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Orchestrating lightpath recovery and flexible
functional split to preserve virtualized RAN

connectivity
K. Kondepu, A. Sgambelluri, N. Sambo, F. Giannone, P. Castoldi, L. Valcarenghi

Abstract—In the Next Generation Radio Access Net-
work (NG RAN), the next generation eNBs (gNBs)
will be, likely, split into virtualized Central Units
(CUs) and Distributed Units (DUs) interconnected by
a fronthaul network. Because of the fronthaul latency
and capacity requirements, optical metro ring net-
works are among the main candidates for supporting
converged 5G and non-5G services.

In this scenario, a degradation in the quality of
transmission of the lightpaths connecting DU and CU
can be revealed (or anticipated) based on monitoring
techniques. Thus, the lightpath transmission parame-
ters can be adapted to maintain the required bit error
rate (BER). However, in specific cases, the original
requested capacity between DU and CU could be not
guaranteed, thus impacting the service. In this case,
another DU-CU connectivity should be considered,
relying to a change of the so called functional split.

This study proposes a two-step recovery scheme
orchestrating lightpath transmission adaptation and
functional split reconfiguration to guarantee the re-
quested connectivity in a Virtulized RAN fronthaul.
Results show that for the connections that cannot
be transported by the original lightpath a graceful
degradation followed by a recovery is possible within
tens of seconds.

Index Terms—flexible functional split; recovery;
lightpath transmission adaptation.

I. INTRODUCTION

In the coming years, the establishment of 5G tech-
nology will impact the design, the control, and the
management of metro networks [1]–[3]. The dimen-
sioning of metro rings will be driven by the maxi-
mum latency admitted by 5G services and verticals.
The network capacity will increase to support sev-
eral high-bandwidth fronthaul/backhaul connections.
Thus, the employment of transponders based on high-
spectral efficient multi-level modulation formats (e.g.,
polarization multiplexing 16 quadrature amplitude
modulation — PM-16QAM) are expected to penetrate
this market. Moreover, proper programmability and
control of transmission systems and switching will
enable dynamic provisioning of connectivity and its
survivability. At the same time, operators, European
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Community, and researchers are working to reduce
CAPEX (e.g., by a factor of ten) and OPEX to make
the network more scalable [2], [4].

On the one hand, a way considered by operators
and vendors to reduce the costs of an optical network
is the reduction of margins [5]. Indeed, margins to
the quality of transmission are typically adopted to
consider uncertainties of physical layer models and
device aging. This is a pessimistic but conservative
approach that enables uninterrupted service of con-
nections during the whole life of the network but that
could also bring to the overestimation of the number
of regenerators, in turn of costs. Reducing margins
can decrease costs (e.g., of regenerators) but can also
increase the probability of experiencing soft failures [6]
(i.e., degradations of the connectivity resulting in bit
error rate (BER) increase over the acceptable thresh-
olds) due to model uncertainties and ageing. Differ-
ently from hard failures (e.g., link cut), where only
re-routing enables traffic recovery, soft failures can be
also overcome by adopting a more robust transmission
along the degraded path, for example by adapting the
modulation format (e.g., changing from PM-16QAM
to the more robust polarization multiplexing quadra-
ture phase shift keying —PM-QPSK) or by increasing
the code redundancy. Hereafter, “lightpath adaptation”
refers to operations involving the change of trans-
mission settings of a lightpath, as the adaptation of
the modulation format, of the rate, or of the code
redundancy. Lightpath adaptation can be particularly
fast and, in some cases, hitless [7] (e.g., change of rate).

However, modulation format change or code redun-
dancy increase at fixed baud rate implies an informa-
tion rate reduction [6]. Thus, if recovery is performed
through modulation format or code adaptation, part of
the traffic can be promptly recovered along the same
path, while other has to be re-routed or, alternatively,
suppressed if the service class admits a bit rate reduc-
tion [6], [8].

