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Abstract

Prediction of out-of-sample values is a problem of interest in any regression model. In the
context of penalized smooth mixed model regression Carballo et al. (2017) have proposed
a general framework for prediction in additive models without interaction terms. The aim
of this paper is to extend this work, based on the methodology proposed in Currie et al.
(2004), to models that include interaction terms, i.e. prediction is needed in multidimen-
sional setting.
Our approach fits the data and predicts the new observations simultaneously and uses con-
straints to ensure a coherent fit or to impose further restrictions on the predictions. We
also develop this methodology for the so called smooth-ANOVA models which allow us to
include interaction terms that can be decomposed as a sum of several smooth functions.
To illustrate the methodology two real data sets are used, one to predict log mortality
rates in the Spanish population and another to predict aboveground biomass in Populus
trees as a smooth function of height and diameter. We examine the performance of the
interaction models in comparison to the Smooth-ANOVA models (both models with and
without the restriction the fit has to be maintained) through a simulation study.

Keywords: Prediction, Penalized regression, P-splines, Mixed models

1 Introduction

P-splines with B-splines bases have become popular in applications and in theoretical
work. More than twenty years ago that Eilers & Marx (1996) proposed the P-splines
methodology and its use has become very popular. The methodology has not been used
only to fit data but also to obtain out-of-sample predicted values. Currie et al. (2004)
showed how the method of P-splines can be extended to the smoothing and forecasting of
two-dimensional mortality tables. Etxeberria et al. (2015) and Ugarte et al. (2012) have
also used the P-spline forecasting methodology, they use a three-dimensional space-time
P-spline model to forecast mortality cancer risks in future years.

However, prediction with P-splines is still an open area of research. One of the main
interests of this paper is to delve into the study of the method proposed in Currie et al.
(2004) to give relations between the coefficients that determine the fit and the coefficients
that determine the forecast, and to extend the methodology to the mixed models frame-
work. For the one dimensional case, this study has been done in Carballo et al. (2017).

Studying the properties of the method proposed by Currie et al. (2004) we will see that
the fit changes when the fit obtained when using the “in sample data” is different from
when fitting and predicting simultaneously. The differences between the fits can sometimes
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be small but as we also see in the examples, the effect on the prediction can be relevant.
We will show that for the particular case in which just one of the two covariates is extended
the fit can be maintained by modifying the extended penalty matrix. However, when the
two covariates are extended the penalty matrix cannot be modified, since the matrices
involved in obtaining the estimated parameters are singular. As a general solution to keep
the fit we propose to impose restrictions on the coefficients. We achieve this by using
the standard Lagrangian formulation of the least squares minimization problem following
Greene & Seaks (1991). In this paper, we mostly use restrictions to impose that the fit has
to be maintained, but our proposal could be useful for other purposes. For instance, to
incorporate known information about the value of the shape of prediction out-of-sample
values.

In context such as spatial or spatio-temporal modelling we can be interested in pre-
diction at new locations, this would involve out-of-sample prediction for two covariates
(latitude and longitude), and so we extend the proposal of Currie et al. (2004) to pre-
dict when the two covariates are extended and to predict with Smooth-ANOVA models.
These models have been formulated as mixed models by Lee (2010) and Lee & Durbán
(2011) and allow us to decompose multidimensional smooth functions as additive terms
and interactions.

We organize the remaining of the paper as follows. In Section 2 we give a general ap-
proach to out-of-sample prediction in penalized splines additive models with interactions.
First we extend Currie et al. (2004) to the case in which prediction out-of-sample is needed
in both covariates of the interaction. Then, we show the properties satisfied, under certain
conditions, by the coefficients that determine the prediction. Furthermore, we propose an
easy method, based on Lagrange multipliers, to obtain constrained predictions. Section 3
shows how out-of-sample predictions can be carried out in the context of multidimensional
smooth mixed models, we propose different reparametrizations to predict new values and
also show how to impose constraints in this context. Our proposal to predict new values
in a more flexible context is shown in Section 4, where we give results on out-of-sample
prediction for the Smooth-ANOVA model of Lee & Durbán (2011). In Section 5 we carried
out an extensive simulation study to compare interaction and S-ANOVA models as well
as their restricted versions. Finally we give some conclusions in Section 6.

