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Nonlinear and low-frequency solitary waves are investigated in the framework of the one-dimensional Hall-
magnetohydrodynamic model with finite Larmor effects and two different closure models for the pressures. For
a double adiabatic pressure model, the organization of these localized structures in terms of the propagation
angle with respect to the ambient magnetic field θ and the propagation velocity C is discussed. There are three
types of regions in the θ -C plane that correspond to domains where either solitary waves cannot exist, are
organized in branches, or have a continuous spectrum. A numerical method valid for the two latter cases, which
rigorously proves the existence of the waves, is presented and used to locate many waves, including bright and
dark structures. Some of them belong to parametric domains where solitary waves were not found in previous
works. The stability of the structures has been investigated by performing a linear analysis of the background
plasma state and by means of numerical simulations. They show that the cores of some waves can be robust,
but, for the parameters considered in the analysis, the tails are unstable. The substitution of the double adiabatic
model by evolution equations for the plasma pressures appears to suppress the instability in some cases and to
allow the propagation of the solitary waves during long times.
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I. INTRODUCTION

Solitary waves of various types are commonly observed
in collisionless heliospheric plasmas. A convincing observa-
tional evidence of large amplitude electromagnetic solitary
wave propagating in the terrestrial environment was provided
by Cluster multisatellite data near the magnetopause bound-
ary [1]. The soliton, whose size is a few inertial lengths, is of
slow type and is relatively stable as it displayed very similar
shapes when observed from two satellites at two different
physical locations. Other types of nonlinear waves in the form
of fast magnetosonic shocklets are also observed with the
Cluster satellites near the earth bow shock [2]. Compressive
solitary structures or shocks are identified even further in the
slow solar wind [3]. Various structures in the form of single
nonlinear Alfvén wave cycles, discontinuities, magnetic de-
creases, and shocks embedded in the turbulence of high-speed
solar wind streams are reviewed in Ref. [4]. Magnetic humps
or holes in total pressure balance, either in the form of isolated
structures or in wave trains, are also commonly observed in
planetary magnetosheath or in the solar wind [5]. They are
often attributed to the saturation of the mirror instability. The
latter being subcritical [6], isolated magnetic holes can also
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be observed below the threshold of the mirror instability. Mag-
netic humps, on the other hand, often require sufficiently large
temperature anisotropy. These structures are clearly different
from slow or fast modes as they are nonpropagating in the
plasma rest frame. Their propagation velocity is difficult to
measure precisely, however, so that some uncertainty subsists
in their identification. A complete determination of the various
hydrodynamic as well as electromagnetic fields could permit
one to alleviate the ambiguity, but this also remains a difficult
observational task. Even though these nonlinear structures are
observed in almost collisionless plasmas at scales of the order
of a few ion Larmor radii, fluid modeling, possibly accounting
for ion finite Larmor radius effects, appears to be sufficient
to reproduce their main properties. Their amplitude is large,
however, and an important challenge is to describe them as
solutions of the fully nonlinear extended fluid equations rather
than small-amplitude asymptotic models.

Theoretical works on one-dimensional, localized, and trav-
eling structures have contributed to the understanding of the
propagation of nonlinear and low-frequency waves in plas-
mas. In the small-amplitude limit, these waves are governed
by standard integrable equations such as the Korteweg–de
Vries (KdV) [7], the modified KdV (MKDV) [8], the deriva-
tive nonlinear Schrödinger equation (DNLS) [9–11], and the
triple-degenerate DNLS equation [12]. Some of them admit
solitonic solutions, and relations between their propagation
velocity and their amplitudes exist (see Ref. [13] and refer-
ences therein). These small-amplitude asymptotic equations
are also well suited to address questions related to perturba-
tions of these solitary structures, such as the nontrivial effect
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of dissipation on Alfvén solitons [14], or to the role played
by non-Maxwellian distribution functions on the shape and
existence of solitons [15–17]. However, for finite amplitude,
these localized structures should be studied in a more gen-
eral framework, such as the magnetohydrodynamic models
extended to include dispersive and/or dissipative effects. After
assuming the traveling wave ansatz, the system of partial
differential equations becomes a set of ordinary differential
equations that can be used to investigate the existence of
solitary waves and discontinuities. This technique has been
used to study the structure of intermediate shock waves in the
resistive-magnetohydrodynamics (MHD) [18], the resistive
Hall-MHD [19], and the Hall-MHD with a double-adiabatic
pressure tensor [20] systems, as well as rotational discontinu-
ities in the Hall-MHD model with finite-Larmor-radius (FLR)
and scalar pressure [21]. Exact solitary wave solutions in the
Hall-MHD model for cold [22] and warm plasmas with scalar
[23] and double-adiabatic pressure models [13] have been also
found.

In the case of the Hall-MHD model with a double adiabatic
pressure tensor, the traveling wave ansatz leads to a pair
of coupled ordinary differential equations that governs the
normalized components of the magnetic field normal to the
propagation direction, called by and bz. Such a system has a
hamiltonian structure and is reversible, i.e., solutions are in-
variant under the transformation (ζ , by, bz ) → (−ζ ,−by, bz ),
with ζ the independent variable. Adding FLR effects does not
change the reversible character of the dynamical system, but
it increases the effective dimension from two to four [24]. A
numerical study of the existence of solitary waves in the para-
metric domain where the upstream state is a saddle-center was
presented in Ref. [24]. Some geometrical arguments based on
properties of the dynamical system, including its reversible
character and the stability of the upstream state, were used in
Ref. [20] to anticipate the organization of the solitary waves in
parameter space by using well-known results for homoclinic
orbits in reversible systems [25]. However, closing the equa-
tions with a double-adiabatic static model for the pressures
relies on a set of assumptions, like neglecting the heat fluxes
and using an ideal Ohms’ law. Retaining the Hall term in
the Faraday equation then implies that the conservation of
the energy is not guaranteed and, even for isotropic upstream
conditions, that the background plasma state can be unstable.
Both issues are overcome with and without FLR effects by
using appropriate evolution equations for the pressures [26]
(still assuming zero heat fluxes). Performing the analysis on
the resulting system, however, becomes a much more difficult
task.

Due to these circumstances, we split this work in two
different phases. First, by taking advantage of the lower di-
mension of the phase space, we found solitary wave solutions
in the FLR-Hall-MHD model with a double adiabatic pressure
tensor. This phase covers the presentation of the model and its
main properties in Sec. II and a numerical scheme to prove
the existence of solitary waves rigorously in Sec. III. Several
types of orbits and their main physical features are also
presented. In a second phase, which is presented in Sec. IV,
the stability of these waves is studied by using two different
types of numerical simulations of the FLR-Hall-MHD model.
It is shown that, if the equations are closed with the double

adiabatic model, some solitary waves have a highly unstable
core, and others can propagate longer times but eventually
are destroyed due to the instability of the background plasma
state. On the other hand, simulations closed with evolution
equations for the pressures shows that some solutions found
in the first phase are very robust and their cores seem to
propagate without significant deformation indefinitely. This
result justifies our approach and highlights the existence of
stable localized structures in the FLR-Hall-MHD model.

