exact information, we suspect these kind

of individuals are most likely to be newly hired workers. The second group consists of

individuals who have no absence records in our investigation period as well as in the

past. And we shall treat them as censored.

Table 3.1 reports the duration analysis results using the likelihood function

mentioned in the previous section. What surprises us is the lack of heterogeneity in the

data: the log-likelihood values of one mass point and two mass points are incredibly close

in both short term and long term cases. Another evidence that supports no heterogeneity

is that when we include two mass points, the standard errors are relatively large, a sign

of too many mass points (Greene & Hensher 2010).
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Table 3.1:: Duration Analysis for Attendance before Initial Absence

short term,k=2 short term,k=2 long term,k=3 long term,k=3

(1) (2) (3) (4)

age -0.0392∗∗∗ -0.0696∗ -0.0654∗∗∗ -0.1000∗

(0.0138) (0.0402) (0.0195) (0.0529)

age2 0.0464∗∗ 0.0817∗ 0.0841 ∗∗∗ 0.1240∗∗

(0.0203) (0.0484) (0.0280) (0.0633)

male 0.0834 0.0356 0.3175 0.1184
(0.2253) (0.2302) (0.3461) (0.3416)

full time 0.0703 -0.0039 0.4345 0.3861
(0.2402) (0.2561) (0.3563) (0.3602)

married 0.0357 0.0873 0.0894 0.1391
(0.2015) (0.2128) ( 0.2570) (0.2679)

Log Likelihood -257.0000 -256.6635 -174.5000 -174.2110
Number of Mass Points 1 2 1 2

Note: The subject under study is the attendance duration before the initial absences. Here the

initial absences are defined as the ones that when ask for leaves, the absence scores are zeros.

Heckman and Singer’s NPMLE is employed to approximate the distribution of unobserved

heterogeneity. Column (1) and (2) report the results when we have one and two mass points

for the attendance duration before short-term absences. The log-likelihood values are similar,

indicating little heterogeneity; Column (3) and (4) report the results when we have one and

two mass points for the attendance duration before long-term absences. The log-likelihood

values are again similar, indicating litter heterogeneity. Absence duration less or equal to 3

days are categorized as short term, others are long term. age2 = age2/100. ∗p<0.1; ∗∗p<0.05;

∗∗∗p<0.01

Next, we present our main results for incidence intensities in Table 3.2. The first
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two columns are the results using heterogeneity approximation for short and long

term absences, and the last two columns are the results using group heterogeneity. As

mentioned before, our primary focus would be the ones employing the heterogeneity

approximation. Group heterogeneity results are presented for robustness check purpose.

To streamline the presentation, we postpone the group heterogeneity analysis in the next

subsection.

The most important parameters, of course, are the β1k, k = 2, 3, which are the

coefficients of the absence scores for short-term and long-term incidences respectively.

β11 is significantly less than zero while β12 is not. Such results suggest that the strategic

behavior only exist in the short-term absences: as the absence time cumulates, workers

are discouraged to take short-term absences. While in the long-term absences, these

absence scores seem to be out of the decision-making processes.

Other estimators also suggest that the short-term and long-term incidence decision-

making processes are entirely different. For example, in the short-term, workers are

more likely to ask for leave on Monday or Fridays. This phenomenon is understandable,

since along with weekends, individuals may have three consecutive off-working days.

Such strategic behavior strongly indicate that short-term absences are more likely to be

‘voluntary’, where there is a trade-off between working time and leisure time to maximise

the utility. As it could be expected, Monday/Fridays are not significant in the long-term

absences, which is consistent with the ‘involuntary’ leave hypothesis.

In both short and long-term leaves, age is an essential element. In the short term,

the general trend is to increase the intensity first and then decrease it. The peak is

around 13.5 working age or 29.5 years old. The trend for long-term leaves is quite the
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Table 3.2:: Incidence Intensities

Approx. Heterogeneity Group Heterogeneity

short term long term short term long term

(1) (2) (3) (4)

β1k -0.05734195∗∗∗ 0.002551 -0.03207249∗∗∗ -0.02183574
(0.007313) (0.0108902) (0.0072219) (0.0139920)

α1k -35.32423495∗∗ -5.02947189 -36.90188525∗ -4.92911781
(17.09965) (6.4427670) (21.600208) (7.2625815)

age 0.31746598∗∗∗ -0.42761261∗∗∗ 0.24439097∗∗ -0.37079208∗∗

(0.0639588) (0.1598638) (0.1135570) (0.1448501)

age2 -1.17953689∗∗∗ 0.96998791∗∗∗ -1.53408411∗∗ 0.86544108∗∗∗

(0.3328688) (0.3161102) (0.6521555) (0.2636461)

male -2.02277622 -0.34993766 -4.62557647 -0.39203022
(1.512623) (1.0142152) (12.506801) (1.0577588)

full time 1.2947023∗∗∗ 1.22844682 0.7890032∗∗∗ 1.33575203
(0.438272) (1.2074113) (0.1905531) (1.2328672)

married -1.03290089∗∗∗ 1.33187185∗ -1.50756787∗∗ 1.32788344∗

(0.350615) (0.7269884) (0.6975158) (0.6999908)

Mon/Fri 2.01429447∗ 0.15542535 5.00469984∗ 0.1711705
(1.142056) (2.6100053) (2.6209058) (2.9969653)

b 2.57708555∗∗∗ 2.69547261 2.58967502∗∗∗ 2.71009241
(0.547747) (7.8254215) (0.2458489) (8.4098623)

Group 2 – – 1.01837705∗∗ –
– – (0.4682334) –

I(t) -0.42075577∗∗∗ 0.03062177 – –
(0.095787) (0.1093162) – –

Distance 0.128602 0.028854 0.146190 0.0295902

Note:

This table presents our main results for the incidence processes. Column (1) and (2) are using
heterogeneity approximation, while column (3) and (4) use group heterogeneity assumption.
Group affiliations are calculated using the posteriors from the finite mixture Poisson-2 models.
I(t) is the working attitude index. age2 = age2/100. Absence duration less or equal to 3 days
are categorized as short term, others are long term. β1k are the coefficients of the absence
score, α1k are the coefficients of time dependent structure. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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opposite. It decreases first and then increases. The turning age is around 38 years. These

results are reasonable and expected. Since youngsters value the leisure time much more

than the elderly and are more likely to be involved in the voluntary short-term absences.

They are also less likely to have major illness compare to senior workers.

Gender difference is insignificant in both short and long term cases. Full-time

workers are more likely to have short-term absences compare to their part-time

counterparts. Marriage plays an interesting role here. On the one hand, it serves as a

stabiliser and reduces the short-term absences. On the other hand, when individuals

need to ask for long-term absences, marriage seems to provide some protection against

income loss during the absence period and increases the likelihood for asking leave.

This case is particularly true if both spouses have jobs. Unfortunately we do not have

information on this covariate.

Lastly, we have clear evidence for the time dependence in the short-term incidence

process: more recent the last short absence contributes a higher propensity to ask for

a short leave again. However, such time-dependent structure is not significant in the

long-term incidence.

Robustness Check

For the group heterogeneity, we need first to pin down the number of groups k. Recall

the results in Table 3.1, where the proper number of mass points in NPMLE is one.

Therefore, we believe that k = 2 is reasonable. We then estimate the finite mixture

Poisson model with two components and obtain the group affiliation posteriors. In the

end, for the short-term absences, there are 450 individuals belong to Group 1 with
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average absence counts of 5.12 in the year 1988; 303 individuals are with Group 2, whose

average absence counts in the same year is 7.19.

In the long-term absences, the group affiliation posteriors suggest only one group,

indicating little heterogeneity among individuals. This result is somehow expected, as in

the heterogeneity approximation case, the coefficient for the hard-working index is also

not significant, a sign for homogeneity. We document the finite mixture Poisson model

results in the Appendix.

Comparing column (1) and (3) and (2) and (4), we conclude that our results are

quite robust against different heterogeneity assumptions. If one estimate is significant

in the heterogeneity approximation case, it is also significant in the group heterogeneity

case, the same pattern holds true for insignificant estimates. Second, as mentioned

before, despite of heterogeneity settings, we have heterogeneity in the short-term

absences, while in the long-term cases we end up with homogeneity.

