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The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations

in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stabil-

ity analysis is spatially global, as opposed to the more common local stability analyses, already

afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study

covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respec-

tively. The influence on the spoke instability of different operation parameters such as discharge

voltage, mass flow, and thruster size is assessed by means of different parametric variations and

compared against experimental results. Additionally, simplified models are used to unveil and char-

acterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azi-

muthal oscillations of the ionization process and to the Bohm condition in the transition to the

anode sheath. Finally, results obtained from local and global stability analyses are compared in

order to explain the discrepancies between both methods.VC 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4934352]

I. INTRODUCTION

During the last few years, a growing interest in the

so-called azimuthal spoke2 oscillation has reappeared within

the Hall Effect Thruster community. Even though the pres-

ence of this low frequency (5–30 kHz) oscillation has been

known for a long time,3–5 the interest has been renewed

recently thanks to various experimental results presented in

different series of publications by Raitses et al.,6–11

McDonald et al.,12–17 and Liu et al.18,19 The spoke normally

appears as a long wavelength low frequency oscillation trav-

elling in the E�B direction with an azimuthal phase speed

of a few km/s. This oscillation is a relevant feature of the

Hall discharge physics and may play an important role in

various aspects of the Hall discharge such as electron con-

ductivity or incomplete ionization. A review of experimental

and theoretical analyses of the spoke is presented in Part I of

this study1 and thus is omitted here.

This paper analyses the low frequency azimuthal stabil-

ity of the Hall discharge globally, contrary to the more com-

mon local stability studies. The latter have been widely used

in the literature to analyze the azimuthal stability of the Hall

discharge.1,5,20–29 However, these local methods require

freezing the steady-state background solution at each axial

location and reduce the perturbation analysis to local normal

modes. For this to be consistent, the wavelength of the oscil-

lations must be much smaller than the length scale of varia-

tion of the macroscopic variables. Given the large spatial

gradients of the Hall discharge, this condition is not strictly

met in Hall thrusters. However, global linear methods

consider consistently the axial variation of the macroscopic

variables along the thruster. Global methods have indeed

been used in the past to analyze the stability of Hall thrusters

in the high-frequency range.30–33 In order to carry out the

global analysis, the 1D model of Ahedo et al.34 including

heat conduction and wall losses is used as starting point.

This 1D model has been used thoroughly in the past to ana-

lyze different aspects of the Hall discharge.35–41

The rest of the paper is organized as follows. In

Section II, the formulation of the linearised time-dependent

two-dimensional (2D) model used is summarized. Section

III discusses the results of the linear model for the breathing

mode and the spoke. Simplified models are used in Section

IV to better understand the detected oscillations. Section V

presents a comparison between local and global methods.

Finally, Section VI is devoted to conclusions.

II. LINEAR TIME-DEPENDENT 2D MODEL

This section summarizes the formulation of the linear

time-dependent 2D model used here, which is similar to that

of Part I.1 The formulation is based on the 1D model of

Ahedo et al.,34,35 which has been widely used in the past for

modelling the plasma in Hall thrusters. That 1D model can

be extended to two dimensions, azimuthal (y) and axial (x),
with time-dependent terms. Under the same hypotheses of

the 1D model, the governing 2D time-dependent equations

for singly charged ions, electrons, and neutrals may be writ-

ten as
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where e, me, and mi are the electron charge, electron mass,

and ion mass, respectively; E and B are the electric and mag-

netic fields; nn and n are neutral and plasma particle den-

sities; vn, ve, and vi are fluid velocities of neutrals, electrons,

and ions, respectively; Te, /, and qe are the electron tempera-

ture, electric potential, and electron heat flux, respectively;

�e is the effective electron collision frequency, �e¼ �B

þ �wmþ �enþ �ei, accounting for Bohm-type diffusion, �B,

near-wall conductivity, �wm, electron-neutral collisions, �en,

and electron-ion collisions, �ei; �i, �w, and �we represent the

frequencies for ionization, particle wall-recombination, and

energy losses at lateral walls, respectively; E0
i models the

energy loss per ion-electron due to ionization and radiation;

dc(x) is the plasma beam width, constant within the channel

and increasing outside due to plume divergence. The expres-

sion used for Bohm-diffusion is �B¼ aBxce, where xce¼ eB/
me is the electron cyclotron frequency and aB is a constant

empirical coefficient whose value is typically selected so as

to match approximately experimental results (aB� 0.01).

