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Abstract
An improved radial particle-in-cell model of an annular Hall effect thruster discharge with
secondary-electron emission from the walls and a radial magnetic field is presented. New algorithms
are implemented: first, to adjust the mean neutral density to the desired mean plasma density;
second, to avoid the refreshing of axially accelerated particles; and third, to correctly weigh low-
density populations (such as secondary electrons). The high-energy tails of the velocity distribution
functions of primary and secondary electrons from each wall are largely depleted, leading to
temperature anisotropies for each species. The secondary-electron populations are found to be
partially recollected by the walls and partially transferred to the primary population. The
replenishment ratio of the primary high-energy tail is determined based on the sheath potential fall.
Significant asymmetries at the inner and outer walls are found for the collected currents, the mean
impact energy, and the wall and sheath potentials. Radial profiles in the plasma bulk are asymmetric
too, due to a combination of the geometric expansion, the magnetic mirror effect, and the centrifugal
force (emanating from the E × B drift). The temperature anisotropy and non-uniformity, and the
centrifugal force modify the classical Boltzmann relation on electrons along the magnetic lines.
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Due to the electric potential structure, the electrons are a con-
fined population except for small currents that flow to the walls 
or downstream forming a plasma jet. This confinement would 
facilitate electron population thermalization, but the low colli-
sionality of the discharge (at plasma densities of 1017–1018 m−3) 
causes the VDF tails of electrons collected by the walls not to be 
fully replenished, and hence the VDF remains non-Maxwellian. 
A second issue, particularly acute for ceramics used in HET 
chambers, is the high secondary-electron emission (SEE) caused 
by the impact of ‘primary’ electrons from the plasma bulk. This 
SEE generates counterstreaming flows of secondary electrons [4–
6] further making the VDF non-Maxwellian.

Ahedo and Parra [7] considered a one-dimensional planar 
(1Dp) stationary fluid model to analyze the plausible case 
where secondary electrons are partially trapped within the 
plasma bulk (and eventually thermalized) and partially 
recollected by the walls. They determined the effects of par-
tial recollection on the potential fall in the sheaths (and its

1. Introduction

The Hall effect thruster (HET) [1–3] is a mature technology, 
already widely and successfully used as both primary and 
secondary propulsion systems for a variety of space missions. In 
spite of its success, relevant physical phenomena of the plasma 
discharge inside the HET chamber and in its near plume are 
insufficiently known. This shortage drags out the development 
of new designs for new applications (for instance at low or high 
powers) and the optimization of existing devices. Also, it blocks 
the development of reliable and predictive simulation tools, 
which are considered essential, not only for design purposes, 
but also for accelerating tests of lifetime and of operation at 
different conditions (e.g. high thrust and high specific impulse). 

One of the main open problems in HET research is related
to plasma interaction with the thruster chamber walls and its 
effects on the electron velocity distribution function (VDF) and 
subsequent energy losses and plasma recombination at the walls.
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charge saturation) and on energy flows to the walls. Later, 
Ahedo and dePablo [8] extended the analysis to the partial 
thermalization of both primary and secondary electrons with a 
1Dp stationary kinetic model, describing the non-Maxwellian 
VDF and the SEE yields with phenomenological parameters. 
They obtained analytical expressions for the sheath potential 
fall and energy losses to the walls, in terms of the model 
parameters.

Sydorenko, Kaganovich, and coworkers [9, 10] treated a 
similar time-dependent 1Dp problem with a particle-in-cell 
(PIC) / Monte Carlo collision (MCC) formulation [11, 12]. 
Using a fixed background of neutrals, their steady-state 
solution confirmed the partial recollection of secondary 
electrons at the walls and, more importantly, determined the 
temperature anisotropy ratio of the VDF, in terms of the axial 
electric field, the collisional frequencies, and the SEE yields; 
interestingly, a near-wall conductivity effect [13] in the axial 
electron current was observed too. More recently, Wang et al 
[14] investigated, with a similar 1Dp PIC/MCC model, 
asymmetries in the electric potential profile and sheath 
potential falls caused by having different SEE yields at each 
wall (i.e. different materials).

Taccogna et al [15–17] considered a 1D radial (1Dr) PIC/
MCC model, which is much more suitable for simulating a 
HET annular chamber and where asymmetry in the electric 
potential profile takes place naturally. The emphasis of these 
works is on the development of a strong asymmetry and a 
saturated stream instability propagating all along the radial 
domain, in conditions where a strong axial electric field 
induces an azimuthal electron drift of the order of the electron 
thermal speed.

The present paper revisits the model and code of Tac-
cogna [16] with two types of goals. The first one is to enrich 
the numerical consistency and the capabilities of the code 
and, at the same time, to analyze the intrinsic limitations of 
1Dp and 1Dr models. In this respect and even assuming 
azimuthal symmetry (i.e. ∂/∂θ = 0) the restriction of an 
axisymmetric (r, z) discharge to a given radial section 
(z = const) of the chamber implies that strong assumptions 
must be made on all terms related to the axial forces and 
plasma flows. As a consequence, there is a certain degree of 
arbitrariness on the 1D model that cannot be left aside when 
drawing conclusions on the model results. The second goal of 
the paper is to investigate further the steady-state solution 
(without stream instabilities) with focus on assessing the 
temperature anisotropy ratio of the VDFs of both primary and 
secondary electrons, combined with the asymmetries intro-
duced by cylindrical geometry effects (which include geo-
metrical expansion, centrifugal force, and the magnetic 
mirror). Finally, the influence of anisotropy and asymmetry 
on the macroscopic laws of interest is investigated.

The rest of the paper is organized as follows. The main 
physical aspects of the model are presented in section 2, while 
section 3 includes the numerical implementation and the 
validation of the new algorithms. A discussion of the main 
physical aspects of the plasma discharge is provided in 
section 4. Conclusions are drawn in section 5.

respectively; A r r2
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2p= -( ) is the area of the radial section.

