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likelihood (ML) method, conditions of consistency and asymptotic normality of ML are presented,

and Monte Carlo simulation experiments are used to study the precision of ML. Daily data from the
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1. Introduction

When econometric models that include scale and shape parameters are applied to financial returns,

then all those parameters appear in the volatility forecasting formulas. The scale parameter is dynamic

in classical volatility models (e.g. Engle, 1982; Bollerslev, 1986, 1987; Nelson, 1991; Harvey et al., 1994;

Harvey and Shephard, 1996; Kib et al., 1998; Barndorff-Nielsen and Shephard, 2002), but the shape

of the probability distribution of returns is time-invariant in those models. In the present paper,

new dynamic conditional score (DCS) models (Creal et al., 2011, 2013; Harvey, 2013) are introduced,

within which several dynamic shape parameters are used in the measurement of volatility. In the

new DCS models, news on asset value updates volatility, not only through scale but also through

shape. The dynamics of all scale and shape parameters are estimated in one step. The new DCS

models of this paper use the EGB2 (exponential generalized beta of the second kind) (e.g. Caivano

and Harvey, 2014), NIG (normal-inverse Gaussian) (Barndorff-Nielsen and Halgreen, 1977), and Skew-

Gen-t (skewed generalized-t) (e.g. McDonald and Michelfelder, 2017) probability distributions with

dynamic shape parameters. These EGB2-DCS, NIG-DCS and Skew-Gen-t-DCS models, respectively,

are extensions of the DCS models with constant shape parameters from the body of literature (e.g.

Harvey, 2013; Harvey and Sucarrat, 2014; Harvey and Lange, 2017). The results of this paper suggest

that the DCS models with dynamic shape improve the performance of the DCS models with constant

shape, because: (i) they have superior in-sample statistical performances, and (ii) they provide more

accurate out-of-sample value-at-risk (VaR) measurements.

In this paper, the dynamic tail shape, skewness and peakedness of financial returns are estimated.

For the dynamic tail shape of returns, different models appear in the literature. Quintos et al. (2001)

construct tests of tail shape constancy that allow for an unknown breakpoint, and they apply those

tests to stock price data for a period that covers the Asian financial crisis of 1997-1998. Galbraith

and Zernov (2004) apply the same tests to the Dow Jones Industrial Average (DJIA) and Standard

& Poor’s 500 (S&P 500) indices. Bollerslev and Todorov (2011) suggest a nonparametric method of

dynamic tail shape, which, in their study, is applied to high-frequency data from the S&P 500. Several

works use options data for the estimation of dynamic tail shapes of the underlying assets (e.g. Bakshi

et al., 2003; Bollerslev et al., 2009; Backus et al., 2011; Bollerslev and Todorov, 2014; Bollerslev et

al., 2015). Kelly and Jiang (2014) identify a common variation in the tail shape of United States (US)

stock returns, by using panel data models.
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The DCS models of the present paper are estimated by using the maximum likelihood (ML) method,

and the conditions of consistency and asymptotic normality of the ML estimates are presented. For

each DCS model, the correct specification of the probability distributions of financial returns is verified

up to the fourth moment. The precision of the ML estimator is also studied, by performing several

Monte Carlo (MC) simulation experiments for known data generating processes. Daily log-return time

series data are used from the S&P 500 index for the period of January 4, 1950 to December 30, 2017.

The application of these data is relevant for practitioners for the effective estimation and prediction of

volatility, VaR and expected shortfall on: (i) well-diversified US equity portfolios; (ii) S&P 500 futures

and options contracts; (iii) exchange traded funds (ETFs) related to the S&P 500 index. According to

the estimation results, the likelihood-based performance of the Skew-Gen-t-DCS model is superior to

the likelihood-based performances of the EGB2-DCS and NIG-DCS models. The score-driven dynamics

of the shape of financial returns are significant for all models. The ML estimation results show that

the in-sample statistical performances of DCS models with dynamic shape parameters are superior to

the in-sample statistical performances of DCS models with constant shape parameters.

In order to motivate the practical use of the new DCS models, out-of-sample VaR backtesting is

performed for the S&P 500. Data for the period of September 2, 2008 to March 31, 2009 are used from

the 2008 US financial crisis. The results for the S&P 500 show that predicted potential extreme losses

for the trading day after each outlier are higher for the DCS models with dynamic shape parameters

than for the DCS models with constant shape parameters. These suggest that DCS models with

dynamic shape may be effective for the prediction of consecutive additive outliers. Motivated by

these findings, a modified dataset is used for the S&P 500, in which additive outliers are duplicated.

For the modified sample, the DCS models with dynamic shape parameters predict extreme losses for

consecutive outliers, while the DCS models with constant shape parameters fail to predict extreme

losses for the second outlier. These results may motivate the application of the new DCS specifications

in VaR measurements of financial risk managers during periods of high market volatility.

The remainder of this paper is organized as follows: Section 2 introduces the DCS models with

dynamic shape parameters. Section 3 presents the statistical inferences of those models, the conditions

of the asymptotic properties of the ML estimates, and the MC experiments that study the precision

of the ML estimator. Section 4 describes the data. Section 5 presents the empirical results. Section 6

presents the VaR backtesting results. Section 7 concludes.
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2. Econometric methods

2.1. DCS models with dynamic shape parameters

The DCS models of the daily log-return on the S&P 500 index yt are formulated as:

yt = µt + vt = µt + exp(λt)εt (2.1)

where µt and exp(λt) are the location and scale parameters, respectively. For εt, the EGB2, NIG and

Skew-Gen-t distributions are used (Appendix A). For εt ∼ EGB2[0, 1, exp(ξt), exp(ζt)], both shape

parameters are positive. For εt ∼ NIG[0, 1, exp(νt), exp(νt)tanh(ηt)], tanh(x) is the hyperbolic tangent

function, and the absolute value of parameter exp(νt)tanh(ηt) is less than parameter exp(νt). For

εt ∼ Skew-Gen-t[0, 1, tanh(τt), exp(νt) + 4, exp(ηt)], shape parameter tanh(τt) is in the interval (−1, 1),

degrees of freedom parameter exp(νt) + 4 is higher than four, and shape parameter exp(ηt) is positive.

For these distributions, E(yt|y1, . . . , yt−1) ≡ E(yt|Ft−1) 6= µt, since E(εt|Ft−1) 6= 0 (Appendix A). For

ease of notation, ρk,t is used as a general notation for ξt, ζt, νt, ηt and τt. The index k in ρk,t refers

to the k-th shape parameter of the distribution, which is determined by a transformation of ρk,t. For

example, EGB2[0, 1, exp(ξt), exp(ζt)] = EGB2[0, 1, exp(ρ1,t), exp(ρ2,t)]. The density functions of the

EGB2, NIG and Skew-Gen-t distributions are presented in Fig. 1, in which different values are used

for the shape parameters and the density function of the standard normal distribution is also shown.

In the following, the score-driven filters for µt, λt and ρk,t are presented. Firstly, µt is specified as:

µt = c+ φµt−1 + θuµ,t−1 (2.2)

where |φ| < 1 and uµ,t is the scaled score function of the log-likelihood (LL) with respect to µt

(Appendix A). This location model can be related to the unobserved components models (UCMs)

(Harvey, 1989), because a UCM is obtained by replacing θuµ,t−1 by a contemporaneous Gaussian i.i.d.

error term. The location equation is jointly estimated with scale and shape, since in that way the model

controls for possible dynamics in the expected return and the measurement of volatility dynamics is

improved. The joint estimation is required for this model, due to the score-driven updating mechanism

that is based on the conditional density of yt (Appendix A). Secondly, λt is specified as:

λt = ω + βλt−1 + αuλ,t−1 + α∗sgn(−εt−1)(uλ,t−1 + 1) (2.3)
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where |β| < 1, uλ,t is the score function of the LL with respect to λt (Appendix A), and sgn(x) is the

signum function. This specification measures leverage effects (i.e. effects of negative unexpected re-

turns), by using parameter α∗ in the DCS-EGARCH (exponential generalized autoregressive conditional

heteroscedasticity) model (Harvey and Chakravarty, 2008). The DCS-EGARCH models with constant

shape parameters that use EGB2, NIG and Skew-Gen-t distributions for εt are named EGB2-EGARCH

(Caivano and Harvey, 2014), NIG-EGARCH (Blazsek et al., 2018), and Beta-Skew-Gen-t-EGARCH

(Harvey and Lange, 2017), respectively. Thirdly, ρk,t is specified as:

ρk,t = δk + γkρk,t−1 + κkuρ,k,t−1 (2.4)

where |γk| < 1, and uρ,k,t is the score function of the LL with respect to ρk,t (Appendix A). For the

EGB2 distribution, the two dynamic parameters that influence shape are denoted as ρ1,t = ξt and

ρ2,t = ζt. For the NIG distribution, the two dynamic parameters that influence shape are denoted as

ρ1,t = νt and ρ2,t = ηt. For the Skew-Gen-t distribution, the three dynamic parameters that influence

shape are denoted as ρ1,t = τt, ρ2,t = νt and ρ3,t = ηt. For each distribution the constant shape

parameter model is used as the benchmark, for which ρk,t = δk.

Due to the score-driven updating, the information gain in the filters is optimal according to the

Kullback–Leibler divergence measure (Blasques et al., 2015). For the updating of µt a scaled score

function is used, for which the dynamic scaling parameters are defined by using the Fisher information

matrix (Harvey, 2013). For λt, the score function is scaled by using a constant parameter (Harvey,

2013). Similarly, the score function is scaled by using a constant parameter for ρk,t. Several works

suggest the use of the inverse of the Fisher information matrix (e.g. Creal et al., 2013; Harvey, 2013),

which implies dynamic scaling for all score functions. The DCS models of the present paper may be

improved in future works, by using more effective scaling mechanisms.

As an extension of this model, contemporaneous values and lags of exogenous explanatory variables

may also be included on the right sides of Eqs. (2.2) to (2.4). Different ways of initialization are

considered for each dynamic equation. For the results reported in this paper, µt is initialized by using

pre-sample data, λt by parameter λ0, and ρk,t by using its unconditional mean δk/(1−γk). Nevertheless,

the results of this paper are robust to other ways of initialization. For example, the results for the case

when parameters µ0 and ρk,0 are used for initialization are similar to the results reported in this paper.

5



Several specifications in DCS models are robust to extreme observations, because the score functions

in those models reduce the effects of outliers (e.g. Harvey, 2013). This property is studied here

for the DCS models with dynamic shape parameters. By using the S&P 500 dataset, the outlier

transformation of the score functions is presented in Fig. 2, which shows that extreme observations are

never accentuated by the score functions of the new DCS models. Therefore, outliers appear within

the unexpected return vt rather than within the score functions that update the dynamic equations.

2.2. Model specification test

For the EGB2 and NIG distributions, the first four moments exist. For the Skew-Gen-t distribution,

the degrees of freedom parameter specification ensures that the first four moments exist (i.e. the

degrees of freedom parameter is > 4). The first four conditional moments of εt for the EGB2, NIG and

Skew-Gen-t distributions are reported in Appendix A. Define the auxiliary error term as:

ε∗t =
εt − E(εt|Ft−1; Θ)

Var1/2(εt|Ft−1; Θ)
=
εt − E(εt|ε1, . . . , εt−1; Θ)

Var1/2(εt|ε1, . . . , εt−1; Θ)
(2.5)

This transformation reduces the importance of those outliers that appear within εt. The robustness of

model specification tests is increased when residuals are standardized according to Eq. (2.5) (see Li,

2004, Chapter 4). The model specification test of the present paper uses the following properties:

E(ε∗t |Ft−1; Θ) = E(ε∗t |ε∗1, . . . , ε∗t−1; Θ) = 0 (2.6)

E[(ε∗t )
2 − 1|Ft−1; Θ] = E[(ε∗t )

2 − 1|ε∗1, . . . , ε∗t−1; Θ] = 0 (2.7)

E[(ε∗t )
3 − Skew(εt|Ft−1)|Ft−1; Θ] = (2.8)

= E[(ε∗t )
3 − Skew(εt|Ft−1)|ε∗1, . . . , ε∗t−1; Θ] = 0

E[(ε∗t )
4 −Kurt(εt|Ft−1)|Ft−1; Θ] = (2.9)

= E[(ε∗t )
4 −Kurt(εt|Ft−1)|ε∗1, . . . , ε∗t−1; Θ] = 0

Within the expectations of Eqs. (2.6) to (2.9), the variables are martingale difference sequences (MDSs).

The MDS test with optimal lag-order selection (Escanciano and Lobato, 2009) is applied in the present

paper, to verify the correct specification for each probability distribution.
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3. Statistical inference

All models of this paper are estimated by using the ML method. Blasques et al. (2017, 2018) present

the conditions for the asymptotic properties of ML for DCS models with one score-driven parameter.

In the present paper, the same conditions are presented for DCS models with several score-driven

parameters. The ML estimator is

Θ̂ML = arg max
Θ

LL(y1, . . . , yT ; Θ) = arg max
Θ

1

T

T∑
t=1

ln f(yt|Ft−1; Θ) (3.1)

where Θ = (Θ1, . . . ,ΘK)′ is the vector of parameters and ln f(yt|Ft−1; Θ) is presented in Appendix A.

The following assumptions are used: (A1) f(yt|Ft−1; Θ) = p0(yt|Ft−1; Θ0) for some Θ from the pa-

rameter set Θ̃, where p0 is the true conditional density and Θ0 denotes the true values of the pa-

rameters. (A2)
∫

IR f(yt|Ft−1; Θ)dyt = 1 for all yt and Θ. (A3) Θ̃ ∈ IRK is compact. (A4) Θ̂ML

is a unique solution to the problem of Eq. (3.1). (A5) LL(·; Θ) is a Borel measurable function

on IRT . (A6) For each (y1, . . . , yT ) ∈ IRT , LL(y1, . . . , yT ; ·) is a continuous function on Θ̃. (A7)

|LL(y1, . . . , yT ; Θ)| < b(y1, . . . , yT ) for all Θ and E[b(y1, . . . , yT )] < ∞. Under (A1) to (A7), the ML

estimator is consistent: Θ̂ML →p Θ0 as T →∞.

The following results use some additional assumptions: (A8) Θ0 is an interior point within Θ̃ ∈ IRK .

(A9) LL(y1, . . . , yT ; Θ) is twice continuously differentiable on all of the interior points of Θ̃. (A10)

∂[
∫

IR f(yt|Ft−1; Θ)dyt]/∂Θ =
∫

IR[∂f(yt|Ft−1; Θ)/∂Θ]dyt.

The T ×K matrix of contributions to the gradient G(y1, . . . , yT ,Θ) is defined by its elements:

Gti(Θ) =
∂ ln f(yt|Ft−1; Θ)

∂Θi
(3.2)

for period t = 1, . . . , T and parameter i = 1, . . . ,K. Denote the t-th row of G(y1, . . . , yT ,Θ) by using

Gt(Θ), which is the score vector for the t-th observation. Under (A1) to (A10), the ML estimator of

Eq. (3.1) is equivalent to the following representation:

1

T

T∑
t=1

Gt(Θ̂ML)′ =
1

T

T∑
t=1


Gt1(Θ̂ML)

...

GtK(Θ̂ML)

 =
1

T

T∑
t=1


∂ ln f(yt|Ft−1;p0,Θ̂ML)

∂Θ1

...

∂ ln f(yt|Ft−1;p0,Θ̂ML)
∂ΘK

 = 0K×1 (3.3)
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According to the mean-value expansion about Θ0:

1

T

T∑
t=1

Gt(Θ̂ML)′ =
1

T

T∑
t=1

Gt(Θ0)′ +
1

T

[
T∑
t=1

Ht(Θ̄)

]
(Θ̂ML −Θ0) (3.4)

where each row of the K ×K Hessian matrix

Ht(Θ) =
∂2 ln f(yt|Ft−1; Θ)

∂ΘΘ′
(3.5)

which is evaluated at K different mean values, indicated by Θ̄. Each Θ̄ is located between Θ0 and Θ̂ML

that is formally expressed as: ||Θ̄−Θ0|| ≤ ||Θ̂ML −Θ0||, where || · || is the Euclidean norm.