II. THE FLR-HALL MHD MODEL

This section presents the dynamical system that governs
the solitary waves in the FLR-Hall-MHD model closed by
a double adiabatic pressure tensor. Although it was already
found in a previous work [24], the steps in the derivation are
summarized here in order to correct some errors and discrep-
ancies. Cumbersome calculations are moved to Appendix A.
The analysis is carried out in the framework of the Hall-MHD
model with finite-Larmor-radius (FLR) effects. Mass density
ρ, plasma (i.e., ion) flow velocity v, and magnetic field B are
governed by

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂

∂t
(ρv) + ∇ ·

[
ρvv + P̄i + pe Ī + 1

4π

(
1

2
B2Ī − BB

)]
= 0,

(2)

∂B
∂t

= ∇ ×
[
v × B − mic

4πeρ
(∇ × B) × B

]
, (3)

where mi is the ion mass, c the speed of light, e the electron
charge, and Ī the identity tensor. We assumed that the electron
pressure is isotropic and follows an isothermal equation of
state pe = ρv2

se with v2
se = kBTe/mi the electron contribution

to the ion-acoustic velocity, Te the electron temperature,
and kB Boltzmann’s constant. The ion pressure tensor P̄i is
written as

P̄i = P̄(0)
i + P̄(1)

i,1 + P̄(1)
i,2 + P̄(1)

i,3 , (4)

where the tensor with superscript 0 represents the gyrotropic
contribution and reads

P̄(0)
i = p‖ebeb + p⊥(Ī − ebeb) ≡ P̄(0)

i,‖ + P̄(0)
i,⊥, (5)

with p‖ and p⊥ the parallel and perpendicular pressures and
eb = B/B the unit vector along the magnetic field. Tensors
with superscript 1 in Eq. (4) represent the FLR corrections
and are given by [27,28]

P̄(1)
i,1 = 1

�ci

[
1

4
eb × (∇v + ∇vT ) · P̄(0)

i,⊥ + transp.

]
, (6)

P̄(1)
i,2 = − 1

�ci

[
eb(∇ × v) · P̄(0)

i,⊥ + transp.
]
, (7)

P̄(1)
i,3 = 2

�ci

[
eb

(
P̄(0)
i,‖ · ∇) × v + transp.

]
, (8)

where �ci = eB/(mic) is the local ion gyro frequency and the
notation “+transp” means that one should sum the transpose
of the tensor immediately to the left in the square bracket. The
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equations are completed with the following double-adiabatic
model for the equations of state

p‖B2

ρ3
= const, (9)

p⊥
ρB

= const. (10)

Hereafter, subscript 0 will be used to denote the unperturbed
variables. Therefore, ρ0, B0, p‖0, and p⊥0 correspond to the
values of ρ, B, p‖, and p⊥ upstream from the solitary wave.
We also now introduce a Cartesian frame of reference with the
x axis along the propagation direction of the wave, and the y
and z axes chosen such that the upstream magnetic field has
no component in the y direction. Such a frame is linked to the
solitary wave and moves at velocity vx0 with respect to the
unperturbed plasma. In the upstream region, i.e., at x → +∞,
plasma velocity and magnetic field then read

v(x → +∞) = vx0ex, (11)

B0 = B0(cos θex + sin θez ), (12)

with ex, ey, and ez unit vectors along the axes of the Cartesian
frame. Therefore, the solitary wave propagates along the
positive (negative) x direction for vx0 < 0 (vx0 > 0). We will
consider the case vx0 < 0 and will use the wave velocity
C = −vx0.

If the analysis is restricted to stationary (∂/∂t = 0) and
one-dimensional waves (∂/∂y=∂/∂z=0), then one finds that
Bx is constant (Bx = B0 cos θ ) and the FLR-Hall-MHD model
becomes the set of ordinary differential equations

dξ

dx̂
= f (ξ). (13)

The state vector of this dynamical system is five-dimensional,
ξ = [ux uy uz by bz]

T , and it involves the normalized ve-
locity u = uxex + uyey + uzez and magnetic field components
b = byey + bzez with u ≡ v/vx0 and by,z ≡ By,z/B0 sin θ . The
explicit form of the vector flow f = [ f u f b] in Eq. (13) can
be found in Appendix A with f b and f u given by Eqs. (A5)
and (A32).

The independent variable in Eq. (13) is the normalized
length x̂ = x/�, with

� = v2
A cos θ

�ci,0vx0
, (14)

vA =
√
B2

0/4πρ0 the Alfvén velocity, and �ci,0 = eB0/(mic)
the upstream ion cyclotron frequency. In Ref. [24] a cos θ

factor was missed. The dynamical system involves five
parameters:

θ, MA = v2
A

v2
x0

, Me = v2
se

v2
x0

, Mi = v2
⊥

v2
x0

, ap = p‖0

p⊥0
,

(15)

θ being the angle between the propagation direction and the
ambient unperturbed magnetic field and v2

⊥ = p⊥0/ρ0. This
work investigates the effect ofC/VA and θ on the properties of
the solitary waves and will fix the other parameters according
to the two cases shown in Table I.

TABLE I. Solitary wave parameters.

Case ap v⊥/vA vse/v⊥

1 1 0.4 1
2 1.5 1.2 0.3

A. Properties of the FLR-Hall MHD dynamical system

Before discussing interesting physical features of the soli-
tary waves in Sec. III, we now summarize some purely
mathematical results that are essential in order to organize the
waves in the parameter space and design numerical algorithms
to compute them and prove their existence rigorously. An
important property of Eq. (13) is the existence of a manifoldU
that orbits cannot cross. As shown in Appendix A 1, Eq. (13)
is singular for the manifold determined by the condition

	R(ξ) = 0, (16)

with 	R given by Eq. (A41). The role of this set is similar to
the sonic circle found in the Hall-MHD model [24].

We first note that the upstream state ξ0 = [1 0 0 0 1]T is
an equilibrium state of Eq. (13) because it satisfies f (ξ0) = 0.
Another interesting element is the stable (unstable) manifold
Ws (Wu) of ξ0, which is the set of forward (backward) in x̂
trajectories that terminate at ξ0. Since solitary waves are lo-
calized structures that approach upstream and downstream to
ξ0, i.e., ξ → ξ0 as x̂ → ±∞, these special solutions belong to
the intersections of the stable and the unstable manifolds of ξ0.
They are called homoclinic orbits. As explained below, their
organization in parameter space depends on (1) the dimension
of the phase space, (2) the occurrence of symmetries, and (3)
the dimensions of the stable and the unstable manifolds of ξ0.
These three topics are discussed below.