We also estimate the incidence intensities without heterogeneity. Column (1) and

(2) in Table 3.3 report the results. For the short-term incidence, the estimate for the

absence score is smaller in absolute, but it is still negatively and significantly away from

zero. This result indicates that the effect of the absence score dominates the effect of

the unobserved heterogeneity. As for the long-term incidence, the absence score estimate

is insignificant. Such result is expected since, in the heterogeneity-included results, the

estimates for both absence score and heterogeneity term are insignificant.
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Table 3.3:: Results When no Heterogeneity Term

Incidence Recovery

short term long term short term long term

(1) (2) (3) (4)

β1k -0.02356803∗∗∗ 0.00487259 – –
(0.0070859) (0.00980143) (–) (–)

α1k -35.32423437∗ -5.02874541 – –
(19.987709) (5.87600166) (–) (–)

βk1 – – 0.0010193∗∗∗ -0.00538263∗∗∗

(–) (–) (0.0002110) (0.0010231)

βk2 – – -5.433983∗∗∗ -0.60029543∗∗

(–) (–) (0.5936243) (0.3020778)

age 0.231427∗∗∗ -0.43991373∗∗∗ 0.171277 0.15071982∗∗∗

(0.0964381) (0.1691635) (0.1026832) (0.0418187)

age2 -1.19406119∗∗ 0.9958262∗∗∗ -0.396060∗∗ -0.30651844∗∗∗

(0.5235543) (0.3246395) (0.1999274) (0.0792001)

male -2.01865347 -0.35511035 -1.271478∗∗ 2.79079758∗∗∗

(2.4986280) (1.0628132) (5570655) (5163636)

full time 1.44430259∗∗∗ 1.23437316 -1.077283∗∗∗ -1.69580522
(0.5192177) (1.1959571) (0.3020042) (2.2987771)

married -1.00444757∗ 1.31971977∗ 4.0554886∗∗∗ -1.65688059∗∗∗

(0.5257589) (0.7042317) (1.2183082) (0.4934599)

Mon/Fri 2.03772383∗ 0.16219689 – –
(1.1983623) (3.0323551) (–) (–)

b 2.57821261∗∗∗ 2.69541326 – –
(0.2861491) (8.86651532) (–) (–)

Distance 0.142452 0.099502 0.028582 0.026130

Note:

This table presents the results when heterogeneity is not included in the models (both
incidence and recovery). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.4.2 Recovery Processes Estimation Results

After a worker has asked for a leave, she has to decide the length of such absence. The

recovery intensities portrait the counting processes that consist of all the ending days

of absences. As in the incidence processes, we are also interested in discovering the

differences between short-term and long-term recovery decision makings.

Caution is required for a series of scheduled absences as they will lead to a biased

estimation if researchers ignore them. Unlike most absences in our study, where the

decisions to be absent are due to some accidents, scheduled absences are triggered by

some pre-existing events such as holiday arrangements. These specific events are known

to everyone. Thus, full information is available when workers make these plans. The

decisions to be absent and the duration of such absence will be made simultaneously.

Thus the scheduled absence duration and the normal absence duration should come from

different processes. For example, a worker might be based on her absence records and

utility to decide whether to plan a leave just before the Christmas holiday. Moreover,

she will at the same time pin down the duration of such absence (0 days for no absence).

Without further information, it is almost impossible to separate scheduled absences

from normal ones. Our estimation results would be inevitably biased. One obvious way

to reduce (but impossible to eliminate) the bias is to delete all the absences during the

Christmas seasons.

Table 3.4 reports the results for recovery intensity for both short-term and long-term.

In the short-term recovery intensity, the estimator of β21 is significantly higher than zero

in both original and bias reduction estimations. It measures how an individual responds

to absence scores in the recovery decisions: the longer cumulative absence time one has,
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the sooner this person will choose to return to work. This, however, is not the case in

the long-term, where the response to the cumulative absence time is insignificant. These

facts further confirm that short-term absences are more likely to be strategic while

long-term absences are mostly associated with ‘involuntary’ causes. In the short-term,

heterogeneity is insignificant, while in the long-term, the recovery ability heterogeneity

do play a role.

Age is significant in both situations of short-term recovery. The general trend is

first to increase the intensity of recovering and then decrease it. Compare to their female

counterparts, males stay longer in short-term absences. Full-time workers tend to stay

longer in the short-term absences. Lastly, married workers would return to work much

quicker from short-term absences.

Column (3) and (4) in Table 3.3 report the result when heterogeneity is not

considered. The short-term absence score estimate is still significant, which is expected

as the heterogeneity is shown to be insignificant in the previous result. In the long-term

recoveries, however, we observe a significant and negative absence score estimate. The

reason is that larger absence score is correlated with the average recovery time (the larger

the score is, usually the longer the average recovery time is), which is an approximation

to the unobserved heterogeneity. Recall the long-term recovery results in Table 3.4,

the absence score estimate is insignificant, but the unobserved heterogeneity estimate

is significant. Thus, if heterogeneity is not included, the absence score serves as an

approximation to the unobserved heterogeneity.

So far, we barely mention the covariates effects in the long-term recovery process.

The reason is the insignificant of β31 may suggest that the long-term durations are
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Table 3.4:: Recovery Intensities

short term,k=2 short term,k=2 long term,k=3 long term,k=3
original holiday original holiday

(1) (2) (3) (4)

βk1 0.0001905∗∗∗ 0.0008113∗∗∗ 1.4540654*10−5 9.0460202*10−6

(7.4389542*10−5) (0.0002250) (0.0003066) (0.0002337)

βk2 -0.2974196∗∗∗ -5.4340119∗∗∗ -2.6893905∗∗∗ -1.2034950∗∗∗

(0.0401992) (0.5001305) (1.0069173) (0.3709412)

R(t) -0.0192418 -0.0247104 -0.4945683∗∗∗ -0.6644247∗∗

(0.0321509) (0.0283878) (0.0943706) (0.2661450)

age 0.3777196∗∗∗ 0.1760568∗ 0.1905671∗∗∗ 0.1039532∗∗∗

(0.1333167) (0.0968915) (0.0476012) (0.0227340)

age2 -0.8573565∗∗∗ -0.3947298∗∗ -0.5215264∗∗∗ -0.1656411∗∗∗

(0.2791424) (0.1820732) (0.1408734) (0.0444712)

male -0.5670663∗∗∗ -1.2714456∗∗ 4.1771252∗∗∗ 4.6870273∗∗∗

(0.2009157) (0.5571283) (0.3325700) (0.3821019)

full time -2.2429315∗∗∗ -1.0772366∗∗∗ -0.2411186 -1.7283286∗

(0.5311679) (0.2800427) (0.3252895) (0.9810031)

married 3.6464467∗∗ 4.0556782∗∗∗ -1.5417979∗∗∗ -2.1603153∗∗∗

(1.5006498) (1.2085741) (0.2369997) (0.2075685)

Distance 0.100605 0.094431 0.061892 0.044357

Note: This table reports our main recovery processes results. The first and third columns are
the results for the original dataset, where we did not delete the absences during the Christmas
seasons. The results in second and fourth columns are estimated using Christmas-deleted
dataset. Absence duration less or equal to 3 days are categorized as short term, others are long
term. βk1 are the coefficients of the absence score, βk2 are the coefficients of time dependent
structure. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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memoryless. That is, conditional on the occurrence of a long-term absence, the duration

of such absences are independent. Notice that 1) the average recovery time is used as

an approximation to the abilities of recovery of individuals; thus it does not necessarily

mean the duration is state dependent. 2) The recovery process N2
i,31(τ) is still state

dependent, since N2
i,31 does not contain full information about the long-term duration.

The duration can only be constructed by using both incidence and recovery process(i.e.,

d = τ − t).

It is then reasonable to assume that within individuals, each long-term recovery

duration is i.i.d. A standard duration analysis could then be used to analyse such

process.

For each individual, define the hazard rate and its cumulative hazard rate as:

hi(Xi, νi) = exp(Xiβ
′
+ νi)

Hi(T ) = hi(Xi, νi)T

(3.7)

where t is the duration (not the time stamps used in the self-exciting processes), Xi is a

vector of covariates of individual i, νi is the individual random effect.

The likelihood contribution for each individual is

Li(νi) =
∏
j∈Si

exp(−Hi(tj))hi (3.8)

where Si the set of observed long term durations for individual i. The fact that an

absence has already occurred implies that we do not have the censoring problem here.
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We will, again, use Heckman & Singer (1984)’s NPMLE. The likelihood function is

L =
N∏
i=1

E[Li(νi)] =
N∏
i=1

Q∑
l=1

plLi(νl), with

Q∑
l=1

pl = 1 (3.9)

Table 4.1 indicates the results of this duration analysis. Most of the covariates are

significant. Age has a similar pattern to the short-term recovery. As age increases, the

propensity to go back to work first increases but then decreases. The peak is around a

working age of 31. The reason, we believe, is the individual physiological conditions.

Younger workers have better physiological conditions, which lead to a faster recovery

process. As ageing occurs, one’s physiological conditions decline. It makes harder and

longer for a person to fully recover. Male workers on average return to work faster than

their female counterparts. Married workers tend to recovery slower.

Overall, our estimated self-exciting intensities fit the data quite well. We plot the

estimated averaged cumulative intensities against observed averaged counting processes

to demonstrate the goodness of fit. Since we believe the long-term recovery process is

unfit for self-exciting, we do not report its goodness of fit.