The following results use some additional assumptions: (A11) ∂[
∫

IRGt(Θ)′f(yt|Ft−1; Θ)dyt]/∂Θ =∫
IR[∂Gt(Θ)′f(yt|Ft−1; Θ)/∂Θ]dyt. (A12) The information matrix I(Θ0) ≡ −E[Ht(Θ0)] is positive def-

inite. (A13) The elements of I(Θ0) are bounded in absolute value by function b(y1, . . . , yT ) for all Θ

and E[b(y1, . . . , yT )] < ∞. The conditions of (A13) are studied in Section 3.1. Under (A1) to (A13),

the K ×K contribution to the information matrix for period t is given by:

It(Θ0) = −E[Ht(Θ0)|Ft−1] = E[Gt(Θ0)′Gt(Θ0)|Ft−1] (3.6)

which is evaluated at the true values of parameters. From Eqs. (3.3) and (3.4):

√
T (Θ̂ML −Θ0) =

[
− 1

T

T∑
t=1

Ht(Θ̄)

]−1 [
1√
T

T∑
t=1

Gt(Θ0)′

]
(3.7)

√
T (Θ̂ML −Θ0) = I−1(Θ0)

[
1√
T

T∑
t=1

Gt(Θ0)′

]
+ op(1) (3.8)

The following result uses the assumptions: (A14) A central limit theorem is satisfied for Eq. (3.8);

(A14) is studied in Section 3.2. (A15) The DCS model is invertible (Blasques et al., 2017, 2018). Under

(A1) to (A15), the asymptotic distribution of the ML estimates is given by:

√
T (Θ̂ML −Θ0)→d NK

[
0K×1, I−1(Θ0)

]
as T →∞ (3.9)

The asymptotic covariance matrix of Θ̂ML is estimated by using [
∑T

t=1Gt(Θ̂ML)′Gt(Θ̂ML)]−1.
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3.1. Conditions of (A13)

For ease of notation, a DCS model with known constant shape parameters is considered first:

yt = µt + exp(λt)εt (3.10)

µt = c+ φµt−1 + θuµ,t−1 (3.11)

λt = ω + βλt−1 + αuλ,t−1 (3.12)

Variables µt and λt are re-parameterized, by using the unconditional means E(µt) = c̃ = c/(1−φ) and

E(λt) = ω̃ = ω/(1− β), as follows:

µt = c̃(1− φ) + φµt−1 + θuµ,t−1 (3.13)

λt = ω̃(1− β) + βλt−1 + αuλ,t−1 (3.14)

for which Θ = (c̃, φ, θ, ω̃, β, α) and K = 6. This alternative form of the model is used, since the

information matrix is simpler under this representation (Harvey, 2013, p. 34). The conditions for the

covariance stationarity of yt are |φ| < 1 and |β| < 1. These conditions are named as Condition 1.

To study the finiteness of the elements of I(Θ0), matrix I(Θ0) is expressed as:

I(Θ0) = E[It(Θ0)] = E
{
E[Gt(Θ0)′Gt(Θ0)|Ft−1]

}
= E[Gt(Θ0)′Gt(Θ0)] (3.15)

In the following, conditions under which all of the elements of E[Gt(Θ0)′Gt(Θ0)] < ∞ are presented.

The elements of Gt(Θ0)′ are expressed, according to the chain rule, as follows:

Gt(Θ0)′ =



∂ ln f(yt|Ft−1;Θ0)
∂θ

∂ ln f(yt|Ft−1;Θ0)
∂φ

∂ ln f(yt|Ft−1;Θ0)
∂c̃

∂ ln f(yt|Ft−1;Θ0)
∂α

∂ ln f(yt|Ft−1;Θ0)
∂β

∂ ln f(yt|Ft−1;Θ0)
∂ω̃


=



∂ ln f(yt|Ft−1;Θ0)
∂µt

× ∂µt
∂θ

∂ ln f(yt|Ft−1;Θ0)
∂µt

× ∂µt
∂φ

∂ ln f(yt|Ft−1;Θ0)
∂µt

× ∂µt
∂c̃

∂ ln f(yt|Ft−1;Θ0)
∂λt

× ∂λt
∂α

∂ ln f(yt|Ft−1;Θ0)
∂λt

× ∂λt
∂β

∂ ln f(yt|Ft−1;Θ0)
∂λt

× ∂λt
∂ω̃


(3.16)
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Four panels within the contribution to the information matrix are defined as follows:

It(Θ0) = E[Gt(Θ0)′Gt(Θ0)|Ft−1] = E


 A(3×3) C(3×3)

C(3×3) B(3×3)

 |Ft−1

 (3.17)

where in A only the derivatives of µt appear, in B only the derivatives of λt appear, and in C the

derivatives of µt and λt appear. By using scalars from A, B and C, the following matrix is defined:

Ft =

 i3

[
∂ ln f(yt|Ft−1;Θ0)

∂µt

]2
i′3 i3

[
∂ ln f(yt|Ft−1;Θ0)

∂µt
× ∂ ln f(yt|Ft−1;Θ0)

∂λt

]
i′3

i3

[
∂ ln f(yt|Ft−1;Θ0)

∂µt
× ∂ ln f(yt|Ft−1;Θ0)

∂λt

]
i′3 i3

[
∂ ln f(yt|Ft−1;Θ0)

∂λt

]2
i′3

 (3.18)

where i3 is a (3× 1) vector of ones, and the contribution to the information matrix can be written as:

It(Θ0) = E(Ft|Ft−1) ◦Dt(Θ0) = E(Ft|Ft−1) ◦

 Ã(3×3) C̃(3×3)

C̃(3×3) B̃(3×3)

 (3.19)

where ◦ denotes the Hadamard product, and Dt(Θ0) is the outer product of:

D̃t = [(∂µt/∂θ), (∂µt/∂φ), (∂µt/∂c̃), (∂λt/∂α), (∂λt/∂β), (∂λt/∂ω̃)] (3.20)

with itself, i.e. Dt(Θ0) = D̃′tD̃t; in panel Ã only the derivatives of µt appear, in panel B̃ only the

derivatives of λt appear, and in panel C̃ the derivatives of both µt and λt appear. Dt(Θ0) is not in the

conditional expectation in Eq. (3.19), since it is determined by Ft−1. I(Θ0) can be written as:

I(Θ0) = E[It(Θ0)] = E(Ft) ◦ E[Dt(Θ0)] +Mt = E(Ft) ◦ E

 Ã(3×3) C̃(3×3)

C̃(3×3) B̃(3×3)

+Mt (3.21)

where Mt (K ×K) includes the covariances between the elements of Ft and Dt(Θ0).

In the remainder of this section, the conditions of the finiteness of E(Ft), E[Dt(Θ0)] and Mt are

presented. With respect to the finiteness of E(Ft), matrix Ft can be written as:

Ft =

 i3(u2
µ,t/k

2
t )i
′
3 i3(uµ,t × uλ,t/kt)i′3

i3(uµ,t × uλ,t/kt)i′3 i3(u2
λ,t)i

′
3

 (3.22)
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where kt is the time-varying scaling parameter. The form of kt is different for different DCS models.

For example, from Eq. (A.8) of Appendix A, for EGB2-DCS the form of kt is:

∂ ln f(yt|Ft−1; Θ0)

∂µt
= uµ,t × {Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]} exp(2λt) =

uµ,t
kt

(3.23)

For kt of NIG-DCS and Skew-Gen-t-DCS, see Eqs. (A.22) and (A.34) in Appendix A, respectively.

Based on Eq. (3.22), it is necessary that the unconditional means of (u2
µ,t/k

2
t ), u

2
λ,t and (uµ,t×uλ,t/kt)

to be finite. This condition is named as Condition 2.

With respect to the finiteness of E[Dt(Θ0)], the following equations are used (e.g. Harvey, 2013):

D̃′t =



∂µt
∂θ

∂µt
∂φ

∂µt
∂c̃

∂λt
∂α

∂λt
∂β

∂λt
∂ω̃


=



Xµ,t−1 × ∂µt−1

∂θ + uµ,t−1

Xµ,t−1 × ∂µt−1

∂φ + µt−1 − c̃

Xµ,t−1 × ∂µt−1

∂c̃ + 1− φ

Xλ,t−1 × ∂λt−1

∂α + uλ,t−1

Xλ,t−1 × ∂λt−1

∂β + λt−1 − ω̃

Xλ,t−1 × ∂λt−1

∂ω̃ + 1− β


(3.24)

where Xµ,t ≡ φ + θ(∂uµ,t/∂µt) and Xλ,t ≡ β + α(∂uλ,t/∂λt). Eq. (3.24) provides the following

conditions for the finiteness of E[Dt(Θ0)]: For panel Ã it is necessary that E(X2
µ,t) < 1 and for panel

B̃ it is necessary that E(X2
λ,t) < 1 (for these results, see Harvey, 2013). With respect to panel C̃, it is

necessary that |E(Xµ,tXλ,t)| < 1 (see the proof in Appendix B). In addition, for the DCS model with

score-driven µt and λt, it is also necessary that: (i) the unconditional means of Xµ,t, Xλ,t, uµ,t and

uλ,t are finite, and that the unconditional mean of each product that is formed by all possible pairs of

those variables is also finite (see the proof in Appendix B); (ii) the unconditional second moment of

each element of the outer product of the vector (Xµ,t, Xλ,t, uµ,t, uλ,t) with itself is finite (see the proof

in Appendix B). With respect to the latter point, it is noteworthy that the first four moments of εt

are finite for all DCS models of this paper. These conditions are named as Condition 3.

With respect to the finiteness of the covariances within Mt, which represent the covariances between

the elements of Ft and Dt(Θ0), it is required that the second moments of all variables in the covariances

are finite. The variables in the covariances can be seen in Eqs. (3.22) and (3.24). The covariances

between the elements of Ft and Dt(Θ0) are finite under Condition 3.
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3.2. Conditions of (A14)

By using Eq. (3.8), the following result is equivalent to Eq. (3.9):

T−1/2
T∑
t=1

Gt(Θ0)′ →d NK [0K×1, I(Θ0)] (3.25)

By using the Cramér-Wold Device (e.g. White, 1984), Eq. (3.25) is true if for all a ∈ IRK :

a′T−1/2
∑T

t=1Gt(Θ0)′

[a′I(Θ0)a]1/2
→d N(0, 1) (3.26)

where a is a (K × 1) vector. To show the asymptotic result in Eq. (3.26), for ease of notation

Zt ≡ a′Gt(Θ0)′ is introduced and Definition 5.15 and Theorem 5.16 from the work of White (1984) are

used. According to those two theorems, if (E1) Zt is stationary and ergodic, (E2) E(Z2
t ) < ∞, and

(E3) Zt is an adapted mixingale (with respect to this last point, see Hamilton, 1994, p. 190):

{
E[E(Zt|Ft−m)2]

}1/2
= E|E(Zt|Ft−m)| ≤ ctγm as m→∞ and γm → 0 (3.27)

where Ft−m has started in the infinite past and is available until period t−m (including period t−m),

ct is a finite non-negative sequence and γm = O[1/(m1+ε)] for ε > 0, then Eq. (3.26) holds.

The proof of Eq. (3.26) uses the following condition: Condition 4 is that εt is stationary and

ergodic. (E1) can be shown as follows: Theorem 3.35 of White (1984) shows that a measurable function

transforms stationary and ergodic variables into stationary and ergodic variables. The transformations

of εt in Zt = a′Gt(Θ0)′ satisfy the conditions of that theorem under (A1) to (A13) and Conditions 1 to 4.

The results of Brandt (1986) and Diaconis and Freedman (1999) on stochastic recurrence equations

(SREs) support this conclusion. In relation to those results, Eq. (3.24) can be written as:



∂µt
∂θ

∂µt
∂φ

∂µt
∂c̃

∂λt
∂α

∂λt
∂β

∂λt
∂ω̃


=



Xµ,t−1 0 0 0 0 0

0 Xµ,t−1 0 0 0 0

0 0 Xµ,t−1 0 0 0

0 0 0 Xλ,t−1 0 0

0 0 0 0 Xλ,t−1 0

0 0 0 0 0 Xλ,t−1





∂µt−1

∂θ

∂µt−1

∂φ

∂µt−1

∂c̃

∂λt−1

∂α

∂λt−1

∂β

∂λt−1

∂ω̃


+



uµ,t−1

µt−1 − c̃

1− φ

uλ,t−1

λt−1 − ω̃

1− β


(3.28)
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and the following compact notation is used for the previous equation:

D̃′t = A∗t−1D̃
′
t−1 +B∗t−1 (3.29)

which is a SRE. Under (A1) to (A13), Conditions 1 to 4 and by using Theorem 3.35 of White (1984),

A∗t−1 and B∗t−1 are stationary and ergodic. Moreover, from E(X2
µ,t) < 1 and E(X2

λ,t) < 1 of Condition 3

and by using the Cauchy–Schwarz inequality: |E(Xµ,t)| < 1 and |E(Xλ,t)| < 1 in Eq. (3.28). By using

the results of Brandt (1986) and Diaconis and Freedman (1999), D̃′t is stationary and ergodic. Under

(A1) to (A13), Conditions 1 to 4 and Theorem 3.35 of White (1984), Zt = a′Gt(Θ0)′ is also stationary

and ergodic. (E2) can be shown as follows:

E(Z2
t ) = E{[a′Gt(Θ0)′]2} = Var[a′Gt(Θ0)′] + E2[a′Gt(Θ0)′] = (3.30)

a′Var[Gt(Θ0)′]a+ {a′E[Gt(Θ0)′]}2 = a′E[Gt(Θ0)′Gt(Θ0)]a = a′I(Θ0)a <∞

where E[Gt(Θ0)′] = 0 and the finiteness of I(Θ0) are used under (A1) to (A13) and Conditions 1 to 4.

According to (E3), the m-step ahead forecast E(Zt|Ft−m) converges in absolute expected value

to the unconditional mean of zero as m → ∞ (Hamilton, 1994). This can be shown as follows: The

unconditional mean of Zt is zero, because E(Zt) = E[a′Gt(Θ0)′] = a′E[Gt(Θ0)′] = a′0K×1 = 0 under

(A1) to (A13) and Conditions 1 to 4. Moreover, Eq. (3.16) shows that Gt(Θ0)′ is the Hadamard

product of a K × 1 vector of the score functions and D̃′t. Under (A1) to (A13) and Conditions 1 to 4,

the conditional and unconditional means of the score functions are zero. Therefore, the m-step ahead

forecasts of the score functions converge to zero as m → ∞. Under the same conditions, Lemma 6

(Harvey, 2013, p. 36) is applied to D̃′t, which provides the following forecasting results:

lim
m→∞

E

(
∂µt
∂θ
|Ft−m

)
= lim

m→∞
E

(
∂µt
∂φ
|Ft−m

)
= 0 (3.31)

lim
m→∞

E

(
∂λt
∂α
|Ft−m

)
= lim

m→∞
E

(
∂λt
∂β
|Ft−m

)
= 0 (3.32)

lim
m→∞

E

(
∂µt
∂c̃
|Ft−m

)
=

1− φ
1− E(Xµ,t)

(3.33)
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lim
m→∞

E

(
∂λt
∂ω̃
|Ft−m

)
=

1− β
1− E(Xλ,t)

(3.34)

The forecasts of Eqs. (3.31) and (3.32) converge to zero and the forecasts of Eqs. (3.33) and (3.34)

converge to a non-zero constant. As a consequence limm→∞E[Gt(Θ0)′|Ft−m] = 0,

lim
m→∞

E[Zt|Ft−m] = lim
m→∞

E[a′Gt(Θ0)′|Ft−m] = lim
m→∞

a′E[Gt(Θ0)′|Ft−m] = 0 (3.35)

which implies that E|E(Zt|Ft−m)| ≤ ctγm as m→∞ and γm → 0.

3.3. The asymptotic properties of ML for two models

Proposition 1: For Eqs. (3.10) to (3.12),
√
T (Θ̂ML − Θ0) →d N [0K×1, I−1(Θ0)] as T → ∞, under

(A1) to (A15) and the following conditions: Condition 1 is that |φ| < 1 and |β| < 1. Condition 2 is that

E(u2
µ,t/k

2
t ), E(u2

λ,t) and E(uµ,t × uλ,t/kt) are finite. Condition 3 is that E(X2
µ,t) < 1, E(X2

λ,t) < 1 and

|E(Xµ,tXλ,t)| < 1, whereXµ,t = φ+θ(∂uµ,t/∂µt) andXλ,t = β+α(∂uλ,t/∂λt). Condition 3 also requires

that: (i) the unconditional means of Xµ,t, Xλ,t, uµ,t and uλ,t are finite, and that the unconditional mean

of each product that is formed by all possible pairs of those variables is also finite; (ii) the unconditional

second moment of each element of the outer product of the vector (Xµ,t, Xλ,t, uµ,t, uλ,t) with itself is

finite. Condition 4 is that εt is strictly stationary and ergodic.