The 1Dr model considers electrons e, singly-charged ions i,
and neutrals n. Neutrals are modeled just as a spatially uniform
population with a time-dependent density nn(t) and a constant
temperature Tn. Electrons and ions are modeled as two popu-
lations of macroparticles of constant weight W (i.e. the number
of elementary particles per macroparticle) with densities and
temperatures, nj and Tj j i, e=( ), evolving with (r,t). Let us
define, representative of the instantaneous plasma density, the
radially averaged electron density n t WN Ve p=¯ ( ) where Np/V
is the number of macro-electrons per unit of volume.

We are interested here in simulating a quasi-stationary
discharge with a certain mean plasma density, that is n te »¯ ( )
const ne0= . In a 1D model, this requires one to make some
decisions on the behavior of the particle sources and sinks. In
a 1D cylindrical geometry, the conservation equations for
ions and electrons reduce to
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where n uj rj is the species radial flux; Sioniz is the source term
due to ionization, proportional to n t ;n ( ) and S jaxial, is the
source term due to the net axial contribution for species j. In a
2D (r, z) model one would have S n u zj j zjaxial, = ¶ ¶( ) , but
here S jaxial, is as arbitrary as the HET radial section we are
attempting to simulate. In the quasi-steady state, the integral
of the continuity equation over the plasma volume (expressed
in electric current units) yields

I I I j, i, e, 2j jwall, ioniz axial,» + = ( )

with I jwall, denoting the species current lost into the wall, Iioniz
the (equivalent) current created through volumetric ionization
(proportional to nn and the same for electrons and singly-
charged ions), and I jaxial, the current injected (or extracted)
through the axial flow. While I tjwall, ( ) is obtained directly

Figure 1. Sketch of a HET. The 1Dr simulation domain corresponds 
just to the thick black line.

2. The 1D radial model

The model analyzes the plasma radial structure at a given 
axial location within the acceleration region of a HET 
chamber, taking into consideration the weak plasma colli-
sionality and the SEE from the walls due to the impact of 
energetic primary electrons. Figure 1 sketches the annular 
HET chamber with r1 and r2 as the inner and outer radii,



from the dynamic plasma response, different choices can be
made on Iioniz and I jaxial, .

If nn(t) is known, then the plasma variables completely
determine Iioniz(t), and the simulation of a stationary discharge
requires I I Ij jaxial, wall, ioniz» - . This implies a continuous
injection (or extraction) of plasma from the domain, requiring
one to define the properties of the injected macroparticles or
the selection criteria for the extracted ones. We can distin-
guish between axially controlled discharge and ionization-
controlled discharge (ICD) depending on whether I jaxial, is
much stronger or much weaker than Iioniz, respectively. In an
axially controlled discharge, the plasma response is largely set
by these conditions ‘external’ to the radial dynamics. Previous
works seem to use n t nn n0=( ) and thus they operated in a
mixed regime.

The present work implements a model for a fully ioniz-
ation-controlled discharge with S S 0axial,i axial,e= = and nn(t)
adjusted in order that

I t I t , 3jioniz wall,»( ) ( ) ( )

at any time. It will be shown that adjusting nn(t) is simple and 
it ensures that a stationary discharge is achieved. Besides, it 
corresponds reasonably to the physical situation in the HET 
chamber acceleration region, where ionization and wall 
recombination tend to compensate each other [6].

A 1Dr model needs also to prescribe the axial electric 
field Ez. This field accelerates the (nearly unmagnetized) ions 
over time, which is an undesirable secular effect on the 1Dr 
simulation. Previous works have dealt with this issue by 
occasionally resetting or refreshing the ion population. Here, 
we choose to just ignore the effect of Ez on the ions, which 
can be interpreted as a continuous axial refreshing of ions. 
Therefore, macro-ions are inserted initially or created later 
with a mean axial velocity uzi, and they are subjected only to 
the radial electric field (and the magnetic field). Thus Ez 
affects electrons only, primarily by forcing with the magnetic 
field the electron E×B azimuthal drift. In fact, a key vali-
dation of the model will be to check that there is no secular 
increase of the macroscopic axial velocities of ions and 
electrons.

While Ez is taken to be constant and known, the radial 
electric field, Er = -  fd dr , with f ,r t( ) as the electric 
potential, satisfies the Poisson equation
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with ρel denoting the net electric charge density of the plasma.
The two boundary conditions for this equation are set here at
the outer wall, r = r2,

E t0, . 5r2 0 2 2f e s= = - ( ) ( )

Here the first condition just sets a reference for the potential;
ε0 is the vacuum permittivity; σ2 is the surface charge at the 
outer dielectric wall, to be defined in detail below; and the 
radial electric displacement of the dielectric wall is assumed
to be negligible compared to e Er0 2. A similar condition on Er1 
is derived below in equation (9).

The magnetic field is assumed to be radial and, in order
to be divergence-free, it satisfies

B r B
r

r
, 6r r1

1=( ) ( )

with Br1 known. Since Br r2 1B r/ /1= <r2 1, magnetic mirror 
effects are possible.

Turning now to the plasma–wall interaction, ions and 
electrons reaching the walls are collected; however, ion 
recombination is not considered explicitly since neutrals are 
just modeled through nn(t). The SEE produced by the 
impacting electrons will follow the probabilistic model of [18]. 
In this model, the total SEE yield accounts for three different 
types of secondary electrons: backscattered ones (elastically 
reflected by the wall), rediffused ones (non-elas-tically 
reflected by the wall), and true secondary electrons (those 
extracted from the surface layers of the material). More details 
on the implementation of the SEE model are given in [16]. For 
the present purpose of better understanding the radial 
discharge and the electron VDF, backscattered and rediffused 
electrons are not considered, so that the SEE is limited to true 
secondary electrons. In the energy range of interest, the 
resulting SEE yield (i.e the true-secondary-to-primary flux 
ratio) reduces to

E E E 7TS cd ( ) ( )

with E denoting the impact electron energy, and Ec the 
crossover energy (Ec = 51.1 eV in simulations here [16]).