3.4.3 A Closer Look at the Strategy behavior Effect

In this subsection, we ask the question do individuals’ attitudes towards the cumulative

absence time changes as her seniority grows. To do so, we change the coefficient of

cumulative absence time to a function of working age. Specifically, we modify λ2,2 in the
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Table 3.5:: Duration Analysis for Long-term Recovery

long term,k=3

holiday

age 0.1062849∗∗∗

(0.0192083)

age2 -0.1849780∗∗∗

(0.0335172)

male 0.5421261∗∗∗

(0.0917358)

full time 0.1217907
(0.1142700)

married -0.2743786∗∗∗

(0.0952768)

log-likelihood 3361.009
Number of Mass Points 2

Note: Given the fact that individuals do not respond to the absence
scores in the long-term recovery, we instead use the conventional du-
ration model. The subject under study is the duration of long-term
absences. Heckman and Singer’s NPMLE is used. We found two mass
points is good enough. age2 = age2/100. b is the coefficient of duration
dependence. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(a) Short term incidence (b) Long term incidence

(c) Short term recovery (Original) (d) Short term recovery (Bias Reduction)

Figure 3.1: goodness of fit
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short-term incidence intensity as

λ∗2,2(t) = exp(θ(age)H(t))

where θ(age) = β0 + β1age + β2age
2/100. Other components and the structural of

incidence intensity remain unchanged. Table 3.6 reports the results.

To assess the overall significance of θ(age), we employ two Wald tests: 1) do

individuals respond to the cumulative absence time:

H0 : β1 = β1 = β2 = 0

H1 : β1 6= 0, β1 6= 0, β2 6= 0

and 2) do individuals’ attitudes about the cumulative absence time varies as working age

changes:

H0 : β1 = β2 = 0

H1 : β1 6= 0, β2 6= 0

The Wald statistics for the first and second test are 22334.637 and 355.045 respectively.

The results suggest to reject both null hypothesises. We conclude that in the short-term

absence, individuals are sensitive to the cumulative absence time, and individuals’

attitudes vary along with age when they ask for short-term leaves. To provide a more

transparent demonstration, we plot θ(age) below. What Figure 3.2 shows is that young

workers tend to ignore the cumulative absence time when they are making short-term

absence decisions as they grow older, but this trend stops around working age of 19.7 (or
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Table 3.6:: Short-term Incidence Intensity

Incidence Intensity

short term

k=2

β0 -0.34215516∗

(0.1904758)

β1 0.03407675
(0.0280976)

β2 -0.08642652
( 0.0960550)

α1k -39.37455248∗∗

( 18.741119)

b 2.61810899∗∗∗

( 0.3692254)

age 0.2953078∗∗∗

(0.0991777)

age2 -1.1536771∗∗

(0.5079094)

male -2.0585887
(1.7245835)

full time 1.31545004∗∗∗

(0.5182786)

married -1.02333993∗∗

(0.4207051)

Mon/Fri 2.35010473∗∗

(1.1141944)

I(t) 0.28212665∗∗∗

(0.0913577)

Distance 0.107879

Note: This table reports the results that instead of estimating the co-
efficient of absence score, we replace it with a function working ages.
Absence duration less or equal to 3 days are categorized as short term,
others are long term. age2 = age2/100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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actual age of 35.7). After this age, the cumulative absence time plays more and more

significant role in the decision-making process. We suspect the reason for such a pattern

is because the age of 36 is the time when a typical worker gets married. So a stable

family generate a more matured working attitude.

Figure 3.2: θ(age) in Short term incidence

3.4.4 The Cut-off Between Short and Long Terms

The criteria we used to distinguished a short and long-term absence is the length of

this absence. So far this cut-off is three consecutive days of leave. The reason is due

to the eligible condition of UK sick-pay regulation. Under this cut-off, we have seen

that individual responds to the cumulative absence time in short-term absences but not

in long-term ones. These different responses inspire us to re-define the cut-off between

short and long terms.

Define the short-term absences are the ones that, when making the incidence and

returning decisions, individuals will consider the cumulative absence time, while in

long-term absences individuals do not take into account the cumulative absence time.
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Specifically, under the proper cut-off c, the coefficients of cumulative absence time H(t)

in λ2,k and λ6,k, k = 2, 3 satisfy 1) the short-term coefficients are significant away from

zero, and 2) the long-term coefficients are insignificant.

We may use the newly introduced definition of the short and long term to find

the proper cut-off c. To do so, we gradually ‘re-define’ the short-term absence as any

absence that is less or equal to c days and report the estimating results for these short

and long-term intensities. The aim is to test the significance of coefficients of H(t).

Table 3.7 presents the results. If the cut-off is at 2 days, both β1k, k = 2, 3 are

significant. This means some absences in the long-term should be categorised as

short-term. When cut-off is at 4 or 5 days, both βk1, k = 2, 3 are insignificant. This

means some absences in the short-term should be categorised as long-term. It turns

out 3 days of absence duration is the proper cut-off. The coefficient of Monday/Friday

is another evidence that favours c = 3: only short-term absences are sensitive to the

Monday and Fridays. This is exactly the case when c = 2 and c = 3, yet when c > 3, this

coefficient is no longer significant. It suggests that for absence durations that are longer

than three days, they should be classified as long-term absences.

Recall that one eligibility to claim the statutory sick pay in the UK is that

individuals need to have been off work sick for beyond three days. We do not think the

fact that the proper cut-off is the same as this qualification is merely coincident. Instead,

it highlights the importance of this social security regulation.
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Table 3.7:: Cut-off Check

Incidence Intensities Recovery Intensities

short term long term short term long term

Cut-off Mon/Fri β12 β13 β21 β31

c = 2 1.59447952∗∗ -0.1094399∗∗∗ -0.05018605∗∗ 0.0006166∗∗∗ 0.00030766
(0.5741051) (0.0289985) (0.0214045) (0.0001899) (0.0009172)

c = 3 2.01429447∗ -0.05734195∗∗∗ 0.002551 0.0008113∗∗∗ 9.046*10−6

(1.142056) (0.007313) (0.0283703) (0.0002250) (0.0002337)

c = 4 1.08155452 -0.0466356∗∗∗ 0.00378901 0.0003203 6.802*10−6

(0.7767747) (0.0119311) (0.0110785) (0.0002460) (0.0002879)

c = 5 0.54790203 -0.05774703∗∗∗ -0.00752412 0.0000130 9.353*10−6

(0.3641992) (0.0121355) (0.0484371) (0.0004401) (0.0004270)

Note: To be a proper cut-off, the coefficients must be the case: Short-term absence scores coeffi-
cients are significantly different than zero, while long-term absence scores coefficients are insignificant.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.5 An Economic Model for Work Absenteeism

In this section, inspired from the empirical results, we present a simple economic model.

We first provide a narrative approach to describe the incentives to the strategic behavior

in work absences. Next, we modify a standard labour-leisure model to characterise the

decision-making process of asking for leave and returning to work. We also construct a

structural model to describe how individuals optimise the long-term absence durations.

3.5.1 The Incentive to Absence behavior

It is known that a work search is costly. A worker may accept a job offer even though

the contracted wage is not equal to the marginal rate of substitution between leisure and

income. If a worker accepts such a job offer, she remains an incentive to consume more

leisure, one common way to do so is, of course, to be absent from work.

Even if the marginal rate of substitution between income and leisure is equal to the

contracted wage, a worker may occasionally prefer to be absent due to external accidents.

A worker will choose to be absent when the (expected) size of a shock is large, and the

alternative activities are more attractive.

The last element is the worker’s personal absence history. Working discipline

regulations in most firms specified particular reward/punishment schedules for work

absences. These rules usually reward ‘good reputation’ workers (those who have less

cumulative absence time) and punish ‘bad reputation’ workers (those who have more

cumulative absence time). The shadow costs for workers in different positions of the

cumulative absence time spectral are different. This creates the incentive to consume
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more (or less) absences depending on one’s absence score.

3.5.2 Decision to Ask for Absence

Suppose the worker’s utility is a linear function of ω,C,R(A) and some other unobserved

factors. ω is the general well-being, and C is consumption. R(A) is the reputation. It is

a function of cumulative absence time A with R
′
(·) < 0 and R

′′
(·) < 0.

Note in the incidence intensity model, we express the reputation as exp(−βA), whose

first and second derivative are −β exp(−βA) < 0 and β2 exp(−βA) > 0 respectively.

We do not think this setting contradicts our economic assumptions on the reputation

function. Since individual may not necessarily map utility to absence actions linearly. If

current utility is quite low, one more absence may make little difference to individuals.

At the first stage, workers accept the job offers and have the same reputation.

Random shocks e ∈ [0,∞) hit all individuals. Notice that e = 0 means no accident at

shock, and a higher value of e indicates a more severe shock. Workers can observe the

existence of the shocks but cannot observe the sizes of them without further information.

We assume at this stage, after observing the shocks, workers will always ask for absence.