On the other hand, another way to reduce costs is re-
sorting to network function virtualisation. Indeed, the
5G network is expected to be heavily based on virtual
network functions (VNFs) representing “a transition
from today’s network of entities to a network of (virtual)
functions” [9]. Network function virtualization (NFV)
enables an easy introduction of new network ser-
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vices by adding dynamic programmability to network
devices (e.g., as routers, switches, and applications
servers) that, in turn, empowers fast, flexible, and
dynamic deployment of new network and management
services. The exploitation of NFV is foreseen also in
the Next Generation Radio Access Network (NG RAN)
architecture supporting the New Radio (NR) access
technology [10] and paving the way to the virtual
RAN (vRAN) [11]. In the NG RAN the evolved NodeB
(eNB) functions are split into two new, most likely
virtualized, network entities [12]: the Central Unit
(CU) deployed in centralised locations and the Dis-
tributed Unit (DU) deployed near the antenna. Several
functional splits are being considered by 3GPP in
TR 38.801 [12], IEEE 1914 Working Group in Next
Generation Fronthaul Interface (NGFI) [13], and in
the Common Public Radio Interface eCPRI Specifi-
cation [14]. They demand different requirements in
terms of latency and capacity to the fronthaul network
connecting DU and CU [15] and discussion on which
split option shall be supported is still ongoing [16].

Therefore, it is expected that a metro network will
carry a converged mix of traffic including fronthaul,
backhaul, and non mobile traffic, requiring large ca-
pacity. In this scenario, guaranteeing reliability is of
paramount importance. The failure scenarios can be
several (i.e., virtual machine/container failure, optical
link failure, etc.) but this paper focuses on the failure
of the fronthaul connection carrying the virtual link
between a virtualized DU (vDU) and a virtualized CU
(vCU).

In particular, a lightpath, which carries the
frontahul connection, soft-failure (i.e., a degradation
of the quality of transmission) is considered. In this
scenario, upon a failure, the connectivity between
vDUs and vCUs can be easily recovered by changing
the modulation format or increasing the code redun-
dancy. However, the consequent rate/capacity reduc-
tion might not be acceptable by the fronthaul, implying
the re-routing of the original lightpath along a differ-
ent route. Nevertheless, such re-routing might fail if
the available capacity on the other direction of the ring
is not sufficient.

This paper presents and evaluates a two-step recov-
ery scheme, stemming from the one presented in [17],
orchestrating lightpath adaptation and eNB functional
split reconfiguration to recover the vDU-vCU connec-
tivity while fulfilling the fronthaul capacity require-
ments. Although resilient schemes for recovering fail-
ures when network functions are virtualized have been
already investigated [18] or can be based on previ-
ous research on cloud [19] and grid computing [20],
the originality of the proposed scheme consists in
exploiting functional split flexibility to improve vRAN
reliability. The scheme first recovers the soft failure
by lightpath adaptation or lightpath rerouting (the in-
troduction of lightpath rerouting represents the main
difference with respect to [17]) and, if the provided ca-

pacity is not sufficient, it modifies the functional split
between vDUs and vCUs so that it can be supported
by the new lightpath capacity.

The results, collected via simulation and experimen-
tal evaluation, show that, at the beginning, the vDU-
vCU virtual link incurs a graceful degradation due
to lightpath adaptation. Then, upon functional split
reconfiguration, the vDU-vCU virtual link is recovered
to fully support the required capacity. The overall
recovery time is in the order of few seconds if several
vDU and vCU functional splits are pre-deployed.

II. SCENARIO AND TWO-STEP RECOVERY SCHEME

This section summarizes the considered scenario
and the proposed two-step recovery scheme. The city
of Milan is considered as a sample metropolitan city.
The city metropolitan area covers about two-hundred
square kilometers. By assuming an antenna density of
one antenna per two square kilometers, one hundred
antenna sites provides connectivity to the entire area.
If split option 2 is utilized as functional split, the
capacity required by the connections between DU and
CU is about 4 Gb/s in each direction, as reported in
Tab. I from 3GPP TR 38.801. This connection can be
supported by a 10 GbE link between DU and CU.
By multiplying each antenna fronthaul requirement
by the number of antenna sites the overall required
capacity sums up to 1 Tb/s as summarized in Tab. II.

Based on the data reported above and on practi-
cal deployment considerations [21] the architecture
depicted in Fig. 1 is considered. Antenna sites are
connected to optical switches that form an optical
metro ring network. The network architecture con-
necting the antenna site and metro ring switch can
be several; two possible solutions are point to point
connections or next generation passive optical network
(NG-PON2). DUs and CUs are virtualized. vDUs are
placed either at the antenna sites or in their vicinity
(connected to the same metro switch). vCUs are placed
in another data center connected to one of the metro
ring switches. The connectivity between vCU and vDU
is implemented by means of lightpaths routed in the
optical metro ring network with 8 km radius. Such
radius implies a circumference of about 50 km with
a maximum latency of about 250 �s (considering prop-
agation delay only).