Conditions 1 to 4 can be extended to DCS models with score-driven shape parameters. For example,

the following EGB2-DCS model with εt ∼ EGB2[0, 1, exp(ξt), exp(ζt)] is considered:

yt = µt + exp(λt)εt (3.36)

µt = c+ φµt−1 + θuµ,t−1 (3.37)

λt = ω + βλt−1 + αuλ,t−1 (3.38)

ξt = δ1 + γ1ξt−1 + κ1uξ,t−1 (3.39)

ζt = δ2 + γ2ζt−1 + κ2uζ,t−1 (3.40)

Proposition 2: For Eqs. (3.36) to (3.40),
√
T (Θ̂ML − Θ0) →d N [0K×1, I−1(Θ0)] as T → ∞, under

(A1) to (A15) and the following conditions: Condition 1 is that |φ| < 1, |β| < 1, |γ1| < 1 and

|γ2| < 1. Condition 2 is that E(u2
µ,t/k

2
t ), E(u2

λ,t), E(u2
ξ,t), E(u2

ζ,t), E(uµ,t × uλ,t/kt), E(uµ,t × uξ,t/kt),
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E(uµ,t×uζ,t/kt), E(uλ,t×uξ,t), E(uλ,t×uζ,t), and E(uξ,t×uζ,t) are finite. Condition 3 is that E(X2
µ,t) <

1, E(X2
λ,t) < 1, E(X2

ξ,t) < 1, E(X2
ζ,t) < 1, |E(Xµ,tXλ,t)| < 1, |E(Xµ,tXξ,t)| < 1, |E(Xµ,tXζ,t)| < 1,

|E(Xλ,tXξ,t)| < 1, |E(Xλ,tXζ,t)| < 1 and |E(Xξ,tXζ,t)| < 1, where Xµ,t = φ + θ(∂uµ,t/∂µt), Xλ,t =

β + α(∂uλ,t/∂λt), Xξ,t = γ1 + κ1(∂uξ,t/∂ξt) and Xζ,t = γ2 + κ2(∂uζ,t/∂ζt). Condition 3 also requires

that: (i) the unconditional means of Xµ,t, Xλ,t, Xξ,t, Xζ,t, uµ,t, uλ,t, uξ,t and uζ,t are finite, and

that the unconditional mean of each product that is formed by all possible pairs of those variables is

also finite; (ii) the unconditional second moment of each element of the outer product of the vector

(Xµ,t, Xλ,t, Xξ,t, Xζ,t, uµ,t, uλ,t, uξ,t, uζ,t) with itself is finite. Condition 4 is that εt is strictly stationary

and ergodic.

3.4. MC simulation experiments

For all MC experiments, zero mean µt = 0, unit scale exp(λt) = 1, and score-driven shape parameters

are used for t = 1, . . . , T . Two sets of true parameter values are used: The first set assumes high

persistence for the shape parameters (i.e. γk=0.95 for all k). The second set assumes low persistence

for the shape parameters (i.e. γk=0.15 for all k). The true values of all parameters are presented

in Table 1. By using those true values, 1, 000 trajectories are simulated and each trajectory includes

T = 10, 000 periods. With respect to the sample size T , it is noteworthy that DCS models with

dynamic shape need a large sample size for the reliable estimation of tail shape dynamics.

By using the ML method, the parameters of the DCS models with dynamic shape parameters are

estimated for each trajectory. In Table 1, the 5%, 50% and 95% quantiles of the 1,000 parameter

estimates are reported. For the high-persistence case, the medians give a good approximation of the

true values and the 90% confidence intervals of the quantiles include all true values. For the low-

persistence case, the medians give a good approximation of most of the true values; the only exceptions

are some of the constant parameters, for which the true value is not within the 90% confidence interval

(e.g. δ2 for EGB2-DCS and NIG-DCS). The 90% confidence intervals also show that the ML estimation

is more precise for the high persistence case than it is for the low persistence case. The medians indicate

that dynamic parameter γk and parameters of the score functions κk are precisely estimated for all

cases.

4. Data

Daily data are used from the closing prices of the S&P 500 index pt for the period of January 4, 1950 to

December 30, 2017 (source: Bloomberg). In Table 2, descriptive statistics of daily log-returns on the
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S&P 500 yt are presented, where yt = ln(pt/pt−1) for t = 1, . . . , T and pre-sample data are used for p0.

The following results can be highlighted: The negative skewness estimate indicates that the mass of

the distribution of yt is concentrated on the right side, and the high excess kurtosis estimate suggests

heavy tails of yt. The negative correlation coefficient Corr(y2
t ,yt−1) suggests that high volatility often

follows significant negative returns, which motivates the consideration of leverage effects within λt. The

evolution of yt is presented in Fig. 3, where extreme observations are indicated by using the µ ± 5σ

interval; µ and σ are the estimates of mean and standard deviation, respectively. In the same figure,

the concentration of outliers during the period of the 2008 US financial crisis can be observed.

5. Empirical results

In this section, the ML estimation results for the S&P 500 are presented for the EGB2-DCS (Table 3),

NIG-DCS (Table 4) and Skew-Gen-t-DCS (Tables 5(a) and (b)) models. LL-based performances of

those models are compared in Table 6. The evolutions of ρk,t and λt are presented for all models in

Figs. 4, 5, 6(a) and 6(b). The dates of some extreme events are highlighted in Fig. 7.

Tables 3 to 5 show the following results: For most of the specifications, φ parameter which measures

the persistence of conditional location is significantly different from zero. The scaling parameter of the

score function with respect to location θ is positive and significant for all models. For all of the

specifications, highly significant ω, α, α∗ and β parameters are found for the scale. For most of the

specifications, the dynamic parameters of shape (i.e. γ1, γ2 and γ3) are significant and positive. For

all of the specifications, the scaling parameter of the score function with respect to shape (i.e. κ1, κ2

and κ3) is significantly different from zero (i.e. the DCS models are identified; Harvey, 2013).

All estimates of φ, β, γ1, γ2 and γ3 are less than one in absolute value (Tables 3 to 5). Thus,

Condition 1 is supported. In Tables 3 to 5, the estimates of Cµ = E(X2
µ,t), Cλ = E(X2

λ,t), Cρ,1 =

E(X2
ρ,1,t), Cρ,2 = E(X2

ρ,2,t), Cρ,3 = E(X2
ρ,3,t), Cµ,λ = |E(Xµ,tXλ,t)|, Cµ,ρ,1 = |E(Xµ,tXρ,1,t)|, Cµ,ρ,2 =

|E(Xµ,tXρ,2,t)|, Cµ,ρ,3 = |E(Xµ,tXρ,3,t)|, Cλ,ρ,1 = |E(Xλ,tXρ,1,t)|, Cλ,ρ,2 = |E(Xλ,tXρ,2,t)|, Cλ,ρ,3 =

|E(Xλ,tXρ,3,t)|, Cρ,1,ρ,2 = |E(Xρ,1,tXρ,2,t)|, Cρ,1,ρ,3 = |E(Xρ,1,tXρ,3,t)| and Cρ,2,ρ,3 = |E(Xρ,2,tXρ,3,t)| are

also reported. All of those estimates are less than one. Thus, the corresponding formulas of Condition 3

are supported for the ML estimates. For the variables of Conditions 2 and 3, the augmented Dickey–

Fuller (1979) (hereinafter, ADF) unit root test with constant is performed, which supports those

conditions. Condition 4 is a maintained assumption in this paper.

To study assumption (A1), results of the model specification test of Section 2.2 are reported in
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Tables 3 to 5. For EGB2-DCS, the MDS null hypothesis of the Escanciano–Lobato test is rejected for

all specifications, with respect to skewness and kurtosis. For NIG-DCS, the MDS null hypothesis of

the Escanciano–Lobato test is never rejected. For Skew-Gen-t-DCS, eight different specifications with

respect to dynamic versus constant shape are considered, and for four out of eight specifications the

MDS null hypothesis of the Escanciano–Lobato test is not rejected up to the fourth moment.

In-sample model performances are compared by using the following metrics: LL, Akaike informa-

tion criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn criterion (HQC), and the

likelihood-ratio (LR) test (Tables 3 to 6). For those metrics, the statistical performance of at least one

of the DCS specifications with dynamic shape parameters is superior to the statistical performance of

the DCS model with constant shape parameters. For the LR test, at least one of the DCS specifications

with dynamic shape parameters is significantly superior to the nested DCS specification with constant

shape parameters. The results also suggest that the statistical performance of the Skew-Gen-t-DCS

model is superior to the statistical performances of the EGB2-DCS and NIG-DCS models.

The evolutions of ρk,t and λt are presented in Figs. 4 to 6. Those figures indicate that: (i) the shape

parameters are time-varying for all models; (ii) for the DCS specifications with dynamic shape, the

shape parameters identify the dates of outliers. As an example, in Fig. 7, the identification of outliers

is studied for DCS-Skew-Gen-t with constant τt, dynamic νt and constant ηt. In that figure, some

numbers indicate those trading days when νt is relatively low, which suggests that the probability of

there being an outlier is relatively high. Important events are reported in Appendix C for those trading

days that are indicated in Fig. 7. Those events may have significantly impacted the US stock market.

6. VaR backtesting

In this section VaR backtesting applications are presented, in which the VaR measurements of the DCS

models with constant and dynamic shape parameters are compared. The results provide the following

insight for practitioners about the quality of VaR measurement for the new DCS specifications: The

DCS models with dynamic shape effectively predict consecutive additive outliers, while the DCS models

with constant shape fail to predict the second outlier.

As aforementioned, extreme observations in the S&P 500 log-returns are concentrated during the

period of the 2008 US financial crisis (Fig. 3). This motivates the consideration of the period of

September 2, 2008 to March 31, 2009 (i.e. 146 trading days) in the VaR backtesting applications.

During that period there were 24 outliers (Fig. 3). The design of the VaR backtesting procedure
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of this paper is according to the approach of the Basel Committee (1996), in which a 1-day VaR is

estimated out-of-sample at the 99% confidence level for each of the most recent 250 trading days. In

the present paper, a VaR(1 day, 99%) is estimated for each of the 146 days of the backtesting period.

A rolling-window estimation approach is used for all DCS models, and 10,000 observations are included

into each rolling window. As alternatives, the use of 2,500 and 5,000 observations is also considered for

the rolling windows, but more robust ML estimates are obtained for T = 10, 000. VaR is approximated

after the parameter estimation by using MC simulation, for which 100,000 possible log-returns are

simulated for the trading day after the last observation of each rolling window. VaR(1 day, 99%) is

defined by the 1% quantile of the log-return simulations. The performance of VaR is compared for

the following models: (i) EGB2-DCS with constant and dynamic shape parameters; (ii) NIG-DCS

with constant and dynamic shape parameters; (iii) Skew-Gen-t-DCS with constant and dynamic shape

parameters. All shape parameters are time-varying for the DCS specifications with dynamic shape

parameters.

One of the backtests that are suggested by the Basel Committee (1996) is the ‘traffic light approach’,

which is based on the number of those trading days during the period defined by the last 250 trading

days, for which the realized return is lower than the VaR estimate. That number represents the

‘VaR failures’ during the backtesting period. In the present paper, the VaR failures for the 146-day

backtesting period are counted in a similar way. Furthermore, the test of Kupiec (1995) is also applied

to evaluate whether the proportion of VaR(1 day, 99%) failures is significantly higher than 1% during

the backtesting period. The null hypothesis of the Kupiec test is that the VaR model is appropriate.

The number of VaR failures and the Kupiec test results for the 146-day backtesting period are

presented in Table 7(a). The number of VaR failures does not differ for the DCS specifications with

constant and dynamic shape. For EGB2-DCS, 4 VaR failures are found for both the constant- and

dynamic-shape models. The results also show that VaR for EGB2-DCS is inappropriate according to

the Kupiec test, at the 10% level of significance. For NIG-DCS and Skew-Gen-t-DCS, 2 VaR failures

are found for both the constant- and dynamic-shape models, and the Kupiec test results support

the quality of VaR measurements. Conclusions from Table 7(a): (i) the DCS models with dynamic

shape parameters do not provide better VaR measurements than the DCS models with constant shape

parameters for the backtesting period of the S&P 500; (ii) the VaR measurements for the NIG-DCS

and Skew-Gen-t-DCS models are superior to the VaR measurement for the EGB2-DCS model.
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To provide a further analysis of VaR, the evolution of S&P 500 log-returns and the evolution of the

VaR estimates are presented for all models in Fig. 8. That figure provides the following interesting

insight. It shows that, after each extreme observation, the predicted potential extreme loss of the next

day is higher for the DCS specification with dynamic shape parameter than for the DCS specification

with constant shape parameter. This result is robust, because it is obtained for the EGB2, NIG

and Skew-Gen-t distributions, and it provides the following intuition: If outliers occur on consecutive

trading days, then: (i) the VaR measurements for DCS models with constant shape parameters may

fail for the second outlier; (ii) the VaR measurements for DCS models with dynamic shape parameters

will detect the second outlier. The correct detection of consecutive additive outliers is important in the

VaR backtesting literature, and it motivated the work of Christofferssen (1998). The null hypothesis

of the Christofferssen test is that the arrival times of VaR failures are independent. If that null

hypothesis is rejected, for example, due to consecutive VaR failures within the backtesting period, then

the econometric model is not updated correctly after extreme observations.

To study the issue of consecutive outliers, a modified S&P 500 dataset is used for the backtesting

period. For each of those days when the VaR fails (see the dates in Table 7(a)), the outlier is duplicated

for the next day. The results for the 146-day backtesting period are presented in Table 7(b). For

EGB2-DCS, 3 VaR failures are found for both the constant- and dynamic-shape models. Although

the number of VaR failures is identical for both models, two of those VaR failures are on consecutive

trading days for the constant-shape model, while the three VaR failures are on non-consecutive trading

days for the dynamic-shape model. For NIG-DCS and Skew-Gen-t-DCS, 3 VaR failures are found

for the constant-shape models and 2 VaR failures are found for the dynamic-shape models. It is

important to highlight that consecutive VaR failures are observed for all DCS models with constant

shape parameters, while the VaR failures are never on consecutive days for the DCS models with

dynamic shape parameters. The VAR backtesting application indicates that, during periods of high

market volatility, the VaR measurements of DCS models with dynamic shape parameters are protected

against consecutive additive outliers, but the VaR measurements of DCS models with constant shape

parameters fail on the trading day of the second additive outlier.

7. Conclusions

In this paper, new score-driven models with dynamic shape parameters have been suggested, which

improve the performance of the score-driven models with constant shape parameters, since: (i) they
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have superior in-sample statistical performances, and (ii) they provide more accurate out-of-sample

VaR measurements. Log-return time series data have been used from the S&P 500 index for the period

of 1950 to 2017. All DCS models have been estimated by using the ML method, the conditions of

the asymptotic properties of the ML estimator have been provided, and the use of the ML estimator

has been supported by performing MC simulation experiments. The in-sample statistical performances

of DCS models with dynamic shape parameters have been superior to the in-sample statistical per-

formances of DCS models with constant shape parameters. VaR backtesting for a period during the

2008 US financial crisis has indicated that the DCS models with dynamic shape parameters effectively

predict extreme losses for consecutive additive outliers, while the DCS models with constant shape

parameters are incorrectly updated after the first outlier and fail to predict extreme losses for the

second outlier. The in-sample statistical performance and out-of-sample VAR backtesting results of

this paper may motivate the consideration of DCS models with dynamic shape parameters in the VaR

measurement practices of financial risk managers for periods of high market volatility.
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Appendix A
In this appendix, for each error specification, the conditional distribution of yt, the conditional mean of yt, the conditional

volatility of yt, the log of the conditional density of yt, the scaled score function for location uµ,t, and the score functions

for scale uλ,t and shape uρ,k,t are presented.

(1) For the EGB2-DCS model, εt ∼ EGB2[0, 1, exp(ξt), exp(ζt)], where both shape parameters are positive. The

conditional mean, conditional variance, conditional skewness and conditional kurtosis of εt are given by:

E(εt|Ft−1; Θ) = Ψ(0)[exp(ξt)]−Ψ(0)[exp(ζt)] (A.1)

Var(εt|Ft−1; Θ) = Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)] (A.2)

Skew(εt|Ft−1; Θ) = Ψ(2)[exp(ξt)]−Ψ(2)[exp(ζt)] (A.3)

Kurt(εt|Ft−1; Θ) = Ψ(3)[exp(ξt)] + Ψ(3)[exp(ζt)] (A.4)

respectively; Θ is the vector of parameters and Ψ(i)(x) is the polygamma function of order i. For the EGB2-DCS model,

yt|Ft−1 ∼ EGB2[µt, exp(−λt), exp(ξt), exp(ζt)]. The conditional mean and the conditional volatility of yt are

E(yt|Ft−1; Θ) = µt + exp(λt)
{

Ψ(0)[exp(ξt)]−Ψ(0)[exp(ζt)]
}

(A.5)

22



SD(yt|Ft−1; Θ) = exp(λt){Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]}1/2 (A.6)

respectively. The log of the conditional density of yt is

ln f(yt|Ft−1; Θ) = exp(ξt)εt − λt − ln Γ[exp(ξt)]− ln Γ[exp(ζt)] (A.7)

+ ln Γ[exp(ξt) + exp(ζt)]− [exp(ξt) + exp(ζt)] ln[1 + exp(εt)]

The score functions with respect to µt, λt, ξt and ζt are as follows. Firstly, the score function with respect to µt is

∂ ln f(yt|Ft−1; Θ)

∂µt
= uµ,t × {Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]} exp(2λt) =

uµ,t
kt

(A.8)

where

uµ,t = {Ψ(1)[exp(ξt)] + Ψ(1)[exp(ζt)]} exp(λt)

{
[exp(ξt) + exp(ζt)]

exp(εt)

exp(εt) + 1
− exp(ξt)

}
(A.9)

is the scaled score function. Secondly, the score function with respect to λt is

uλ,t =
∂ ln f(yt|Ft−1; Θ)

∂λt
= [exp(ξt) + exp(ζt)]

εt exp(εt)

exp(εt) + 1
− exp(ξt)εt − 1 (A.10)

Thirdly, the score function with respect to ξt is

uξ,t =
∂ ln f(yt|Ft−1; Θ)

∂ξt
= exp(ξt)εt − exp(ξt)Ψ

(0)[exp(ξt)] (A.11)

+ exp(ξt)Ψ
(0)[exp(ξt) + exp(ζt)]− exp(ξt) ln[1 + exp(εt)]

Fourthly, the score function with respect to ζt is

uζ,t =
∂ ln f(yt|Ft−1; Θ)

∂ζt
= − exp(ζt)Ψ

(0)[exp(ζt)] (A.12)

+ exp(ζt)Ψ
(0)[exp(ξt) + exp(ζt)]− exp(ζt) ln[1 + exp(εt)]

(2) For the NIG-DCS model, εt ∼ NIG[0, 1, exp(νt), exp(νt)tanh(ηt)], where tanh(x) is the hyperbolic tangent function,

and the absolute value of parameter exp(νt)tanh(ηt) is less than parameter exp(νt) as required for the NIG distribution.