In the particular case of Eq. (13), the dimension of the
phase space, given by the number of components of ξ, is five.
However, as shown in Appendix A, there is a function H (ξ)
that satisfies dH/dx̂ = 0 [21,24], i.e., it is conserved. As a
consequence, the effective dimension of our system is four.
Regarding symmetries, one readily verifies that Eq. (13) is
reversible because it admits the involution Gf (ξ) = −f (Gξ)
with

G : (ux, uy, uz, by, bz ) → (ux,−uy, uz,−by, bz ). (17)

The subspace S : uy = by = 0, a key element for the later
computation of the solitary waves, is called the symmetric
section of the reversibility. Interestingly, a symmetric solitary
wave exists if the unstable manifold of ξ0 intersects the
symmetric section at a given point. The reason is that, by the
reversibility property, Ws should also intersect S at the same
point.

On the other hand, the tangent spaces of Ws and Wu have
the same dimensions as the stable and unstable spaces of the
linearization of f at ξ0. Substituting ξ = ξ0 + ξ1 in Eq. (13)
with ξ1 a small perturbation and dropping higher order terms
yield

dξ1

dx̂
≈ J̄ |ξ0

ξ1, (18)
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FIG. 1. Characteristic velocities (left) and domains of stability of
ξ0 in the C/VA-θ plane (right). The regions are (1) saddle-center, (2)
focus-focus, (3) saddle-saddle, (4) and center-center. The parameters
used for panels (a) and (b) [(c) and (d)] correspond to case 1 (2) in
Table I. The green dotted lines in panels (a) and (c) are the velocities
making p1 = 0 in Eq. (19).

where J̄ |ξ0
is the Jacobian matrix of f at ξ0. If we now as-

sume ξ1(x̂) = ξ̂1e
λx̂, the condition for nontrivial ξ̂1 is det(J̄ |ξ0−λĪ) = 0. Such a condition gives λ = 0, which is a conse-

quence of the invariant H , and the characteristic equation with
a biquadratic structure that reflects the involution given by
Eq. (17)

p2λ
4 + p1λ

2 + p0 = 0, (19)

where p2, p1, and p0 are certain constants that just depend
on the five parameters of Eq. (15) (one can find their explicit
forms in Ref. [24]). These coefficients contain important
information that will help us to connect the mathematical
results with the physics of the solitary waves. Coefficient p0

vanishes when the propagation velocity C coincides with one
of the nondispersive MHD velocities, i.e., the system obtained
after neglecting the Hall and the FLR terms. The MHD
velocities are the fast (Vfast) and the slow (Vslow) magnetosonic
velocities and the firehose velocity (VF ), which reduces to the
intermediate or shear Alfvén velocity in the case of isotropic
pressure. Coefficients p1 and p2 vanish when the propagation
velocityC is equal to the acoustic velocity corrected with FLR
effects (Vs) and the velocity VFLR defined by the condition
	R(ξ0) = 0, respectively [24]. For the parameters of Table I,
these velocities are plotted versus the propagation angle in
Figs. 1(a) and 1(c).

The generic cases of the solutions of Eq. (19) are (1)
saddle-center, λ1,2 = ±κ and λ3,4 = ±iω, (2) saddle-saddle,
λ1,2 = ±κ1 and λ3,4 = ±κ2, (3) focus-focus, λ1,2 = κ ± iω
and λ3,4 = −κ ± iω, and (4) center-center, λ1,2 = ±iω1 and
λ3,4 = ±iω2. Figures 1(b) and 1(d) show the domains of
stability of ξ0 in the C/VA-θ plane for cases (1) and (2) in
Table I. Although this set of parameters yields to unstable
solitary waves (see Sec. IV), they have been used throughout
this work because they were used in Ref. [24]. Working with
the same physical parameters eases the comparison of our

results and highlights the unique characteristics related with
the existence of the solitary waves and their organization
in parameter space. This particular case is also illustrative
because, as shown in Fig. 1 the four stability regions of ξ0,
exist in the C/VA-θ plane.

Taking into account that the effective dimension of the sys-
tem is four and its reversible character, well-known theoretical
results on the existence of homoclinic orbits can be directly
applied to our case (one can find a review in Ref. [25]). To fix
ideas, consider the situation with given Me, Mi, and ap values
and let us discuss the organization of solitary waves in the
MA-θ plane (as was already done in Ref. [24]). Unless very
specific resonance conditions are fulfilled, no solitary wave
occurs when ξ0 is a center-center because such a point has
no stable or unstable manifold and orbits cannot connect with
it. For values of MA and θ making ξ0 a saddle-center, the
stable and unstable manifolds have dimension equal to one,
and an homoclinic orbit exists if the two coincide,Ws = Wu.
In general, the intersection of the one-dimensional manifold
Wu with the two-dimensional symmetric section is expected
to occur for specific parameter values that form branches in
the MA-θ plane. For parameter values where ξ0 is hyperbolic,
i.e., saddle-saddle and focus-focus, Wu has dimension two.
The intersection of such a two-dimensional manifold with
the two-dimensional symmetric section in a four-dimensional
phase space is generic, and solitary waves are expected to
exist in continuous regions in the MA-θ plane. This is called a
continuous spectrum. According to this discussion, we expect
that in Figs. 1(b) and 1(d) we will find branches of solutions
in region 1, a continuous spectrum in regions 2 and 3, and no
solitary wave in region 4.

III. FLR-HALL-MHD SOLITARYWAVES

A. Saddle-center domain

According to previous geometrical arguments, solitary
waves are organized in branches within the saddle-center
domain. These branches can be computed, and their existence
proved rigorously, by using the following bisection algorithm
(see details in Ref. [29]). For a given set of parameters,
Eq. (13) is integrated with initial condition equal to

ξ(x̂ = 0) = ξ0 + εξu, (20)

where ε is a small parameter (10−9 in our calculations) and
ξu is the unstable eigenvector of J̄ |ξ0

, i.e., the eigenvector
with the positive and real eigenvalue. Such initial condition
guarantees that the orbits leaves the equilibrium state from the
linearization of the unstable manifold. The orbit is computed
up to the value x̂∗ that satisfies the condition by(x̂∗) = 0.
We then recorded the value of uy(x̂∗). Such a procedure is
repeated by covering a range of C/VA (or θ ) values, and we
then construct a diagram with uy(x̂∗) versusC/VA (or θ ). Each
time a change of sign in uy(x̂∗) occurs, it means that uy(x̂∗)
passes through zero and there is an orbit leaving the unstable
manifold of ξ0 and hitting the symmetric section. Therefore, a
solitary wave exists.