The proposed scheme is implemented in the archi-
tecture depicted in Fig. 1 that is, in turn, derived
from the ETSI NFV-MANO architecture [22]. The Net-
work Function Virtualization Orchestrator (NFVO) is
responsible for orchestrating vDU, vCU, and network
resources and for selecting the proper functional split.
The Virtual Infrastructure Manager (VIM)/Virtual
Network Function Manager (VNFM) are responsible
for provisioning the required compute, storage, and
network resources and deploying vDU and the vCU
according to the functional split selected by NFVO.
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TableI
FRONTHAULREQUIREMENTS.

Splitoption Requiredbandwidth Max.allowedonewaylatency[time]

Option2 DL:4Gb/s; UL:3Gb/s 10ms

Option7a DL:10.1∼22.2Gb/s; UL:16.6∼21.6Gb/s 250µs

Option7b DL:37.8∼86.1Gb/s; UL:53.8∼86.1Gb/s 250µs

Option7c DL:10.1∼22.2Gb/s; UL:53.8∼86.1Gb/s 250µs

Option8 DL:157.3Gb/s; UL:157.3Gb/s 250µs

TableII
METROPOLITANAREACAPACITYREQUIREMENTS.

City Milan,Italy

Metropolitanarea 200km2

Numberofantennasites 100

Averageantennadensity 0.5km 2

Functionalsplit Option2

Requiredcapacityperantennasite 4Gb/sperdirection(UL/DL)

Overallfronthaulrequiredcapacity 1Tb/s

Figure1. Metrofronthaularchitecture

TheSDNcontrollerisresponsibleforthecontrolof
vDU-vCUconnectivity,thusfortheconfigurationof
theoptical metrosegment. The SDNcontrolleris
enhanced with a Network Monitor, monitoringthe
lightpathstatus.

Fig.2showstheflowchartoftheproposedtwo-step
recoveryscheme.Upondetectionofasoftfailure,light-
pathadaptationistriggered.Lightpathadaptationis
performedbythe SDNcontroller, whichconfigures
transmitterandreceiver withthenewconfiguration
settings.Lightpathadaptationcanbebasedon modu-
lationformatadaptation,whichcanbeperformedbya
digital-to-analogconverter(DAC),typicallyemployed

Figure2. Two-steprecoveryschemeflowchart

intranspondersbasedoncoherenttransmission,now
expectedtopenetratealsothe metronetwork mar-
ket[23].Uponadaptation,ifthefunctionalsplitrateis
stillsupportedbythelightpath,theoriginalfunctional
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splitisrecoveredand maintained.Otherwise,another
pathissearchedtorecovertheoriginalrate(thisstep
isnotpresentin[17]).Ifnopathisfoundor, more
ingeneral,thefunctionalsplitcannotbesupported,
thefunctionalsplitreconfigurationistriggered. A
functionalsplitissoughtstartingfromthehighest
splitoption(i.e.,lowestfunctionallayersplit)that
couldbecarriedbytheadaptedlightpath(thisstep
isnotpresentin[17]).IncaseofsuccessthevDU-
vCUconnectivityisrecovered. Otherwise,itislost.
Thedecisiontostartthesearchfromthehighestsplit
optionisto minimizethedegradationonthewireless
transmissionperformance.

Asanexample,theworkinglightpath(redsolidline
inFig.1)connectingvDUandvCUis monitoredby
the Network Monitor.Such monitorrevealsoreven
anticipatesdegradationinthequalityoftransmission
oftheworkinglightpathanditnotifiestheSDNcon-
troller,whichtriggersthe modificationofthelightpath
modulationformatorthecoderedundancyincrease
(i.e.,green dashedline)if needed.Iftheresulting
lightpathrateis notcapableofcarryingtheorigi-
nalfunctionalsplit(i.e.,vDU1s1andvCU1s1),the
SDNcontrollerattemptstoestablishanotherlightpath
alongtheoppositedirectionofthering.Ifunsuccessful,
the NFVOisnotifiedandittriggersthe modification
ofthefunctionalsplittoonerequestingalowerdata
rate(i.e.,vDU1s2andvCU1s2)andthevDU-vCU
connectivityisrecoveredalongtheoriginalpathwith
anadaptedlightpath.