The conditional mean, conditional variance, conditional skewness and conditional kurtosis of εt are given by:

E(εt|Ft−1; Θ) =
tanh(ηt)

[1− tanh2(ηt)]1/2
(A.13)

Var(εt|Ft−1; Θ) =
exp(−νt)

[1− tanh2(ηt)]3/2
(A.14)

Skew(εt|Ft−1; Θ) =
3tanh(ηt)

exp(νt/2)
[
1− tanh2(ηt)

]1/4 (A.15)

Kurt(εt|Ft−1; Θ) = 3 +
3
[
1 + 4tanh2(ηt)

]
exp(νt)

[
1− tanh2(ηt)

]1/2 (A.16)

respectively. For the NIG-DCS model, the conditional distribution of yt is

yt|Ft−1 ∼ NIG[µt, exp(λt), exp(νt − λt), exp(νt − λt)tanh(ηt)] (A.17)

The conditional mean and the conditional volatility of yt are

E(yt|Ft−1; Θ) = µt +
exp(λt)tanh(ηt)

[1− tanh2(ηt)]1/2
(A.18)
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SD(yt|Ft−1; Θ) =

{
exp(2λt − νt)

[1− tanh2(ηt)]3/2

}1/2

(A.19)

respectively. The log of the conditional density of yt is

ln f(yt|Ft−1; Θ) = νt − λt − ln(π) + exp(νt)[1− tanh2(ηt)]
1/2 (A.20)

+ exp(νt)tanh(ηt)εt + lnK(1)

[
exp(νt)

√
1 + ε2t

]
− 1

2
ln(1 + ε2t )

where K(1)(x) is the modified Bessel function of the second kind of order 1. The score functions with respect to µt, λt,

νt and ηt are as follows. Firstly, the score function with respect to µt is

∂ ln f(yt|Ft−1; Θ)

∂µt
= − exp(νt − λt)tanh(ηt) +

εt
exp(λt)(1 + ε2t )

(A.21)

+
exp(νt − λt)εt√

1 + ε2t
×
K(0)

[
exp(νt)

√
1 + ε2t

]
+K(2)

[
exp(νt)

√
1 + ε2t

]
2K(1)

[
exp(νt)

√
1 + ε2t

]
where K(0)(x) and K(2)(x) are the modified Bessel functions of the second kind of orders 0 and 2, respectively. Define

the scaled score function with respect to µt as

uµ,t =
∂ ln f(yt|Ft−1; Θ)

∂µt
× exp(2λt) =

∂ ln f(yt|Ft−1; Θ)

∂µt
× kt (A.22)

Secondly, the score function with respect to λt is

uλ,t =
∂ ln f(yt|Ft−1; Θ)

∂λt
= −1− exp(νt)tanh(ηt)εt +

ε2t
1 + ε2t

(A.23)

+
exp(νt)ε

2
t√

1 + ε2t
×
K(0)

[
exp(νt)

√
1 + ε2t

]
+K(2)

[
exp(νt)

√
1 + ε2t

]
2K(1)

[
exp(νt)

√
1 + ε2t

]
Thirdly, the score function with respect to νt is

uν,t =
∂ ln f(yt|Ft−1; Θ)

∂νt
= 1 + exp(νt)[1− tanh2(ηt)]

1/2 + exp(νt)tanh(ηt)εt (A.24)

− exp(νt)
√

1 + ε2t ×
K(0)

[
exp(νt)

√
1 + ε2t

]
+K(2)

[
exp(νt)

√
1 + ε2t

]
2K(1)

[
exp(νt)

√
1 + ε2t

]
Fourthly, the score function with respect to ηt is

uη,t =
∂ ln f(yt|Ft−1; Θ)

∂ηt
= exp(νt)sech2(ηt)εt − exp(νt)tanh(ηt)sech(ηt) (A.25)

where sech(x) is the hyperbolic secant function.

(3) For the Skew-Gen-t-DCS model, εt ∼ Skew-Gen-t[0, 1, tanh(τt), exp(νt) + 4, exp(ηt)], where shape parameter

tanh(τt) is in the interval (−1, 1) as required for the Skew-Gen-t distribution, degrees of freedom parameter exp(νt) + 4

is higher than four, and shape parameter exp(ηt) is positive as required for the Skew-Gen-t distribution. The conditional

mean, conditional variance, conditional skewness and conditional kurtosis of εt, respectively, are:

E(εt|Ft−1; Θ) =
2tanh(τt)[exp(νt) + 4]exp(−ηt)B

{
2

exp(ηt)
, exp(νt)+3
exp(ηt)

}
B
{

1
exp(ηt)

, exp(νt)+4
exp(ηt)

} (A.26)

Var(εt|Ft−1; Θ) = [exp(νt) + 4]2 exp(−ηt)× (A.27)
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×

 [3tanh2(τt) + 1]B
[

3
exp(ηt)

, exp(νt)+2
exp(ηt)

]
B
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

] −
4tanh2(τt)B

2
[

2
exp(ηt)

, exp(νt)+3
exp(ηt)

]
B2
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

]


Skew(εt|Ft−1; Θ) =
2tanh(τt)[exp(νt) + 4]3 exp(−ηt)

B3
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

] × (A.28)

×

{
8tanh2(τt)B

3

[
2

exp(ηt)
,

exp(νt) + 3

exp(ηt)

]
− 3

[
1 + 3tanh2(τt)

]
B

[
1

exp(ηt)
,

exp(νt) + 4

exp(ηt)

]
×

×B
[

2

exp(ηt)
,

exp(νt) + 3

exp(ηt)

]
B

[
3

exp(ηt)
,

exp(νt) + 2

exp(ηt)

]

+2
[
1 + tanh2(τt)

]
B2

[
1

exp(ηt)
,

exp(νt) + 4

exp(ηt)

]
B

[
4

exp(ηt)
,

exp(νt) + 1

exp(ηt)

]}

Kurt(εt|Ft−1; Θ) =
[exp(νt) + 4]4 exp(−ηt)

B4
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

]× (A.29)

×

{
− 48tanh4(τt)B

4

[
2

exp(ηt)
,

exp(νt) + 3

exp(ηt)

]

+24tanh2(τt)
[
1 + 3tanh2(τt)

]
B

[
1

exp(ηt)
,

exp(νt) + 4

exp(ηt)

]
B2

[
2

exp(ηt)
,

exp(νt) + 3

exp(ηt)

]
×

×B
[

3

exp(ηt)
,

exp(νt) + 2

exp(ηt)

]
− 32tanh2(τt)

[
1 + tanh2(τt)

]
B2

[
1

exp(ηt)
,

exp(νt) + 4

exp(ηt)

]
×

×B
[

2

exp(ηt)
,

exp(νt) + 3

exp(ηt)

]
B

[
4

exp(ηt)
,

exp(νt) + 1

exp(ηt)

]

+
[
1 + 10tanh2(τt) + 5tanh4(τt)

]
B3

[
1

exp(ηt)
,

exp(νt) + 4

exp(ηt)

]
B

[
5

exp(ηt)
,

exp(νt)

exp(ηt)

]}
respectively; B(x, y) = Γ(x)Γ(y)/Γ(x+ y) is the beta function and Γ(x) is the gamma function. For the Skew-Gen-t-DCS

model, the conditional distribution of yt is

yt|Ft−1 ∼ Skew-Gen-t[µt, exp(λt), tanh(τt), exp(νt) + 4, exp(ηt)] (A.30)

The conditional mean of yt is

E(yt|Ft−1; Θ) = µt + 2 exp(λt)tanh(τt)[exp(νt) + 4]exp(−ηt) ×
B
{

2
exp(ηt)

, exp(νt)+3
exp(ηt)

}
B
{

1
exp(ηt)

, exp(νt)+4
exp(ηt)

} (A.31)

The conditional volatility of yt is

SD(yt|Ft−1; Θ) = exp(λt)[exp(νt) + 4]exp(−ηt)× (A.32)

×

 [3tanh2(τt) + 1]B
[

3
exp(ηt)

, exp(νt)+2
exp(ηt)

]
B
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

] −
4tanh2(τt)B

2
[

2
exp(ηt)

, exp(νt)+3
exp(ηt)

]
B2
[

1
exp(ηt)

, exp(νt)+4
exp(ηt)

]


1/2

The log of the conditional density of yt is

ln f(yt|Ft−1; Θ) = ηt − λt − ln(2)− ln[exp(νt) + 4]

exp(ηt)
− ln Γ

[
exp(νt) + 4

exp(ηt)

]
(A.33)

− ln Γ[exp(−ηt)] + ln Γ

[
exp(νt) + 5

exp(ηt)

]
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−exp(νt) + 5

exp(ηt)
ln

{
1 +

|εt|exp(ηt)

[1 + tanh(τt)sgn(εt)]exp(ηt) × [exp(νt) + 4]

}
Firstly, the score function with respect to µt is

∂ ln f(yt|Ft−1; Θ)

∂µt
= (A.34)

=
[exp(νt) + 4] exp(λt)εt|εt|exp(ηt)−2

|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]
× exp(νt) + 5

[exp(νt) + 4] exp(2λt)
=

= uµ,t ×
exp(νt) + 5

[exp(νt) + 4] exp(2λt)
=
uµ,t
kt

where uµ,t is the scaled score function. Secondly, the score function with respect to λt is

uλ,t =
∂ ln f(yt|Ft−1; Θ)

∂λt
=

|εt|exp(ηt)[exp(νt) + 5]

|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]
− 1 (A.35)

Thirdly, the score function with respect to τt is

uτ,t =
∂ ln f(yt|Ft−1; Θ)

∂τt
=

[exp(νt) + 5]|εt|exp(ηt)sgn(εt)sech(τt)

[sgn(εt)sinh(τt) + cosh(τt)]
× (A.36)

×
{
|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]

exp(ηt)[exp(νt) + 4]
}−1

Fourthly, the score function with respect to νt is

uν,t =
∂ ln f(yt|Ft−1; Θ)

∂νt
= −exp(νt − ηt)

exp(νt) + 4
− exp(νt − ηt)Ψ(0)

[
exp(νt) + 4

exp(ηt)

]
(A.37)

+ exp(νt − ηt)Ψ(0)

[
exp(νt) + 5

exp(ηt)

]
+

exp(νt − ηt)[exp(νt) + 5]|εt|exp(ηt)

[exp(νt) + 4] {|εt|exp(ηt) + [1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]}

− exp(νt − ηt) ln

{
1 +

|εt|exp(ηt)

[1 + tanh(τt)sgn(εt)]exp(ηt)[exp(νt) + 4]

}
Fifthly, the score function with respect to ηt is

uη,t =
∂ ln f(yt|Ft−1; Θ)

∂ηt
= 1 +

ln[exp(νt) + 4]

exp(ηt)
+

exp(νt) + 4

exp(ηt)
Ψ(0)

[
exp(νt) + 4

exp(ηt)

]
(A.38)

+
1

exp(ηt)
Ψ(0)

[
1

exp(ηt)

]
− exp(νt) + 5

exp(ηt)
Ψ(0)

[
exp(νt) + 5

exp(ηt)

]
+

exp(νt) + 5

exp(ηt)
ln

{
1 +
|εt|exp(ηt)[1 + tanh(τt)sgn(εt)]

− exp(ηt)

exp(νt) + 4

}
+

[exp(νt) + 5]|εt|exp(ηt) ln[1 + tanh(τt)sgn(εt)]

|εt|exp(ηt) + [exp(νt) + 4][1 + tanh(τt)sgn(εt)]exp(ηt)

− [exp(νt) + 5]|εt|exp(ηt) ln(|εt|)
|εt|exp(ηt) + [exp(νt) + 4][1 + tanh(τt)sgn(εt)]exp(ηt)

Appendix B
In this appendix, the conditions under which the expected value of each of the nine elements of C̃ from Eq. (3.21) is finite

are studied. C̃ is the outer product of [(∂µt/∂θ), (∂µt/∂φ), (∂µt/∂c̃)]
′ and [(∂λt/∂α), (∂λt/∂β), (∂λt/∂ω̃)]′ with itself.

With respect to (∂µt/∂θ)× (∂λt/∂α), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂θ

∂λt
∂α

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂θ

∂λt−1

∂α
+ Et−2(Xµ,t−1uλ,t−1)

∂µt−1

∂θ
+

Et−2(Xλ,t−1uµ,t−1)
∂λt−1

∂α
+ Et−2(uµ,t−1uλ,t−1)

(B.1)
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The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.1),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the second and third terms on the

right side of Eq. (B.1), use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂µt/∂θ) =

E(∂λt/∂α) = 0, hence the second and third terms are zero. The fourth term on the right side of Eq. (B.1) is constant

under Condition 3. By using the law of iterated expectations in Eq. (B.1), covariances appear on the right side of the

equation. Those covariances are finite under Condition 3. Thus, E[(∂µt/∂θ)× (∂λt/∂α)] is finite.

With respect to (∂µt/∂θ)× (∂λt/∂β), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂θ

∂λt
∂β

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂θ

∂λt−1

∂β
+ Et−2(Xµ,t−1)(λt−1 − ω̃)

∂µt−1

∂θ
+

Et−2(Xλ,t−1uµ,t−1)
∂λt−1

∂β
+ Et−2(uµ,t−1)(λt−1 − ω̃)

(B.2)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.2),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the third term on the right side of

Eq. (B.2), use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂λt/∂β) = 0, hence

the third term is zero. The fourth term on the right side of Eq. (B.2) is zero, since E(λt − ω̃) = 0. By using the law

of iterated expectations in Eq. (B.2), covariances appear on the right side of the equation. Those covariances are finite

under Condition 3. For the second term on the right side of Eq. (B.2), write the expectation:

Et−3

[
(λt−1 − ω̃)

∂µt−1

∂θ

]
= Et−3

{
[β(λt−2 − ω̃) + αuλ,t−2]×

[
Xµ,t−2

∂µt−2

∂θ
+ uµ,t−2

]}
=

Et−3(Xµ,t−2)β(λt−2 − ω̃)
∂µt−2

∂θ
+ Et−3(uµ,t−2)β(λt−2 − ω̃)+

Et−3(Xµ,t−2uλ,t−2)α
∂µt−2

∂θ
+ Et−3(uµ,t−2uλ,t−2)α

(B.3)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.3) is the

first lag of the second term on the right side of Eq. (B.2), multiplied by |β| < 1 (Condition 1). Under Condition 3,

the expected value of the first term is finite. The second term on the right side is zero under Condition 3, and since

E(λt − ω̃) = 0. The third term on the right side is zero under Condition 3, and under E(∂µt/∂θ) = 0 in accordance

with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side is constant under Condition 3. By using the law

of iterated expectations in Eq. (B.3), covariances appear on the right side of the equation. Those covariances are finite

under Condition 3. Thus, E[(∂µt/∂θ)× (∂λt/∂α)] is finite.

With respect to (∂µt/∂θ)× (∂λt/∂ω̃), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂θ

∂λt
∂ω̃

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂θ

∂λt−1

∂ω̃
+ Et−2(Xµ,t−1)

∂µt−1

∂θ
(1− β)+

Et−2(Xλ,t−1uµ,t−1)
∂λt−1

∂ω̃
+ Et−2(uµ,t−1)(1− β)

(B.4)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.4),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the second term on the right side of

Eq. (B.4), use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂µt/∂θ) = 0, hence

the second term is zero. For the third term on the right side of Eq. (B.4), use Condition 3 and Harvey (2013, p. 36,

Lemma 6). According to Harvey (2013), E(∂λt/∂ω̃) = (1 − β)/[1 − E(Xλ,t)], hence the third term is constant. For the

fourth term on the right side of Eq. (B.4), the law of iterated expectations gives zero, because E(uµ,t) = 0. By using

the law of iterated expectations in Eq. (B.4), covariances appear on the right side of the equation. Those covariances are

finite under Condition 3. Thus, E[(∂µt/∂θ)× (∂λt/∂ω̃)] is finite.