2 Prediction in additive models based on multidimensional penalized
splines

Additive models are a class of non-parametric regression methods which have been
found widespread applications in practice. One of the main assumptions of additive models
is that the effect of covariates on the dependent variable follows and additive form,

𝑦 = 𝑓1(𝑥1) + 𝑓2(𝑥2) + 𝑓3(𝑥3) + . . . + 𝜖, 𝜖 ∼ 𝒩 (0,𝑅),

with 𝑅 = 𝜎2
𝜖I, i.e., 𝜖 are independent and identically distributed errors with variance 𝜎2

𝜖 ,
and 𝑓𝑖 smooth functions. If there is no interaction between the terms, everything related to
prediction under the Gaussian framework has been done in Carballo et al. (2017). There-
fore, here we focus on the case of interactions, i.e., in additive models that include terms
of the form 𝑓(𝑥1,𝑥2).

In order to study the prediction approach given in Currie et al. (2004), we briefly
review the P-splines methodology in the two-dimensional case. We consider a general
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non-parametric two-dimensional regression model:

𝑦 = 𝑓(𝑧,𝑥) + 𝜖, 𝜖 v 𝑁(0,𝑅), (1)

where 𝑧, 𝑥 are the regressors, 𝑅 = 𝜎2
𝜖I, and 𝑓(·) is a 2−multidimensional smooth function

that depends on the 2 explanatory variables 𝑧 = (𝑧1, ..., 𝑧𝑛𝑧)′ and 𝑥 = (𝑥1, ..., 𝑥𝑛𝑥)′, and
each of them have lengths 𝑛𝑧 and 𝑛𝑥, respectively. Although we are assuming i.i.d. errors
for simplicity the results can be easily extended to the case of a general variance-covariance
matrix 𝑅. Suppose now that we are interested in fitting model (1), and assume that the
function 𝑓(𝑧,𝑥) can be represented in terms of basis functions:

𝑓(𝑧,𝑥) = 𝐵𝜃, (2)

with 𝐵 a 𝐵-spline regression basis, and 𝜃 the vector of coefficients. If we consider array
data, the smooth multidimensional surface is constructed from the Kronecker product of
the marginal 𝐵-spline basis for each covariate, the basis for the model (2) is

𝐵 = 𝐵𝑥 ⊗𝐵𝑧, (3)

where ⊗ is the Kronecker product of two matrices, and 𝐵𝑥 = 𝐵(𝑥) and 𝐵𝑧 = 𝐵(𝑧), of
dimensions 𝑛𝑥× 𝑐𝑥 and 𝑛𝑧 × 𝑐𝑧, are the marginal 𝐵-spline basis for 𝑥 and 𝑧, respectively.
Then, the dimension of (3) is 𝑛𝑥𝑛𝑧 × 𝑐𝑥𝑐𝑧. On the other hand, if we consider scattered
data, the basis is constructed from the Tensor product of marginal B-spline basis defined
in Currie et al. (2006) as the Box-Product, denoted by symbol 2:

𝐵 = 𝐵𝑥2𝐵𝑧 = (𝐵𝑥 ⊗ 1′𝑐𝑧) ⊙ (1′𝑐𝑥 ⊗𝐵𝑧),

where the operator ⊙ is the element-wise matrix product and 1𝑐𝑧 and 1𝑐𝑥 are column
vectors of ones of lengths 𝑐𝑧 and 𝑐𝑥.

In both cases, the vector of coefficients 𝜃 can be arranged into a 𝑐𝑧 × 𝑐𝑥 matrix Θ,
that is

Θ =

⎡⎢⎢⎢⎣
𝜃11 𝜃12 · · · 𝜃1𝑐𝑥

𝜃21 𝜃22 · · · 𝜃2𝑐𝑥
...

...
. . .