After that, further information is given, the size of the shock is known, and workers

choose the duration of the absence (The decision process for how to choose the length

of an absence spell will be described later). Cumulative absence time is updated from

0→ A (different values of A for different workers). The well-being ω
′

evolves as follow:

ω
′
= ω − e+ g(A)
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where g(·) is the well-being generating function with g(0) = 0, g
′
(·) > 0 and g

′′
(·) < 0.

In the second stage, individuals again observe the existence of shocks. But in this

stage, a worker has to decide whether to ask for the absence (D = 1 for absence, D = 0

otherwise) based on her history and the expectation on the size of the accident by:

D = I{U(R(A+ a(E(e))), ω
′ − E(e) + g(a(E(e))), C1) + ε1 > U(R(A), ω

′ − E(e), C2) + ε2}

= I{U1 + ε1 > U0 + ε2}

where U(·) is the utility function. Let UR, Uω, UC > 0 be the partial derivatives of the

utility function. a(·) is the duration of the absence and is determined by the size of an

accident with a
′
(·) > 0, ε1, ε2 represent unobserved factors that might effect the utility

function.

In the case of long-term absences, individuals do not respond to the reputation, the

absence decision is then governed by

D = I{U(ω
′ − E(e) + g(a(E(e))), C1) + ε1 > U(ω

′ − E(e), C2) + ε2}

This decision rule specifies that an individual will ask for a leave if and only if the

expected utility for being absent is higher than the utility of attendance. The cumulative

absence time is evolved as

A = A− + a

Individuals’ absence decisions are then depended on (a) their cumulative absence time

and (b) their beliefs about the size of the accidents.
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Taking the expectation, we have

Pr(D = 1) = Pr(ε2 − ε1 < U1 − U0)

= Fε(U
1 − U0)

where ε = ε2 − ε1

Since F
′
(·) > 0, R

′
(·) < 0 and R

′′
(·) < 0. For short-term absences, we have:

∂Pr(D = 1)

∂A
< 0

3.5.3 Decision to Recovery

Conditional on the fact that individuals have decided to take absences, they will receive

information about the size of shocks. This further information is given by, for example,

doctors if workers went to hospitals. The workers then have to decide the duration of

their absences. Since the empirical results suggest that only in the short-term recovery

processes, workers tend to have strategic behavior, we assume that reputations will only

be a part of the equation if the size of an accident is within some level. That is if e ≤ e∗,

a(e, R) ∈ [0, a(e∗)]. If e > e∗, a(e) is then a deterministic function of accident e that can

not be altered by the reputation R.

Within such size range, a worker’s problem is:

max
a
U(R(A+ a), ω − e+ g(a), C)

s.t
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I + w(tc − a) +R(A+ a)− C = 0 (3.10)

where I is non-labour income, w is wage, tc is the contracted working time.

First order condition with respect to a yields:

URR
′
+ Uωg

′ − UC(w −R′) = 0

UC(w −R′) = URR
′
+ Uωg

′
> 0

(3.11)

By differentiating the first order condition (3.10) through (3.11), one can show that

∂a

∂A
< 0

That is, as long as the accident is small (e < e∗), the shorter the cumulative absence

time, the longer absence duration one may choose.

Notice that in the case of scheduled absence, there is no stochastic in a ‘shock’. The

size of this ‘shock’ is observed all the time. And the decisions to ask for leave and to

return to work should be made simultaneously: workers do not need the decision process

for asking for absence, she only need to decide the duration of such absence (0,1,2 or 3

days,0 days absence means no absence).

3.5.4 A Structural Model for Long-Term Recovery

If the sizes of accidents are greater than the threshold e∗, a worker may recognise this

event as a ‘major’ and will leave the reputation out of the equation. Statistically, this

means that the duration of a long-term absence is memoryless, and there is no harm to

120



CHAPTER 3. WORK ABSENCE

treat each of them as independent and identical distributed.

The task of a worker under this circumstance consists of choosing an optimal

duration to maximise her utility without the consideration of reputation. This task

is mostly a discrete choice problem under continuous time. And the independence

assumption inspires us to build a simple structural model for the long-term absence

duration decision making process. This structural model is a simplified version of Honore

& De Paula (2010) and de Paula & Honore (2017), in which the authors study the

couple’s interdependent retirement durations.

For individual i who is now in jth long-term recovery period, she has a positive

utility flow KijZ1(t)φ1(Xi), where Kij is a positive random variable that could represent

initial health. At any point, she may choose to ‘switch’ to the alternative state: returning

to work, with a utility flow Z2(t)φ2(Xi). Assuming individuals are myopic and an

exponential discount rate ρ, individual i’s utility for taking part in the jth long-term

recovery period until time tij is:

∫ tij

0

KijZ1(s)φ1(Xi)e
−ρsds+

∫ E(T )

tij

Z2(s)φ2(Xi)e
−ρsds (3.12)

where E(T ) is the expecting beginning time of a next long-term absence.

The first order condition for maximizing this with respect to tij is:

[
KijZ1(tij)φ1(Xi)− Z2(tij)φ2(Xi)

]
e−ρtij
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Thus the optimal Tij is given by:

Tij = inf{tij : [KijZ1(tij)φ1(Xi)− Z2(tij)φ2(Xi)]e
−ρtij < 0}

= inf{tij : Kij − Z(tij)φ(Xi) < 0}
(3.13)

where Z(·)φ(Xi) = Z2(·)φ2(Xi)/
(
Z1(·)φ1(Xi)

)
.

Notice the above equation is in the spirit of discrete choice structure model under

a latent variable framework in the sense that individual compares the instant utility

between two states: ν? = Kij − Z(tij)φ(Xi). If ν? ≤ 0, individuals will return to work,

ν? > 0 otherwise. The multiplicative structure of Z(t) and φ(Xi) is explicitly designed

to have the accelerated failure time model as a special case. There is no difficulty in

estimation to lose this structure. To sum up, the individual will switch at

Tij = Z−1(Kij/φ(Xi)) (3.14)

Notice that in this structure model, the source of randomness is Kij. We can

re-write equation 3.14 as the follows:

lnZ(Tij) = − lnφ(Xi) + ε (3.15)

where ε = lnKij. Equation 3.15 is a typical accelerated failure time (AFT) model.

Assume Z(t) = t, φ(Xi) = e−X
T
i β and Kij ∼ exp(1), we may end up with the exponential
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AFT model. The cumulative distribution function of Tij is given by

FTij(t) = Pr[Kije
XT

i β ≤ t]

= Pr[Kij ≤ te−X
T
i β]

= 1− exp(−t exp(−XT
i β))

(3.16)

The corresponding hazard rate is

hTij(t) =
fTij(t)

1− FTij(t)

= exp(−XT
i β)

(3.17)

These assumptions are mainly made to compare with our reduced form model 3.7 from

the previous section: their hazard rates are identical except that 1) in the reduced form

model, the random effect variable is included and 2) the signs of coefficients are opposite.

Intuitively, a higher hazard leads to a shorter duration.

Table 4.16 presents the estimates for this exponential AFT model. Not surprisingly,

the results are consistent with the reduced form hazard model. However, we have to

mention that the structural model might not fit the real data well. A hazard function

like 3.17 can be interpreted as no individual heterogeneity. But we have seen from the

reduced form model that the long-term duration data does have heterogeneity (with

mass points of two).
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Table 3.1:: AFT Model Results

Dependent variable:

long-term duration

age −0.26440∗∗∗

(0.00685)

age2 0.44302∗∗∗

(0.01569)

male −0.58349∗∗∗

(0.07593)

full time −0.09395
(0.08192)

married 0.14154∗

(0.08066)

Observations 1,204
Log Likelihood 2,971.49500
χ2 −362.47690 (df = 4)

Note: The structure econometric model in our setting is in fact an ac-
celerated failure time model. This table reports the results. Comparing
to the long-term duration analysis (table 4.1), 1) the coefficient sign are
opposite, but the economic meaning are the same; and 2) lack of the
heterogeneity term. age2 = age2/100. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.6 Conclusion

In this paper, a series of self-exciting process models are constructed to study the work

absenteeism. A minimum distance estimation method is employed. This estimation

method, unlike the conventional likelihood-based method, allows including external

shocks into the intensity.

In the empirical study, firm-level data is used. The firm introduced an experience

rate sick pay scheme that links sick pay benefit with worker’s absence history. We find

the worker’s decision makings are entirely different in short-term, long-term incidence

and recovery processes. Specifically, we found substantial evidence supporting the

existence of strategic behavior in both short-term incidence and recovery process.

The strategic behavior is generated by the cumulative absence time. However, in the

long-term recovery process, we have to reject the existence of strategic behavior and

state-dependent structure. Instead, we adopt a conventional duration analysis and

employ Heckman and Singer’s NPMLE to complete the analysis.