With respect to (∂µt/∂φ)× (∂λt/∂α), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂φ

∂λt
∂α

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂φ

∂λt−1

∂α
+ Et−2(Xµ,t−1uλ,t−1)

∂µt−1

∂φ
+

Et−2(Xλ,t−1)(µt−1 − c̃) ∂λt−1

∂α
+ Et−2(uλ,t−1)(µt−1 − c̃)

(B.5)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.5),

the absolute value of the autoregressive parameter is < 1 under Condition 3. For the second term on the right side of

Eq. (B.5), use Condition 3 and Harvey (2013, p. 36, Lemma 6). According to Harvey (2013), E(∂µt/∂φ) = 0, hence

the second term is zero. For the fourth term on the right side of Eq. (B.5), the law of iterated expectations gives zero,
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because E(uλ,t) = 0. By using the law of iterated expectations in Eq. (B.5), covariances appear on the right side of the

equation. Those covariances are finite under Condition 3. For the third term on the right side of Eq. (B.5), write the

expectation:

Et−3

[
(µt−1 − c̃) ∂λt−1

∂α

]
= Et−3

{
[φ(µt−2 − c̃) + θuµ,t−2]×

[
Xλ,t−2

∂λt−2

∂α
+ uλ,t−2

]}
=

Et−3(Xλ,t−2)φ(µt−2 − c̃) ∂λt−2

∂α
+ Et−3(uλ,t−2)φ(µt−2 − c̃)+

Et−3(Xλ,t−2uµ,t−2)θ
∂λt−2

∂α
+ Et−3(uµ,t−2uλ,t−2)θ

(B.6)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.6) is the

first lag of the third term on the right side of Eq. (B.5), multiplied by |φ| < 1 (Condition 1). Under Condition 3, the

expected value of the first term is finite. The second term on the right side of Eq. (B.6) is zero, since E(µt − c̃) = 0. The

third term on the right side of Eq. (B.6) is zero under Condition 3, and under E(∂λt/∂α) = 0 in accordance with Harvey

(2013, p. 36, Lemma 6). The fourth term on the right side of Eq. (B.6) is constant under Condition 3. By using the law

of iterated expectations in Eq. (B.6), covariances appear on the right side of the equation. Those covariances are finite

under Condition 3. Thus, E[(∂µt/∂φ)× (∂λt/∂α)] is finite.

With respect to (∂µt/∂φ)× (∂λt/∂β), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂φ

∂λt
∂β

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂φ

∂λt−1

∂β
+ Et−2(Xµ,t−1)(λt−1 − ω̃)

∂µt−1

∂φ
+

Et−2(Xλ,t−1)(µt−1 − c̃) ∂λt−1

∂β
+ (µt−1 − c̃)(λt−1 − ω̃)

(B.7)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.7),

the absolute value of the autoregressive parameter is < 1 under Condition 3. By using the law of iterated expectations

in Eq. (B.7), covariances appear on the right side of the equation. Those covariances are finite under Condition 3. In

the following, the covariance stationarity of the (i) second, (ii) third and (iii) fourth terms of Eq. (B.7), respectively, is

analyzed:

(i) For the second term on the right side of Eq. (B.7), write the expectation:

Et−3

[
(λt−1 − ω̃)

∂µt−1

∂φ

]
= Et−3

{
[β(λt−2 − ω̃) + αuλ,t−2]×

[
Xµ,t−2

∂µt−2

∂φ
+ µt−2 − c̃

]}
=

Et−3(Xµ,t−2)β(λt−2 − ω̃)
∂µt−2

∂φ
+ β(λt−2 − ω̃)(µt−2 − c̃)+

Et−3(Xµ,t−2uλ,t−2)α
∂µt−2

∂φ
+ Et−3(uλ,t−2)α(µt−2 − c̃)

(B.8)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.8) is the

first lag of the second term on the right side of Eq. (B.7), multiplied by |β| < 1 (Condition 1). Under Condition 3, the

expected value of the first term is finite. The second term on the right side of Eq. (B.8) is the first lag of the fourth term

on the right side of Eq. (B.7), multiplied by |β| < 1 (Condition 1). Thus, the expected value of the second term is finite.

The third term on the right side of Eq. (B.8) is zero under Condition 3, and under E(∂µt/∂φ) = 0 in accordance with

Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Eq. (B.8) is zero, because E(µt − c̃) = 0. By using

the law of iterated expectations in Eq. (B.8), covariances appear on the right side of the equation. Those covariances are

finite under Condition 3.

(ii) For the third term on the right side of Eq. (B.7), write the expectation:

Et−3

[
(µt−1 − c̃) ∂λt−1

∂β

]
= Et−3

{
[φ(µt−2 − c̃) + θuµ,t−2]×

[
Xλ,t−2

∂λt−2

∂β
+ λt−2 − ω̃

]}
=

Et−3(Xλ,t−2)φ(µt−2 − c̃) ∂λt−2

∂β
+ φ(µt−2 − c̃)(λt−2 − ω̃)+

Et−3(Xλ,t−2uµ,t−2)θ
∂λt−2

∂β
+ Et−3(uµ,t−2)(λt−2 − ω̃)

(B.9)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.9) is the first

lag of the third term on the right side of Eq. (B.7), multiplied by |φ| < 1 (Condition 1). Under Condition 3, the expected

values of the first term is finite. The second term on the right side of Eq. (B.9) is the first lag of the fourth term on the

right side of Eq. (B.7), multiplied by |φ| < 1 (Condition 1). Thus, the expected values of the second term is finite. The

third term on the right side of Eq. (B.9) is zero under Condition 3, and under E(∂λt/∂β) = 0 in accordance with Harvey
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(2013, p. 36, Lemma 6). The fourth term on the right side of Eq. (B.9) is zero, because E(λt − ω̃) = 0. By using the law

of iterated expectations in Eq. (B.9), covariances appear on the right side of the equation. Those covariances are finite

under Condition 3.

(iii) For the fourth term on the right side of Eq. (B.7), write the expectation:

Et−3 [(µt−1 − c̃)(λt−1 − ω̃)] = Et−3 {[φ(µt−2 − c̃) + θuµ,t−2]× [β(λt−2 − ω̃) + αuλ,t−2]} =

φβ(µt−2 − c̃)(λt−2 − ω̃) + Et−3(uλ,t−2)φα(µt−2 − c̃)+
Et−3(uµ,t−2)θβ(λt−2 − ω̃) + θαEt−3(uµ,t−2uλ,t−2)

(B.10)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.10) is the

first lag of the fourth term on the right side of Eq. (B.7), multiplied by |φβ| < 1. Thus, the expected value of the first

term is finite. The second and third terms on the right side of Eq. (B.10) are zero, because E(µt − c̃) = E(λt − ω̃) = 0.

The fourth term on the right side of Eq. (B.10) is constant under Condition 3. By using the law of iterated expectations

in Eq. (B.10), covariances appear on the right side of the equation. Those covariances are finite under Condition 3. Thus,

E[(∂µt/∂φ)× (∂λt/∂β)] is finite.

With respect to (∂µt/∂φ)× (∂λt/∂ω̃), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂φ

∂λt
∂ω̃

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂φ

∂λt−1

∂ω̃
+ Et−2(Xµ,t−1)(1− β)

∂µt−1

∂φ
+

Et−2(Xλ,t−1)(µt−1 − c̃) ∂λt−1

∂ω̃
+ (µt−1 − c̃)(1− β)

(B.11)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.11),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The second term on the right side of Eq.

(B.11) is zero under Condition 3, and under E(∂µt/∂φ) = 0 in accordance with Harvey (2013, p. 36, Lemma 6). The

fourth term on the right side of Eq. (B.11) is zero, because E(µt − c̃) = 0. By using the law of iterated expectations in

Eq. (B.11), covariances appear on the right side of the equation. Those covariances are finite under Condition 3. For the

third term on the right side of Eq. (B.11), write the expectation:

Et−3

[
(µt−1 − c̃) ∂λt−1

∂ω̃

]
= Et−3

{
[φ(µt−2 − c̃) + θuµ,t−2]×

[
Xλ,t−2

∂λt−2

∂ω̃
+ 1− β

]}
=

Et−3(Xλ,t−2)φ(µt−2 − c̃) ∂λt−2

∂ω̃
+ φ(µt−2 − c̃)(1− β)+

Et−3(Xλ,t−2uµ,t−2)θ
∂λt−2

∂ω̃
+ Et−3(uµ,t−2)θ(1− β)

(B.12)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.12) is the first

lag of the third term on the right side of Eq. (B.11), multiplied by |φ| < 1 (Condition 1). Under Condition 3, the expected

value of the first term is finite. The second term on the right side of Eq. (B.12) is zero, because E(µt − c̃) = 0. The

third term on the right side of Eq. (B.12) is constant under Condition 3, and under E(∂λt/∂ω̃) = (1− β)/[1− E(Xλ,t)]

in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Eq. (B.12) is zero, because

E(uµ,t) = 0. By using the law of iterated expectations in Eq. (B.12), covariances appear on the right side of the equation.

Those covariances are finite under Condition 3. Thus, E[(∂µt/∂φ)× (∂λt/∂ω̃)] is finite.

With respect to (∂µt/∂c̃)× (∂λt/∂α), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂c̃

∂λt
∂α

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂c̃

∂λt−1

∂α
+ Et−2(Xµ,t−1uλ,t−1)

∂µt−1

∂c̃
+

Et−2(Xλ,t−1)(1− φ)
∂λt−1

∂α
+ Et−2(uλ,t−1)(1− φ)

(B.13)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.13),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The second term on the right side of Eq.

(B.13) is constant under Condition 3, and under E(∂µt/∂c̃) = (1 − φ)/[1 − E(Xµ,t)] in accordance with Harvey (2013,

p. 36, Lemma 6). The third term on the right side of Eq. (B.13) is zero under Condition 3, and under E(∂λt/∂α) = 0

in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Eq. (B.13) is zero, because

E(uλ,t) = 0. By using the law of iterated expectations in Eq. (B.13), covariances appear on the right side of the equation.

Those covariances are finite under Condition 3. Thus, E[(∂µt/∂c̃)× (∂λt/∂α)] is finite.
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With respect to (∂µt/∂c̃)× (∂λt/∂β), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂c̃

∂λt
∂β

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂c̃

∂λt−1

∂β
+ Et−2(Xµ,t−1)(λt−1 − ω̃)

∂µt−1

∂c̃
+

Et−2(Xλ,t−1)(1− φ)
∂λt−1

∂β
+ (1− φ)(λt−1 − ω̃)

(B.14)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.14), the

absolute value of the autoregressive parameter is < 1 under Condition 3. The third term on the right side of Eq. (B.14) is

zero under Condition 3, and under E(∂λt/∂β) = 0 in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term

on the right side of Eq. (B.14) is zero, because E(λt − ω̃) = 0. By using the law of iterated expectations in Eq. (B.14),

covariances appear on the right side of the equation. Those covariances are finite under Condition 3. For the second term

on the right side of Eq. (B.14), write the expectation:

Et−3

[
(λt−1 − ω̃)

∂µt−1

∂c̃

]
= Et−3

{
[β(λt−2 − ω̃) + αuλ,t−2]×

[
Xµ,t−2

∂µt−2

∂c̃
+ 1− φ

]}
=

Et−3(Xµ,t−2)β(λt−2 − ω̃)
∂µt−2

∂c̃
+ β(λt−2 − ω̃)(1− φ)+

Et−3(Xµ,t−2uλ,t−2)α
∂µt−2

∂c̃
+ Et−3(uλ,t−2)α(1− φ)

(B.15)

The law of iterated expectations is used for the previous equation. The first term on the right side of Eq. (B.15) is the

first lag of the second term on the right side of Eq. (B.14), multiplied by |β| < 1 (Condition 1). Under Condition 3, the

expected value of the first term is finite. The second term on the right side of Eq. (B.15) is zero, because E(λt−2− ω̃) = 0.

The third term on the right side of Eq. (B.15) is constant under Condition 3, and under E(∂µt/∂c̃) = (1−φ)/[1−E(Xµ,t)]

in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right side of Eq. (B.15) is zero, because

E(uλ,t) = 0. By using the law of iterated expectations in Eq. (B.15), covariances appear on the right side of the equation.

Those covariances are finite under Condition 3. Thus, E[(∂µt/∂c̃)× (∂λt/∂β)] is finite.

With respect to (∂µt/∂c̃)× (∂λt/∂ω̃), its expectation that is conditional on (y1, . . . , yt−2) is:

Et−2

(
∂µt
∂c̃

∂λt
∂ω̃

)
= Et−2(Xµ,t−1Xλ,t−1)

∂µt−1

∂c̃

∂λt−1

∂ω̃
+ Et−2(Xµ,t−1)(1− β)

∂µt−1

∂c̃
+

Et−2(Xλ,t−1)(1− φ)
∂λt−1

∂ω̃
+ (1− φ)(1− β)

(B.16)

The law of iterated expectations is used for the previous equation. For the first term on the right side of Eq. (B.16),

the absolute value of the autoregressive parameter is < 1 under Condition 3. The second term on the right side of

Eq. (B.16) is constant under Condition 3, and under E(∂µt/∂c̃) = (1 − φ)/[1 − E(Xµ,t)] in accordance with Harvey

(2013, p. 36, Lemma 6). The third term on the right side of Eq. (B.16) is constant under Condition 3, and under

E(∂λt/∂ω̃) = (1 − β)/[1 − E(Xλ,t)] in accordance with Harvey (2013, p. 36, Lemma 6). The fourth term on the right

side of Eq. (B.16) is constant. By using the law of iterated expectations in Eq. (B.16), covariances appear on the right

side of the equation. Those covariances are finite under Condition 3. Thus, E[(∂µt/∂c̃)× (∂λt/∂ω̃)] is finite.

Appendix C
In this appendix, the circumstances of the extreme events that are numbered in Figure 7 are described.

(1) June 27-28, 1950. June 25, 1950: The Korean War began. North Korean (Democratic People’s Republic of Korea)

troops invaded South Korea (Republic of Korea) and proceeded toward Seoul. June 27, 1950: US President Harry

Truman ordered US warships to assist South Korean forces.

(2) February 10, 1953. Egypt and West Germany (Federal Republic of Germany) broke their economic negotiations,

due to the contacts established by Egypt with East Germany (German Democratic Republic).

(3) June 7, 1955. Prime Minister of India Jawaharlal Nehru visited the USSR.

(4) September 28-29, 1955. September 24, 1955: US President Dwight D. Eisenhower suffered a heart attack and

was hospitalized for 6 weeks.

(5) August 11, 1959. August 9, 1959: The SM-65 Atlas, America’s first intercontinental ballistic missile (ICBM) was

declared to be operational after successful testing.

(6) April 18-19, 1961. April 17, 1961: The Bay of Pigs military invasion of Cuba that was undertaken by the Central

Intelligence Agency (CIA) failed.
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(7) May 29, 1962. On May 28, 1962, the stock exchanges of New York, London, Tokyo, Paris, Frankfurt and Zurich

exhibited the largest one-day decline since the Great Depression.

(8) August 17, 1971. August 15, 1971: US President Richard M. Nixon announced the end of the international

convertibility of the US dollar to gold.

(9) August 3, 1978. August 2, 1978: President Jimmy Carter declared an unprecedented state emergency and

evacuation, immediately following the revelation that the neighbourhood of Love Canal in Niagara Falls, New

York, was built on a toxic waste dump.

(10) September 5, 1979. The 1979 oil shock was related to events in the Middle East (the Iranian Revolution) and

a strong global oil demand. The oil prices more than doubled between April 1979 and April 1980. This event

influenced the increase of the inflation in the US to 9% by the end of 1979.

(11) August 18, 1982. Stock market crash of Kuwait’s stock market named Souk Al-Manakh. Kuwait’s financial

sector was badly shaken by the crash, as was the entire economy. The S&P 500 declined 6% during the period of

August 3-12, 1982. August 12, 1982: Mexico defaulted on its foreign debt.

(12) October 26, 1982. October 26, 1982: US budget deficit reached more than USD110 trillion for 1982.

(13) December 19, 1984. The Sino-British Joint Declaration, stating that China would resume the exercise of

sovereignty over Hong Kong and the United Kingdom would restore Hong Kong to China with effect from July 1,

1997 was signed in Beijing, China by Deng Xiaoping and Margaret Thatcher.

(14) July 8, 1986. July 2, 1986: General strike against the Pinochet regime in Chile. July 7, 1986: the Supreme Court

struck down the Gramm-Rudman deficit-reduction law.

(15) September 12, 1986. September 11, 1986: Egyptian President Hosni Mubarak received Israeli Prime Minister

Shimon Peres. September 11, 1986: US performed a nuclear test at Nevada Test Site. September 11, 1986: Dow

Jones Industrial Average declined 86.61 points to 1,792.89.