Figure 2(a) shows uy(x̂∗) versus θ forC/VA = 1 and the pa-
rameters of case 1. The zeros of uy(x̂∗) have been highlighted
by plotting the absolute value of uy(x̂∗) in logarithmic scale
and using blue crosses and red dots for positive and negative
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FIG. 2. Panels (a) and (b) show uy(x̂∗) versus θ for C/VA = 1,
and uy(x̂∗) versus C/VA for θ = 75◦, respectively. Other parameters
correspond to case 1 in Table I. Positive (negative) values of uy(x̂∗)
are denote with blue crosses (red dots).

values of uy(x̂∗), respectively. Clearly, solitary waves exist
for θ ≈ 88.15◦ and θ = 85.45◦ (see inset) and θ = 48.7◦. For
θ < 47◦, where the crosses and dots are mixed and do not
follow a smooth curve, we cannot guarantee (neither rule out)
the existence of branches. The reason is that the values of
uy(x̂∗) are very small and they fall below our numerical error,
which is a combination of factors including the finite value
of ε, the integration error, and the finite precision arithmetic
(double precision floating-point format used here).

Figure 2(b) shows a similar diagram but varying C/vA
for θ = 75◦. For C/vA > 1.15 we find again a parametric
region where uy(x̂∗) is smaller than our error. For lower
propagation velocity, as C/vA decreases, one first finds a
wave with C/vA ≈ 0.73, a gap, a velocity range with many
waves, a second gap, and another region with several waves
(see inset). The gaps appear because, when launching an
integration along the unstable manifold, the orbit hit the
singular manifold 	R(ξ) = 0. An intensive parametric survey
constructing diagrams such as the ones in Fig. 2 allowed us to
present the branches of solitary waves in the two saddle-center
regions of the C/vA-θ plane (see Fig. 3). In the saddle-center
region delimited by the firehose and the fast magnetosonic
velocities there are many branches of solutions, especially
close to VF . For large propagation angles, it is even possible
to find solitary waves with propagation velocities larger than
the Alfvén velocity.

The limiting factor in overcoming the numerical problems
in the calculations presented here is the use of finite precision
arithmetic. This is indicated by the fact that further reducing ε

or increasing the accuracy of the integration does not lead to
resolution of solitary wave branches for θ < 50◦ in Fig. 3. In
order to progress further we implemented our method in the
computer algebra system Mathematica, taking advantage of
its arbitrary precision capabilities. Using 30 digits of working
precision and error tolerance of 20 digits in the integrator
and taking ε = 10−15 allow us to resolve branches of solitary
waves in this problematic regime. We show one example

FIG. 3. Branches of solitary waves in the C/VA-θ plane for case 1.

branch as a dashed line in Fig. 3. This branch is tracked
until numerical errors once again prevent us from isolating
solitary wave solutions. Even though a further increase in
precision could help proceed towards lower values of θ , the
computations quickly become very expensive, and we do not
pursue an exhaustive determination of branches. The main
point we illustrate here is that the difficulties in locating
solitary waves for smaller angles are indeed numerical and can
be overcome by increasing the precision of the calculations.

We note that works on electromagnetic solitary waves in
relativistic plasma (laser-plasma interaction framework) have
encountered similar difficulties. In particular, waves in regions
such as the one shown in Fig. 2(a) with θ < 47◦, where the
residual value of uy(x̂∗) is very small, were erroneously taken
as true waves with a continuous spectrum in early works. It
was later shown that they should be organized in branches
in the saddle-center domain and the claimed waves were
numerical artifacts; see Ref. [29] and references therein. Sim-
ilarly, the FLR-Hall-MHD solitary wave presented in Fig. 2 of
Ref. [24] is not a true localized structure because (1) the values
of θ and C/VA were selected without looking for a branch
(a relation between θ and C/VA) and (2) the author found
a value of uy(x̂∗) ≈ 10−7 within this (numerically difficult)
parametric domain.

Figure 3 also shows that many solitary waves can exist
with propagation velocity covering a broad range between
the sonic and the fast magnetosonic velocities (and not only
close to Vfast as concluded in Ref. [24]). In the Hall-MHD
model, these waves are of a dark type and were termed the
fast magnetosonic family [13]. As shown below, the solitary
waves found in the FLR-Hall-MHD model are also dark for
that regime. Above point (d) there is a blank region because
the orbits started along the unstable manifold hit the surface
	R = 0.

In order to illustrate the different types of solitary waves,
we selected six cases in Fig. 3 and labeled them with letters
from (a) to (f). For all of them, we plotted the velocity
components, the modulus of the magnetic field normal to
the propagation direction b, and the magnetic hodograph (see
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FIG. 4. Solitary waves named (a) and (b) in Fig. 3.

Figs. 4–6). In the latter, we denoted with an arrow the increas-
ing direction of x̂ and kept the same scale for both axes to
ease the interpretation of the wave polarization. Since all the
selected waves have ux > 1 at x̂ = 0, the relation ρ/ρ0 = 1/ux
indicates that the densities at the center of the structures are
lower than the background value.

Solitary waves (a)–(e) belong to the saddle-center domain
with propagation velocities between the firehose and the fast
magnetosonic velocities. Waves (a) and (b) are dark solitary
waves, i.e., the magnetic field exhibits a minimum at the
center of the structure (see Fig. 4). Wave (a), which has a
larger propagation angle and velocity, exhibits a much lower
depression of the magnetic field, and its polarization is more
linear as compared with wave (b). Waves (c), (d), and (e),
shown in Figs 5 and 6, have been selected to illustrate the
set of branches that populate the central region of Fig. 3. For
a given propagation angle, for instance, θ = 70◦ in cases (c)
and (d), the solitary waves develop more and more oscillations
as the velocity decreases. The polarization is almost circular.
Wave (e), which propagates almost normal to the ambient

FIG. 5. Solitary waves named (c) and (d) in Fig. 3.

FIG. 6. Solitary waves named (e) and (f) in Fig. 3.

magnetic field, has magnetic field variations of order unity,
but much stronger changes on the normalized velocity com-
ponents (up to 40 times the propagation velocity). The central
core of the solitary wave is also complex and involves several
peaks.

The saddle-center domain enclosed by the slow magne-
tosonic and the FLR velocities is particularly interesting from
a physical point of view. No wave was found numerically in
Ref. [24] for this domain with the FLR-Hall-MHD model.
Moreover, no solitary wave exists in the Hall-MHD model
because the upstream state is of the center type. As shown
in Fig. 3, the FLR effect open new possibilities because a
branch of solutions occurs with propagation angle between
70◦ � θ � 74◦. The solitary wave named (f), which is an
example of such a branch, shows that for this domain the
solitary waves are of the bright type, i.e., they exhibit a
maximum of the magnetic field at its center. This slow family
presents small (large) modulations of the magnetic (velocity)
field components (note the different scale of the left and right
axes in the ux-x̂ and b-x̂ diagrams).