III. PERFORMANCEEVALUATIONPARAMETERSAND

SCENARIO

A. Simulationscenario

Simulationsarecarriedouttoevaluatetheamount
offronthaulinterfacesthatcanberecoveredthrough
transmissionparameteradaptation(thus,withoutre-
routing)ina metronetwork. Acustombuiltevent-
drivenC++simulatorisutilizedandafive-nodering
topologyisconsidered. Eachlinkis10kmlong,not
needingin-lineamplifiers. Opticalamplifiersareas-
sumedasboosters.Inthe metronetwork,connection
requests,aggregating5Gservices,are modelledas
a Poisson process(e.g.,emulating asmallcellon-
offprocess). Theholdingtimeofeachconnectionis
exponentiallydistributed withaverage1/µ=5000 s.
Thetrafficloadofferedtothenetworkisexpressed
asλ/µ, where1/λisthe meaninter-arrivaltimeof
connectionsrequests. Transponderssupporting 200
Gb/sPM-16QAMand100Gb/sPM-QPSKareconsid-
ered. Thebiterrorrate(BER)ofboth PM-16QAM
andPM-QPSKiscomputedthroughtheopticalsignal
tonoiseratio(OSNR)andassumingnegligiblenon-
lineareffectsgiventhelimiteddistancesofthe metro
network[24]–[26].ABERlowerthan103isassumed
asacceptable.Inparticular,200 Gb/sPM-16QAMis
consideredacceptablewithanOSNRhigherthan20.5

dB, whilethe modelin[26]isadoptedfor100 Gb/s
PM-QPSK.Softfailuresarerandomlygeneratedona
singlelink. Weassumethata200Gb/slightpathcar-
riesanaggregationofOption8functionalsplittraffic,
whilea100 Gb/slightpathcarriesanaggregationof
Option7functionalsplittraffic.Itisassumedthat
Option8and Option7fronthaulinterfacesrequire
253 Mb/sand160 Mb/s,respectively,suchvalueswere
obtainedexperimentallybyusingOAIasin[27].Thus,
a200Gb/slightpathcarriesaround790Option-8fron-
thaulinterfaces, while whilea100 Gb/saround625
Option7fronthaulinterfaces.Theproposedtwo-step
recoveryschemeiscompared withre-routing. When
re-routingisapplied,ifalightpathisimpactedby
thesoftfailure(BERabovethethreshold),re-routing
isperformed whilekeepingunchanged200Gb/s(and
modulationformat),thusunchanged Option8.Two-
steprecoveryandre-routingarecomparedinterms
ofsupportedfronthaulinterfacesafterthesoftfailure.
Resultsarerecordeduntiltheconfidenceintervalof
5%at95%confidencelevelisachieved.

B. Experimentalscenario

Theconsideredexperimentalevaluationscenariois
showninFig.3. Here,theEvolvedPacketCore(EPC)
isdeployedinHost Machine1, CUs, DUsarevirtu-
alisedinHost Machine2 andHost Machine3,respec-
tively.Inparticular,theEPCcontainsthreedifferent
componentsthatarerunningintheHost Machine
1suchas Mobile Management Entity(MME), Home
SubscriberServer(HSS)andServingandPacketGate-
way(SPGW). Anopensourcesoftware(openair-cn)
fromthe OpenAirInterface(OAI)[28]isutilizedas
EPC[29].ItimplementstheEPC3GPPspecifications
withallthespecifiedEPCcomponents.Thefunctional
splitsimplementedbythe OAIplatformandconsid-
eredinthis paperaretheIF5andIF4.5, namely
Option8andOption7ainthe3GPPterminology[12].
Specifically,ifsplit Option8isconsideredbaseband
signalI/Qtime-domainsamplesaretransmittedfrom
thevDUtothevCUthatimplementsallthe LTE-
Aprotocolstackfunctions.If Option7aisconsidered
frequencydomainsamplesaretransmittedinstead.

ThefronthaullinkbetweenvCUandvDUisas-
sumedtoberealizedby meansofanoptical metro-
networkincludingsliceabletransponderscapableto
adaptthe modulationformatandthespectrumoc-
cupationaccordingtotherequiredbit-rateandpath
length.Thetransmitters(TXs)supportdifferent mod-
ulationformats(i.e., QPSK,8QAM,16QAM)anddif-
ferentbaudrate(i.e.,28Gbaudand32Gbaudinrela-
tiontotheForwardErrorCorrection—FECcoderate
adopted). Opticaldataplaneisemulatedconsidering
BERvaluescollectedthrough measurementsinthe
setupdescribedby[30]. Eachnodeisequipped with
a NetworkConfigurationProtocol(NETCONF)agent,
developedusingConfDframework,inordertoenable
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Figure 3. Scenario considered for the experimental evaluation

the SDN paradigm. The SDN Controller relies on NET-
CONF protocol to perform the configuration and the
monitoring of Optical nodes. By mean of NETCONF
edit-config, the SDN controller configures the tra-
versed ROADMS and the considered transponders.