(16) October 20, 1987. October 19 1987: Black Monday, stock markets around the world crashed.

(17) January 11, 1988. January 2, 1988: USSR began its program of economic restructuring (perestroika) with

legislation initiated by Mikhail Gorbachev.

(18) April 15, 1988. April 3, 1988: USSR performed a nuclear test at Semipalitinsk Test Site. April 7, 1988: Russia

announced that it would withdraw its troops from Afghanistan. April 7, 1988: the US performed a nuclear test at

Nevada Test Site. April 9, 1988: the US imposed economic sanctions on Panama.

(19) May 15-16, 1989. May 10, 1989: General Manuel Noriega’s Panama government nullified the country’s elections,

which the opposition had won by a 3-1 margin. May 11, 1989: US President George H. W. Bush ordered nearly

2,000 troops to Panama. May 13, 1989: Approximately 2,000 students began a hunger strike in Tiananmen Square,

China. May 14, 1989: Demonstration in Beijing’s Tiananmen square.

(20) October 16-17, 1989. October 13, 1989: The S&P 500 index declined 6.1% as a result of the junk bond

market collapse. On Friday 13 October 1989, there was a stock market mini-crash. The crash was caused by

the breakdown of a USD 6.75 billion leveraged buyout deal for UAL Corporation, the parent company of United

Airlines. It triggered the collapse of the junk bond market.

(21) November 18-19, 1991. November 6, 1991: Russian President Boris Yeltsin outlawed the Communist Party.

November 15, 1991: Dow Jones dropped 120.31 points (5th largest dive). November 15, 1991: The NASDAQ

composite index declined 4.2%.

(22) February 17, 1993. February 5, 1993 Grenade exploded in Sarajevo, killing 63 and injuring 160.

(23) February 7, 1994. February 5, 1994: 68 killed and 200 wounded due to a mortar bomb explosion in Sarajevo.

(24) May 19, 1995. May 1, 1995: Croatian forces launched Operation Flash during the Croatian War of Independence.

May 2, 1995: Serbian missiles exploded in the heart of Zagreb, killing six. May 12, 1995: Dow Jones for 5th straight

day of the week set a new record (4,430.59).
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(25) March 11, 1996. March 7, 1996: The first democratically elected Palestinian parliament formed.

(26) July 8, 1996. July 7, 1996: Nelson Mandela stepped down as President of South Africa.

(27) October 28-29, 1997. October 20, 1997: The US accused Microsoft of violating a pact to stop Microsoft forcing

makers of personal computers to include its Internet browser automatically. October 22, 1997: Compaq testified

that Microsoft threatened to break Windows 95 agreement if they showcased a Netscape icon. October 27, 1997:

Microsoft argued it should be “free from government interference”. October 29, 1997: Iraq’s Revolution Command

Council announced that it would no longer allow US citizens and US aircraft to serve with UN arms inspection

teams.

(28) January 5, 2000. January 4, 2000: Alan Greenspan was nominated as US Federal Reserve Chairman for a fourth

term.

(29) April 17, 2000. April 14, 2000: Metallica filed a lawsuit against P2P sharing phenomenon Napster. This law-suit

eventually led the movement against file-sharing programs.

(30) February 28 and March 1, 2007. Stock prices in the US declined 3.5%, after a surprising 9% fall in the

Shanghai market provoked worries worldwide about the global economy and the valuation of share prices. In the

US, markets had already been shrinking due to concerns about deterioration in the mortgage market for people

with poor credit, as well as worries about the economy. Alan Greenspan told a conference on February 26, 2007

that a recession in the US was likely.

(31) September 30, 2008. September 21, 2008: Goldman Sachs and Morgan Stanley, the two last remaining indepen-

dent investment banks on Wall Street, became bank holding companies as a result of the subprime mortgage crisis.

September 29, 2008: Dow Jones Industrial Average fell 777.68 points, its largest single-day point loss, following

the bankruptcies of Lehman Brothers and Washington Mutual.

(32) February 23, 2011. February 11, 2011: Egyptian Revolution culminated in the resignation of Hosni Mubarak

and the transfer of power to the Supreme Military Council after 18 days of protests (Arab Spring). February

14, 2011: The 2011 Bahraini uprising commenced. February 15, 2011: Libyan protests began opposing Colonel

Muammar al-Gaddafi’s rule.

(33) June 27-28, 2016. June 23, 2016: Brexit referendum: United Kingdom voted to leave the European Union (EU).

June 24, 2016: British Prime Minister David Cameron resigned after the UK voted to leave the EU. June 26, 2016:

City of Falluja freed from Islamic State (IS) control after a month-long campaign by Iraqi forces. June 28, 2016:

Suicide bombings and gun attacks at Istanbul’s Ataturk Airport.

(34) September 12, 2016. September 9, 2016: North Korea conducted its fifth nuclear test at the Punggye-ri Nuclear

Test Site, at the time of its largest ever test in North Korea at 10 kilotons.

(35) May 18, 2017. May 9, 2017: US President Donald Trump dismissed FBI Director James Comey. May 9, 2017:

Moon Jae-in was elected President of South Korea after a snap election to replace Park Geun-hye. May 15, 2017:

UN Security Council condemned North Korea missile test.

(36) August 11, 2017. August 2, 2017: US President Donald Trump signed legislation imposing sanctions on Russia.

August 5, 2017: UN Security Council voted to impose sanctions on North Korea for its continued missile program.

August 9, 2017: North Korea said it planned to fire rockets on the US territory of Guam in the continuing escalation

of tension between North Korea and the US.
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Table 2. Descriptive statistics for daily log-returns on the S&P 500 index, yt = ln(pt/pt−1).

Start date January 4, 1950

End date December 30, 2017

Sample size T 17, 109

Minimum −0.2290

Maximum 0.1096

Mean 0.0003

Standard deviation 0.0096

Skewness −1.0162

Excess kurtosis 27.4010

Corr(yt, yt−1) 0.0269

Corr(y2t , yt−1) −0.0877

Source of data: Bloomberg

34



T
a
b
le

3
.

P
a
ra

m
et

er
es

ti
m

a
te

s
a
n

d
m

o
d
el

sp
ec

ifi
ca

ti
o
n

te
st

s,
E

G
B

2
-D

C
S

.

C
o
n

st
a
n
t
ξ t

a
n

d
ζ t

D
y
n

a
m

ic
ξ t

a
n

d
ζ t

D
y
n

a
m

ic
ξ t

a
n

d
co

n
st

a
n
t
ζ t

C
o
n

st
a
n
t
ξ t

a
n

d
d

y
n

a
m

ic
ζ t

c
0
.0

0
1
0
∗∗
∗
(0
.0

0
0
2
)

c
0
.0

0
1
0
∗∗
∗
(0
.0

0
0
2
)

c
0
.0

0
1
1
∗∗
∗
(0
.0

0
0
2
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

φ
−

0
.1

7
0
2
∗∗

(0
.0

8
1
6
)

φ
−

0
.1

8
5
1
∗∗

(0
.0

9
3
5
)

φ
−

0
.2

6
9
9
∗∗
∗
(0
.1

0
1
3
)

φ
−

0
.0

7
8
0
(0
.0

7
7
9
)

θ
0
.0

7
9
6
∗∗
∗
(0
.0

0
6
9
)

θ
0
.0

7
6
4
∗∗
∗
(0
.0

0
8
9
)

θ
0
.0

6
1
8
∗∗
∗
(0
.0

0
8
3
)

θ
0
.0

9
5
0
∗∗
∗
(0
.0

0
8
7
)

ω
−

0
.0

6
3
3
∗∗
∗
(0
.0

0
7
6
)

ω
−

0
.0

4
5
3
∗∗
∗
(0
.0

0
6
6
)

ω
−

0
.0

5
2
1
∗∗
∗
(0
.0

0
7
0
)

ω
−

0
.0

6
0
6
∗∗
∗
(0
.0

0
7
4
)

α
0
.0

3
8
1
∗∗
∗
(0
.0

0
1
9
)

α
0
.0

3
6
2
∗∗
∗
(0
.0

0
1
8
)

α
0
.0

3
6
3
∗∗
∗
(0
.0

0
1
9
)

α
0
.0

3
8
2
∗∗
∗
(0
.0

0
1
9
)

α
∗

0
.0

2
4
2
∗∗
∗
(0
.0

0
1
4
)

α
∗

0
.0

1
9
1
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
2
5
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
2
5
∗∗
∗
(0
.0

0
1
4
)

β
0
.9

8
9
0
∗∗
∗
(0
.0

0
1
4
)

β
0
.9

9
2
1
∗∗
∗
(0
.0

0
1
2
)

β
0
.9

9
0
9
∗∗
∗
(0
.0

0
1
3
)

β
0
.9

8
9
4
∗∗
∗
(0
.0

0
1
3
)

λ
0

−
6
.0

8
2
9
∗∗
∗
(0
.3

3
5
1
)

λ
0

−
6
.0

1
0
0
∗∗
∗
(0
.3

1
1
1
)

λ
0

−
6
.0

3
6
9
∗∗
∗
(0
.3

2
2
0
)

λ
0

−
6
.0

7
0
5
∗∗
∗
(0
.3

3
2
6
)

δ 1
−

0
.2

2
7
0
∗∗
∗
(0
.0

6
0
0
)

δ 1
−

0
.0

5
8
4
∗∗
∗
(0
.0

2
2
5
)

δ 1
−

0
.0

9
6
6
∗∗

(0
.0

3
7
8
)

δ 1
−

0
.2

1
5
6
∗∗
∗
(0
.0

5
9
6
)

γ
1

0
.7

1
3
8
∗∗
∗
(0
.0

7
7
0
)

γ
1

0
.5

8
6
2
∗∗
∗
(0
.1

2
7
5
)

κ
1

0
.0

4
1
8
∗∗
∗
(0
.0

0
7
6
)

κ
1

0
.0

3
6
5
∗∗
∗
(0
.0

0
8
5
)

δ 2
−

0
.1

2
7
8
∗∗

(0
.0

6
4
1
)

δ 2
−

0
.0

2
3
6
(0
.0

1
4
7
)

δ 2
−

0
.1

3
9
9
∗∗

(0
.0

6
4
9
)

δ 2
−

0
.0

3
5
4
(0
.0

2
3
6
)

γ
2

0
.7

9
9
2
∗∗
∗
(0
.0

5
8
3
)

γ
2

0
.6

9
9
7
∗∗
∗
(0
.1

1
2
7
)

κ
2

−
0
.0

3
3
7
∗∗
∗
(0
.0

0
7
1
)

κ
2

−
0
.0

2
8
3
∗∗
∗
(0
.0

0
8
9
)

C
µ

0
.0

2
9
0

C
µ

0
.0

3
4
3

C
µ

0
.0

7
2
8

C
µ

0
.0

0
6
1

C
λ

0
.8

8
1
6

C
λ

0
.8

9
1
0

C
λ

0
.8

8
9
7

C
λ

0
.8

8
1
7

C
ξ

0
.4

5
5
7

C
ξ

0
.3

0
5
4

C
ζ

0
.6

9
0
4

C
ζ

0
.5

2
7
3

C
µ
,λ

0
.0

2
5
5

C
µ
,λ

0
.0

3
0
5

C
µ
,λ

0
.0

6
4
8

C
µ
,λ

0
.0

0
5
4

C
µ
,ξ

0
.0

1
5
6

C
µ
,ξ

0
.0

2
2
2

C
µ
,ζ

0
.0

2
3
6

C
µ
,ζ

0
.0

0
3
2

C
λ
,ξ

0
.4

0
8
0

C
λ
,ξ

0
.2

7
3
1

C
λ
,ζ

0
.6

1
3
5

C
λ
,ζ

0
.4

6
3
6

C
ξ
,ζ

0
.3

1
6
4

M
D

S
(m

ea
n

)
0
.7

3
3
2

M
D

S
(m

ea
n

)
0
.9

5
2
2

M
D

S
(m

ea
n

)
0
.0

0
0
1

M
D

S
(m

ea
n

)
0
.3

1
8
8

M
D

S
(v

a
ri

a
n

ce
)

0
.1

2
9
6

M
D

S
(v

a
ri

a
n

ce
)

0
.1

3
5
3

M
D

S
(v

a
ri

a
n

ce
)

0
.1

5
2
8

M
D

S
(v

a
ri

a
n

ce
)

0
.1

1
9
4

M
D

S
(s

k
ew

n
es

s)
0
.0

0
0
0

M
D

S
(s

k
ew

n
es

s)
0
.0

0
0
0

M
D

S
(s

k
ew

n
es

s)
0
.0

0
0
0

M
D

S
(s

k
ew

n
es

s)
0
.0

0
0
0

M
D

S
(k

u
rt

o
si

s)
0
.0

0
0
0

M
D

S
(k

u
rt

o
si

s)
0
.0

0
0
0

M
D

S
(k

u
rt

o
si

s)
0
.0

0
0
0

M
D

S
(k

u
rt

o
si

s)
0
.0

0
0
0

L
L

3
.4

5
3
1

L
L

3
.4
5
4
4

L
L

3
.4

5
3
7

L
L

3
.4

5
3
4

A
IC

−
6
.9

0
5
0

A
IC

−
6
.9
0
7
2

A
IC

−
6
.9

0
6
0

A
IC

−
6
.9

0
5
5

B
IC

−
6
.9

0
0
4

B
IC

−
6
.9
0
0
9

B
IC

−
6
.9

0
0
5

B
IC

−
6
.9

0
0
0

H
Q

C
−

6
.9

0
3
5

H
Q

C
−
6
.9
0
5
1

H
Q

C
−

6
.9

0
4
2

H
Q

C
−

6
.9

0
3
7

L
R

0
.0

0
1
9

L
R

0
.0

2
5
6

L
R

0
.1

1
5
6

N
o
te
s
:

S
ta

n
d

a
rd

er
ro

rs
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
*
*

a
n

d
*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

a
t

th
e

5
%

a
n

d
1
%

le
v
el

s,
re

sp
ec

ti
v
el

y.
p
-v

a
lu

es
a
re

re
p

o
rt

ed
fo

r
th

e
M

D
S

a
n

d
L

R

te
st

s.
B

o
ld

n
u

m
b

er
s

in
d

ic
a
te

su
p

er
io

r
st

a
ti

st
ic

a
l

p
er

fo
rm

a
n

ce
.

M
o
d

el
sp

ec
ifi

ca
ti

o
n

:
y
t

=
µ
t

+
ex

p
(λ
t
)ε
t
,
ε t
∼

E
G

B
2
[0
,1
,e

x
p

(ξ
t
),

ex
p

(ζ
t
)]

,
µ
t

=
c

+
φ
µ
t−

1
+
θ
u
µ
,t
−
1

a
n

d
λ
t

=
ω

+
β
λ
t−

1
+
α
u
λ
,t
−
1

+
α
∗
sg

n
(−
ε t
−
1
)(
u
λ
,t
−
1

+
1
).

F
o
r

co
n

st
a
n
t
ξ t

o
r
ζ t

:
ξ t

=
δ 1

a
n

d
ζ t

=
δ 2

.
F

o
r

d
y
n

a
m

ic
ξ t

o
r
ζ t

:
ξ t

=
δ 1

+
γ
1
ξ t
−
1

+
κ
1
u
ξ
,t
−
1

a
n

d

ζ t
=
δ 2

+
γ
2
ζ t
−
1

+
κ
2
u
ζ
,t
−
1
.

35



T
a
b
le

4
.

P
a
ra

m
et

er
es

ti
m

a
te

s
a
n

d
m

o
d
el

sp
ec

ifi
ca

ti
o
n

te
st

s,
N

IG
-D

C
S

.