Simulations are generally started with a uniform electric 
potential profile. Thus, in a transient, the walls preferentially 
collect (highly mobile) electrons. These collected electrons 
build up a (negative) surface charge at the walls and create 
plasma Debye sheaths around them. The accumulation over 
time of the surface charge is determined from integrating the 
current conservation equation across the wall surface and 
over time:

jt t t l1d , 1, 2. 8l l lòs = - =( ) ( ) · ( )

Here l names the wall, jl is the net electric current density at
the plasma–wall boundary, and 1l is the wall normal pointing
towards the plasma. At the steady state, jl is zero for a di-
electric and hence the surface charge remains constant.

As commented above, the integration of the Poisson
equation across each of the wall surfaces yields

E t E t, , 9r r0 2 2 0 1 1e s e s= - =( ) ( ) ( )

if the electric displacement field of the dielectric is negligible. 
The first condition is already imposed as a boundary condi-
tion in equation (5). Consistency requires that the second one 
be satisfied automatically. This is indeed the case since the 
radial integration of the current conservation and Poisson 
equations yields

rE rj td . 10r r
r

r r
r
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2

1
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The collisional processes implemented in the code are as 
follows: first, electron–neutral collisions including elastic 
scattering, excitation, and single ionization, following the 
models of [19–21]; and second, electron–ion, electron–elec-
tron, and ion–ion Coulomb collisions, according to the models 
of [22–25]. Ion–neutral collisions are found to be negligible 
for typical HET parameters.

In addition, we assume that secondary electrons are 
transferred to the main primary population when they undergo 
a collision with neutrals or a large-angle (greater than 90 
degrees) Coulomb collision. Notice that, in a kinetic or par-
ticle formulation, the distinction between ‘secondary’ and 
‘primary’ populations is just convenient for the analysis and 
understanding of the plasma response. In contrast, that dis-
tinction acquires full sense in multi-fluid electron models.

3. Numerical implementation and validation

The main input parameters and the resulting plasma magni-
tudes are listed in table 1. A uniform radial mesh of Nr+1

points from r1 to r2 is chosen, with a cell size Δr smaller than 
the plasma Debye length λD. The electron and ion macro-
particles have the same constant weight W throughout the 
simulation, chosen so that the initial number of both electron 
and ion macroparticles is Np0≈ 105, corresponding here to 
about 70 macroparticles per cell. It has been checked in an 
independent simulation that using double this number of 
particles per cell reduces only the PIC fluctuations, without 
changing the averaged trends.

Xenon is assumed to be the propellant. The plasma 
macroscopic properties such as the particle densities and 
fluxes are computed at the mesh nodes through an area 
weighting algorithm [26]. The nodal weighting volumes are 
corrected according to [27]. Higher moments of the VDF, such 
as the temperature, are obtained for each simulated species 
through a new extended volumetric weighting algo-rithm 
presented in section 3.2. Additionally, surface weight-ing 
schemes [28, 29] are used for updating the particle fluxes to 
the walls.

In order to obtain the electric potential at the mesh nodes, 
second-order finite-difference schemes are used for discretizing

Table 1. Main input parameters including initial population settings, externally applied fields and grid definition. The magnitudes marked
with an asterisk (*) are not input parameters of the model, but are derived from the other parameters instead. The variables named physical
parameters are estimated from the other input values given at the initial conditions.

Type Description Symbol Units Value

Population settings Number of elementary particles per macroparticle W — 3·109

Initial r-averaged plasma density ne0¯ 1017 m−3 0.8

Initial number of ion/electron macroparticles* Np0 — 106814

Initial electron temperature Te0 eV 10

Initial ion temperature Ti0 eV 1

Ion axial mean velocity uzi km s−1 10

Initial background neutral density nn0 1017 m−3 40

Neutral temperature Tn K 700

E, B fields Electric field axial component Ez V cm–1 100

Magnetic field radial component at inner radius Br1 G 150

Simulation parameters Inner radius r1 cm 3.5

Outer radius r2 cm 5.0

Number of nodes Nr — 1500

Grid spacing* Δr μm 10

Timestep Δt ps 5

Physical parameters Debye length* λD μm 83.1

Electron Larmor radius* rl μm 802.0

Inverse of plasma frequency* 1/ωpe ps 62.7

Inverse of electron cyclotron frequency* 1/ωce ps 379.1



the Poisson equation along the radial coordinate r. The Thomas 
tridiagonal algorithm [30] is applied as a direct solving tech-
nique. The electron trajectories are propagated along time using 
both the radial and axial components of the electric field, and the 
radial magnetic field. In contrast, only the radial electric 
field is used to update the ions’ velocity and position. The 
Boris–Buneman leapfrog algorithm  [26] is applied to move all 
macroparticles one timestep forward considering the corresp-
onding electric and magnetic fields interpolated to the macro-
particles’ position. The timestep is chosen so that Dt < 0.3w-pe1, 
where ωpe is the plasma frequency. This condition ensures the 
accurate integration of the electron gyromotion since ωpe>ωce, 
with ωce denoting the electron gyrofrequency (see table 1).

After advancing all macroparticles by one timestep, the 
MCC module performs electron–neutral elastic and inelastic 
collisions. The constant timestep method of [19, 20] for 
selecting the type of collision is implemented using the cross 
sections from [31]. The probability distribution function for 
the progeny electrons generated by ionization is taken from 
[21]. A mean axial velocity uzi is added to any newborn ion. 
Regarding the emission of true secondary electrons, a zero-
drift semi-Maxwellian VDF with temperature TeW = 2 eV  is 
assumed.

3.1. The discharge control algorithm

An algorithm for an ICD with no axial contributions of plasma 
is presented here. In principle, there would be two methods to 
implement, both plotted in figure 2(a). The first one, used in 
previous works and represented by the dashed lines, fixes the 
neutral density, i.e. n ( ) =t nn n and0 lets the mean plasma 
density n̄e t( ) evolve until a final state is reached after a few 
microseconds (i.e. a time related to the radial transit time of 
ions). The second method, represented by the solid lines of 
figures 2(a) and (b), fixes the mean plasma density in the 
domain, n̄ ( ) t n̄e e , and0 adjusts nn(t) in order to satisfy 
equation (3).