...
𝜃𝑐𝑧1 𝜃𝑐𝑧2 · · · 𝜃𝑐𝑧𝑐𝑥

⎤⎥⎥⎥⎦ , (4)

then, the two-dimensional P-spline model can be written as

𝑓(𝑧,𝑥) = (𝐵𝑥 ⊗𝐵𝑧)𝜃 = vec(𝐵𝑧Θ𝐵′
𝑥), (5)

where vec(·) denotes the vectorization operator.
In the two dimensional case, the penalty on the coefficients vector 𝜃 penalizes the

difference between adjacent coefficients of rows and columns of the matrix Θ (4). The
penalty on rows of Θ is:

𝑐𝑧∑︁
𝑗=1

𝜃′
𝑗𝐷

′
𝑧𝐷𝑧𝜃𝑗 = 𝜃′(𝐼𝑐𝑥 ⊗𝐷′

𝑧𝐷𝑧)𝜃, (6)

and, similarly, on the columns:

𝑐𝑥∑︁
𝑖=1

𝜃′
𝑖𝐷

′
𝑥𝐷𝑥𝜃𝑖 = 𝜃′(𝐷′

𝑥𝐷𝑥 ⊗ 𝐼𝑐𝑧)𝜃, (7)
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where 𝐷𝑧 and 𝐷𝑥 are the difference matrices acting on the rows and columns of Θ,
respectively. Therefore, the penalty matrix 𝑃 in two dimensions is:

𝑃 = 𝜆𝑧𝐼𝑐𝑥 ⊗𝐷′
𝑧𝐷𝑧⏟  ⏞  

𝑃 𝑧

+ 𝜆𝑥𝐷
′
𝑥𝐷𝑥 ⊗ 𝐼𝑐𝑧⏟  ⏞  

𝑃𝑥

, (8)

where 𝜆𝑧 and 𝜆𝑥 are the smoothing parameters for each dimension of the model. Since
𝜆𝑧 and 𝜆𝑥 are not necessary equal, the penalty (8) allows for anisotropic smoothing. To
estimate the coefficients, Eilers & Marx (1996) minimize the penalized sum of squares:

𝑆(𝜃) = (𝑦 −𝐵𝜃)′(𝑦 −𝐵𝜃) + 𝜃′𝑃𝜃. (9)

Therefore, for given values of 𝜆𝑧 and 𝜆𝑥, the solution of the penalized sum of squares (9),
is:

𝜃̂ = (𝐵′𝐵 + 𝑃 )−1𝐵′𝑦. (10)

The smoothing parameter of each dimension can be estimated using a information criteria
(such as Akaike or Bayesian criteria) or a cross-validation criteria method.

Once we have presented a brief introduction of the multidimensional P-splines, in the
next section, we detail the prediction methodology. Although we will use B-spline basis
and penalties based on differences, the methodology proposed here can be extended to any
basis and quadratic penalty.

2.1 Out-of-sample prediction

In this section, we extend the approach given in Currie et al. (2004) to obtain the
forecast when not only one of the two independent variables but the two extend. In the
framework of model (1), given a vector of 𝑛𝑧𝑛𝑥 observations 𝑦 of the response variable,
suppose that we want to predict 𝑛𝑝 = 𝑛𝑧𝑛𝑥𝑝 + 𝑛𝑧𝑝𝑛𝑥 + 𝑛𝑧𝑝𝑛𝑥𝑝 new values at (𝑧,𝑥𝑝),
(𝑧𝑝,𝑥) and (𝑧𝑝,𝑥𝑝), i.e., if we arrange the observations vector into a matrix 𝑌 of dimension
𝑛𝑧 × 𝑛𝑥, the observed and predicted values can be arranged into a matrix of dimension
𝑛𝑧+ × 𝑛𝑥+ (𝑛𝑧+ = 𝑛𝑧 + 𝑛𝑧𝑝 , 𝑛𝑥+ = 𝑛𝑥 + 𝑛𝑥𝑝), as:

𝑌 + =

[︂
𝑌 𝑌 𝑧𝑥𝑝

𝑌 𝑧𝑝𝑥 𝑌 𝑧𝑝𝑥𝑝

]︂
. (11)

Notice that the dimensions of 𝑌 𝑧𝑥𝑝 , 𝑌 𝑧𝑝𝑥 and 𝑌 𝑧𝑝𝑥𝑝 are 𝑛𝑧×𝑛𝑥𝑝 , 𝑛𝑧𝑝×𝑛𝑥 and 𝑛𝑧𝑝×𝑛𝑥𝑝 ,
respectively.