Ions impacting the chamber walls undergo wall recombina-

tion and return to the channel as neutrals. The velocity of the

newly born neutrals, vnw, is not equal to the velocity of

impacting ions but is the result of an accommodation process

in the wall, vnw¼ awvnþ (1� aw)vi, where aw is the accom-

modation factor. The no-accommodation limit corresponds

to the case aw¼ 0. Expressions for all terms of this formula-

tion may be found elsewhere.34,35

The radial variation of the macroscopic variables is

neglected here, because of their presumable negligible role on

azimuthal-axial oscillations, thus reducing the problem to two-

dimensions: axial and azimuthal. Moreover, curvature effects in

the azimuthal direction are also neglected as the mean radius of

the channel, Rm, is typically larger than its width. In the limit of

a stationary and axi-symmetric solution, the system of equations

(1) reduces to the 1D model. Note that the model given by Eqs.

(1) includes both heat conduction terms and plume divergence

as well as Bohm-type diffusion and losses to the lateral walls.

Plume divergence and lateral losses were not included in the for-

mulation used in Part I of this study.1

The small perturbation hypothesis allows linearising the

model in Eqs. (1) around a given background axi-symmetric,

stationary solution. The perturbations may then be assumed

to be of the following Fourier form:

f̂ ðt; x; yÞ ¼ �f ðxÞ expð�ixt þ ikyyÞ; (2)

where �f ðxÞ is the x-dependent coefficient of the perturbation
of a generic variable f, and x and ky are the angular fre-

quency and the azimuthal wave number, respectively. The

wave mode number, m, is given by m¼ –Rmky and can only

have integer values due to azimuthal symmetry. The details

of the method used to linearise Eqs. (1), split the zero-th and

first order problems, solve the resulting system of equations,

and find self-excited oscillations in the complex frequency

space (x¼xrþ ixi), have already been presented in the lit-

erature.42 A set of boundary conditions are necessary for the

first order problem at anode, cathode, and internal sonic

point. These boundary conditions are also obtained linearis-

ing the boundary conditions of the zero-th order problem.42

III. RESULTS AND DISCUSSION

A. Background solutions

The zero-th order solutions whose stability is to be ana-

lysed in Sections III B and III C are described here. For this

purpose, a SPT-100 thruster model has been considered as a

reference case.

The main simulation parameters are presented in Table I,

where the following symbols are used: _m is the mass flow rate

through the anode; Vd is the discharge voltage; Bmax is the

maximum magnetic field; xmax is the location of the maximum

magnetic field with respect to the anode; LAE is the distance

from anode to external cathode (i.e., neutralizing surface);

Lch, dc, and Rm are, respectively, the length, width, and mean

radius of the channel; TeE is the cathode temperature; vnB is

the neutral velocity at injection; ~�w is a dimensionless param-

eter of the wall losses model;34 TSEE is the electron tempera-

ture yielding 100% of secondary electron emission for the

specific wall material used; and Lm1 and Lm2 are inward and

outward length scales characterizing the magnetic field pro-

file.34 The magnetic field profile, B(x), is an input of the simu-

lation defined by Bmax, Lm1, and Lm2. The electron

temperature at the anode, TeB, and the discharge current, Id,

are outputs of the simulation. In the reference case defined

above, these result in TeB¼ 2.9 eV and Id¼ 5.4A.

Fig. 1 shows the axial profiles of the main macroscopic

variables corresponding to the background solution for

the reference case shown in Table I. The main differences

with respect to previously reported solutions without heat

conduction43 are the following. First, no steep gradients of

the temperature exist and the maximum temperature is

TABLE I. Main simulation parameters of the SPT-100 Hall Thruster used as

reference case for the simulations.

_m 4.75mg/s Vd 300V

Bmax 230G xmax 25mm

LAE 33.5mm Lch 25mm

dc 15mm Rm 42.5mm

TeE 5 eV vnB 300m/s

aB 0.0094 ~�w 0.17

TSEE 30 eV aw 0.85

Lm1 15mm Lm2 5mm
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smaller due to heat conduction and lateral wall losses.

Second, there is a plateau in the temperature profile around

the 30 eV level as the saturation temperature of the wall

losses model is reached. Third, the temperature peak is closer

to the channel exit due to the selected magnetic field profile,

whose maximum is near the channel exit plane. And last, the

ionization region is closer to the anode as higher tempera-

tures are reached inside the channel.

In order to analyze the influence of various operation pa-

rameters on azimuthal oscillations, it is interesting to perform

variations on different parameters and analyze the stability of

some limiting background solutions of those variations. As

part of this analysis, the following parameters are varied: dis-

charge potential, Vd; mass flow rate, _m; and channel width,

dc. These parametric variations have been previously per-

formed and analyzed by the authors.37 Here, they are used to

evaluate their possible influence on the axial and azimuthal

oscillations. Table II shows the parameters used for the vari-

ous background solutions whose stability is analysed in

Sections III B and III C. The value of the parameters not

shown in Table II is identical to those shown in Table I. Each

background state is given an identifier for easier reference.