A theoretical framework of work absence is developed. This model incorporates the

strategic decision-making process and fits our empirical findings.
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3.A Count Data Regressions and Duration Models

3.A.1 Four Count Data Regressions

The dependent variable in these models is the counts of events in an interval

of time. The most basic count data regression model is the Poisson, where

Pr(Ci = c | Xi) = exp(−µ(Xi))µ(Xi)
c/c! E(Ci|Xi) = µ(Xi) = V ar(Ci|Xi), Ci

and Xi are counting numbers and covariates for individual i respectively. Normally,

µ(Xi) = exp(X ′iβ).

The equality between the mean and the variance in the Poisson model is restrictive.

A popular generilisation of over-dispersion model is the negative binomial, whose density

is given by

fnb(ci | Xi) =
Γ(ci + ψi)

Γ(ψi)Γ(ci + 1)

(
ψi

λi + ψi

)ψi
(

λi
λi + ψi

)ci
where λi = exp(X ′iβ) and the precision parameter ψ−1

i is specified with ψi = λi/α and

a positive over-dispersion parameter α. This specification yields the mean function
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E[Ci | Xi] = λi and the variance function V ar[Ci | Xi] = (1 + α)λi.

Zero-inflation and hurdle models are good at explaining the excess of zeros. The

zero-inflation model considers a mixture distribution of a degenerated distribution

concentrated on zero and a negative binomial distribution. In particular,

Pr(Ci = 0 | Xi, Zi) = φ(Zi) + (1− φ(Zi))fnb(0 | Xi),

P r(Ci = ci | Xi, Zi) = (1− φ(Zi))fnb(ci),

where Zi is a vector of zero-inflated covariates,φ(·)) is the binomial probability. The

zero-inflation model can be treated as a special case of the latent class model.

The Hurdle model, on the other hand, can be interpreted as the first part concerns

the decisions to ask for leave as a binary outcome process, while the second part models

the positive number of work absences conditional on the individual seeking a leave. In

particular,the first part of the two-part hurdle structure is specified as

Pr(Ci = 0 | Xi) =

(
ψh,i

λh,i + ψh,i

)
,

P r(Ci > 0 | Xi) = 1−
(

ψh,i
λh,i + ψh,i

)

where the subscript h denotes parameters associated with the “hurdle distribution”. The

likelihood function associated with this stage of the hurdle process can be maximized

independently of the specification of the second stage. The second part of the model is
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given by the truncated negative binomial distribution:

f(ci | Xi, Ci > 0) =
Γ(ci + ψi)

Γ(ψi)Γ(ci + 1)

[(
λi + ψi
ψi

)ψi

− 1

]−1(
λi

λi + ψi

)ci
.

3.A.2 Duration Models

As mentioned in the paper, the workhorse in the duration analysis is the hazard rate

h(t) = f(t)/S(t), where f(t), S(t) are probability density function and its survival

function respectively. In a basic duration model, for every individual, define the constant

hazard rate and its cumulative hazard rate as:

hi(Xi) = exp(X ′iβ)

Hi(T ) = hi(Xi)T

Notice from the definition of the hazard rate, we have:

− h(t) =
dlog(S(t))

dt

−
∫ T

0

h(t)dt = log(S(T ))

S(T ) = exp(−
∫ T

0

h(t)dt)

Hence the likelihood function is

L =
N∏
i=1

Li =
N∏
i=1

exp(−Hi(t))[hi]
yi

where yi is the censoring indicator: if censored, yi = 0, otherwise yi = 1.
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One concern regarding this model is the unobserved heterogeneity among individuals.

The usual way to account for this is to include a random variable ν ∼ G in the hazard

rate.

hi(νi, Xi) = exp(X ′iβ + νi)

Integrate out the random variable ν, we end up with the marginal hazard rate,

h(t|X) =

∫∞
0
h(X, ν)S(t|X, ν)dG(ν)

S(t|X)

= exp(Xβ)E(exp(ν)|T > t,X)

(3.18)

where S(t|X) is the associated survival function.

The second equation comes from the fact that

g(ν|T > t, Z) =
Pr{T ≥ t|Z, ν}g(ν)

Pr{T > t|Z}

=
S(t|Z, ν)g(ν)

S(t|Z)

and

E(exp(ν)|T > t, Z) =

∫∞
0

exp(ν)S(t|Z, ν)g(ν)dν

S(t|Z)

Assume ν is independent from Xi, one may use Heckman & Singer (1984)’s non-

parametric maximum likelihood estimator (NPMLE) to avoid unjustified assumptions

about the distribution G. Instead, one may approximate G in terms of a discrete

distribution.
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Let Q be the (prior unknown) number of support points in this discrete distribution

and let νl, pl, l = 1, 2, · · · , Q be the associated location scalars and probabilities. The

likelihood contribution is:

E[Li(νi)] =

Q∑
l=1

plLi(νl),

Q∑
l=1

pl = 1

where Li(νl) = exp(−Hi(t|νl, Xi))[hi(t|νl, Xi)]
yi .

The likelihood function is

L =
N∏
i=1

E[Li(ν)] =
N∏
i=1

Q∑
l=1

plLi(νl),

Q∑
l=1

pl = 1

The estimation procedure consists of maximising the likelihood function with respect

to β as well as the heterogeneity parameters νl and their probabilities pl for different

values of Q. Starting with Q = 1, and then expanding the model with new support

points until there is no gain in likelihood function value.

Heckman & Singer (1984) has proven that such an estimator is consistent, but its

asymptotic distribution has not been discussed yet. Gaure et al. (2007) provide Monte

Carlo evidence indicating the parameter estimates obtained by NPMLE are consistent

and approximately normally distributed and hence can be used for standard inference

purpose.
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3.B Finite Mixture Poisson-2 Model

We set the number of component k = 2. The dependent variable is the counts of

absences in the year 1988, explanatory variables include age, sex, full/part time status,

marriage status and the counts of absences in previous year. The estimation results for

both short-term and long-term absences are presented below.
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Table 3.B.1:: Finite Mixture Poisson Model

Dependent Variable: Counts 88

short term long term

Component 1 Component 2 Component 1

Intercept 2.4881479∗∗∗ 1.15043828 0.2400829
(0.3704769) (0.53720132) (0.4198270)

age -0.0311709 -0.01003723 -0.0015710
(0.0219730) (0.02758507) (0.0225010)

age2 0.0242097 -0.00103913∗∗∗ 0.0094344
(0.0285556) (0.03301050) (0.0268680)

sex -1.2429011∗∗∗ 0.65663285∗∗∗ -0.2126884∗

(0.1455399) (0.18437828) (0.0882432)

full -0.8829060∗∗∗ 1.06507140 ∗∗∗ 0.0212277
(0.1690357) (0.18205057) (0.0965388)

marriage 0.0240618 -0.22561099∗ 0.0971282
(0.1070147) (0.12586190) (0.1068318)

count 87 -0.00388629∗ 0.00095098 -0.0022418
(0.0020161) (0.00157852) (0.0015178)

Number of Individuals 450 303 562

Note: This table presents the finite mixture Poisson model with two component. For
the long-term absences, the posteriors suggest homogeneity, that is, all the long-term
absences come from the same data generating process. This, however, is not the case in
the short-term absences. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Chapter 4

A Dynamic Analysis of Spanish

Youth Unemployment

Abstract

This chapter investigates how past (un)employment records could affect an individual’s

job turnover. One challenge we face is how to separate the state dependent (or the past

experiences) effects from the unobserved heterogeneity. We overcome this issue by first

constructing counting processes that consist of interested (un)employment duration. We

specify a multiplicative accelerated failure time structure for these duration. Second,

for each individual’s counting process we do a first ratio transformation on duration to

swipe out the unobserved heterogeneity. Comparing to existing methods, our approach

includes the unobserved heterogeneity in a fixed effect way and allows researchers to build

models flexibly. This new method is also an extension to the classical dynamic panel

data models where weak IV problem can be solved and unit root and the non-stationary
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process could also be allowed. Using Spanish social security data, we find workers mostly

care about their human capital stock, duration dependence effect is different for low

education and high education workers.

4.1 Introduction

The Spanish labor market is well-known for her high unemployment rate. In 2018,

Eurostat reports that the youth unemployment rate in Spain is 32.7%, second only

to Greece in EU. In this paper, we are primarily interested in studying how previous

(un)employment records would affect the youth’s job turnover. That is, we try to

investigate the state dependent effects on the inflows and outflows to unemployment.

Answering this question is challenging as ‘the unemployment rate is very serially

correlated and possibly nonstationary’(Ahn & Hamilton 2019) and the difficulties to

separate the state dependent effect and the unobserved heterogeneity (Heckman 1981;

Honoré 1993). In this paper, we aim to build a statistical model that can handle the

unobserved heterogeneity and at the same time, could include different state dependent

structures flexibly.

Most previous papers in this literature that tried to allow heterogeneity did so

by including various observed covariates (e.g., demographics, education, occupation,

geographical region and more). However, the important role of unobserved heterogeneity

is increasingly recognized by the academic community: ‘Any pool of unemployed

individuals who share any given observed characteristics is going to become increasingly

represented by those within that group who have higher ex ante continuation probabilities

the longer the period of time for which the individuals have been unemployed’ (Ahn &
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Hamilton 2019).