We propose to fit and forecast the model simultaneously considering the following
extended model:

𝑦+ = 𝐵+𝜃+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+) (12)

where 𝑦+ = vec(𝑌 +), with 𝑌 + as in (11), where 𝑌 are the observed values and 𝑌 𝑧𝑥𝑝 ,

𝑌 𝑧𝑝𝑥 and 𝑌 𝑧𝑝𝑥𝑝 are arbitrary values, and 𝑅+ = 𝜎2
𝜖𝑅̃+ with 𝑅̃+ = 𝑅̃𝑥+⊗𝑅̃𝑧+ , where 𝑅̃𝑥+

and 𝑅̃𝑧+ are diagonal matrices of dimensions 𝑛𝑥+ ×𝑛𝑥+ (𝑛𝑥+ = 𝑛𝑥 +𝑛𝑥𝑝) and 𝑛𝑧+ ×𝑛𝑧+

(𝑛𝑧+ = 𝑛𝑧 +𝑛𝑧𝑝), respectively, with infinity entries if the data is missing and 1 if the data
is observed. The quantity infinity expresses that we do not have any information about
the data 𝑦𝑝. The extended basis is the Kronecker product of the two extended marginal
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B-spline basis, 𝐵𝑥+ = 𝐵(𝑥+) and 𝐵𝑧+ = 𝐵(𝑧+), of dimensions 𝑛𝑥+ ×𝑐𝑥+ and 𝑛𝑧+ ×𝑐𝑧+ ,
respectively:

𝐵+ = 𝐵𝑥+ ⊗𝐵𝑧+ =

[︂
𝐵𝑥 𝑂
𝐵𝑥(1)

𝐵𝑥(2)

]︂
⊗
[︂
𝐵𝑧 𝑂
𝐵𝑧(1)

𝐵𝑧(2)

]︂
, (13)

where the extended bases 𝐵𝑥+ and 𝐵𝑧+ are built from a new set of knots that consists of
the original knots and extended to cover the full range of 𝑥+ and 𝑧+, respectively.

To estimate the extended coefficients, we minimize the following function of 𝜃+:

𝑆(𝜃+) = (𝑦+ −𝐵+𝜃+)′𝑅̃
−1
+ (𝑦+ −𝐵+𝜃+) + 𝜃′

+𝑃+𝜃+, (14)

with extended penalty matrix

𝑃+ = 𝜆𝑧𝑃
𝑧+
+ + 𝜆𝑥𝑃

𝑥+
+ , (15)

where 𝜆𝑧 and 𝜆𝑥 and 𝑃
𝑧+
+ and 𝑃

𝑥+
+ are the smoothing parameters and the extended

penalty matrices for each dimension of the model, respectively. For the particular case of
penalties based on differences, we consider:

𝑃
𝑧+
+ = 𝐼𝑐𝑥+

⊗𝐷′
𝑧+

𝐷𝑧+ =

[︂
𝐼𝑐𝑥 𝑂
𝑂 𝐼𝑐𝑥𝑝

]︂
⊗𝐷′

𝑧+
𝐷𝑧+ =

[︂
𝐼𝑐𝑥 ⊗𝐷′

𝑧+
𝐷𝑧+ 𝑂

𝑂 𝐼𝑐𝑥𝑝
⊗𝐷′

𝑧+
𝐷𝑧+

]︂
=

[︂
𝑃

𝑧+
+11

𝑂
𝑂 𝑃

𝑧+
+22

]︂
, (16)