The following comments are worth about the trends

observed in those parametric variations37 as they help under-

stand the remainder of this study. As the discharge voltage is

increased, the magnetic field typically needs to be varied

roughly as Bmax / Vp
d , where p� 0.5, for optimum operation.

At the same time, the overall efficiency37 of the thruster

increases, wall losses and the maximum temperature scale

linearly with the discharge voltage, and the ionization region

moves upstream as shown previously.37 However, as the

mass flow rate is increased, the neutral density and ionization

frequency are increased, reducing the axial thickness of the

ionization region, moving it downstream and increasing the

efficiency of the thruster. Moreover, the length of the accel-

eration region is decreased while the temperature gradients

are larger when the mass flow rate increases.

B. Axial oscillations—Breathing mode

This section is devoted to the analysis of low frequency

axial oscillations, which are usually known as the breathing

mode in the Hall thruster literature, using the linear time-

dependent 2D model and the background solutions presented

above. The analysis focuses on the stability of the reference

background solution and of some limiting solutions of the

parametric variations. Similar analyses have been carried out

in the past by other authors.39–41 However, the intention here

is to show how the linear time-dependent 2D model pre-

sented above is capable of reproducing the breathing mode.2

Note that as the size of the perturbations does not result from

the linear stability analysis, it has been set artificially in each

case to illustrate visually the main properties of the oscilla-

tions. Moreover, the exponential time dependence of the lin-

ear perturbations, expð�ixitÞ, has been omitted from the

figures for clarity as well.

Fig. 2 shows the contour maps in the x – t space of the

main variables of a purely axial (m¼ 0) unstable oscillation,

for the reference case presented in Fig. 1. The growth rate of

the unstable oscillation is xi/2p� 0.5 kHz, whereas the fre-

quency is f¼ 15.6 kHz, of the same order of magnitude as

the values observed experimentally.2 The time evolution

of the variables shown in Fig. 2 is qualitatively similar to

those obtained with non-linear models of the breathing

FIG. 1. Axial profiles of the main macroscopic variables of the background

solution for the reference case: x is the axial location, ne0(x) is the plasma

density, nn0(x) is the neutral density, Te0(x) is the electron temperature,

/0ðxÞ is the electric potential, B(x) is the magnetic field, Ii0(x) is the ion axial
current. The left asterisk corresponds to the zero-ion-velocity point, I,

whereas the right asterisk corresponds to the regular ion sonic transition

point inside the channel, S. The space between both points corresponds

roughly to the ionization region of the thruster. The left vertical dashed line

represents the channel exit, whereas the right one indicates the location of

the cathode, which is the end of the simulation domain.

TABLE II. Frequency, f (kHz), of different oscillation modes for several

operation parameters. REF refers to the reference solution given in Fig. 1,

and I, II, and III refer to the parametric variations on Vd, _m, and dc, respec-

tively. “–” indicates that no self-mode exists to the linear stability problem,

(þ) indicates a stable solution, and (*) indicates an unstable solution refer-

enced in the text below.

Parameter Parameter m¼ 0 m¼ 1 m¼ 2 m¼ 3 m¼ 4

Case Vd, V Bmax, G f, kHz f, kHz f, kHz f, kHz f, kHz

Ia 20 23 11.1(þ) – – 22.2 –

Ib 200 179 14.3(þ) 18.1 45 87.2 –

REF 300 230 15.6 24.9 55.7 102 –

Ic 500 313 16.9 39.8 119 24.8 –

Id 700 383 17.9 53.5 – – –

Case _m;mg=s Bmax, G f, kHz f, kHz f, kHz f, kHz F, kHz

IIa 3.3 225 17.0 50.3 137 – –

IIb 4 226 16.3 30.3 84 – –

REF 4.8 230 15.6 24.9 55.7 102 –

IIc 7 241 13.5 13.8 14.3 54.7 –

IId 8.5 249 12.7 38.9(*) 15.1 – –

IIe 10 256 12.1 27.2(*) 11.1 8.9 –

Case dc, mm Bmax, G f, kHz f, kHz f, kHz f, kHz f, kHz

REF 15 230 15.6 24.9 55.7 102 –

IIIa 18 244 15.3 24.1 65.2 109 12.7

IIIb 21 251 15.2 23.1 69.3 110 11.7

IIIc 31 278 14.7 22.9 70.9 118 8.3
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mode.41,44,45 Those figures reproduce the usual properties of

the breathing mode,46 namely, (a) the ionization region

moves back and forth as a consequence of the depletion and

replenishment of neutrals; (b) a standing wave of plasma

density exists in the rear part of the thruster in phase with the

discharge current oscillation and with similar relative size;

(c) a travelling wave, in combination with a standing wave,

of neutral density is visible with a quarter-cycle phase differ-

ence with respect to the discharge current oscillation; and (d)

the relative size of neutral oscillations is much smaller than

those of plasma density and discharge current.