Another contribution factor to the difference unemployment probabilities is what

Van den Berg & Van Ours (1996) called ‘genuine duration dependence’: the duration

of being unemployment may alter to the outflow probability. this dependence structure

is essentially a particular example of the state dependence, that is the past experience

could change the likelihood of occurrences of future events. Honoré (1993) developed a

common practice to separate the unobserved heterogeneity and the genuine duration

dependence using multiple spells of unemployment for a given individual. Assuming

that the unobserved heterogeneity is persistent over time and no correlation among

unemployment spells, identification could be achieved by the ratio of two spells’ survival

functions. The later independent assumption is used extensively in the literature as

noted by Schmillen & Umkehrer (2017).

Honoré (1993) also provided the identification results on the case where multiple

spells are correlated through a ‘lagged duration dependent structure’. However, such

structure is restrictive for several reasons: 1) It requires a balanced panel data and can be

quite complicated when the number of spells is large; 2) The identification of the initial

duration require the unobserved heterogeneity to be independent with other covariates

(i,e., the random effect assumption). As will be shown later, our model is capable of

overcoming these hurdles. Besides the duration dependence, we are also introducing the

human capital stock dependence into the model. In our paper, the human capital stock

is a summary of one individual’s past employment and unemployment records.

In this paper, we propose to use the self-exciting process to build a statistical model

that includes different state dependent structures (e.g., human capital stock, duration
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dependence, unemployment insurance,etc.) flexibly and at the same time allows the

unobserved heterogeneity in a fixed effect way. We include both individual’s employment

and unemployment records in the filtration of a self-exciting process and study this

process by its compensator.

We restrict our model to a multiplicative structure and then do a first ratio

transformation (or equivalently, a first difference transformation after we take logarithm

on both sides) to swipe out the unobserved heterogeneity. Thus, from the econometric

perspective, we also generalize the classical dynamic panel data model to a non

auto-regressive structure. Even in a classical dynamic panel AR model, the self-exciting

process approach can easily overcome the weak-IV problem. This is because we are not

focusing on the random variable per se, but instead on the whole process, as a result, we

do not need IV at all. The classical first-difference transformation in a dynamic panel

AR model requires the data must be stationary and can not identify the auto-regressive

parameter if it is an unit root. In the self-exciting process, no stationary condition is

required and one may perform a simple standard t-test to detect the unit root.

This chapter is structured as follows. In section 2 we briefly present the institution

backgrounds and our database. In section 3 we discuss our econometric methods. We

will demonstrate the advantages of the self-exciting process by Monte Carlo exercises. In

section 4 we describe our empirical models, and in section 5 we present the empirical

results. Section 6 contains our conclusions.
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4.2 Institution Features and Dataset Description

4.2.1 Institution Features

Spanish labor market is known for its dual structure. The market offers one of the most

stringent employment protection for permanent contracts among OECD countries, while

temporary fixed-term contracts can be terminated at almost no cost.

The fixed-term contracts were first introduced in the late 1984 with intention to

ease the strong employment protection. Since then, temporary contracts have increased

to nearly 30% in early 2000s (Bover & Gómez 2004). In recent years, almost 60% of all

employed Spanish workers in the age group 16-24 hold a temporary contract, around 40%

of the less-educated and 20% of the high-educated workers still hold temporary contracts

at the age of 39. The time to find a first regular job for a typical school leaver in Spain

is also significantly longer compared to reference countries (Dolado et al. 2013). It is fair

to say that temporary contracts fail to act as stepping-stones towards permanent jobs in

Spain.

Regarding the unemployment benefit system, like most European countries, the

Spanish one is consisted of two pillars. The contributory unemployment insurance

provides unemployment protection to workers who contributed when employed. The

unemployment allowance is an assistant benefit intended to supplement the contributory

benefit. In this paper, we are primarily focus on the contributory unemployment

insurance.

Workers who wish to claim the contributory unemployment entitlement must be

legally unemployed and register as a jobseeker.In addition, the recipients must have
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made contributions for a minimum of 360 days within six years prior to becoming legally

unemployed.

The benefit duration is closed related to the contribution period. The minimum

period is 120 days and the maximum benefit duration is 720 days.

4.2.2 Data Description

We use the anonymized administrative data from the Muestra Continua de Vidas

Laborales con Datos Fiscales or Continuous Working Life Sample(MCVL). The MCVL

data is rich, containing matched social security, income tax and census records for a 4%

random sample of Spanish workers, pensioners and unemployment benefit recipients.

Note that this means the MCVL is only representative of the population related to the

social security system.

The MCVL database is available to researchers in 2005 and is annually updated.

It contains several files: personal details, details of cohabitants, data on social security

contribution, data on benefits and tax data.

The data on social security contribution is the main focus in this study. Since both

workers and their employers are required to contribute to the social security, we define

an individual is being unemployment at time t if there is no contribution record at this

time.

We define youth as someone who is below age 35. In this paper, we use the 2014

version of MCVL data and randomly select 25% of the sample size. In the end, there

are 10, 716 unique youth individuals in our sample. The total amount of unemployment
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records is 64, 549.

4.3 Econometric Method

4.3.1 Unobserved Heterogeneity in Self-Exciting Models

Separating the state dependent effect and the unobserved heterogeneity is important in

our application, both from economic and econometric point of view. An individual may

have shorter unemployment duration due to better work ability rather than a shorter

unemployment benefit duration, or both. The econometric challenge come from the fact

that the unobserved heterogeneity is correlated with the state dependent factors, thus

the conventional random effect independent assumption is not valid. In this paper, we

propose a first ratio fixed effect approach by restricting the duration be a multiplicative

structure that can separate the unobserved heterogeneity and other factors.

The general structure can be written as follows.

L(τi,k) = G(Hi,k; β)νiui,k > 0 (4.1)

where τi,k is individual i’s kth duration, Hi,k is a vector of her state dependent variables

prior to kth duration, β is a vector of parameters that need to be estimated, L(·), G(·)

are known functions, νi are unobserved individual heterogeneity, and ui,k are i.i.d error

terms across both duration and individuals.

This general form is essentially an accelerated failure time (AFT) model.
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Example 1. Let L(·) = G(·) = exp(·), Hi,k = τi,k−1, then we have

exp(τi,k) = exp(βτi,k−1)νiui,k

τi,k = βτi,k−1 + log(νi) + log(ui,k)

(4.2)

Equation 4.2 is the classical AR(1) dynamic panel data model with i.i.d error term

assumption.

Example 2.

τi,k = exp(β
k−1∑
j=1

τi,j)νiui,k (4.3)

where τi,j could be individual’s employment duration and the summation
∑k−1

j=1 τi,j

measures one’s working experience. Notice model 4.3 can not use the widely employed

IV, GMM estimation methods in the dynamic panel data models. This is because the

data generating process is not necessarily stationary.

Example 3. Let L(x) = x2/2, G(·) = exp(·), Hi,k = τi,k−1 and ui,k ; exp(1) we

have

τ 2
i,k

2
= exp(−βτi,k−1)νiui,k (4.4)

Equation 4.4 has a duration-dependent hazard rate λ(τi,k):

λ(τi,k) = τi,k exp(βτi,k−1)νi (4.5)
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To swipe out the the unobserved heterogeneity νi, we take the following first ratio

transformation.

τ̃i,k =
L(τi,k)

L(τi,k−1)
=

G(Hi,k)

G(Hi,k−1)
ũi,k (4.6)

where ũi,k = ui,k/ui,k−1. Provided that this ratio distribution Fũ(·) is well defined, the

distribution of τ̃i,k is:

Fτ̃k(x) = Fũ

(G(Hi,k−1)

G(Hi,k)
x
)

(4.7)

Constructing a new counting process Ñ(t) whose inter-event duration are τ̃i,k, then

by Equation 1.23, the corresponding cumulative intensity is

EÑ(t) = Λ̃(t) = Λ̃(Tk) +

∫ t−
∑k+1

j=1 τ̃i,j

0

Fτ̃k(dx)

1− Fτ̃k(x)
, t ∈ (

k∑
j=1

τ̃i,j,
k+1∑
j=1

τ̃i,j] (4.8)

One may estimate the parameters by minimizing the distance between Ñ and its

cumulative intensity Λ̃ as described in the previous subsection.

4.3.2 A Generalization of Dynamic Panel Models

In Example 1, we have shown that the canonical AR(1) dynamic panel model is a special

case of our general structure 4.1. In this subsection, we will argue that by focusing on

the whole process rather than the random variable per se, we can overcome some issues

in classical IV-GMM based dynamic panel estimator.

Two advantages of the new approach are 1) avoiding weak IV problem, and 2) easy

unit-root testing and compatible with non-stationary process.
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For the purpose of illustration, we use the following model:

yi,k = νi + ρyi,k−1 + ui,k (4.9)

where νi are the unobserved heterogeneity, ui,k are i.i.d error terms across both

individuals and periods, and k ≥ 1, y0 = 0.