B. Saddle-saddle and focus-focus domains

In the saddle-saddle and focus-focus cases, since the di-
mension of the unstable manifold is two and the solitary waves
have a continuous spectrum, the algorithm should be modified
slightly. For given parameter values, the initial condition in the
saddle-saddle and focus-focus cases are

ξ(x̂ = 0) = ξ0 + ε
(
cos ϕξu1 + sin ϕξu2

)
, (21)

ξ(x̂ = 0) = ξ0 + εRe(eiϕξu), (22)

with ξu1 and ξu2 the eigenvectors with positive eigenvalues for
the saddle-saddle case, and ξu any of the two eigenvectors
with eigenvalues having a positive real part for the focus-
focus case. Angle ϕ is a numerical parameter that controls
the position of the initial condition in the linearization of the
unstable manifold. The numerical scheme is similar to the
saddle-center case, but now we need to look for the change
of sign of uy(x̂∗) as a function of ϕ.
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FIG. 7. | uy(x̂∗) | versus ϕ diagram (a)] and example of solitary
wave in the focus-focus domain (b)–(d).

In order to illustrate this case, we now present some results
for the parameter values of case (2) in Table I, θ = 70◦ and
C/VA = 0.52. We set the numerical parameter ε = 10−9 and
computed the orbits of Eq. (13) with initial conditions given
by Eq. (22) and ϕ from 96◦ to 112◦. For each of them, the
value of uy at the intersection with the symmetric section,
uy(x̂∗), was computed and presented in a |uy(x̂∗) | versus ϕ

diagram [see Fig. 7(a)]. Similarly to the previous section,
blue crosses and red dots were used to denote positive and
negative values of uy(x̂∗) and highlight the changes of signs
and locate the existence of a solitary waves. For instance, a
solitary wave exists for ϕ ≈ 100.3◦, and its structure is given
in Figs. 7(b)–7(d). Interestingly, it can be proved that the
existence of one solitary wave for a given value of the physical
parameters implies the existence of infinitely many others if
the system is reversible and the upstream state is a focus-
focus [30]. Such a theoretical result, which was demonstrated
earlier for conservative systems [31], is a consequence of the
spiralling linear dynamics due to the complex eigenvalue and
the additional orbits are like copies of the original one but
with extra oscillations. Several of these extra orbits can be
identified in Fig. 7(a).

IV. STABILITY OF SOLITARYWAVES

The double adiabatic model for the pressures has been
very useful in Secs. II and III because the dimension of the
phase space is low and well-known techniques from the theory
of the dynamical systems can be used. The organization of
the solitary waves in the propagation angle-velocity plane
was studied and their main physical features, such as po-
larizations and structure, found. However, just the existence
of these solutions in the FLR-Hall-MHD model does not
guarantee their physical relevance. The observation of these
localized structures in real scenarios, such as the solar wind,
is also linked to the concept of stability. For this reason, we
now present some numerical simulations of the nonstationary
FLR-Hall-MHD [Eqs. (B1)–(B3)] equations initialized with
the solitary waves found in Sec. III. As we will see, the
propagation of certain solutions is limited by an instability

FIG. 8. Panels (a) and (b) show the maximum growth rate γ in
the k − θ plane for cases 1 and 2 in Table I, respectively.

of the background plasma state if the equations are closed
with the double adiabatic pressure model (see Sec. IV A).
However, we show that such solutions are useful because they
are robust and can propagate indefinitely if a more accurate
framework, i.e., with evolution equations for the pressures, is
implemented.

A. Dispersion relation of the FLR-Hall MHD system

As a preliminary step, we first analyzed the linear stability,
i.e., dispersion relation, of the background plasma state with
a double adiabatic pressure model. Since the solitary waves
satisfy ξ → ξ0 as x̂ → ±∞, a necessary condition for their
stability is the linear stability of the background plasma state.
We analyze it by writing the fluid variables as

ρ̂ = 1 + ρ̂1e
i(kx̂−ωτ ), (23)

u = ex + (ûx1ex + ûy1ey + ûz1ez )ei(kx̂−ωτ ), (24)

B̂ = ex
tan θ

+ ez + (b̂y1ey + b̂z1ez )ei(kx̂−ωτ ), (25)

where ρ̂ = ρ/ρ0, B̂ = B/B0 sin θ , and k and ω represent the
normalized wave vector and frequency, respectively, of the
small perturbations denoted with subscript 1. Substituting
these expansions in Eqs. (B1)–(B3) and retaining only first-
order terms yields the homogeneous linear system

D̄(ω, k)η̂ = 0, (26)

with η̂ = [ρ̂1 ûx1 ûy1 ûz1 b̂y1 b̂z1]. For given values of
Me, Mi, θ , and ap, the compatibility condition det (D̄) = 0
gives the dispersion relation ω = ω(k). The background state
is unstable if ω is imaginary, and we can compute the growth
rate as γ = max [
(ω)].

Figures 8(a) and 8(b) show the value of the growth rate in
the k-θ plane for cases 1 and 2 in Table I. For this particular set
of parameters we conclude that only low-angle propagation
waves could be stable. By comparing this diagram with Fig. 3,
one finds that the tails of all the waves computed at θ > 50◦
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FIG. 9. Evolutions of some solitary waves belonging to the
saddle-center regime. Panel (a) shows an example of unstable core
for θ = 80◦ and C/vA = 0.745715. Panel (b) shows an example of
unstable background for θ = 30.415◦ and C/vA = 0.9. Panel (c)
shows an example of robust solution, using Eqs. (27) and (28) for
the pressures with the same parameters as panel (b).

are unstable. The use of extended precision allowed us to
locate solitary wave solutions at lower propagation angles, for
which the maximum growth rate of the perturbations to the
background state tends to zero.

B. Numerical simulations

This section studies the stability of two solitary waves with
parameters given by case 1 in Table I. In both cases, the waves
belong to the parameter regime where ξ0 is a saddle-center and
a relation between θ and C/VA holds (branches of solutions).
They were used as initial conditions in Eqs. (B1)–(B3), and
their evolutions were found by integrating the equations nu-
merically with a spectral method, following Ref. [32] (some
details on the numerical method are found in Appendix B).