Table II shows the variation of the oscillation fre-

quency of the simulated breathing mode with the discharge

voltage and the mass flow. As the discharge voltage is

increased or the mass flow decreased, the ionization region

moves upstream37 in the background solution, and this

could cause the oscillation frequency increase observed in

the results.

C. Axial-azimuthal oscillations—Spoke

This section is devoted to the analysis of low frequency

azimuthal oscillations with the help of the linear time-

dependent 2D model previously described.

1. Reference solution

The results of the low frequency global stability analysis

in the azimuthal direction for the reference background solu-

tion are presented in this paragraph. Figs. 3–5 show an unsta-

ble m¼ 1 azimuthal oscillation for the reference case shown

in Fig. 1. This oscillation has the following properties: fre-

quency f¼ 24.9 kHz and azimuthal phase speed vy¼ 6.6 km/s

in theþE�B direction. This numerical result is in

qualitative agreement with experimental evidence, where it is

normally observed that the spoke travels in the þE�B direc-

tion with a phase speed of several km/s and a frequency

higher than the breathing mode for the same thruster.2 In

Figs. 3 and 4, it is possible to observe, respectively, contour

maps in the x–y space and the evolution in the x–t space of

the main macroscopic variables. Fig. 5 shows contour maps

in the x–y space for different instants of time, t, during one

cycle of the azimuthal oscillation for plasma and neutral den-

sity. Some comments are worth relative to the solution shown

in Figs. 3–5. First, the oscillation is mostly concentrated in

FIG. 2. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as a function of x and t
for the breathing mode (m¼ 0). The conditions are similar to those shown in

Fig. 1. The variables shown are from left to right and from top to down:

plasma density, ne; neutral density, nn; electron temperature, Te; electric

potential, /; ion axial flux, Ci; electron axial flux, Ce; neutral axial flux, Cn;

and ionization source term, Si¼ n�i.

FIG. 3. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as functions of x and y
at t¼ 0 for a m¼ 1 self-excited oscillation of the perturbation problem for

the reference case presented in Fig. 1. Variables shown (from left to right

and upper to lower): plasma density, ne; neutral density, nn; electron temper-

ature, Te; electric potential, /; ion axial flux, Ci; electron axial flux, Ce; neu-

tral axial flux, Cn; and ionization source term, Si¼ n�i.

FIG. 4. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as functions of x and t
at y¼ 0 for an m¼ 1 self-excited oscillation of the perturbation problem for

the reference case presented in Fig. 1. The variables shown are the same of

Fig. 3.
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the rear part of the thruster, upstream of the acceleration

region, although there are some perturbations in temperature

and electric field reaching the plume. And second, even if the

relative size of the perturbation of the neutral density is negli-

gible, the ionization front moves back and forth as in the

case of the breathing mode. This motion of the ionization

front seems linked to the plasma density oscillation as the

temperature oscillation has lower relative size than that of

plasma density.

Previous preliminary results obtained in other studies by

the authors43 with a model without heat conduction also

show low frequency azimuthal oscillations. However, results

presented here show a more spread oscillation due to heat

conduction, which causes a smoother temperature profile and

a wider ionization region.

2. Parametric variations

This paragraph presents the results of the azimuthal

global stability analysis for the background solutions pre-

sented in Table II. This analysis consists in the search of

self-excited oscillations in the frequency space for the differ-

ent background solutions under evaluation and for different

wave mode numbers. For comparison purposes, the unstable

solution presented in the previous paragraph is used as refer-

ence for this analysis.

Here, it is interesting to check whether the main trends

observed experimentally are also reproduced with the linear

2D time-dependent model, in particular, with respect to the

variation of the oscillation frequency. Moreover, it is also

interesting to analyze mode numbers m> 1 as well since

experiments show that those modes become dominant in the

case of large thrusters.13

Note that the frequency of the oscillation is expected to

grow linearly with the mode number. This does not mean

that the oscillation travels faster since, for example, for the

same phase speed, an m¼ 2 oscillation has a frequency twice

as large as an m¼ 1 oscillation. In fact, the phase speed of

the azimuthal oscillation, vy, is given in terms of the oscilla-

tion frequency, f, and the wave mode number, m, as

vy ¼ � 2pRmf

m
: (3)

Equation (3) corresponds to the usual definition of the

phase velocity, vy¼x/ky, where x is the angular frequency

and ky is the wave number. In Eq. (3), the angular frequency

is expressed as x¼ 2pf and the wave number is expressed as

ky¼�m/Rm.