In the first method the final plasma density is unknown and it 
can be very different from the initial one. For instance,

the case of n t 4 10n
18=( ) · m−3 starts with n 8 10e

16»¯ ·
m−3 and ends, after 25 μs, with n 6 10e

15»¯ · m−3. This
implies that by starting with 80 macro-electrons per cell, we
end with only 6 macro-electrons per cell, thus affecting the
weighting accuracy. The advantage of the novel second
method is that the number of macroparticles does not change
practically along the simulation and thus it can be optimized
before starting the simulation. Besides, it seems preferable to
fix from the beginning the mean plasma density we are tar-
geting to have, rather than the neutral density.

The second method is here implemented with the fol-
lowing ICD algorithm on neutrals. First, a tolerance is fixed
for the variations of the average plasma density,

n t n 1 . 11c1 e e0 = -∣ ¯ ( ) ¯ ∣ ( )

Then, at every PIC–MCC timestep, both n te¯ ( ) and its rate of
change neD ¯ are computed. The last one at instant k is defined

as
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where (k−1) and (k) are two subsequent instants of the PIC
time and kc is a fixed number of timesteps (kc = 100 in the
figures here).

The neutral density for instant (k+1) is modified only if
n t n 1e e0 -∣ ¯ ( ) ¯ ∣ is outside the above tolerance range, and

n , 13k
ce 2D >∣ ¯ ∣ ( )( )

with òc2 fixed. The reason for including a condition on the rate
of change, neD ¯ , is to filter fast oscillations and the numerical
noise inherent in PIC calculations. Values of òc1 = 10−3 and
òc2 = 10−2 have been found adequate to smoothly run the
ICD algorithm here. The updated neutral density is defined as
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Figure 2(b) shows that the stationary discharge with
n 8 10e

16¯ · m−3 requires nn≈6.85·1018 m−3.
Figure 2(c) plots the evolution of the surface charges (in 

absolute value). In fact, the ICD algorithm is not applied until 
the surface charges σj(t) are practically constant. This takes 
about 1 μs (∼2 · 105 PIC timesteps) and corresponds to the 
formation time of the Debye sheaths (if the initial electric 
potential profile is flat). Figure 2(d) plots the evolution of the 
electric potential at the central point M (i.e. rM = 42.5 mm) 
for the ICD case and the non-ICD case with nn(t)=nn0.

Figures 2(e) and (f) detail the time evolution of partial 
currents for the ICD and the non-ICD cases, respectively. The 
net electric current to the two walls is there split into three 
populations: ions impacting the two walls (Iwi), electrons 
going to (and impacting) the walls (Iwet), and secondary 
electrons emitted from the walls (Iwef). The ICD case satisfies 
very well the steady-state and the dielectric conditions,

I I I I I I, , 15ioniz wi we we wet wef= = º - ( )

(Iwe is the net electron current to the walls) thus validating the 
ICD algorithm. In contrast, the non-ICD case satisfies the 
dielectric condition but there is a deficit in ionization. As a 
consequence, n̄e t( ) and the currents to the walls decrease [see 
figures 2(a) and (f)]. As said before, the non-ICD simulation 
was run for 25 μs without reaching a steady state (or perhaps 
extinguishing), which anyway proves that a non-ICD proce-
dure is not adequate.

3.2. The extended volumetric weighting algorithm

The PIC formulation operates with a constant macroparticle 
weight W for all the simulated species, which simplifies the 
treatment of collisional processes and saves computer mem-
ory. However, it also implies that, for each species, the 
number of macroparticles per cell is proportional to their 
density. The simulation parameters are optimized to accu-
rately reproduce the response of the main species (ions and 
primary electrons) with similar densities (except inside the 
sheaths). But secondary electrons from the walls turn out to 
have a density one to two orders of magnitude lower. Thus, if



Figure 2. Time evolution of (a) the average electron density in the simulation domain for non-ICD (dashed) and ICD (solid) cases; (b) the 
background neutral density in the ICD case of the previous plot; (c) the absolute value of the surface charge densities at the inner (black solid) 
and outer (black dashed) walls in the ICD case; and (d) the electric potential at the central point M in the ICD case (black solid) and the non-
ICD case with n t( ) =n nn  (red0 dashed). Time evolution of the different electron sources and sinks on the current continuity balance of 
equation (15) for the ICD case (e) and the non-ICD case with n t( ) =n nn  (f)0 . All plots represent time-averaged magnitudes over Nk = 
104 timesteps.



there are 50–100 particles per cell for ions and primary
electrons, there will be only 1–10 for secondary electrons.
This leads to temporal oscillations on their density and, more
importantly, to wrong estimates of their macroscopic velocity
and temperature, as shown below.

This issue can be solved by extending in time the con-
ventional volumetric weighting of the particles. The extended
volumetric weighting (EVW) algorithm proposed here takes
into consideration data from the last Nk timesteps. Thus the
particle density of species j in a given node satisfies

n
W

N V
s , 16j

k k p
påå=

D
( )

where ΔV is the weighting volume associated with the node,
sp is the weighting function assigning a weight to each
macroparticle depending on its distance to the node, the sum
in p is for all macroparticles with s 0p ¹ , and the sum in k is
for the timesteps.

Similarly, the particle flux vector at the same node and
time is given by

g v
W

N V
s , 17j

k k p
p påå=

D
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with vp denoting the particle velocity. Then, the resultant fluid
velocity is u g n .j j j= In the same way, the diagonal com-
ponents of the pressure tensor at the same node and instant are
computed as

p
mW

N V
v u s l r z, , , , 18lj

k k p
lp lj p

2åå q=
D

- =( ) ( )

with m the mass of the elementary particle; the resultant
temperatures are T p nlj lj j= .