Figure 4. Lightpath transmission adaptation FSM

When a lightpath is configured, the receiver peri-
odically reports monitored parameters, including pre-
FEC, BER, and OSNR. All the receiver transponders
are configured with specific Finite Stete Machines
(FSMs), in order to automatically adapt the lightpath
transmission rate in case of known events. The con-
sidered FSM is shown in Fig. 4. As an example, if the
lightpath operates at “State 1” but the BER exceeds a
threshold, modulation format adaptation is triggered
and the transition to “State 2” is performed. Reversely,
if the lightpath operates at “State 2” but the BER is
below a threshold, modulation format adaptation is
triggered and the transition to “State 1” is performed.

In our experiments, to perform modulation format
adaptation, we exploited the scheme proposed in [31],
[32] based on FSM for enabling fast reconfiguration.
In this way, if the value of BER monitored at the re-
ceiver exceeds the configured threshold, the automatic
reconfiguration of TX and RX can be performed locally
without involving the SDN controller. The portion of
the FSM (State 1) to be adopted for the automatic
reconfiguration in case of monitored BER greater than
0.002 is shown in Fig. 5. A similar configuration file
(not reported) is utilized for the transition to State
2. The reconfiguration consists in adapting the light-
path with a baudrate of 28Gbauds and a more robust
modulation-format (i.e., PM-QPSK) at both the TX
(remote agent) and the RX (local agent). The FSM
presents another state (i.e., State2, not shown in fig-
ure), designed for the case when the value of BER
undergoes the threshold of 0.00004. In fact, in this oc-
currence, the lightpath is reconfigured with a baudrate
of 32Gbauds and a modulation format with higher
bit-rate (i.e., PM-16QAM). Moreover, the NETCONF
agent acting in the receiver has been extended with a
specific NETCONF notification stream, able to provide
all the required information to the subscribed clients.
In our case the VNFM/VIM performs the subscription
to this stream, to receive update once the lightpath
is adapted. Indeed, VIM manages the network func-
tion virtualisation infrastructure (NFVI) while VNFM
manages the virtual network functions.

To further speed up recovery operation, in this
study, several vDU and vCU types featuring different
functional splits are already installed (i.e., containers
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Table III
HOST MACHINES CONFIGURATIONS

Devices Name Devices Type Processor Type OS
Host Machine 1 mini-pc Intel Atom x5-Z8350 Ubuntu 14.04

(Up-board First Generation) Quad Core Processor (4.7 kernel)

Host Machine 2 Dell T410 PowerEdge Intel Xeon E5620 Ubuntu 14.04
desktop servers (3.19 low-latency kernel)

Host Machine 3 Desktop computer Intel i7 4790 Ubuntu 14.04
(@ 3.60 GHz) (3.19 low-latency kernel)

Host Machine 4 Mini-ITX Intel I7 7700 Ubuntu 14.04
Quad Core (@ 4.0GHz) (3.19 low-latency kernel)

Figure 5. Finite state machine configuration

with the respective functions are already allocated)
and they are activated upon request. The number of
vDUs and vCUs that could be allocated depends on the
compute and storage resource of the data centers. As
shown in [33], Docker container-based virtualization
allows a higher fronthaul latency and jitter budget
than virtualization based on virtual machine. Thus
Docker container-based virtualization is considered in
this experimental evaluation. As shown in Figure 3,
Host Machine 2 contains a Docker with two containers
to deploy the two vCUs (i.e., vCU1 and vCU2) with
two different functional split options. Here, the vCU1
and vCU2 are used to build and run for Option 8 and

Option 7a, respectively. Similarly, the vDU functions
with two different functional split options are hosted
in Host Machine 3 (i.e., vDU1 and vDU2) to build and
run Option 8 and Option 7a, respectively.