and

𝑃
𝑥+
+ = 𝐷𝑥

′
+𝐷𝑥+ ⊗ 𝐼𝑐𝑧 =

[︃
(𝐷′

𝑥𝐷𝑥 + 𝐷′
𝑥(1)𝐷𝑥(1)) ⊗ 𝐼𝑐𝑧 𝐷′

𝑥(1)𝐷𝑥(2) ⊗ 𝐼𝑐𝑧

𝐷′
𝑥(2)𝐷𝑥(1) ⊗ 𝐼𝑐𝑧 𝐷′

𝑥(2)𝐷𝑥(2) ⊗ 𝐼𝑐𝑧

]︃

=

[︂
𝑃

𝑥+
+11

𝑃
𝑥+
+12

𝑃
𝑥+
+21

𝑃
𝑥+
+22

]︂
, (17)

where 𝐷𝑥+ and 𝐷𝑧+ are the difference matrices acting on the columns and rows of the
matrix formed by the extended vector of coefficients 𝜃+. Notice that 𝐷𝑧+ and 𝐷𝑥+ are
direct extensions of 𝐷𝑧 and 𝐷𝑥 but 𝑃

𝑧+
+ and 𝑃

𝑥+
+ are not direct extensions of 𝑃 𝑧 and 𝑃 𝑥.

Moreover, if 𝜃 is given in (25) and we are extending the two covariates, 𝜃+ = vec(Θ+),
with Θ+:

Θ+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃11 𝜃12 · · · 𝜃1 𝑐𝑥−1 𝜃1𝑐𝑥 𝜃1 𝑐𝑥+1 𝜃1 𝑐𝑥+2 · · ·
𝜃21 𝜃22 · · · 𝜃2 𝑐𝑥−1 𝜃2𝑐𝑥 𝜃2 𝑐𝑥+1 𝜃2 𝑐𝑥+2 · · ·

...
...

. . .
...

...
...

...
...

𝜃𝑐𝑧1 𝜃𝑐𝑧2 · · · 𝜃𝑐𝑧 𝑐𝑥−1 𝜃𝑐𝑧𝑐𝑥 𝜃𝑐𝑧 𝑐𝑥+1 𝜃𝑐𝑧 𝑐𝑥+2 · · ·
𝜃𝑐𝑧+1 1 𝜃𝑐𝑧+1 2 · · · 𝜃𝑐𝑧+1 𝑐𝑥−1 𝜃𝑐𝑧+1 𝑐𝑥 𝜃𝑐𝑧+1 𝑐𝑥+1 𝜃𝑐𝑧+1 𝑐𝑥+2 · · ·
𝜃𝑐𝑧+2 1 𝜃𝑐𝑧+2 2 · · · 𝜃𝑐𝑧+2 𝑐𝑥−1 𝜃𝑐𝑧+2 𝑐𝑥 𝜃𝑐𝑧+2 𝑐𝑥+1 𝜃𝑐𝑧+2 𝑐𝑥+2 · · ·

...
... · · ·

...
...

...
... · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The solution of the extended penalized least squares problem (14) is:

𝜃+ = (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+)−1𝐵′

+𝑅̃
−1
+ 𝑦+.
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As mentioned earlier, a information criteria or a cross-validation criteria method might
be suitable to choose the optimal values. In practice, following Camarda (2012), the
smoothing parameters in (20) are chosen to be the optimal smoothing parameters for the
fit.

Notice that as in the case of the fit, the extension to predict new values depends on
the structure of the data. If we consider scattered data, we set 𝑛𝑝 out-of-sample points
(𝑧+𝑖 , 𝑥+𝑖) at which we want to predict new 𝑦𝑝𝑖 values for 𝑖 = 1, ..., 𝑛𝑝 and 𝑅+ is a diagonal
matrix with the first 𝑛 values equal to 1 and the last 𝑛𝑝 values equal to infinity. Everything
else is independent of the data structure.

In the next section, we focus on predictions when just one covariate is extended since
in this particular case it is possible to obtain expressions that link the coefficients used in
the fit with the ones used in the prediction. This is not possible when we extend the two
covariates because of the structure introduced by the Kronecker products.