Of course, the EVW filters oscillations of frequencies
N tk

1D -( ) but this is not an issue when studying the steady-state

discharge. For instance, in the simulations shown in this paper, 
values of Nk 104= - 105 are taken, which correspond to 
0.05–0.5 μs, so even oscillations of up to hundreds of kilohertz 
can be reproduced correctly.

Figure 3 plots the macroscopic azimuthal velocity and 
the mean temperature of the three electron species considered 
hereafter: primary electrons p, and (true) secondary electrons 
emitted by the inner s1 and outer s2 walls (recall that sec-
ondary electrons become primary electrons after a large-angle 
collision). In order to show the need for and the excellent 
performance of the EVW algorithm, these two macroscopic 
variables are plotted in two ways. The plotted EVW variables 
correspond to
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The conventional volumetric weighting variables (averaged
over Nk timesteps, to make the comparison fairer) correspond to
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Figure 3(a) shows that with EVW, the azimuthal velocities 
of the three electron populations well satisfy the E×B drift. In 
comparison, conventional weighting yields incorrect (too low) 
values of uθe for secondary electrons. The reason for the dis-
crepancies is that the instantaneous values used in equation (20) 
are weighted over a too small number of secondary macro-
electrons per cell. Conventional weighting behaves well on uθe 

for p-electrons since a sufficient number of macroparticles per 
cell are used at any timestep. Only near the walls there is some 
discrepancy between the two weightings on p-electrons, due

Figure 3. Steady-state radial profiles of (a) the macroscopic azimuthal velocities and (b) the mean temperatures of the different electron
populations. Curves without (with) a prime correspond to extended (standard) volumetric weighting. Plot (a) also depicts the E×B velocity
drift for comparison. The steady-state values are averaged over the last Nk = 2·105 timesteps (equivalent to the last microsecond of
simulation time). In both plots the vertical dashed lines represent the approximate inner and outer sheath edges.



precisely to the decreasing density (and thus the decreasing 
number of macroparticles per cell) there.

The differences between the extended and conventional 
weightings are more pronounced when computing tempera-
tures, since these variables measure velocity dispersion, so 
double summation on the particles per cell (both for uj and for 
Tj) doubles the source of errors. In figure 3(b), conventional 
weighting works fine for the primary-electron temperature but 
it again underestimates much of the temperature of the sec-
ondary electrons; observe that it is practically zero for s1-
electrons (and zero temperature is the natural value when 
there is only one particle per cell).

The vertical dashed lines in figure 3 approximately 
represent the edges of the Debye sheaths. Notice that a 
‘sheath edge’ is well and exactly defined only in a two-scale 
asymptotic model applicable to the zero-Debye-length limit. 
In the present one-scale (i.e. nonzero Debye length) model, 
the definition of sheath edges is just meant for a more detailed 
analysis of the results, particularly to point out differences 
between the plasma responses at the plasma bulk and near the 
walls. We have located sheath edges at 0.5 mm (∼6λD) from 
the wall, based on data from the knees of the electric potential 
profile, the relative charge density, and the radial ion Mach 
number [see figure 5(c) below].

Observe that secondary electrons are born at the wall 
from a semi-Maxwellian VDF with TeW = 2 eV. Then, within 
the Debye sheath, they are preferentially accelerated by the 
strong radial electric field Er (∼50 000 V m–1), and enter the 
plasma bulk as a quasi-monoenergetic beam. Their effective 
magnetization (a cycloidal combination of azimuthal drift and 
gyromotion) takes place once they are inside the plasma bulk, 
within one Larmor diameter (∼3 and ∼4 mm, at the inner and 
outer sheath edges, respectively, based on the local magnetic 
field and radial velocity). The reproduction of this well-
known behavior in the simulations can be considered as an 
important validation step.

It is worth pointing out that the EVW particle density 
defined in equation (16) is only used for macroscopic quantity 
calculation, while for solving the Poisson equation [equation 
(4)] instantaneous conventionally weighted electron and ion 
particle densities are considered so that any filtering effect due 
to the time-averaging process is avoided in the update of the 
ambipolar radial electric field.

4. Analysis of electron VDF and dynamics

The analysis here is focused on the stationary response for an 
ICD as defined in table 1. Table 2 compiles relevant data on 
the discharge that will be commented on in this section 
together with figures 4–6.

Figure 4(a) plots the radial profile of the self-adjusted 
electric potential. Points W1, W2, Q1, Q2, and M correspond 
to the walls, sheath edges, and channel mid-radius, respec-
tively. The maximum potential is located just a bit inwards of 
point M and is only 0.03 V higher. The asymmetry of the 
potential profile due to cylindrical effects is evident at the

sheath edges and the walls. The potential difference between
the two sheath edges is 0.96 VQ Q1 2

fD = and that between
the two walls is 2.27WW1 2

fD = V. The latter is a bit higher
than the typical emission energy of secondary electrons in our
simulations, TeW = 2 eV; nonetheless a simulation run with
TeW = 0.2 eV shows rather small differences in the steady-
state response. A difference WW1 2

fD >0 allows electrons
emitted from wall W2 to be recollected at wall W1. However,
there are two magnetic effects that change the perpendicular
energy of electrons and therefore their radial energy and radial
turning points (i.e. those with zero radial velocity, vr = 0).

Neglecting collisions, the conserved total energy E of an
electron satisfies
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with v̂ as the non-radial component of the electron velocity.
In the small electron Larmor radius limit, the phase-averaged
perpendicular energy, m v 2e

2
^ , is the sum of the one due to

gyromotion (which is proportional to the conserved magnetic
moment μ) and the one due to the azimuthal E×B drift.
Thus, here the radial kinetic energy satisfies
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where Wd = em E  2Bz r
2 2 is the gyrocenter azimuthal energy, 

and the rightmost side makes explicit the variation of B and 
Wd with r; in our simulations Wd1 = 1.27 eV and Wd2 
= 2.58 eV at the inner and outer walls, respectively. There-
fore, the radial energy of an electron moving inwards is 
decreased by the magnetic mirror and is increased by a 
change in the E × B drift. For the plotted simulation, the 
change in Wd is mild, but not negligible, compared to the 
change of f in the plasma bulk. Later, in figure 6(b) it will be 
seen that this azimuthal energy plays a significant role in the 
electron macroscopic energy/momentum balance.