Weak IV Problem. When the auto-regressive parameter ρ is close to unit or the

variance of the unobserved heterogeneity σν is largely greater than the variance of the

error term σu, the widely used linear GMM estimator obtained after the first difference

performs poorly.

The poor performance is caused by the weak instrument problem. Blundell & Bond

(1998) used the following set-up to demonstrate. Consider the case with T = 3. For

T = 3, ρ is just identified and the first difference operation yields:

∆y2 = y2 − y1 = νi + (ρ− 1)y1 + u2

= πy1 + ri

(4.10)

Assuming stationarity, the plim of π̂ is given by Blundell & Bond (1998)

plimπ̂ = (ρ− 1)
k

(σ2
ν/σ

2
u) + k

(4.11)

with k = (1− ρ)2/(1− ρ2). One finds that π̂ → 0 as ρ→ 1 or as (σ2
ν/σ

2
u)→∞.

Arellano & Bover (1995) suggests using additional linear moment conditions that
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are valid when certain restrictions are imposed on the initial values,Blundell and Bond

(1998)’s system GMM suggests using non-linear moment conditions and restrictions on

the initial condition process to solve the weak instrument problem.

The new approach, on the other hand, is based on a functional data and focuses

on process (intensity) rather than random variable (distribution). As a consequence, we

do not use IV at all and such weak IV problem is irrelevant to our methodology. We

demonstrate this property with a Monte Carlo study in the next subsection.

Unit-root and Non-stationarity. The IV-based estimators all require stationarity,

i.e., |ρ| < 1 (e.g., Anderson & Hsiao (1981),Blundell & Bond (1998),Arellano & Bover

(1995)). It is well known that the underlying moment conditions do not identify the

auto-regressive parameter when its value is unity.

To our knowledge, so far there are only few contributions to the topic of GMM-based

unit root inference. Harris & Tzavalis (1999) studied the model presented in Equation

4.9. Their test is based on a correction of the inconsistency of the least square dummy

variable estimation. But it requires νi = 0 for all i.

Bond et al. (2005) studied a model where when ρ = 1, there are no individual

unobserved heterogeneity, so the null hypothesis is that the time series are random walks

with no individual drifts.

Our approach, however, is capable of dealing with unit root as well as non-

stationarity. This property is highlighted in the original Kopperschmidt & Stute (2013)

paper. A simple t-test based on such estimation is able to detect the unit root. Two

Monte Carlo studies are presented in the next subsection. One is with a unit root ρ = 1,
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the other is when the auto-regressive parameter is greater than the unit ρ > 1.

4.3.3 Monte Carlo Evidences

We perform two classes of Monte Carlo exercises. The first class has the standard AR(1)

dynamic panel model structure. The second class has a non AR structure and is much

similar to Example 2.

AR(1) Dynamic Panel Models. Throughout this class of Monte Carlo studies,

we use the following data generating process (DGP):

τi,k = exp(νi + βXi + ρlog(τi,k−1))εi,k (4.12)

where εi,k ; exp(1) are i.i.d. Taking logarithm on both side and let yi,k = log(τi,k), we

have:

yi,k = νi + βXi + ρyi,k−1 + ui,k (4.13)

with ui,k = log(εi,k).

For different experiments, we have different settings on νi and ρ, but we always

generate Xi from N(0, 5) and let β = −1.5.

We set N = 100 and T = 6, and we run 300 replications.

Experiment 1. In the first experiment, we set ρ = 0.95 and νi ; N(0, 5) such that

ρ− 1 is close to zero and σν/σu is large. In the conventional IV and GMM approach, this
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setting leads to a weak IV problem.

The average estimate is ρ̂ = 0.934, the average standard deviation is σ̂ρ = 0.019 and

the empirical coverage rate is 0.95.

Experiment 2. In the second experiment, we let ρ = 1 and νi ; N(0, 1). This

setting generates a unit root problem. In this experiment, we generate both balanced

panel data and unbalanced panel data. Existing testing methods (Harris & Tzavalis

(1999), Bond et al. (2005)) require a balanced panel data.

For the balanced case, the average estimate is ρ̂ = 0.982, the average standard

deviation is σ̂ρ = 0.02 and the empirical coverage rate is 0.94.

We create the the unbalanced data by restricting
∑

k τi,k ≤ 5.5. The average

estimate is ρ̂ = 0.984, the average standard deviation is σ̂ρ = 0.017 and the empirical

coverage rate is 0.93.

In both cases, a simple t-test would accept the null hypothesis that ρ = 1.

Experiment 3. In the third experiment, we let ρ = 1.2 and νi ; N(0, 1). This

setting generate a non-stationary series. Although such setting has little implication in

Economic studies, we nevertheless investigate it to demonstrate the extensiveness of our

approach.

The average estimate is ρ̂ = 1.189, the average standard deviation is σ̂ρ = 0.014 and

the empirical coverage rate is 0.963.
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Non Auto-Regressive Structure. We generate the following self-exciting process

with individual heterogeneity:

τi,k = exp(−νi) exp(−β
k−1∑
j=1

τi,j)ui,k (4.14)

where ui,k ; exp(1), νi ; exp(1).

We use Ogata’s thinning method to generate data, the following is the pseudo code.

Algorithm 1 Thinning algorithm, generate above self-exciting process on [0, T ]

[1] Initialize s = 0, n = 0, T = ∅ s < T Set λ̄ = λ(s+) = exp(νi+βs) Generate u; U(0, 1)
Let w = −ln(u)/λ̄ so that w ; exp(λ̄)
Generate D ; U(0, 1) Dλ̄ ≤ λ(s) accepting with prob. λ(s)/λ̄ Set s = s+w s is the next
point n = n + 1 updating the number of accepted points tn = s T = T ∪ {tn} adding tn
to the ordered set T
tn ≤ T {tk}k=1,2,··· ,n {tk}k=1,2,··· ,n−1

We set β = −0.5 and the terminated time T = 7.2. The sample size is N = 500 and

run 300 replications.

The averaged estimate β̂ = −0.4291, averaged estimated stand error ŝe = 0.1072,

the averaged distance d̂ = 0.4892, and the empirical coverage rate with 95% confidence

level is 96%.

4.4 Modeling Strategy

Let τi,k be individual i’s kth unemployment duration. The length of τi,k is related to this

individual’s current state dependent variables.

Let Hi,k be a vector of individual i’s state dependent variables at the beginning
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of kth unemployment spell. At this moment Hi,k contains individual’s unemployment

benefit duration and her human capital stock. The latter is calculated using all previous

employment and unemployment records. Our empirical model should able to constantly

update Hi,k.

With these information in mind, we model the hazard rate of τi,k as

λ(τi,k) = ταi,k exp(−β ′Hi,k + νi) (4.15)

where νi is the unobserved heterogeneity. We highlight the role of the duration

dependence by separating τi,k from the state dependent variables Hi,k.

This hazard rate corresponds to the following AFT model

τα+1
i,k = (α + 1) exp(β

′
Hi,k − νi)ui,k (4.16)

where ui,k ; exp(1) are i.i.d across both individuals and duration.

To see this, recall the hazard rate is defined as f(x)/(1 − F (x)) where f(x), F (x)

are random variable’s p.d.f and c.d.f respectively. The c.d.f of τi,k is

Fτi,k(x) = Pr(τi,k ≤ x) = Pr((α + 1)1/(α+1) exp(βHi,k − νi)1/(α+1)u
1/(α+1)
i,k ≤ x)

= Pr(ui,k ≤ 1/(α + 1)xα+1 exp(−βHi,k + νi))

= 1− exp(−1/(α + 1)xα+1 exp(−βHi,k + νi))

(4.17)

Plugging Fτi,k(x), fτi,k(x) into the hazard rate definition, we ended up with previous

asserted.
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We choose the error terms to be i.i.d exponential distributed because without

exposed to the state dependent structure, it is reasonable to assume the unemployment

counting process to be the standard Poisson process and the intervals (or duration) of a

Poisson process is exp(1) distributed.

Taking the first ratio transformation, we have

τ̃α+1
i,k =

τα+1
i,k

τα+1
i,k−1

= exp(β(Hi,k −Hi,k−1))ũi,k (4.18)

where ũi,k = ui,k/ui,k−1. In general, the ratio distribution of ũ is not easy to obtain,

however, with u; exp(1), the calculation is quite easy. One may show

Fũ(x) =
x

1 + x
(4.19)

Thus

Fτ̃i,k(x) =
exp(βHi,k−1 − βHi,k)x

α+1

1 + exp(βHi,k−1 − βHi,k)xα+1
(4.20)

Constructing a counting process Ñ(t) whose inter-event duration is τ̃i,k. We may

write the counting process’s cumulative intensity Λ̃(t) using Equation 4.8.