The Ettus Universal Software Radio Peripheral
(USRP) B210 device acts as radio front-end perform-
ing Digital to Analog and Analog to Digital Con-
version (DAC/ADC), Digital Up and Down Conver-
sion (DUC/DAC), low pass filtering and amplification.
The USRP B210 is attached to Host Machine 3. The
Huawei E3372 dongle is utilized as UE. The Huwaei
E3372 is capable to transmit 150 Mbps in downlink
and 50 Mbps uplink with a signal bandwidth of 20
MHz. The dongle is connected to Host Machine 4 and
connected to the USRP B210 device through SMA
cables with a 20 dB of attenuation in the middle of
the link.

Table III summarizes the Host Machines configura-
tions of the host machines utilized in the scenario de-
picted in Fig 3. Note that the kernel in Host Machines
is directly pre-compiled by OAI platform for including
the General Packet Radio Service (GPRS) Tunnelling
Protocol (GTP) kernel module. The architecture de-
picted in Figure 1 is implemented in a simplified
version. The VIM/VNFM is emulated by a shell script
that is triggered by the NFVO when functional split
change is required.

The main workflow is highlighted in Fig. 3. At the
beginning the VNFM/VIM and the SDN controller
perform the setup of the network service, activating
vCU1 in host machine 2, vDU1 in host machine 3 and
deploying the lightpath interconnecting them (three
nodes traversed with modulation 16QAM and bau-
drate 224Gbauds) with option 8. At step 1, the receiver
(RX) detects a value of BER > 0:002 and consequently
the FSM is applied: TX (step 2) and RX (step 3) are
reconfigured according to the FSM configuration. Once
the reconfiguration is complete, a NETCONF notifica-
tion is sent (step 4), informing the VNFM/VIM of the
lightpath adaptation. Then, the VNFM/VIM performs
the activation of vCU2 and vDU2 with option 7a (step
5).
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Theconsideredperformanceevaluationparameteris
theeNBfunctionalsplitreconfigurationtime(FSRT),
heredefinedasthetimeelapsingbetweenthelastping
replysentbytheEPCtotheUEandthedetection
ofthefirstsuccessivepingreplywiththerequested
functionalsplitoptionatthe UE.TheFSRT mea-
surementisperformedasfollows:i)initially,vRAN
setupissettorunonvDU1andvCU1withfunctional
splitOption8;ii)pingiscontinuouslyrunbetween
theUEandtheEPCwithpacketintervalof1ms;iii)
reconfigurationoffunctionalsplitrequestcommandis
sentbytheVNFM/VIMtovDU2andvCU2toinitiate
therequestedfunctionalsplit(i.e.,Option7a).

IV.RESULTS
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A.Simulationresults

Figure6. Meanoverallrecoveredratethroughtransmissionpa-
rameteradaptationversusofferedtrafficload, withsoftfailures
introducinganOSNRpenaltyof2dB.
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Fig.6showsthenumberofsupportedfronthaul
interfacesbeforeandafterthesoftfailureversusthe
offeredtrafficload,assumingthateachsoftfailure
introducesan OSNRpenaltyof2dB. Whiletraffic
loadincreases,withre-routing,thelackofavailable
networkresourcesonalternatepathscausesthefailof
lightpathre-routing,thusseveralfronthaulinterfaces
arenotsupportedanymore.Conversely,theproposed
two-stepschemeexploitslightpathadaptationalong
thesamerouteandthechangeofmodulationformat
makesfeasiblethetransmissionevenwiththeOSNR
degradation,thusrecoveryisnotblockedforlackof
networkresourcesandtwo-steprecoveryoutperforms
re-routing.Theplotalsoshowsthenumberofsup-
ported Option8and Option7interfacesafterthe
failureinthecaseoftwo-steprecovery.Theformer
belongstothelightpathswhicharenotimpactedby
thesoftfailure.Athighloads,re-routingapproaches
the Option8interfaces withtwo-stepsbecauseall
lightpathre-routingsareblockedforlackofresources,
thusonlyOption8trafficnotimpactedbythefailure
ispresentinthenetwork.Thenumberofsupported
Option7interfacesafterthefailureslightlyincreases

withloadbecause morelightpathsareimpactedthe
softfailure,thusthechangeoffunctionalsplitismore
likelyexploited.

Figure7. Meanoverallrecoveredratethroughtransmissionparam-
eteradaptationversussoft-failureOSNRpenalty,withatrafficload
of100Erlang.