It is important to mention that the value of the frequency

observed for the reference background solution (f¼ 24.9 kHz)

presented in the previous paragraph is in the upper-side of the

range seen in experiments2,13 (f� 5–25 kHz), but still within

the modelling error margins of the linear 2D time-dependent

model. This mild discrepancy between the experiments and

the frequency of the m¼ 1 oscillation causes that for higher

wave mode numbers, the discrepancy becomes larger for the

oscillation frequency in absolute terms. Note in any case that

in this study we are seeking qualitative rather than quantita-

tive agreement in order to characterize physically the spoke.

Therefore, this discrepancy is not considered critical for the

purposes of this study.

Table II shows the variation of the frequency of the

unstable oscillation found for different background solutions

and wave numbers.

The following trends are observed:

– As the discharge voltage is increased, or the mass flow rate

is decreased, the frequency of the azimuthal oscillation nor-

mally increases linearly. Those trends are similar to those

of the breathing mode, showing a similarity between that

axial oscillation and the azimuthal spoke oscillation. These

features may indicate a relation between the frequency of

the oscillations and the position of the ionization region in

the background solution. The ionization region moves

downstream when the discharge voltage increases or the

mass flow decreases,37 and at the same time, the oscillation

frequency of the breathing mode may be related approxi-

mately to the distance from the ionization region to the an-

ode using a basic predator-prey model.48

– As mentioned above, the frequency of the oscillation

increases linearly with the wave mode number.

Additionally, depending on the background case, the mode

number with the highest growth rate may be m¼ 1, m¼ 2,

or m¼ 3, although as a general trend, the higher the mode

number is, the less unstable solutions exist. Modes m> 1

seem to become dominant for higher mass flow rates and

larger channels since the growth rate is higher in those

cases, although, this trend is not as evident as the previous

ones.

– Even though not shown in Table II, no unstable solution

exists travelling in �E�B direction (m¼�1), indicating

that the oscillation detected in the simulations has a clear

preference to travel in the þE�B direction, as normally

found in experiments.

Apart from the trends mentioned above, the simulations

show oscillations with some distinct features, corresponding

FIG. 5. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as functions of x and y
at different values of t (at t ms) for the same conditions used previously in

Fig. 4. Variables shown (from left to right): plasma density, ne; neutral den-

sity, nn.
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to those cases marked with an asterisk (*) in Table II,

namely, cases IId and IIe with m¼ 1 of the parametric varia-

tion on the mass flow. Figs. 6 and 7 show the m¼ 1 oscilla-

tion for case IId. The differences with respect to the

oscillation of the reference background solution shown in

Figs. 3–5 allow a clearer understanding of the physics

behind. The neutral density follows a similar pattern to that

of the breathing mode, and the tilt angle of the oscillation is

close to zero. It is believed that the mechanism behind all

oscillations in Table II is the same, contrary to our first pro-

visional conclusion,42 where cases IId and IIe were consid-

ered of different nature. In order to justify this further, in

Section IV, an analysis is carried out with simplified pertur-

bation models showing that the oscillation detected in cases

IId and IIe is indeed similar in nature to the one shown in

Figs. 3–5.

According to Figs. 6 and 7, the oscillation is character-

ized by the presence in the azimuthal direction of several

ionization fronts that move back and forth with different

phases, causing a plasma density variation near the anode

that rotates in the E�B direction. This structure resembles

the standing wave of plasma density in the breathing mode,

even if in the latter there is no rotation in the azimuthal

direction. In fact, the possibility of a localized breathing

mode rotating in the azimuthal direction has already been

proposed previously by the authors,43 based on a theoretical

analysis, and by Sekerak et al.,17 based on experimental

results.

Aside from the parametric variations presented in the

previous paragraphs, it is also interesting to analyze the pos-

sible influence of the Bohm diffusion present in the back-

ground solution on the simulated spoke. One of the possible

drivers for the anomalous diffusion in Hall thrusters is an

enhanced electron transport caused by correlated azimuthal

oscillations of electric field and plasma density. And, in fact,

the azimuthal oscillations observed in this study may indeed

participate in the anomalous diffusion as shown recently.43

However, in order to have consistent results between the

zero-th and first order solutions, the Bohm diffusion used in

the zero-th order problem should come from the first order

problem.

To analyze this and check the consistency of the results

shown above, another parametric variation is carried out

with the goal of decreasing as much as possible the Bohm

diffusion in the background solution, whose stability can

then be evaluated using the 2D linear time-dependent model.