Figures 4(b)–(d) show the VDFs, rf vr( ), (once integrated 
over vθ and vz) of the primary and secondary electrons, p, s1 
and s2, at points M, Q1 and Q2. Observe first that, in the 
plasma bulk, between Q1 and Q2, the densities of secondary 
electrons are much lower than those of primary electrons, np, 
so the latter determines almost exclusively the electric 
potential profile. In figures 4(b)–(d), solid vertical lines 
approximately (and in the absence of collisions) separate the 
central region of confined electrons from the left and right 
regions of electrons to be collected by the inner and outer 
walls, respectively. These lines correspond to the radial 
turning points from equation (22) for electrons with an 
average gyroenergy value of ámBñ =  9.2 eV.

Table 2 shows that the Coulomb collisions are negligible 
compared to the collisions with neutrals, but even the elastic 
electron–neutral frequency, ∼3.7 MHz, is low compared with 
the transit frequency, ∼62 MHz. This explains that the VDFs at 
point M, figure 4(b), present a large depletion of the high-energy



Table 2. Main parameters characterizing the steady-state discharge. Values averaged over the last microsecond of simulation time are used.

Type and units Description Symbol Value

Electric potentials (V) At the mid-radius M fM 17.47

At the inner sheath edge Q1 Q1
f 13.70

At the outer sheath edge Q2 Q2
f 12.74

At the inner wall W1 W1
f 2.27

At the outer wall W2 W2
f 0.0

Collision frequencies (MHz) e–n elastic collision en
eln 3.680

e–n excitation collision en
exn 0.209

e–n ionization collision en
ionn 0.168

e–i Coulomb collision ei
Couln 0.076

e–e Coulomb collision ee
Couln 0.017

i–i Coulomb collision ii
Couln 0.119

Conversion to p and wall collection fractions (%) s1 conversion to p — 63.2

s1 collection at the inner wall — 7.5

s1 collection at the outer wall — 29.3

s2 conversion to p — 60.1

s2 collection at the inner wall — 28.7

s2 collection at the outer wall — 11.2

Current densities (A m–2) p to the inner wall jp,1-∣ ∣ 12.80

s1 to the inner wall js1,1-∣ ∣ 0.17

s1 from the inner wall js1,1+∣ ∣ 2.36

s2 to the inner wall js2,1-∣ ∣ 2.96

p to the outer wall jp,2+∣ ∣ 23.97

s1 to the outer wall js1,2+∣ ∣ 0.48

s2 to the outer wall js2,2+∣ ∣ 0.81

s2 from the outer wall js2,2-∣ ∣ 7.23

Mean impact energies per elementary particle (eV) e p s1 s2º + + at the inner wall Ewe,1 8.10

p at the inner wall Ewp,1 8.50

s1 at the inner wall Ews1,1 4.06

s2 at the inner wall Ews2,1 6.59

e p s1 s2º + + at the outer wall Ee,2 15.75

p at the outer wall Ewp,2 16.16

s1 at the outer wall Ews1,2 6.24



1 1

tails, filled with wall-collectable electrons. Figures 4(c) and (d)
show similar depletions of the VDF tails at points Q1 and Q2. In 
plot 4(c) the  peak on the  s1-VDF  (blue line) corresponds to 
the
electrons just emitted from W1, which have acquired an electric 
potential energy e fWQD = 11.43 eV when crossing the
sheath. An equivalent explanation applies to the peak of the

s2-VDF (red line) in plot 4(d), with an energy e fW Q2 2
D = 

12.74 eV.
Beyond these peaks, the shape of the VDFs for secondary 

electrons at different locations is the consequence of their 
possible destinies. The most energetic ones are recollected 
after a single or double radial journey. The rest of them

Table 2. (Continued.)

Type and units Description Symbol Value

s2 at the outer wall Ews2,2 9.34
Electron energy balance source and sink terms (W) Electric field work Pelec 337.67

SEE energy gain Pwall,f 5.56

Wall losses Pwall,t 153.40

Inelastic collision losses Pinel 194.30

Figure 4. (a) Time-averaged (over last microseconds of simulation time) radial profile of the electric potential. Points M, Q1, Q2, W1, and W2

correspond to the channel mid-radius, sheath edges, and walls. (b)–(d) Radial VDF at nodes M, Q1, and Q2. Black, blue and red lines with
squares, up triangles and down triangles correspond to the p-, s1- and s2-populations, respectively. The VDFs are accumulated over the last
microsecond of simulation time.



Figure 5. Steady-state radial profiles of macroscopic magnitudes for the different electron species and ions: (a) the electron particle density,
(b) the electron radial velocity, (c) the ion radial Mach number, (d) the electron axial velocity, (e) the radial electron temperature, and (f) the
perpendicular electron temperature. Black, blue and red lines with squares, up triangles and down triangles correspond to p-, s1- and s2-
electron populations, respectively. Dashed vertical lines mark the approximate sheath edges. The curves are computed using the EVW
algorithm with the last Nk = 2·105 timesteps (equivalent to the last microsecond of simulation time).



bounce radially, until collisions transfer them to the primary 
population. The SEE yield and the amounts of wall recol-
lection and conversion to p-electrons determine the density 
and other macroscopic properties of secondary electrons. 
Table 2 provides detailed data on these processes: 60% and 
63% of s1- and s2-electrons, respectively, are converted to 
p-electrons due to electron–neutral or large-angle Coulomb 
collisions, while the remaining fractions are recollected at the 
walls.