4.5 Empirical Results and Discussion

The following table reports the main results.
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Table 4.1:: Main Results

α -0.0882302∗∗∗

(0.02044)

Benefit Duration 0.01782836∗

(0.01002)

Human Capital 0.40773478∗∗∗

(0.00858)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A negative α suggests that the longer one is in the unemployment, the harder to

exit from the current status, this result is consistent with previous literature. Both

unemployment benefit duration and human capital are positive, indicating that higher

volume of benefit duration (human capital) leads to a longer unemployment duration.

The economical interpretation could be as follow: different benefit duration and the

human capital volumes may alter one’s employment preference. When the volumes are

high, it is more likely for an individual to search and wait for a better contract, hence a

longer unemployment duration; When the volumes are low, individuals’ preferences may

change and one may become more likely to accept some low-quality job offers whenever

are available.

The following figures summarize our estimates.
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(a) w.r.t unemployment benefit duration (b) w.r.t human capital stock

Figure 4.1: Hazard Rate for overall Unemployment Duration

We also investigated how different sub-populations would react to these state-

dependent structures. To this end, we divide the sample by education gender.

Education. We classify individuals who did not enter senior high school or senior

professional education as low education, others are high education. The following table

reports the results. The difference between these two groups are quite large. First, the

reaction to the duration dependence is opposite. Low education individuals are more

likely to exit from the unemployment as the unemployment duration grow, but for high

education individual, this is not the case. A reasonable explanation is that low education

people are willing to accept bad temporary contracts, while high education people tend

to wait for better terms.

Low education individuals are also more sensitive to the benefit duration, while high

education people seem care little about the unemployment benefit duration. But both

group are respond to the human capital stock positively.
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Table 4.2:: Sub-population Results, Education

Low Education High Education

α 0.15151556∗∗∗ -0.25632063∗∗∗

(0.04274) (0.02235)

Benefit Duration 0.05544162∗∗∗ 0.00012458
(0.01176) (0.02225)

Human Capital 0.46336057∗∗∗ 0.31247732∗∗∗

(0.01639) (0.00899)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Gender. As shown by the next table, it seems that there is no big different

reactions towards state dependent variables across gender.

Table 4.3:: Sub-population Results, Gender

Male Female

α -0.08627595∗∗∗ -0.1125127∗∗∗

(0.02578) (0.03329)

Benefit Duration 0.02389269∗∗ 0.02693626∗

(0.01172) (0.01555)

Human Capital 0.41330633∗∗∗ 0.38903453∗∗∗

(0.01128) (0.01302)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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4.6 Future Research

One distinctive characteristic of the Spanish labor market is the extensive use of

temporary employment, as a result, the probability of receiving a permanent job offer

is much lower than the one of receiving a temporary offer (Bover & Gómez 2004). The

temporary offers are fixed-term labor contracts. These contracts have lower firing costs

than the permanent ones. Most new hirings were under the low cost fixed-term contracts

and temporary workers were typically dismissed at the end of the maximum contract

length to avoid transfer to the high-cost permanent contracts (Bover et al. 2002). In

the future, I am also interested in investigating how temporary contracts affects an

individual’s job turnover. Specifically, how large number of temporary contracts impact

the duration of both employment and unemployment duration. Does large number of

temporary contracts increase of decrease the probability to find a permanent job? Does

large number of temporary contracts increase of decrease the risk of being lay off?

4.6.1 Unemployment Duration Model that distinguish Perma-

nent and Temporary Contracts

Model with Exclusive Assumption

In general, we are unable identify the model if one distinguishes the duration from

unemployment to permanent and temporary contracts if no additional assumption is

made. This is because we can not write a accelerate failure time model with cause

specific structure. We use the following figure to illustrate.
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0 s1 r1 s2 r2 t S1 R1
s3 r3 S2 R2

Figure 4.1: A possible realization of job turnover

Here lower cap letter s denotes the beginning dates of temporary contracts, lower

cap letter r denotes the end dates of temporary contracts. Correspondingly, upper letter

S denotes the beginning dates of permanent contracts and the upper letter R denotes

the ending dates of permanent contracts. The dashed lines are then the employment

spells, while the solid lines are unemployment spells.

Now consider we are at time t, during an unemployment spell. Without additional

assumption, it is possible that the next employment could be both permanent and

temporary, that is the intensity is non-negative for both finding a permanent or a

temporary job. The two non-negative intensities create a cause specific structure for the

unemployment duration τ ∈ [0, S1 − r2].

To better understanding the consequence of such structure, let’s focus on modeling

the duration from the unemployment until a permanent job. There are two interpretation

for this duration. The first one would be the total duration until the individual find a

permanent job, using Figure 4.1, this could be the duration of S1−0 and S2−R1. In these

duration, an individual might have several temporary jobs. The other interpretation

would be the duration from current unemployment to a permanent job. In Figure 4.1,

these are S1 − r2 and S2 − r3. There are no other jobs, temporary or permanent in these

duration.

If we allow the cause specific structure, we are using the first interpretation. This is

precisely because the hazard rate for such permanent job duration exists and is positive
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even an individual existed from unemployment by a mean of temporary jobs. The

temporary jobs will change the state dependent variable. Put it another way, temporary

jobs act as external shocks that lead to the change of hazard rate for a permanent

job duration. These external shocks make it impossible to link the hazard rate to a

accelerated failure model and hence we are unable to do the first ratio transformation to

swipe out the unobserved heterogeneity.

To solve this problem, we assume the exclusive assumption:

EA. There is no cause specific structure, individuals will subjectively decide the

type of next employment.

The exclusive assumption means that if an individual decide to find a permanent

(temporary) job, she will not accept a temporary (permanent) offer and remain

unemployed until the desired type of offer arrives. With this assumption, we are adopting

the second interpretation of the permanent job duration, the following figure illustrate:

r2 S1(r3) S2

Figure 4.2: Permanent Contract Process

For the duration from unemployment to temporary contracts, we study the following

counting process:

0 s1(r1)s2(R1) s3

Figure 4.3: Temporary Contract Process
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The corresponding AFT models are

ταJ+1
i,k,J = (αJ + 1) exp(β

′

JHi,k − νi)ui,k (4.21)

where J ∈ {P, T} is contract type, permanent(P) or temporary(T). Hi,k is a vector

of state dependent variables including the number of temporary contracts so far, the

unemployment benefit duration and the human capital stock.

Model without Exclusive Assumption

As mentioned before, without the exclusive assumption, we are unable to write down the

accelerated failure time model, hence unable to swipe out the unobserved heterogeneity

term. Arguably, this assumption is strong, and if readers are willing to trade-off by

ignoring the unobserved heterogeneity, we may study the duration from unemployment

until find a permanent job. Using Figure 4.1 as an example, we are able to study the

following permanent contract process (the first interpretation,temporary contract process

can be constructed in a similar way).

0 S1(R1) S2

Figure 4.4: Duration from Unemployment until find a Permanent Job

Notice that during temporary employment spells (dashed lines in Figure 4.4), the

intensity of finding a permanent job should be zero. The hazard rate is constructed as
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follow:

λ(τi,k,J) =

 ταJ
i,k,J exp(−β ′JHi,k,J + γ

′
JXi), τi,k,J ∈ unemployment period

0, τi,k,J ∈ employment period

(4.22)

where τi,k,J is the duration before finding a type J ∈ {P, T} job. Hi,k,J is a vector

of state dependent covariates, Xi is a vector of observed time-independent individual

heterogeneity such as gender, education, region, income,etc.

4.6.2 Employment Duration that distinguish Permanent and

Temporary Contracts

To complete the analysis of job turnover circle, we need to study the employment

duration. Here we are primarily interested in the permanent contract employment

duration, as in most temporary contracts, the length of job is pre-specified.

It is clear there would be no cause specific structure in these duration, as individuals

are very clear what type of they are in. Thus we might just use the model as described in

Equations 4.15 or 4.16. The only differences are that here duration τi,k are employment

duration and the state variables Hi,k include human capital stock and the number of

temporary jobs so far.

4.7 Conclusion

We developed a new estimator to separate the state dependent effect from the unobserved

heterogeneity in duration models. The new estimator allows a fixed effect unobserved
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heterogeneity and is an extension to the classical dynamic panel data models.

The duration are history dependent and the dependent structure is flexible, no

stationary or auto-regressive structure is needed. The key assumption is that the

duration can be written as a multiplicative form of accelerated failure time model.

To swipe out the unobserved heterogeneity, we do a first ratio transformation on the

duration.

Using Spanish social security data, we find that individuals respond to state

dependent variables. In general, during the current unemployment period, the longer the

spell is, the harder to exit from unemployment (duration dependent structure). However,

a sub-population analysis reveals that low education workers have the opposite duration

dependent structure. Unemployment benefit duration and the human capital stock also

play important roles: workers treat these state dependent variables as ‘assets’, small

volumes of these state dependent variables lead to a shorter unemployment duration.
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