The evolution of the spatial profile of ux for the first
wave, which has θ = 80◦ and C/VA = 0.745715, is shown in
Fig. 9(a). According to Fig. 8 the background plasma state
is unstable for such a high propagation angle. However, as
shown in Fig. 9, the core of the solitary wave is unstable,
and the solitary wave is destroyed even before the instability
at the tail would be developed. The behavior of the second
wave, having velocity C/VA = 0.9 and a propagation angle
θ = 30.415◦, is totally different [see Fig. 9(b)]. For this case,
the core of the solitary wave is stable, and the instability
happens at the tail. The results of the simulation, i.e., the most

unstable wave vector and the growth rate, are consistent with
the analysis of Sec. IV A. Interestingly, although the wave is
unstable, the core of this solitary wave is quite robust and
survives a time longer than 250MA cos θ/�ci,0 ≈ 266�−1

ci,0.
The simulation results for the second wave show that

the instability may come from the unstable character of the
background plasma state in the framework of the FLR-Hall-
MHD system closed with a double adiabatic pressure model.
For this reason, we investigated a bit further the stability of
the second wave by repeating the simulations but now using
the dynamic equations for the pressures. Following Ref. [26]
(a short discussion is found in Appendix C), we write

∂P‖
∂τ

+ ∇̂ · (P‖u) + 2P‖eb · ∇̂u · eb

+ 1

ap

[
(�̄ · ∇̂u)S : τ̄ − �̄ :

d τ̄

dτ

]
= 0, (27)

∂P⊥
∂τ

+ ∇̂ · (P⊥u) + P⊥∇̂ · u − P⊥eb · ∇̂u · eb

+ 1

2

[
(�̄ · ∇̂u)S : Ī − (�̄ · ∇̂u)S : τ̄ + �̄ :

d τ̄

dτ

]
= 0, (28)

where ∇̂ = ∂/∂ x̂, τ̄ = ebeb and �̄ is the nondimensional ion
FLR pressure tensor, given by Eqs. (6)–(8) scaled with p⊥0.
The superscript S means that the tensor between parentheses
is symmetrized by the addition of its transpose. Unlike the
double adiabatic model, Eqs. (B1)–(B3) and Eqs. (27) and
(28) conserve the energy

E =
∫ ∞

−∞

[
1

2
ρ̂ |u |2 +1

2
MA sin2 θb2 + Meρ̂ log ρ̂

+Mi

(
P⊥ + 1

2
apP‖

)]
dx̂. (29)

As shown in Fig. 9(c), the substitution of the crude double
adiabatic approximation by the pressure evolution equation
suppresses the instability of the wave. Since the initial con-
dition is not an exact solution of the FLR-Hall-MHD model
closed with Eqs. (27) and (28), the wave is distorted slightly,
but it still propagates for times longer than 500 MA cos θ/�ci,0

while keeping its original shape. The time integration was
stopped at 500 MA cos θ/�ci,0, but the simulation was still
stable. The shape of the wave at this time is practically
identical to the given initial condition, and it propagates with
the speed of the used reference frame (the wave does not
drift). These results suggest that this particular solitary wave
computed with the double adiabatic pressure model is very
close to be an exact solution of the system with dynamical
pressure equations. Similar simulations performed at θ = 50◦
showed less robust behavior, greater level of deformation,
and drift leftwards of the domain. These interesting results
justify the approach followed in this work, which provided
useful initial conditions for solitary waves obtained from the
FLR-Hall-MHD closed with Eqs. (27) and (28).

V. CONCLUSIONS

The existence of low-frequency solitary waves in magne-
tized plasmas is firmly supported by space observations. For
this reason, the knowledge of the physical properties of these
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structures, including amplitudes, spatial profiles of the fluid
and electromagnetic fields, and polarizations, are relevant.
The existence of possible relations linking physical parame-
ters, such as propagation angle of the wave with respect to the
ambient magnetic field θ and the propagation velocity C, are
also important because they can be helpful in interpreting the
experimental data. The answers to most of these interesting
questions can be obtained by analyzing the dynamical system
obtained from the double adiabatic FLR-Hall-MHD model
after assuming the one-dimensional traveling wave ansatz.

First, solitary waves can exist if the background plasma
state, which appears in the dynamical system as an equi-
librium state, is not a center-center. Moreover, using simple
geometrical arguments based on the effective dimension of
the dynamical system and its reversible character, the organi-
zation of the waves in the θ -C plane can be anticipated even
before computing them. If the background plasma state is
a saddle-saddle or a focus-focus the spectrum of the waves
is continuous, and, in the case where it is a saddle-center,
they are organized in branches [relations of the type C =
C(θ )]. The numerical scheme (bisection method) presented
in this work can be used to find solitary waves in any of
these regions and proves their existence rigorously. Abundant
solitary waves, including dark and bright waves and some of
them belonging to regions where to the best of our knowledge
they were not found before, were computed. The structures of
seven waves were presented in detail, and some differences
with respect to the Hall-MHD case (without FLR effects)
were highlighted. Nevertheless, deeper parametric analysis is
necessary to construct a more complete picture about the prop-
erties and organization of the waves in parameter space. For
instance, the fact that we did not find waves with banana-like
polarization, a very peculiar signature observed in the solar
wind and in more simple theoretical models, does not preclude
their existence in this FLR-Hall-MHD model. Another topic
that could be investigated in future works is the analysis of the
existence of the so-called quasisolitons, i.e., a more general
class of solutions that would contain the branches of solutions
found in this work as a particular subclass.

Regarding the stability of the waves, a linear analysis
within the framework of the double adiabatic FLR-Hall-MHD
model shows that the background plasma state is unstable
for the parameters under consideration. Since the tails of the
waves approach such a state at plus and minus infinity, they
are also unstable. However, some numerical simulations indi-
cate that the core can be stable. It is remarkable that closing
the FLR-Hall-MHD system by the double adiabatic pressure
model is not only problematic because of the instability of
the background plasma state (even if isotropic with ap = 1)
but also because energy conservation is not guaranteed. Even
without FLR effects, i.e., for the Hall-MHD model, an energy
conservation theorem is not known. From this perspective, it is
not surprising that these nonphysical features disappear if the
double adiabatic model is substituted by evolution equations
for the pressures, which conserve the energy and allow stable
states of the background plasma. For that case, it has been
shown that some of the solitary waves are robust. This result
opens the interesting problem about the computation of exact
solitary waves in the framework of the FLR-Hall-MHD with
evolution equations for the pressures. Such a study, which is

beyond the scope of the present work, is challenging because
the dimension of the phase space of the dynamical system
would be larger and several arguments used in this work
should be revised.
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APPENDIX A: DYNAMICAL SYSTEM

This Appendix follows Ref. [24] to find the explicit form
of vector f in Eq. (13). For convenience, we split such a
column vector as f = [fu fb], with fu and fb the three- and
two-dimensional vector flows governing the dynamics of u
and b, respectively. Equations (1)–(3) are particularized to
one-dimensional (∂/∂y = ∂/∂y = 0) and steady (∂/∂t = 0)
solutions. Equation (1) then becomes

ρ

ρ0
= 1

ux
. (A1)

After defining the new variables P⊥(u, b2) ≡ p⊥/p⊥0 and
P‖(u, b2) ≡ p‖/p‖0, the equations of state (9) and (10) read

P‖(ux, b
2) = 1

b̂2u3
x

, P⊥(ux, b
2) = b̂

ux
, (A2)

where we introduced the dimensionless quantities b2 = b2
y +

b2
z and b̂2 = (B/B0)2 = cos2 θ + b2 sin2 θ .