C
o
n

st
a
n
t
ν
t

a
n

d
η
t

D
y
n

a
m

ic
ν
t

a
n

d
η
t

D
y
n

a
m

ic
ν
t

a
n

d
co

n
st

a
n
t
η
t

C
o
n

st
a
n
t
ν
t

a
n

d
d

y
n

a
m

ic
η
t

c
0
.0

0
1
0
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
1
0
∗∗
∗
(0
.0

0
0
2
)

c
0
.0

0
1
0
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
1
0
∗∗
∗
(0
.0

0
0
2
)

φ
−

0
.1

6
8
7
∗∗

(0
.0

8
1
2
)

φ
−

0
.1

9
4
8
(0
.1

7
6
7
)

φ
−

0
.1

5
8
6
∗∗

(0
.0

7
8
3
)

φ
−

0
.1

8
4
4
∗
(0
.0

9
6
9
)

θ
0
.0

4
0
0
∗∗
∗
(0
.0

0
3
9
)

θ
0
.0

2
9
6
∗∗
∗
(0
.0

0
6
4
)

θ
0
.0

4
1
2
∗∗
∗
(0
.0

0
3
9
)

θ
0
.0

3
8
0
∗∗
∗
(0
.0

0
5
6
)

ω
−

0
.0

5
1
1
∗∗
∗
(0
.0

0
6
2
)

ω
−

0
.0

3
4
4
∗∗
∗
(0
.0

0
5
3
)

ω
−

0
.0

3
7
3
∗∗
∗
(0
.0

0
5
4
)

ω
−

0
.0

5
0
9
∗∗
∗
(0
.0

0
6
2
)

α
0
.0

3
8
7
∗∗
∗
(0
.0

0
2
0
)

α
0
.0

3
1
4
∗∗
∗
(0
.0

0
2
5
)

α
0
.0

3
2
1
∗∗
∗
(0
.0

0
2
5
)

α
0
.0

3
8
8
∗∗
∗
(0
.0

0
2
0
)

α
∗

0
.0

2
5
0
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
2
4
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
2
9
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
5
0
∗∗
∗
(0
.0

0
1
5
)

β
0
.9

8
9
0
∗∗
∗
(0
.0

0
1
4
)

β
0
.9

9
2
7
∗∗
∗
(0
.0

0
1
2
)

β
0
.9

9
2
1
∗∗
∗
(0
.0

0
1
2
)

β
0
.9

8
9
1
∗∗
∗
(0
.0

0
1
4
)

λ
0

−
5
.0

0
0
0
∗∗
∗
(0
.3

3
6
8
)

λ
0

−
4
.9

0
4
9
∗∗
∗
(0
.3

0
9
2
)

λ
0

−
4
.9

2
1
7
∗∗
∗
(0
.3

1
3
7
)

λ
0

−
5
.0

0
0
2
∗∗
∗
(0
.3

3
6
4
)

δ 1
0
.6

8
9
7
∗∗
∗
(0
.0

5
3
4
)

δ 1
0
.1

3
8
6
∗∗
∗
(0
.0

5
3
5
)

δ 1
0
.1

5
2
8
∗∗

(0
.0

6
6
1
)

δ 1
0
.6

8
7
6
∗∗
∗
(0
.0

5
3
6
)

γ
1

0
.8

0
1
5
∗∗
∗
(0
.0

7
3
5
)

γ
1

0
.7

8
4
4
∗∗
∗
(0
.0

9
0
3
)

κ
1

0
.0

8
8
4
∗∗
∗
(0
.0

1
5
6
)

κ
1

0
.0

7
8
0
∗∗
∗
(0
.0

1
5
7
)

δ 2
−

0
.0

5
9
8
∗∗
∗
(0
.0

1
1
7
)

δ 2
−

0
.0

5
5
9
∗∗

(0
.0

2
6
6
)

δ 2
−

0
.0

5
4
1
∗∗
∗
(0
.0

1
1
9
)

δ 2
−

0
.0

4
0
5
(0
.0

8
2
5
)

γ
2

−
0
.0

2
7
2
(0
.4

0
6
2
)

γ
2

0
.3

2
5
0
(1
.3

5
1
5
)

κ
2

0
.0

1
6
4
∗∗

(0
.0

0
6
9
)

κ
2

0
.0

0
2
8
(0
.0

0
5
1
)

C
µ

0
.0

6
8
9

C
µ

0
.0

6
9
6

C
µ

0
.0

6
5
5

C
µ

0
.0

7
4
7

C
λ

0
.9

2
7
6

C
λ

0
.9

4
4
2

C
λ

0
.9

4
2
2

C
λ

0
.9

2
7
5

C
ν

0
.6

0
3
3

C
ν

0
.5

8
1
1

C
η

0
.0

0
3
6

C
η

0
.1

0
2
0

C
µ
,λ

0
.0

6
5
0

C
µ
,λ

0
.0

6
6
3

C
µ
,λ

0
.0

6
2
6

C
µ
,λ

0
.0

7
0
3

C
µ
,ν

0
.0

4
3
0

C
µ
,ν

0
.0

3
9
2

C
µ
,η

0
.0

0
0
2

C
µ
,η

0
.0

0
7
6

C
λ
,ν

0
.5

7
2
0

C
λ
,ν

0
.5

4
9
7

C
λ
,η

0
.0

0
3
4

C
λ
,η

0
.0

9
4
6

C
ν
,η

0
.0

0
2
2

M
D

S
(m

ea
n

)
0
.7
9
0
1

M
D

S
(m

ea
n

)
0
.4
9
7
5

M
D

S
(m

ea
n

)
0
.7
2
6
4

M
D

S
(m

ea
n

)
0
.9
5
0
4

M
D

S
(v

a
ri

a
n

ce
)

0
.1
2
0
2

M
D

S
(v

a
ri

a
n

ce
)

0
.2
5
6
3

M
D

S
(v

a
ri

a
n

ce
)

0
.2
4
7
6

M
D

S
(v

a
ri

a
n

ce
)

0
.1
1
7
1

M
D

S
(s

k
ew

n
es

s)
0
.3
2
6
5

M
D

S
(s

k
ew

n
es

s)
0
.3
1
8
1

M
D

S
(s

k
ew

n
es

s)
0
.4
1
5
9

M
D

S
(s

k
ew

n
es

s)
0
.3
1
4
3

M
D

S
(k

u
rt

o
si

s)
0
.2
9
4
7

M
D

S
(k

u
rt

o
si

s)
0
.4
1
2
5

M
D

S
(k

u
rt

o
si

s)
0
.3
5
2
9

M
D

S
(k

u
rt

o
si

s)
0
.2
9
3
9

L
L

3
.4

5
3
5

L
L

3
.4
5
4
2

L
L

3
.4

5
4
1

L
L

3
.4

5
3
5

A
IC

−
6
.9

0
5
9

A
IC

−
6
.9
0
6
8

A
IC

−
6
.9

0
6
8

A
IC

−
6
.9

0
5
6

B
IC

−
6
.9

0
1
3

B
IC

−
6
.9

0
0
5

B
IC

−
6
.9
0
1
3

B
IC

−
6
.9

0
0
2

H
Q

C
−

6
.9

0
4
4

H
Q

C
−

6
.9

0
4
7

H
Q

C
−
6
.9
0
5
0

H
Q

C
−

6
.9

0
3
8

L
R

0
.0

8
8
4

L
R

0
.1

2
0
1

L
R

0
.8

4
1
8

N
o
te
s
:

S
ta

n
d

a
rd

er
ro

rs
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
*
,

*
*

a
n

d
*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

a
t

th
e

1
0
%

,
5
%

a
n

d
1
%

le
v
el

s,
re

sp
ec

ti
v
el

y.
p
-v

a
lu

es
a
re

re
p

o
rt

ed
fo

r
th

e
M

D
S

a
n

d
L

R

te
st

s.
F

o
r

M
D

S
,

b
o
ld

n
u

m
b

er
s

in
d

ic
a
te

th
a
t

th
e

N
IG

d
is

tr
ib

u
ti

o
n

is
su

p
p

o
rt

ed
.

F
o
r

th
e

L
L

m
et

ri
cs

,
b

o
ld

n
u

m
b

er
s

in
d

ic
a
te

su
p

er
io

r
st

a
ti

st
ic

a
l

p
er

fo
rm

a
n

ce
.

M
o
d

el
sp

ec
ifi

ca
ti

o
n

:

y
t

=
µ
t

+
ex

p
(λ
t
)ε
t
,
ε t
∼

N
IG

[0
,1
,e

x
p

(ν
t
),

ex
p

(ν
t
)t

a
n

h
(η
t
)]

,
µ
t

=
c

+
φ
µ
t−

1
+
θ
u
µ
,t
−
1

a
n

d
λ
t

=
ω

+
β
λ
t−

1
+
α
u
λ
,t
−
1

+
α
∗
sg

n
(−
ε t
−
1
)(
u
λ
,t
−
1

+
1
).

F
o
r

co
n

st
a
n
t
ν
t

o
r
η
t
:

ν
t

=
δ 1

a
n

d
η
t

=
δ 2

.
F

o
r

d
y
n

a
m

ic
ν
t

o
r
η
t
:
ν
t

=
δ 1

+
γ
1
ν
t−

1
+
κ
1
u
ν
,t
−
1

a
n

d
η
t

=
δ 2

+
γ
2
η
t−

1
+
κ
2
u
η
,t
−
1
.

36



T
a
b
le

5
(a

).
P

a
ra

m
et

er
es

ti
m

a
te

s
a
n

d
m

o
d
el

sp
ec

ifi
ca

ti
o
n

te
st

s,
S

k
ew

-G
en

-t
-D

C
S

.

C
o
n

st
a
n
t
τ t

,
ν
t

a
n

d
η
t

D
y
n

a
m

ic
τ t

,
ν
t

a
n

d
η
t

D
y
n

a
m

ic
τ t

,
ν
t

a
n

d
co

n
st

a
n
t
η
t

D
y
n

a
m

ic
τ t

,
co

n
st

a
n
t
ν
t

a
n

d
d

y
n

a
m

ic
η
t

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

φ
−

0
.1

6
8
3
∗∗

(0
.0

8
1
9
)

φ
−

0
.2

1
9
7
∗∗
∗
(0
.0

3
5
5
)

φ
−

0
.2

2
3
3
∗∗
∗
(0
.0

7
9
3
)

φ
−

0
.2

1
1
1
∗∗
∗
(0
.0

7
3
4
)

θ
0
.1

2
4
0
∗∗
∗
(0
.0

1
1
0
)

θ
0
.0

9
5
1
∗∗
∗
(0
.0

1
1
4
)

θ
0
.0

9
9
5
∗∗
∗
(0
.0

1
2
1
)

θ
0
.0

9
2
5
∗∗
∗
(0
.0

0
8
4
)

ω
−

0
.0

5
7
4
∗∗
∗
(0
.0

0
6
8
)

ω
−

0
.0

4
5
5
∗∗
∗
(0
.0

0
0
6
)

ω
−

0
.0

4
8
6
∗∗
∗
(0
.0

0
6
3
)

ω
−

0
.0

4
6
6
∗∗
∗
(0
.0

0
6
8
)

α
0
.0

3
8
8
∗∗
∗
(0
.0

0
2
0
)

α
0
.0

3
5
6
∗∗
∗
(0
.0

0
1
4
)

α
0
.0

3
6
7
∗∗
∗
(0
.0

0
2
1
)

α
0
.0

3
6
0
∗∗
∗
(0
.0

0
2
1
)

α
∗

0
.0

2
6
3
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
4
6
∗∗
∗
(0
.0

0
1
0
)

α
∗

0
.0

2
5
1
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
4
6
∗∗
∗
(0
.0

0
1
5
)

β
0
.9

8
8
8
∗∗
∗
(0
.0

0
1
4
)

β
0
.9

9
1
2
∗∗
∗
(0
.0

0
0
1
)

β
0
.9

9
0
5
∗∗
∗
(0
.0

0
1
2
)

β
0
.9

9
1
0
∗∗
∗
(0
.0

0
1
3
)

λ
0

−
5
.5

1
7
1
∗∗
∗
(0
.3

2
8
0
)

λ
0

−
5
.4

6
9
7
∗∗
∗
(0
.1

6
0
1
)

λ
0

−
5
.4

8
2
1
∗∗
∗
(0
.2

8
0
9
)

λ
0

−
5
.4

8
4
6
∗∗
∗
(0
.0

0
9
3
)

δ 1
−

0
.0

4
1
9
∗∗
∗
(0
.0

0
9
0
)

δ 1
−

0
.0

3
6
7
∗∗
∗
(0
.0

0
7
9
)

δ 1
−

0
.0

3
4
5
∗∗

(0
.0

1
6
4
)

δ 1
−

0
.0

3
8
5
∗∗
∗
(0
.0

0
6
5
)

γ
1

0
.1

1
0
6
(0
.1

0
8
7
)

γ
1

0
.1

6
5
6
(0
.3

5
2
4
)

γ
1

0
.0

7
3
9
∗∗
∗
(0
.0

2
0
2
)

κ
1

0
.0

1
3
3
∗∗
∗
(0
.0

0
4
7
)

κ
1

0
.0

1
1
1
∗∗
∗
(0
.0

0
4
0
)

κ
1

0
.0

1
3
6
∗∗
∗
(0
.0

0
3
8
)

δ 2
1
.5

6
1
9
∗∗
∗
(0
.1

3
3
3
)

δ 2
1
.6

7
0
8
∗∗
∗
(0
.0

4
2
3
)

δ 2
0
.9

8
2
9
∗
(0
.5

1
6
2
)

δ 2
1
.6

0
2
2
∗∗
∗
(0
.1

2
1
6
)

γ
2

−
0
.0

1
7
7
(0
.0

2
1
9
)

γ
2

0
.4

1
9
0
(0
.2

8
5
1
)

κ
2

3
.3

1
7
2
∗∗
∗
(0
.0

0
5
6
)

κ
2

4
.3

5
2
5
∗∗

(2
.0

5
0
3
)

δ 3
0
.6

0
7
2
∗∗
∗
(0
.0

2
7
4
)

δ 3
0
.1

1
4
6
∗∗
∗
(0
.0

0
3
5
)

δ 3
0
.5

8
7
1
∗∗
∗
(0
.0

2
4
9
)

δ 3
0
.2

3
8
6
∗∗
∗
(0
.0

5
6
8
)

γ
3

0
.8

0
6
4
∗∗
∗
(0
.0

0
2
7
)

γ
3

0
.6

0
1
0
∗∗
∗
(0
.1

0
3
0
)

κ
3

0
.0

4
9
2
∗∗
∗
(0
.0

1
0
0
)

κ
3

0
.0

9
3
8
∗∗
∗
(0
.0

1
5
1
)

C
µ

0
.0

6
3
8

C
µ

0
.0

8
3
2

C
µ

0
.0

8
4
2

C
µ

0
.0

9
1
4

C
λ

0
.8

9
4
9

C
λ

0
.9

0
6
8

C
λ

0
.9

0
3
8

C
λ

0
.9

0
4
9

C
τ

0
.0

0
7
6

C
τ

0
.0

2
0
8

C
τ

0
.0

0
2
7

C
ν

0
.0

4
2
7

C
ν

0
.2

1
1
0

C
η

0
.6

3
4
6

C
η

0
.3

4
0
2

C
µ
,λ

0
.0

5
8
8

C
µ
,λ

0
.0

7
7
0

C
µ
,λ

0
.0

7
7
6

C
µ
,λ

0
.0

8
5
3

C
µ
,τ

0
.0

0
0
7

C
µ
,τ

0
.0

0
1
9

C
µ
,τ

0
.0

0
0
3

C
µ
,ν

0
.0

0
2
0

C
µ
,ν

0
.0

1
6
1

C
µ
,η

0
.0

5
3
6

C
µ
,η

0
.0

3
3
9

C
λ
,τ

0
.0

0
7
1

C
λ
,τ

0
.0

1
9
2

C
λ
,τ

0
.0

0
2
6

C
λ
,ν

0
.0

3
9
3

C
λ
,ν

0
.1

9
2
9

C
λ
,η

0
.5

7
7
0

C
λ
,η

0
.3

0
9
8

C
ν
,τ

0
.0

0
0
0

C
ν
,τ

0
.0

0
3
9

C
ν
,η

0
.0

3
0
8

C
η
,τ

0
.0

0
4
9

C
η
,τ

0
.0

0
1
0

M
D

S
(m

ea
n

)
0
.9

1
7
5

M
D

S
(m

ea
n

)
0
.5

2
1
2

M
D

S
(m

ea
n

)
0
.4
6
3
0

M
D

S
(m

ea
n

)
0
.5

6
5
9

M
D

S
(v

a
ri

a
n

ce
)

0
.0

7
2
8

M
D

S
(v

a
ri

a
n

ce
)

0
.3

7
6
6

M
D

S
(v

a
ri

a
n

ce
)

0
.1
6
5
9

M
D

S
(v

a
ri

a
n

ce
)

0
.2

6
0
2

M
D

S
(s

k
ew

n
es

s)
0
.2

1
6
2

M
D

S
(s

k
ew

n
es

s)
0
.0

4
8
0

M
D

S
(s

k
ew

n
es

s)
0
.1
3
1
6

M
D

S
(s

k
ew

n
es

s)
0
.0

5
8
8

M
D

S
(k

u
rt

o
si

s)
0
.2

3
7
3

M
D

S
(k

u
rt

o
si

s)
0
.4

7
4
3

M
D

S
(k

u
rt

o
si

s)
0
.4
7
9
6

M
D

S
(k

u
rt

o
si

s)
0
.1

7
4
4

L
L

3
.4

5
4
7

L
L

3
.4
5
6
0

L
L

3
.4

5
5
7

L
L

3
.4

5
5
8

A
IC

−
6
.9

0
8
0

A
IC

−
6
.9
0
9
9

A
IC

−
6
.9

0
9
7

A
IC

−
6
.9

0
9
9

B
IC

−
6
.9

0
3
0

B
IC

−
6
.9

0
2
2

B
IC

−
6
.9

0
2
9

B
IC

−
6
.9

0
3
1

H
Q

C
−

6
.9

0
6
4

H
Q

C
−

6
.9

0
7
4

H
Q

C
−

6
.9

0
7
5

H
Q

C
−

6
.9

0
7
6

L
R

0
.0

0
7
9

L
R

0
.0

0
2
4

L
R

0
.0

1
5
0

N
o
te
s
:

S
ta

n
d

a
rd

er
ro

rs
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
*
,

*
*

a
n

d
*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

a
t

th
e

1
0
%

,
5
%

a
n

d
1
%

le
v
el

s,
re

sp
ec

ti
v
el

y.
p
-v

a
lu

es
a
re

re
p

o
rt

ed
fo

r
th

e
M

D
S

a
n

d

L
R

te
st

s.
F

o
r

M
D

S
,

b
o
ld

n
u

m
b

er
s

in
d

ic
a
te

th
a
t

th
e

S
k
ew

-G
en

-t
d

is
tr

ib
u

ti
o
n

is
su

p
p

o
rt

ed
.