As part of this parametric variation, the Bohm diffusion

coefficient is reduced five times, from the value in Table I,

i.e., from aB� 0.01 to aB� 0.002. And even in this reduced-

diffusion background scenario, the stability analysis shows

that there exists an unstable oscillation with a frequency of

f¼ 48.7 kHz, with similar properties to the oscillation

observed for the reference state. This fact proves that the

observed oscillation is not a result of the empirical Bohm

diffusion added to the background solution but comes natu-

rally from the Hall discharge physics.

IV. ANALYSIS OF SIMPLIFIED MODELS

In Sections II and III, the complete linear 2D time-

dependent model has been presented and used. However, pro-

vided that the zero-th and first order solutions are obtained sep-

arately, it is possible to consider different terms and equations

in the background and perturbation problems. While all terms

must be kept in the zero-th order problem in order to maintain

the background solution similar to experimental results, some

terms may be safely neglected in the perturbation problem

based on the relative size of the perturbations with respect to

the background state for a given oscillation. This allows sim-

plifying the formulation of the first-order problem and keeping

only the terms in the perturbation model that are strictly

FIG. 6. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as functions of x and y
at t¼ 0 for an m¼ 1 self-excited oscillation of the perturbation problem for

the reference case IId. Variables shown (from left to right and upper to

lower): plasma density, ne; neutral density, nn; electron temperature, Te;

electric potential, /; ion axial flux, Ci; electron axial flux, Ce; neutral axial

flux, Cn; and ionization source term, Si¼ n�i.

FIG. 7. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as functions of x and t
at y¼ 0 for an m¼ 1 self-excited oscillation of the perturbation problem for

the reference case IId. The variables shown are the same of Fig. 6.
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necessary to give rise to the observed oscillations. Obviously,

this approach can only be applied in theoretical and numerical

analyses, as in real plasmas in Hall thrusters all variables are

perturbed. However, this method allows studying more in

detail the mechanism of the oscillation.

Let us consider the azimuthal oscillation shown in Figs.

3–5. In that oscillation, the relative size of the neutral density

perturbation is orders of magnitude smaller than that of

plasma density. This gives the hint to remove from the per-

turbation model the continuity and momentum equations of

the neutral species and set to zero the perturbations of neutral

density and velocity, and ionization, wall recombination, and

wall losses. Furthermore, the azimuthal ion velocity pertur-

bation is also negligible in relative terms compared to other

perturbations and thus may also be neglected. If those terms

and equations are removed from the perturbation problem, a

simplified model is obtained. With this simplified model, an

m¼ 1 unstable oscillation is still found for the reference

background state with a frequency of f¼ 44.8 kHz, slightly

higher than with the full model. Fig. 8 shows for that oscilla-

tion the contour maps in the x–y space of the main macro-

scopic variables. The similarity between Figs. 8 and 3 is an

indication that the neglected perturbations are indeed not rel-

evant for this azimuthal oscillation.

If we now consider the azimuthal oscillations of cases

IId and IIe shown in Figs. 6 and 7, the same procedure may

be carried out. And again, self-excited oscillations with a

mode number m¼ 1 are also found with frequencies f¼ 38.0

kHz and f¼ 13.4 kHz, respectively. The same pattern of

localized breathing mode oscillations observed in Fig. 6 is

found, what validates the simplification carried out.

In case the simplified model described above is applied

to the case of the breathing mode (m¼ 0), no unstable oscil-

lations are found. This is expected as it is well known that

the breathing mode is characterized by the depletion and

replenishment of neutral gas in the ionization region. Thus,

if no neutral equations are included in the simplified pertur-

bation model, it is expected that no self-modes appear for the

case m¼ 0.

If the simplification of the perturbation model is taken

one step further and heat conduction terms are removed as

well, similar azimuthal unstable solutions are also found.

However, if perturbations of additional macroscopic varia-

bles are also removed from the perturbation model, such as

electron temperature, ion axial velocity, or plasma density,

unstable oscillations are no longer detected.

So far, the largest set of simplifications that still allow

reproducing unstable azimuthal oscillations yields a model

consisting only of continuity and momentum equations for

electrons and ions without ionization and wall recombination,

together with the electron energy equation without heat con-

duction and wall losses.

Another element that can promote the appearance of

these azimuthal oscillations is the conditions at the limits of

the simulation domain. In fact, if in the simplified model just

described the linearised Bohm condition is relaxed such that

the axial ion velocity perturbation is zero at the anode, then

the unstable oscillations no longer appear. This result indi-

cates that the azimuthal oscillations are promoted by the cou-

pling of the perturbations of electron temperature and ion

axial velocity in the anode plasma-sheath transition.