2.1.1 Prediction of a single covariate

As it is shown in Carballo et al. (2017), in one dimension the predicted values depend
critically on the order of the penalty, since it determines the shape of the prediction func-
tion. However, once the observed values were fitted, the number of knots, the degree of
the P-spline and the smoothing parameter don’t have a huge influence on the predicted
values. In this section, we see that this is not the case when we work in two dimensions.

In the framework of model (1), given a vector of 𝑛𝑧×𝑛𝑥 observations 𝑦 of the response
variable, suppose that we want to predict 𝑛𝑝 = 𝑛𝑧×𝑛𝑥𝑝 new values 𝑦𝑝 at 𝑧 and 𝑥𝑝, i.e. we
extend just one of the two covariables. Following Currie et al. (2004), we fit and predict
the model simultaneously, i.e., we consider the following extended model:

𝑦+ = 𝐵+𝜃+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+) (18)

where 𝑦+ = (𝑦′,𝑦′
𝑝)

′, with 𝑦 the observed values and 𝑦𝑝 arbitrary values, and 𝑅+ = 𝜎2
𝜖𝑅̃+

with 𝑅̃+ = 𝑅̃𝑥+ ⊗ 𝑅̃𝑧, with 𝑅̃𝑥+ and 𝑅̃𝑧 diagonal matrices of dimensions 𝑛𝑥+ ×𝑛𝑥+ and
𝑛𝑧×𝑛𝑧, respectively, with infinity entries if the data is to be predicted and 1 if the data is
observed, notice that since we are not extending the variable 𝑧, 𝑅̃𝑧 is an identity matrix.
In this case, the extended basis is:

𝐵+ = 𝐵𝑥+ ⊗𝐵𝑧 =

[︂
𝐵𝑥 𝑂
𝐵𝑥(1)

𝐵𝑥(2)

]︂
⊗𝐵𝑧 =

[︂
𝐵𝑥 ⊗𝐵𝑧 𝑂
𝐵𝑥(1)

⊗𝐵𝑧 𝐵𝑥(2)
⊗𝐵𝑧

]︂
, (19)

where 𝐵𝑥+ = 𝐵(𝑥+) and 𝐵𝑧 = 𝐵(𝑧) are the regression bases with 𝑥+ and 𝑧 the two
regressors. The new extended B-spline basis, 𝐵𝑥+ , is built from a new set of knots that
consists of the original knots covering 𝑥𝑖, 𝑖 = 1, ..., 𝑛𝑥, and extended to the range of the
𝑛𝑥𝑝 values of 𝑥𝑝𝑗 , 𝑗 = 1, ..., 𝑛𝑥𝑝 . I.e., 𝐵𝑥+ is a direct extension of 𝐵𝑥.

Considering the previous extended model we minimize the function of 𝜃+ given in (14)
with 𝐵+ defined in (19) and extended penalty matrix:

𝑃+ = 𝜆𝑧𝑃
𝑧
+ + 𝜆𝑥𝑃

𝑥+
+ , (20)
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where, since only the covariate 𝑥 is extended, 𝑃 𝑧
+ and 𝑃

𝑥+
+ are:

𝑃 𝑧
+ = 𝐼𝑐𝑥+

⊗𝐷′
𝑧𝐷𝑧 =

[︂
𝐼𝑐𝑥 𝑂
𝑂 𝐼𝑐𝑥𝑝

]︂
⊗𝐷′

𝑧𝐷𝑧 =

[︂
𝐼𝑐𝑥 ⊗𝐷′

𝑧𝐷𝑧 𝑂
𝑂 𝐼𝑐𝑥𝑝

⊗𝐷′
𝑧𝐷𝑧

]︂
=

[︂
𝑃 𝑧

+11
𝑂

𝑂 𝑃 𝑧
+22

]︂
, (21)

and 𝑃
𝑥+
+ as in (17), where 𝐷𝑥+ and 𝐷𝑧 are the difference matrices acting on the columns

and rows of the matrix formed by the extended vector of coefficients Θ+:

Θ+ =

⎡⎢⎢⎢⎣
𝜃11 𝜃12 · · · 𝜃1 𝑐𝑥−1 𝜃1𝑐𝑥 𝜃1 𝑐𝑥+1 𝜃1 𝑐𝑥+2 · · ·
𝜃21 𝜃22 · · · 𝜃2 𝑐𝑥−1 𝜃2𝑐𝑥 𝜃2 𝑐𝑥+1 𝜃2 𝑐𝑥+2 · · ·

...
...