F
o
r

th
e

L
L

m
et

ri
cs

,
b

o
ld

n
u

m
b

er
s

in
d

ic
a
te

su
p

er
io

r
st

a
ti

st
ic

a
l

p
er

fo
rm

a
n

ce
.

M
o
d

el

sp
ec

ifi
ca

ti
o
n

:
y
t

=
µ
t

+
ex

p
(λ
t
)ε
t
,
ε t
∼

S
k
ew

-G
en

-t
[0
,1
,t

a
n

h
(τ
t
),

ex
p

(ν
t
)

+
4
,e

x
p

(η
t
)]

,
µ
t

=
c

+
φ
µ
t−

1
+
θ
u
µ
,t
−
1

a
n

d
λ
t

=
ω

+
β
λ
t−

1
+
α
u
λ
,t
−
1

+
α
∗
sg

n
(−
ε t
−
1
)(
u
λ
,t
−
1

+
1
).

F
o
r

co
n

st
a
n
t
τ t

,
ν
t

o
r
η
t
:
τ t

=
δ 1

,
ν
t

=
δ 2

a
n

d
η
t

=
δ 3

F
o
r

d
y
n

a
m

ic
τ t

,
ν
t

o
r
η
t
:
τ t

=
δ 1

+
γ
1
τ t
−
1

+
κ
1
u
τ
,t
−
1
,
ν
t

=
δ 2

+
γ
2
ν
t−

1
+
κ
2
u
ν
,t
−
1

a
n

d
η
t

=
δ 3

+
γ
3
η
t−

1
+
κ
3
u
η
,t
−
1
.

37



T
a
b
le

5
(b

).
P

a
ra

m
et

er
es

ti
m

a
te

s
a
n

d
m

o
d
el

sp
ec

ifi
ca

ti
o
n

te
st

s,
S

k
ew

-G
en

-t
-D

C
S

.

D
y
n

a
m

ic
τ t

a
n

d
co

n
st

a
n
t
ν
t
,
η
t

C
o
n

st
a
n
t
τ t

a
n

d
d

y
n

a
m

ic
ν
t
,
η
t

C
o
n

st
a
n
t
τ t

,
d

y
n

a
m

ic
ν
t

a
n

d
co

n
st

a
n
t
η
t

C
o
n

st
a
n
t
τ t

,
ν
t

a
n

d
d

y
n

a
m

ic
η
t

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

c
0
.0

0
0
9
∗∗
∗
(0
.0

0
0
1
)

φ
−

0
.2

2
4
0
∗∗
∗
(0
.0

7
7
8
)

φ
−

0
.1

6
4
1
∗∗
∗
(0
.0

5
4
2
)

φ
−

0
.1

6
7
3
∗∗
∗
(0
.0

2
7
1
)

φ
−

0
.1

6
5
3
∗∗
∗
(0
.0

0
1
7
)

θ
0
.1

0
5
5
∗∗
∗
(0
.0

1
3
6
)

θ
0
.1

2
5
2
∗∗
∗
(0
.0

0
8
8
)

θ
0
.1

2
4
8
∗∗
∗
(0
.0

0
9
2
)

θ
0
.1

2
4
7
∗∗
∗
(0
.0

0
8
7
)

ω
−

0
.0

5
7
3
∗∗
∗
(0
.0

0
7
3
)

ω
−

0
.0

4
6
6
∗∗
∗
(0
.0

0
5
9
)

ω
−

0
.0

4
8
9
∗∗
∗
(0
.0

0
7
2
)

ω
−

0
.0

4
7
7
∗∗
∗
(0
.0

0
6
2
)

α
0
.0

3
9
3
∗∗
∗
(0
.0

0
2
1
)

α
0
.0

3
5
2
∗∗
∗
(0
.0

0
1
8
)

α
0
.0

3
6
1
∗∗
∗
(0
.0

0
2
1
)

α
0
.0

3
5
6
∗∗
∗
(0
.0

0
2
1
)

α
∗

0
.0

2
6
6
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
4
5
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
4
9
∗∗
∗
(0
.0

0
1
5
)

α
∗

0
.0

2
4
5
∗∗
∗
(0
.0

0
1
5
)

β
0
.9

8
8
8
∗∗
∗
(0
.0

0
1
5
)

β
0
.9

9
0
9
∗∗
∗
(0
.0

0
1
2
)

β
0
.9

9
0
5
∗∗
∗
(0
.0

0
1
4
)

β
0
.9

9
0
7
∗∗
∗
(0
.0

0
1
2
)

λ
0

−
5
.5

1
0
8
∗∗
∗
(0
.0

1
2
5
)

λ
0

−
5
.4

8
0
2
∗∗
∗
(0
.2

6
0
7
)

λ
0

−
5
.4

8
6
0
∗∗
∗
(0
.2

4
6
0
)

λ
0

−
5
.4

9
6
6
∗∗
∗
(0
.0

1
1
6
)

δ 1
−

0
.0

2
7
1
(0
.0

1
8
0
)

δ 1
−

0
.0

4
1
1
∗∗
∗
(0
.0

0
6
4
)

δ 1
−

0
.0

4
1
8
∗∗
∗
(0
.0

0
6
9
)

δ 1
−

0
.0

4
1
5
∗∗
∗
(0
.0

0
7
9
)

γ
1

0
.3

3
9
8
(0
.3

9
1
1
)

κ
1

0
.0

0
8
3
∗
(0
.0

0
4
4
)

δ 2
1
.5

6
0
3
∗∗
∗
(0
.1

7
6
6
)

δ 2
1
.5

3
8
7
∗∗
∗
(0
.3

5
8
4
)

δ 2
0
.9

4
2
9
∗∗

(0
.4

6
1
9
)

δ 2
1
.5

8
8
8
∗∗
∗
(0
.1

6
8
1
)

γ
2

0
.0

4
7
0
(0
.2

0
6
8
)

γ
2

0
.4

3
3
8
∗
(0
.2

5
8
9
)

κ
2

3
.5

9
9
1
∗∗

(1
.6

7
9
8
)

κ
2

4
.2

9
2
7
∗∗

(1
.9

0
3
0
)

δ 3
0
.6

0
4
0
∗∗
∗
(0
.0

2
9
3
)

δ 3
0
.1

0
6
0
(0
.0

8
9
5
)

δ 3
0
.5

9
5
5
∗∗
∗
(0
.0

2
9
3
)

δ 3
0
.2

3
9
3
∗∗
∗
(0
.0

8
8
1
)

γ
3

0
.8

2
3
7
∗∗
∗
(0
.1

4
9
9
)

γ
3

0
.6

0
5
4
∗∗
∗
(0
.1

4
2
2
)

κ
3

0
.0

4
1
0
∗
(0
.0

2
4
1
)

κ
3

0
.0

8
8
7
∗∗
∗
(0
.0

1
9
4
)

C
µ

0
.0

8
6
7

C
µ

0
.0

6
3
3

C
µ

0
.0

6
3
9

C
µ

0
.0

6
2
9

C
λ

0
.8

9
4
1

C
λ

0
.9

0
6
7

C
λ

0
.9

0
4
3

C
λ

0
.9

0
5
0

C
τ

0
.1

0
4
4

C
ν

0
.0

4
9
1

C
ν

0
.2

2
2
9

C
η

0
.6

6
5
2

C
η

0
.3

4
6
3

C
µ
,λ

0
.0

7
9
2

C
µ
,λ

0
.0

5
9
0

C
µ
,λ

0
.0

5
9
4

C
µ
,λ

0
.0

5
8
4

C
µ
,τ

0
.0

0
9
3

C
µ
,ν

0
.0

0
1
3

C
µ
,ν

0
.0

1
2
6

C
µ
,η

0
.0

4
2
8

C
µ
,η

0
.0

2
2
7

C
λ
,τ

0
.0

9
4
0

C
λ
,ν

0
.0

4
5
3

C
λ
,ν

0
.2

0
3
8

C
λ
,η

0
.6

0
4
4

C
λ
,η

0
.3

1
5
3

C
ν
,η

0
. 0

3
6
3

M
D

S
(m

ea
n

)
0
.4

9
3
5

M
D

S
(m

ea
n

)
0
.5
0
7
9

M
D

S
(m

ea
n

)
0
.7
2
8
4

M
D

S
(m

ea
n

)
0
.4
9
5
2

M
D

S
(v

a
ri

a
n

ce
)

0
.0

7
0
7

M
D

S
(v

a
ri

a
n

ce
)

0
.3
4
1
3

M
D

S
(v

a
ri

a
n

ce
)

0
.1
7
5
7

M
D

S
(v

a
ri

a
n

ce
)

0
.2
4
4
3

M
D

S
(s

k
ew

n
es

s)
0
.1

9
0
8

M
D

S
(s

k
ew

n
es

s)
0
.1
7
4
4

M
D

S
(s

k
ew

n
es

s)
0
.2
2
0
4

M
D

S
(s

k
ew

n
es

s)
0
.2
0
5
4

M
D

S
(k

u
rt

o
si

s)
0
.2

3
2
0

M
D

S
(k

u
rt

o
si

s)
0
.4
7
3
9

M
D

S
(k

u
rt

o
si

s)
0
.4
8
0
2

M
D

S
(k

u
rt

o
si

s)
0
.1
5
0
2

L
L

3
.4

5
4
8

L
L

3
.4

5
5
8

L
L

3
.4

5
5
6

L
L

3
.4

5
5
6

A
IC

−
6
.9

0
8
0

A
IC

−
6
.9

0
9
7

A
IC

−
6
.9

0
9
6

A
IC

−
6
.9

0
9
7

B
IC

−
6
.9

0
2
1

B
IC

−
6
.9

0
2
9

B
IC

−
6
.9

0
3
7

B
IC

−
6
.9
0
3
8

H
Q

C
−

6
.9

0
6
1

H
Q

C
−

6
.9

0
7
5

H
Q

C
−

6
.9

0
7
7

H
Q

C
−
6
.9
0
7
7

L
R

0
.3

3
2
3

L
R

0
.0

1
6
9

L
R

0
.0

0
6
4

L
R

0
.0

3
4
1

N
o
te
s
:

S
ta

n
d

a
rd

er
ro

rs
a
re

in
p

a
re

n
th

es
es

.
*
,

*
*

a
n

d
*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

a
t

th
e

1
0
%

,
5
%

a
n

d
1
%

le
v
el

s,
re

sp
ec

ti
v
el

y.
p
-v

a
lu

es
a
re

re
p

o
rt

ed
fo

r
th

e
M

D
S

a
n

d
L

R
te

st
s.

F
o
r

M
D

S
,

b
o
ld

n
u

m
b

er
s

in
d

ic
a
te

th
a
t

th
e

S
k
ew

-G
en

-t
d

is
tr

ib
u

ti
o
n

is
su

p
p

o
rt

ed
.

F
o
r

th
e

L
L

m
et

ri
cs

,
b

o
ld

n
u

m
b

er
s

in
d

ic
a
te

su
p

er
io

r
st

a
ti

st
ic

a
l

p
er

fo
rm

a
n

ce
.

M
o
d

el
sp

ec
ifi

ca
ti

o
n

:

y
t

=
µ
t

+
ex

p
(λ
t
)ε
t
,
ε t
∼

S
k
ew

-G
en

-t
[0
,1
,t

a
n

h
(τ
t
),

ex
p

(ν
t
)

+
4
,e

x
p

(η
t
)]

,
µ
t

=
c

+
φ
µ
t−

1
+
θ
u
µ
,t
−
1

a
n

d
λ
t

=
ω

+
β
λ
t−

1
+
α
u
λ
,t
−
1

+
α
∗
sg

n
(−
ε t
−
1
)(
u
λ
,t
−
1

+
1
).

F
o
r

co
n

st
a
n
t

τ t
,
ν
t

o
r
η
t
:
τ t

=
δ 1

,
ν
t

=
δ 2

a
n

d
η
t

=
δ 3

F
o
r

d
y
n

a
m

ic
τ t

,
ν
t

o
r
η
t
:
τ t

=
δ 1

+
γ
1
τ t
−
1

+
κ
1
u
τ
,t
−
1
,
ν
t

=
δ 2

+
γ
2
ν
t−

1
+
κ
2
u
ν
,t
−
1

a
n

d
η
t

=
δ 3

+
γ
3
η
t−

1
+
κ
3
u
η
,t
−
1
.

38



Table 6. AIC-, BIC- and HQC-based comparison of statistical performance.

EGB2-DCS AIC AIC rank BIC BIC rank HQC HQC rank

Constant ξt, constant ζt −6.9050 16 −6.9004 14 −6.9004 16

Dynamic ξt, dynamic ζt −6.9072 9 −6.9009 11 −6.9051 9

Dynamic ξt, constant ζt −6.9060 12 −6.9005 12 −6.9042 13

Constant ξt, dynamic ζt −6.9055 15 −6.9000 16 −6.9037 15

NIG-DCS AIC AIC rank BIC BIC rank HQC HQC rank

XConstant νt, constant ηt −6.9059 13 −6.9013 10 −6.9044 12

XDynamic νt, dynamic ηt −6.9068 10 −6.9005 13 −6.9047 11

XDynamic νt, constant ηt −6.9068 11 −6.9013 9 −6.9050 10

XConstant νt, dynamic ηt −6.9056 14 −6.9002 15 −6.9038 14

Skew-Gen-t-DCS AIC AIC rank BIC BIC rank HQC HQC rank

Constant τt, constant νt, constant ηt −6.9080 8 −6.9030 4 −6.9064 7

Dynamic τt, dynamic νt, dynamic ηt −6.9099 1 −6.9022 7 −6.9074 6

XDynamic τt, dynamic νt, constant ηt −6.9097 4 −6.9029 6 −6.9075 5

Dynamic τt, constant νt, dynamic ηt −6.9099 2 −6.9031 3 −6.9076 3

Dynamic τt, constant νt, constant ηt −6.9080 7 −6.9021 8 −6.9061 8

XConstant τt, dynamic νt, dynamic ηt −6.9097 3 −6.9029 5 −6.9075 4

XConstant τt, dynamic νt, constant ηt −6.9096 6 −6.9037 2 −6.9077 2

XConstant τt, constant νt, dynamic ηt −6.9097 5 −6.9038 1 −6.9077 1

Notes: Xindicates that all MDS model specification tests support the model (see Tables 3 to 5).
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EGB2-DCS NIG-DCS Skew-Gen-t-DCS

uµ,t uµ,t uµ,t

uλ,t uλ,t uλ,t

uξ,t uν,t uτ,t

uζ,t uη,t uν,t

uη,t

Fig. 2. Score functions of DCS models with dynamic shape parameters.

Notes: In the DCS models of this figure, all of the shape parameters are dynamic. The score functions are presented as a

function of εt. In the calculations of this figure, the score function formulas of Appendix A are used, in which the dynamic

parameters are replaced by the estimates of their unconditional means (e.g. λt is replaced by Ê(λt) = ω̂/(1− β̂)).
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S&P 500 log-returns yt. The horizontal lines show µ± 5σ, respectively.

Arrival times of those S&P 500 log-returns, which are outside the interval µ± 5σ

Fig. 3. S&P 500 log-returns yt and outliers for the period of January 4, 1950 to December 30, 2017.

Notes: µ and σ are the estimates of mean and standard deviation, respectively, of yt. During the period of September 2,

2008 to March 31, 2009 (i.e. 146 trading days), there were 24 outliers
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Fig. 7. Evolution of νt for the Skew-Gen-t-DCS model with constant τt, dynamic νt and constant ηt.

Note: The numbers indicate the extreme events from Appendix C.
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EGB2-DCS: VaR for DCS with constant shape (thick solid); VaR for DCS with dynamic shape (thin solid)

NIG-DCS: VaR for DCS with constant shape (thick solid); VaR for DCS with dynamic shape (thin solid)

Skew-Gen-t-DCS: VaR for DCS with constant shape (thick solid); VaR for DCS with dynamic shape (thin solid)

Fig. 8. Log-returns on the S&P 500 and VaR(1 day, 99%) for the period of September 2, 2008 to March 31, 2009.

Notes: Solid circles indicate the log-returns on the S&P 500 for the backtesting period. For the dynamic-shape specifica-

tions of this figure, all of the shape parameters are dynamic.
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