However, in case the Bohm condition is relaxed in the origi-

nal full perturbation model, azimuthal oscillations are still

detected. It is only when neutral equations and ionization

terms are excluded from the perturbation model, together

with the relaxation of the Bohm condition at the anode, that

the unstable azimuthal oscillations disappear.

Based on the previous results, it is possible to conclude

that the azimuthal oscillations observed in the simulations

are due to both the ionization process and the coupling of the

perturbations of electron temperature and ion velocity at the

anode sheath transition due to the Bohm condition. The latter

element can only be included in global stability analysis

through the boundary conditions of the first-order problem,

while local methods cannot account for such effects.

Another result from this analysis is that the oscillations

observed in the reference case and in cases IId and IIe

behave similarly with respect to the use of simplified models.

Thus, it seems that, even if part of the features of those oscil-

lations are different, the mechanism behind them is the

same.

Note that the conclusions presented here do not confirm

those previously reported by the authors,42 where heat con-

duction effects were considered by the authors as a possible

cause of azimuthal oscillations. After careful re-examination,

the new results indicate that heat conduction plays no role in

the azimuthal oscillations.

V. GLOBALVS. LOCAL STABILITYANALYSES

Another interesting analysis that can be performed with

the aid of simplified perturbation models is the comparison

between local and global stability analyses. Both methods

start from a given set of non-linear governing equations, as

FIG. 8. Oscillations of the main macroscopic variables as combinations of

the background solution and the perturbations shown as functions of x and y
at t¼ 0 for an m¼ 1 self-excited oscillation of the perturbation problem for

the reference case from Fig. 1 and the perturbation model excluding neutral

equations, ionization, wall recombination, wall losses, and azimuthal ion ve-

locity. The variables shown are the same of Fig. 6.

102114-7 D. Escobar and E. Ahedo Phys. Plasmas 22, 102114 (2015)



for instance equations in (1), and apply the small perturba-

tions hypothesis to linearise the model around a given back-

ground state. In global analyses, the perturbations are then

assumed to be of the Fourier form given in Eq. (2). That type

of Fourier form is the basis of global stability studies, where

the resulting formulation is not algebraic but consists of dif-

ferential equations to solve for �f ðxÞ. Inhomogeneities in x
are accounted for in these global methods, and therefore,

within the linear regime, the global approach is fully consist-

ent with the inhomogeneous plasmas found in Hall thrusters.

Contrary to global methods, in local analyses, the axial

variation of �f ðxÞ in Eq. (2) is also expressed in Fourier form

resulting in

f̂ ðt; x; yÞ ¼ �f expðikxxÞ expð�ixt þ ikyyÞ; (4)

where kx is the axial wave number and �f is the local coeffi-

cient of the Fourier expression at a fixed x0.
Once applied to the governing equations, the local

method yields an algebraic local problem that is independent

for each axial coordinate, x0. Thus, in these local analyses, it

is necessary to freeze the zero-th order variables and their

gradients and consider them constant, even if in reality the

plasma is inhomogeneous along x, so that the Fourier analy-

sis can be carried out in the x direction. This approach can be

consistent when the length scale of the axial variation of the

zero-th order variables (Lx) is much larger than the axial

wave-length of the perturbations (kxLx � 1). This is the so-

called Boussinesque approximation25 and allows reducing

the formulation to an algebraic local problem, as opposed to

the differential problem obtained in global methods. In Hall

thrusters, that condition is not met and thus solutions from

local stability analyses must be considered as approximate

solutions with limited consistency.

Many local linear stability analyses,5,20–29 including the

first paper of this series,1 have been carried out so far by the

Hall thruster community in an attempt to better understand

the mechanism behind azimuthal oscillations inherent in

Hall thrusters. However, as described above, in the case of

Hall thrusters, given the inhomogeneities along the channel,

local analyses are not completely consistent as they neglect

the axial variation of the macroscopic plasma variables.

Some authors claim that local stability analyses can even

yield different stability criteria depending on how the equa-

tions are linearised.47 Furthermore, boundary conditions,

such as mass flow rate or discharge voltage, which can also

be the driver for some instabilities, cannot be taken into

account in local methods, while global methods consider

them consistently as linearised boundary conditions in the

resulting system of ordinary differential equations.

In order to illustrate and discuss the differences between

the results from local and global analyses, the stability crite-

rion proposed by Esipchuk and Tilinin21 has been evaluated

throughout given axial profiles of the Hall discharge looking

for oscillations with a wave mode number m¼ 1. That stabil-

ity criterion is based on electrostatic two-fluid equations of

ions and electrons suited for the low-frequency regime. Frias

et al.25 have revisited the same local stability problem,

obtaining a dispersion relation qualitatively similar in form,

but quantitatively different to that of Esipchuk and Tilinin

due to the inclusion of the complete electron compressibility.