The component of Eq. (3) along the propagation direction
x gives Bx = B0 cos θ . In the transverse direction one finds

d

dx̂

[
uxbz sin θ − uz cos θ + ux sin θ

dby
dx̂

]
= 0, (A3)

d

dx̂

[
uxby sin θ − uy cos θ − ux sin θ

dbz
dx̂

]
= 0. (A4)

Using the plasma conditions upstream, this set of equations
are integrated to find the two-dimensional flow

f b =
(

uz
ux

cos θ
sin θ

− bz + 1
ux

− uy
ux

cos θ
sin θ

+ by

)
. (A5)

This flow coincides with Eq. (17) in Ref. [24], except for the
term 1/ux in the first row of Eq. (A5).

Following a similar procedure, Eq. (2) gives

Ā · du
dx̂

+ F(u,b) = 0, (A6)

where we introduced the flow F = (Fxex + Fyey + Fzez )/δ
with

Fx = ux − 1 + P(ux, b
2) + 1

2MA sin2 θ
(
b2 − 1

)
, (A7)

Fy = uy + χ (ux, b
2) cos θ sin θ by, (A8)
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Fz = uz + [χ (ux, b
2)bz − χ (1, 1)] cos θ sin θ, (A9)

and the auxiliary functions

δ = Mi

MA

P⊥(ux, b2)

b̂ cos θ
, (A10)

P(ux, b
2) = Me

(
1

ux
− 1

)
+ Mi

{
P⊥(ux, b

2) − 1 (A11)

+ [apP‖(ux, b
2) − P⊥(ux, b

2)]
cos2 θ

b̂2

− (ap − 1) cos2 θ}, (A12)

χ (ux, b
2) = Mi

[
apP‖(u, b2) − P⊥(u, b2)

] 1

b̂2
− MA. (A13)

Factor 1/b̂ appearing in Eq. (A10), which comes from the
fact that �ci in Eqs. (6)–(8) is the local ion gyro frequency,
is missed in Ref. [24]. Tensor Ā in Equation (A6) is

Ā = Ī × r − 2εb̂b̂‖ × b̂⊥, (A14)

with b̂‖ = b̂xex, b̂⊥ = b̂yey + b̂zez, b̂ = b̂‖ + b̂⊥, b̂x =
Bx/B = cos θ/b̂, and b̂y,z = By,z/B = by,z sin θ/b̂, and

r = −r‖b̂‖ + r⊥b̂⊥, (A15)

r‖ = 1

2
(1 − 3b̂2

‖) + 2εb̂2
‖, (A16)

r⊥ = 1

2
(1 + 3b̂2

‖) − 2εb̂2
‖, (A17)

ε = (p⊥ − p‖)/p⊥ = 1 − apP‖/P⊥. (A18)

Following Ref. [24], tensor Ā will be referred as the 1D FLR
tensor. We mention that a plus sign (instead a minus) was
written in the second term of Eq. (A14) in Ref. [24].

1. Singularity of the tensor Ā and invariant manifold

As pointed out in Refs. [21] and [24], tensor Ā is singular:

L · Ā = 0, (A19)

Ā · R = 0, (A20)

and left and right null vectors are given by

L = 1

μ
(r + 2εb̂2

⊥b̂‖ − 2εb̂2
‖b̂⊥), (A21)

R = 1

μ
r. (A22)

After imposing the condition L · R = 1, the arbitrary constant
μ is

μ2 = r2
⊥b̂

2
⊥ + r2

‖ b̂
2
‖ − γ , (A23)

with γ = 2εb̂2
⊥b̂

2
‖. A direct result of the singular character of

Ā is the constraint

H (ξ) = L · F = 0, (A24)

which is easily obtained by dotting Eq. (A6) from the left
with L. Therefore, any orbit of the five-dimensional phase

space of ξ in Eq. (13) should lie in the four-dimensional
surface defined by the constraint H . As a consequence, the
effective dimension of the system is four. Although a detailed
derivation on how Eq. (13) can be obtained from (A6) was
given in Ref. [24], we summarize below the most important
calculations because some small discrepancies were found.

Besides the zero eigenvalue, the 1D FLR tensor Ā has
imaginary eigenvalues ±iμ, where μ is given by Eq. (A23). It
can be shown [24] that vectors

S = 1

μb̂⊥b̂‖
[(b̂2

⊥r⊥ − γ )b̂‖ + (b̂2
‖r‖ − γ )b̂⊥], (A25)

T = 1

b̂⊥b̂‖
(b̂‖ × b̂⊥), (A26)

M = 1

μb̂⊥b̂‖
(b̂2

⊥r⊥b̂‖ + b̂2
‖r‖b̂⊥), (A27)

N = T (A28)

satisfy the relations Ā · S = −μT, Ā · T = μS, M · Ā = μN,
and N · Ā = −μM. One also readily finds that the following
orthogonality and normalization conditions hold:

L · R = M · S = T · N = 1, (A29)

M · R = N · R = L · S = L · T = N · S = M · T = 0.

(A30)

The new base R, S, T will allow us to find the flow fu in
Eq. (13) from Eq. (A6). We first decompose fu and F on that
base and write

F = FR R + FS S + FT T, (A31)

fu = fuRR + fuSS + fuTT. (A32)

The dot product of Eq. (A31) by L, M, and N gives

FR = L · F = 0, (A33)

FS = M · F, (A34)

FT = N · F, (A35)

where we used Eq. (A24) and the orthogonality and normal-
ization conditions. We now find the components of fu by first
noting that Eqs. (13) and (A6) give

Ā · fu = −F. (A36)

The substitution in Eq. (A36) of Eq. (A32) and the use of
Eqs. (A25) and (A26) yield

fuS = FT /μ, (A37)

fuT = −FS/μ. (A38)

Finally, the component fuR is found from the constraint (A24).
From such invariant, one finds

dH

dx̂
= ∂H

∂u
· du
dx̂

+ ∂H

∂b
· db
dx̂

= ∂H

∂u
· fu + ∂H

∂b
· fb = 0,

(A39)
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where we used Eq. (13). The component fuR then reads

fuR = −	S fuS + 	b

	R
, (A40)

with

	R = ∂H

∂u
· R, 	S = ∂H

∂u
· S, 	b = ∂H

∂b
· fb, (A41)

and where we used that ∂H/∂u · T = 0 because (1) L · T = 0,
(2) the derivatives of L with respect to uy and uz are all zero
and ∂L/∂u · F is along ex, and (3) as shown by Eq. (A26),
T is perpendicular to ex. The analytical derivatives of ∂H

∂u and
∂H
∂b have been implemented in our code. Equations (A39) and
(A40) have a different sign compared with the corresponding
equations in Ref. [24].