Table 2 also provides the currents of the different elec-
tron species to and from the walls. Most of the current to the 
walls comes from the p-population, which has a much higher 
density, as illustrated in figure 5(a). The most prominent result 
is that large asymmetries are found between walls in (i) the 
current exchanged at each of them, with a ratio of
∣ e,2 ∣ ∣j je,1+ -∣  1.59, and (ii) the average true secondary 
electron yields, defined as

j
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for each wall. Here and in table 2 subscripts 1 and 2 refer to 
both walls, and + and − to the direction of the radial velocity 
at the wall location. Since the two wall materials are the same, 
the difference in the effective SEE yields is due to a difference 
in the mean impacting energy per particle, Ew. This energy is 
obtained by dividing the net energy flux to a wall by the 
corresponding particle flux. Table 2 shows that Ewp,1 = 8.50 
eV and Ewp,2 = 16.16 eV. In fact, these values are not far 
from twice the electron temperature, the mean impacting 
energy for a Maxwellian VDF.

Figure 5 plots the steady-state spatial profiles for the 
main macroscopic magnitudes. We focus the discussion here 
on the plasma bulk, since plasma magnitudes inside the 
steepened sheaths (such as the behavior of Te) are generally 
not detailed in the conventional two-scale sheath analysis. 
Figure 5(a) plots the density profiles of the different electron 
populations, confirming the much lower densities of sec-
ondary electrons. In addition, a large asymmetry between the 
s1- and s2-population densities is observed. The lower s1 
density is partially caused by the lower SEE yield from W1.

Figure 5(b) plots the macroscopic radial velocity ur for 
the three electron populations. Primary electrons behave as 
usual with inward and outward fluxes from (around) the 
channel mid-line M. The velocity increase inside the sheaths 
is just the consequence of the decreasing density there. 
Indeed, the same behavior is observed of the radial velocity of 
ions, figure 5(c), where =M ur ri i Te( )m -

i
1 2  is the radial 

Mach number, with mi the ion mass. Observe that the sheath 
edges are placed at the ion sonic points.

Back to figure 5(b), the s1-electrons present a net outward 
radial velocity, indicating that their outward flow is slightly 
larger than the inward one, due to a larger recollection at W2. 
The opposite situation happens to the s2-electrons. Notice that 
these radial velocities are just small drifts in the VDFs of the 
three populations: for instance, the energy corresponding to ur 
= 105 m s–1 is ∼0.03 eV. The similar negative slope of dur/dr 
for the s1- and s2-electrons is likely due to the net macroscopic 
effect of the magnetic mirror and the E×B contributions.

Figure 5(d) plots the macroscopic axial velocity, uz, of 
the three electron populations. These velocities are practically 
zero except for the oscillations shown in secondary electrons 
which correspond to the net axial residual of their

Figure 6. (a) Contribution of collisional and other minor effects to the local radial momentum balance of primary electrons, equation (24).
(b) (dotted line) Electric potential profile relative to fM; (dashed line) Boltzmann relation, i.e. the left side of equation (25); (solid line) 
integrated radial momentum balance of primary electrons, i.e. the full equation (25); and contributions to the right side of equation (25): red 
circles correspond to the radial temperature non-uniformity term; green squares represent the temperature anisotropy contribution; and blue 
triangles stand for the centrifugal force. The macroscopic variables involved are computed through the EVW algorithm with the last Nk = 2·
105 timesteps (equivalent to the last microsecond of simulation time).



gyromotion, giving rise to near-wall conductivity [13]. 
Although not shown here, ions present an average macro-
scopic velocity approximately equal to that assigned indivi-
dually to their macroparticles when created. Very importantly, 
the simulations confirm that there are no secular effects on the 
axial flow of all populations and therefore there is no need to 
apply particle refreshing. (Nonetheless, in much longer 
simulations, collisional effects should yield a nonzero uze of 
the order of uθe divided by the Hall parameter.)

Figure 3(b) showed the mean temperatures of the three 
electron species. Now, figures 5(e) and (f) plot the radial (i.e. 
B-parallel) and perpendicular temperatures, unveiling sig-
nificant anisotropy. For the three populations, it is found that
qT Tz» » T̂ and the anisotropy is the combined con-
sequence of the electron magnetization and the depletion at 
the walls. Interestingly, and due to their very different
dynamics, rT T̂  is lower than 1 for primary electrons and 
higher than 1 for secondary electrons. For instance, at point M
one has rp,MT T̂ p,M  0.64, rs1,MT T̂ s1,M  4.35, and 
rs2,MT T̂ s2,M  2.08. The temperature behavior of the pri-
mary electrons is a direct consequence of the partial depletion
of their radial VDF tail. The trend rT T̂  > 1 for secondary 
electrons would be due to their preferential radial bouncing, 
further enhanced by the fact that when they collide strongly 
they are transferred to the primary population.

Because of the very low density of secondary electrons, 
the radial potential profile of figure 5(a) is shaped almost 
exclusively by the p-population. Indeed, the complete mac-
roscopic radial equilibrium for the p-electrons reads
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The first three terms on the left side are well known. The
fourth one, where B r rd ln d 1= - has been applied, is the
magnetic mirror, which in the macroscopic formulation
requires both a parallel magnetic gradient and a temperature
anisotropy. The fifth term is the radial centrifugal force,
coming from the E×B drift. On the right side Fr¢, plotted in
figure 6(a), groups the contributions of collisions and the
convective term m u u rr re e e¶ ¶ . Since Fr¢ has been computed
from the sum of all the terms on the left side, its large
oscillations are due to inaccuracies when computing spatial
derivatives from noisy PIC profiles. The first two terms on the
left side are the dominant ones, with a typical value of
(1000 V m–1). Therefore, we can conclude that Fr¢ and thus
collisional and convection effects are marginal in the plasma
response.

Neglecting Fr¢, the integration of equation (24) yields
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Here, the left side now groups the two terms of the isothermal 
Boltzmann relation, while the right side includes the effects of 
a non-uniform radial temperature, the magnetic mirror, and 
the centrifugal force. The different contributions are plotted in 
figure 6(b). This shows that the whole radial equilibrium of 
equation (25) is satisfied excellently; the three contributions of 
the right side are of the same order (see symbols at the sheath 
edges); and the sum of these three contributions
introduces a correction of up to 30% (relative to -e ef fM) 
in the Boltzmann relation.