That improved dispersion relation has been used by Frias

et al. in a separate publication26 to evaluate the local stability

at each axial location of the profiles of three different Hall

thrusters.

The upper plot of Fig. 9 shows the results obtained with

the local stability criterion of Esipchuk and Tilinin for the

reference background solution shown in Fig. 1. Two unstable

areas are identified, one in the ionization region near the an-

ode and another one in the plume, where the axial gradient

of the magnetic field is negative. Similarly, as shown in the

lower plot of Fig. 9, the results obtained with the stability

criterion proposed by Frias et al.25 also show two regions of

unstable azimuthal oscillations, in line with the results

obtained by Frias et al.26 for other Hall discharge profiles.

Finally, it is worth to point out that similar results are

obtained for the different background profiles in Table II

although this fact is not shown in any figure.

In order to perform the comparison between local and

global analyses, the perturbation equations of the linearised

2D time-dependent model presented above are simplified to

keep only the same equations and terms of the local model

of Esipchuk and Tilinin. This translates into retaining only

ion and electron continuity and momentum equations in the

simplified perturbation model, with which the global stability

analysis can then be performed. Self-excited solutions

observed with that simplified model would then correspond

FIG. 9. Growth rate (continuous line) and frequency (dashed line) in kHz

for the m¼ 1 oscillations predicted with the local stability criterion proposed

by Esipchuk and Tilinin21 (top) and by Frias et al.25 (bottom) evaluated at

each axial location of background solution corresponding to Fig. 1.
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to those predicted by the local stability criterion. However,

the results obtained indicate that no unstable solutions are

found for any of the profiles in Table II, where the local anal-

ysis predicts unstable oscillations. This seems to indicate

that, as already anticipated by some authors,41 results from

local stability analyses of the Hall Thruster discharge must

be analysed with care.

However, the dispersion relation from the local stability

analysis presented in the first paper of this series1 can also be

applied to the profile of the reference background solution.

That local stability analysis, aside from continuity, momen-

tum, and energy equations for ions and electrons, includes

also conservation equations for the neutral species and takes

into account the ionization process via various source terms.

Therefore, it is consistent with the 2D linear time-dependent

model used in this article. The results of this analysis are

shown in Fig. 10, where the large peak observed is associ-

ated with the condition dn0/dx¼ 0, which is a singularity for

the local dispersion relation used. In that figure, it is possible

to observe that for this reference case, there is an area of

local instabilities (xi> 0) in the ionization region. Although

not shown in any figure, other background solutions in

Table II show similar local instabilities. This fact is in line

with the conclusions derived by the authors in Part I of this

study,1 where a local instability is predicted in the part of the

ionization region, where vix0> 0, dvix0/dx> 0, and dn0/
dx> 0. Moreover, those local instabilities in the ionization

region could match the results of the global analysis pre-

sented in this article. However, it is not straightforward to es-

tablish a direct link between the local and global methods

since, according to the results of this study, the Bohm condi-

tion at the anode plasma-sheath transition also plays a key

role in the promotion of these low frequency oscillations,

and that condition cannot be considered in local stability

analyses.1

VI. CONCLUSIONS

A linearised 2D time-dependent model has been used

for the analysis of the stability of the Hall discharge in the

azimuthal direction and the detection of azimuthal oscilla-

tions in the low frequency range. The 2D model builds on

the 1D model of Ahedo et al. and has been shown to be capa-
ble of reproducing breathing mode oscillations in the axial

direction. Spoke oscillations have been also detected in

the ionization region rotating in the þE�B direction.

Additionally, properties similar to those observed experi-

mentally have been revealed with various parametric investi-

gations on discharge voltage, mass flow, and thruster width.

Simplified perturbation models have been used to ana-

lyze the physical mechanism behind the oscillations. Results

seem to indicate that the observed azimuthal oscillations are

linked to oscillations of the ionization process and to the

Bohm condition in the transition to the anode sheath. The lat-

ter is a feature that can only be considered with global meth-

ods as it enters the model through the boundary conditions of

the perturbation problem.

Additionally, a comparison between global and local

stability analyses has also been carried out showing discrep-

ancies between both methods. The results of this comparison

indicate that oscillations detected with the local models of

Esipchuk and Tilinin and of Frias et al. do not show up in

the global analysis, while those predicted by the authors with

a different local model1 might be somehow related to the

ones observed in this study with the global approach.
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