The initial conditions used in this work are consistent
with the constraint (A24) because H (ξ0) = 0. The flow f in
Eq. (13) guarantees that the orbit ξ(x̂) will lie in the manifold
H = 0. As pointed out in Ref. [24], orbits cannot cross the
set U defined by 	R(U ) = 0, which plays a similar role to the
sonic circle in the Hall-MHD theory [13].

APPENDIX B: ONE-DIMENSIONAL FLR-HALL MHD
SPECTRAL CODE

For convenience, the simulations in Sec. IV used the same
dimensionless variables as in the previous section, and ρ̂ =
ρ/ρ0 and the normalized time τ = vx0t/�. After substituting
∇ = ∂/∂x ex, Eqs. (1)–(3) become

∂ρ̂

∂τ
+ ∂

∂ x̂
(ρ̂ux ) = 0, (B1)

∂

∂τ
(ρ̂u) + ex · ∂

∂ x̂

[
ρ̂uu + Meρ̂ Ī + Mi

ˆ̄P(0)
i

+ MA sin2 θ

(
1

2
B̂2Ī − B̂B̂

)
+ Mi�̄

]
= 0, (B2)

∂B̂
∂τ

= ex ×
[

∂

∂ x̂

(
u × B̂ − 1

ρ̂

∂b
∂ x̂

)]
, (B3)

with

ˆ̄P(0)
i = apρ̂3

b̂2
ebeb + ρ̂b̂(Ī − ebeb), (B4)

B̂ = ex
tan θ

+ b. (B5)

Tensor �̄ accounts for the FLR effect, and only its first row

ex · �̄ = 1

MA cos θ

1

b̂
M̄ · ∂u

∂ x̂
(B6)

is needed, where M̄ = P⊥Ā. After using the double adiabatic
equations, tensor Ā is given by Eq. (A14) but with ε now
taking the form ε = 1 − apρ̂2/b̂3. The components of M̄ read

M11 = 0, (B7)

M12 = −1

2
b̂z

[
P⊥ + (8apP‖ − 5P⊥)b̂2

x

]
, (B8)

M13 = 1

2
b̂y

[
P⊥ + (8apP‖ − 5P⊥)b̂2

x

]
, (B9)

M21 = 1

2
b̂z

[
P⊥ + (4apP‖ − P⊥)b̂2

x

]
, (B10)

M22 = 2b̂xb̂yb̂z(P⊥ − apP‖), (B11)

M23 = 1

4
b̂x

[
P⊥

(
3 + b̂2

x − 9b̂2
y − b̂2

z

) + 8apP‖
(
b̂2
y − b̂2

x

)]
,

(B12)

M31 = 1

2
b̂y

[
P⊥

(
b̂2
x − 1

) − 4apP‖b̂2
x

]
, (B13)

M32 = −1

4
b̂x

[
P⊥

(
3 + b̂2

x − b̂2
y − 9b̂2

z

) + 8apP‖
(
b̂2
z − b̂2

x

)]
,

(B14)

M33 = −2b̂xb̂yb̂z(P⊥ − apP‖). (B15)

Equations (B7)–(B15) have been written in terms of P⊥ and
P‖. This is convenient since several closures for the ion
pressure are being used at different stages of the work.

Equations (B1)–(B3) have been integrated numerically
with the spectral method (see, e.g., Ref. [32]). The size of the
simulation box and the number of points of the mesh (after
desaliasing by a factor two) were equal to 94.328 and 2048,
respectively. A spectral cutoff is imposed on the spectrum at
half the spectral domain.

APPENDIX C: FLRWORK IN DYNAMICAL PRESSURE
EQUATIONS

This Appendix provides explicit equations for the terms
appearing in the right-hand side of Eqs. (27) and (28).
Particularizing for ∇̂ = ∂/∂ x̂ and after some development, the
FLR work terms in these equations read

(�̄ · ∇̂u)S : τ̄ = 2(eb · �̄ · ex )

(
eb · ∂u

∂ x̂

)
, (C1)

(�̄ · ∇̂u)S : Ī = 2
∂u
∂ x̂

· �̄ · ex, (C2)

�̄ :
d τ̄

dτ
= 2eb · �̄ · V, (C3)

where we introduced the vector

V = b̂x
∂u
∂ x̂

− 1

B̂
ex × ∂ÊH

∂ x̂
(C4)

and where ÊH is the electric field from the Hall and elec-
tron pressure contributions. It has been normalized with
c/(v0xB0 sin θ ), and it takes the form

ÊH = tan θ

ρ̂

(
ex × ∂B̂

∂ x̂

)
× B̂ + Me

MA sin θ cos θ

1

ρ̂

∂ρ̂

∂ x̂
ex.

(C5)

This equation was found after assuming isotropic electron
pressure and the equation of state introduced in Sec. II.
However, the contribution of the last term in Eq. (C5) vanishes
once it is inserted in Eq. (C4).

Finally, note that Eq. (C3) involves all the components
of �̄. The FLR pressure tensor is symmetric, hence it has
six different components. The first row (column) is given
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by Eq. (B6). The components �yy, �yz, and �zz need to be
derived from Eqs. (6)–(8). Similarly to Eq. (B6), they can be
expressed as

�yyex + �yzey + �zzez = 1

MA cos θ

1

b̂
N̄ · ∂u

∂ x̂
, (C6)

with the components of N̄ given by

N11 = −b̂xb̂yb̂z(P⊥ − 4apP‖), (C7)

N12 = 1

2
b̂zP⊥

(
1 + 3b̂2

y

)
, (C8)

N13 = 1

2
b̂y

[
P⊥

(
4 + b̂2

x − 4b̂2
y − b̂2

z

) − 8apP‖b̂2
x

]
, (C9)

N21 = 1

4
b̂x

[
2P⊥

(
b̂2
y − b̂2

z

) + 8apP‖
(
b̂2
z − b̂2

y

)]
, (C10)

N22 = −1

4
b̂y

[
P⊥

(
5 + b̂2

x − b̂2
y − 7b̂2

z

) − 8apP‖b̂2
x

]
, (C11)

N23 = 1

4
b̂z

[
P⊥

(
5 + b̂2

x − 7b̂2
y − b̂2

z

) − 8apP‖b̂2
x

]
, (C12)

N31 = b̂xb̂yb̂z
(
P⊥ − 4apP‖

)
, (C13)

N32 = −1

2
b̂z

[
P⊥

(
4 + b̂2

x − b̂2
y − 4b̂2

z

) − 8apP‖b̂2
x

]
, (C14)

N33 = −1

2
b̂yP⊥

(
1 + 3b̂2

z

)
. (C15)
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