The potential fall in a sheath is closely related to the 
electron currents to and from the walls. In particular, to fulfill 
the zero electric current condition, the lower the primary-
electron current (because of VDF tail depletion), the lower the 
sheath potential fall. Ahedo and dePablo [8] treated this problem 
analytically by assuming a functional form of the p-VDF which 
fits well with the present results. They modeled partial depletion 
with a replenishment (via collisionality) parameter σt (not to be 
mistaken for the surface charge), which, in the end, measured 
the ratio between the actual potential fall and the one 
corresponding to a non-depleted Maxwellian population. For 
instance, for the inner wall W1 it would be
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and a similar definition applies to the outer wall. In our
simulation, the p-tail replenishment ratios are rather low,

0.04t,1s  and 0.05t,2s  , which seem reasonable with the
weak electron collisionality. If instead of the total temperature
Tp, the radial temperature Trp were used in the definition of
jther, it would still be 0.15t,1s  and 0.19t,2s  .

A final point to comment is that, in the present ioniz-
ation-controlled model with no axial (i.e. external) injection
of particles along the simulation, the mean steady-state elec-
tron temperature is totally intrinsic to the model and its
parameters. Indeed, simulations started with different values
of Te0 between 1 and 20 eV have led to the same final tem-
peratures shown here. This final temperature comes from the
energy balance
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P P P
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where Pinel denotes the losses due to inelastic processes 
(ionization and excitation), Pwall,t denotes the losses due to 
electron collection at the walls, Pwall,f denotes the gains due to 
electron emission at the walls, and Pelec is the energy trans-
mitted to the electrons by the electric field. The values of these 
terms are in table 2: Pwall,f is negligible and Pinel and Pwall,t are 
of the same order.

In the opposite case of an axially controlled radial dis-
charge, i.e. with Saxial,j  Sioniz in equation (1), the mean Te 
would be dependent mainly on the temperature of the macro-
electrons continuously injected through Saxial,j. Therefore, while 
the temperature anisotropy of the primary population and



possibly the temperatures of the secondary populations are 
relevant results of a 1Dr model, the mean value of Te is partially 
arbitrary. Indeed, in the complete HET discharge, Te is deter-
mined basically by the axial dynamics, through the discharge 
voltage, the Joule heating, and the ionization and wall losses.

5. Conclusions

The annular model and related PIC/MCC code of a given 
radial section of the acceleration region of a HET has been 
built on a previous one by Taccogna [16]. The main numer-
ical improvements and conclusions are as follows. First, in an 
ionization-controlled discharge we cannot fix both the mean 
neutral density and the mean plasma density. Second, fixing 
the mean plasma density and adjusting the neutral density 
along the simulation is a preferable method in terms of 
optimizing the PIC implementation. Third, the secular growth 
of ion axial energy and the subsequent refreshing of macro-
ions is avoided by canceling the ion axial acceleration. And 
fourth, a time-extended volumetric weighting algorithm is 
implemented, which improves very substantially the weight-
ing of macroscopic magnitudes of the minor species (here the 
true secondary electrons), while not affecting the major spe-
cies (here the primary electrons and the ions).

On the physical side the main contributions are as fol-
lows. First, because of the weak collisionality (dominated by 
elastic electron–neutral collisions), the VDF of primary 
electrons presents an important depletion of the high-radial-
energy tails, leading to a radial-to-perpendicular temperature 
anisotropy ratio of about 2/3 in the simulation discussed here. 
Second, the true secondary electrons are partially converted to 
primary electrons (after a strong collision) and partially 
recollected by the walls, in a proportion of about 40%–60%. 
The resulting density of the secondary electrons is very low, 
thus only slightly affecting the shape of the electric potential 
profile. Besides, secondary electrons maintain a low radial 
drift velocity and a radial-to-perpendicular temperature ratio 
higher than one. Third, the replenishment ratio of the high-
radial-energy tail of primary electrons is low, which leads to a 
reduced sheath potential fall. Fourth, the electric potential 
profile in the (quasineutral) plasma bulk comes from a radial 
momentum equilibrium which goes beyond the classical 
Boltzmann relation and incorporates non-negligible con-
tributions of (i) the radial temperature gradients, (ii) the 
magnetic mirror, and (iii) the centrifugal force. This macro-
scopic magnetic mirror effect combines the temperature 
anisotropy and the cylindrical divergence of the magnetic 
field. The relevance of the centrifugal force stands out since it 
is disregarded in macroscopic models invoking the zero 
electron inertia limit, but this assumption does not take into 
account the subtle detail that em uq

2
e 2r  is in a HET plasma 

much larger than m ue e ur re¶ ¶r . And fifth, the above 
cylindrical effects introduce significant asymmetry in (i) the 
plasma profiles with respect to the mid-radius and (ii) the 
magnitudes related to plasma–wall interaction, such as the 
collected currents and the mean impact energies, and thus the 
resulting SEE yields.

While the present work is devoted to improvements of the 
1Dr code and the capabilities it has to analyze kinetic and 
macroscopic plasma responses, further work will deal with a 
parametric investigation on the trends and features found in the 
simulation analyzed here. This should yield scaling laws among 
input and output parameters, which will provide a solid char-
acterization of 1Dr discharge. Besides, some of these laws could 
be implemented as auxiliary models in HET hybrid codes, which 
use a macroscopic formulation of the electron popula-tion; one 
example is the replenishment ratio of the VDF for sheath 
calculations. A particularly interesting parametric investigation is 
on increasing the axial electric field in order  to  reach electron 
azimuthal velocities above the electron thermal velocity. This 
would allow one to analyze the reported trans-ition from a stable 
steady-state discharge to an instability-saturated one. A second 
prominent investigation is on plasma response in the presence of a 
non-fully-radial magnetic field, which is expected to largely 
modify the tails of the electron VDFs and the temperature 
anisotropy.
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