Fig.7showsthenumberofsupportedfronthaul
interfacesbeforeandafterthesoftfailureversusthe
OSNRpenaltywithatrafficloadof500Erlang.The
totalnumberofsupportedinterfacesafterfailurede-
creaseswiththeOSNRpenalty.Indeed,thenumberof
lightpathsimpactedbythesoftfailureincreaseswith
theOSNRpenaltybecausethelargerthepenaltythe
highertheprobabilityofpassingtheBERthresholdof
103.Thus,inthecaseofre-routing,morelightpaths
contendsavailablenetworkresourcesonalternate
paths,while,inthecaseoftwo-steprecovery, more
lightpathsmustrelyonbitratereduction.

B.Experimentalresults

TableIVshowstheaveragevaluesofoveralltrans-
portnetworkreconfigurationtimeintheconsidered
scenarioforlightpathadaption.ThevalueofTXreconf
reportsthetimerequiredtoreconfiguretheTX.The
valueoftheRXreconfindicatesthetimerequiredfor
bothTXandRXreconfiguration.Then,thevalueatthe
NETCONFnotifyistheoveralltimerequiredforthe
reconfiguration,includingtheNETCONFnotification
totheVNFM/VIMrelatedtothelightpathadaptation.
Twodifferentlightpathadaptionscenariosareconsid-
eredsuchas:(i)fromhighbitratetolowbitrate(i.e.,
from16QAM/32GbaudstoQPSK/28Gbauds);ii)from
lowbitratetohighbitrate(i.e.,fromQPSK/28Gbauds
to16QAM/32Gbauds).Thesetwodifferentscenarios
arebasedonthepre-definedparametersasshowin
Fig.3.Theoveralltransportnetworkreconfiguration
fromhighbitratetolowbitrateisaround295ms,
whilefromthelowbitratetohighbitrateisaround
316msasshownintheTab.IV.
Uponreceivingthe NETCONFnotificationabout
thelightpathadaptationasshownin Fig.3,the
VNFM/VIMperformstheactivationofvCU2and
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Figure 8. Capture, at the UE, of ICMP messages exchanged between the UE and the EPC.

Table IV
TRANSPORT NETWORK RECONFIGURATION TIME

Lightpath TX reconf RX reconf NETCONF notify
adaption time [ms] time [ms] time [ms]

From high bit rate 145.83 250.39 294.51
to low bit rate

From low bit rate 166.75 272.83 315.64
to high bit rate

vDU2 with option 7a. Fig. 8 illustrates the wire-
shark capture of ping messages at the UE during
the eNB functional split reconfiguration. The ping
messages (i.e., ICMP request and reply messages) are
exchanged between the UE (dongle), whose IP address
is 192.168.8.1, and the EPC, whose GTP interface IP
address is 172.16.0.1. Notice that the vRAN setup
is established and running with functional split Op-
tion 8, initially. The timestamp of the wireshark is
measured in seconds. As shown in Fig. 8, the last
ICMP reply message is received by the UE at times-
tamp 197.930822 s before functional split Option 7a
is triggered. Upon functional split reconfiguration is
triggered, only ICMP request messages at the UE can
be observed. The first successive ICMP reply message
from the EPC to the UE is received at timestamp
210.392784 s, showing the successful reconfiguration
of the functional split Option 7a. Thus, the time elaps-
ing between the last ICMP reply message and the first
successive ICMP reply message at the UE (i.e., the
FSRT) is about 12 s. This obtained FSRT values also
includes a 2 s sleep time to synchronize the fronthaul
interface between OAI DU and OAI CU during Option
7a configuration, and the shell-based VIM controller
contribution of about 1 s to enter into the containers
to run the requested functional split option.

V. CONCLUSIONS

This paper proposed a two-step scheme for recover-
ing virtualised distributed unit (vDU) and virtualised
central unit (vCU) connectivity upon fronthaul failure.

In particular, a single soft failure of a lightpath inter-
connecting vCU and vDU is considered. The main nov-
elty of the proposed scheme consists of complementing
lightpath adaptation with the possibility of flexibly
changing the vCU and vDU functional split. This
approach allows to increase the number of recovered
connections when network spare resources are scarce.

Simulation results showed that the proposed scheme
allows to recover almost all the fronthaul vDU-vCU
connections along the same path where working light-
paths were routed and it largely overcomes the per-
formance of lightpath rerouting, specially when the
network load is high. Experimental results showed
that the recovery time experienced when functional
split change is triggered is in the order of tens of
seconds.
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