. . .
...

...
...

...
...

𝜃𝑐𝑧1 𝜃𝑐𝑧2 · · · 𝜃𝑐𝑧 𝑐𝑥−1 𝜃𝑐𝑧𝑐𝑥 𝜃𝑐𝑧 𝑐𝑥+1 𝜃𝑐𝑧 𝑐𝑥+2 · · ·

⎤⎥⎥⎥⎦ .

As we have said in the previous section, the methodology depends on the structure
of the data. If we consider scattered data and extend just the covariate 𝑥, both bases
have to be extended since they have to have the same number of rows, 𝐵𝑧 is extended
by rows to construct 𝐵+

𝑧 (built from the same knots that 𝐵𝑧) and 𝐵𝑥+ is extended by
columns and rows to cover the range of 𝑥+. Therefore, 𝐵+

𝑧 and 𝐵𝑥+ have size 𝑛+×𝑐𝑧 and
𝑛+ × 𝑐𝑥+ . The superscript (+) of 𝐵+

𝑧 indicates that the basis is extended but the predic-
tion is not outside the range of the observed values of the covariable 𝑧. In this case 𝑅+ is
a diagonal matrix with the first 𝑛 values equal to 1 and the last 𝑛𝑥𝑝 values equal to infinity.

Since we extend just one of the two covariates and penalties are based on differences
between adjacent coefficients, the method satisfies certain important properties. These
properties are an immediate consequence of the following theorems.

Theorem 1. The coefficients obtained from minimization of (14) with extended basis
(19), extended error covariance matrix (18) and extended penalty matrix (20) where 𝑃 𝑧

+

and 𝑃
𝑥+
+ are (21) and (17), respectively, satisfy the following properties:

I. The first 𝑐, 𝑐 = 𝑐𝑧 × 𝑐𝑥, coefficients of 𝜃̂+, are:

𝜃̂+1,...,𝑐 =
(︀
𝐵′𝐵 + 𝜆𝑥𝑃

𝑥+
+11

+ 𝜆𝑧𝑃
𝑧
+11

− 𝜆2
𝑥𝑃

𝑥+
+12

(𝜆𝑥𝑃
𝑥+
+22

+ 𝜆𝑧𝑃
𝑧
+22

)−1𝑃
𝑥+
+21

)︀−1
𝐵′𝑦,

(22)

where 𝑃
𝑥+
+11

, 𝑃
𝑥+
+12

, 𝑃
𝑥+
+21

and 𝑃
𝑥+
+22

defined in (17) and 𝑃 𝑧
+11

and 𝑃 𝑧
+22

defined in
(21).

II. The coefficients for the 𝑛𝑝 = 𝑛𝑧 × 𝑛𝑥𝑝 predicted values are

𝜃̂𝑝 = −
(︂
𝜆𝑧

𝜆𝑥
𝑃 𝑧

+22
+ 𝑃

𝑥+
+22

)︂−1

𝑃
𝑥+
+21

𝜃̂+1,...,𝑐 , (23)

where 𝑃
𝑥+
+22

, 𝑃
𝑥+
+21

defined in (17) and 𝑃 𝑧
+22

defined in (21).

Proof. Differenciating (14) with respect to 𝜃+ leads to

𝜕𝑆

𝜕𝜃+
= −2𝐵′

+𝑅̃
−1
+ (𝑦+ −𝐵+𝜃+) + 2(𝜆𝑧𝑃

𝑧
+ + 𝜆𝑥𝑃

𝑥+
+ ) = 0
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i.e., the penalized least squares solution is given by:

𝜃̂+ = (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝜆𝑧𝑃

𝑧
+ + 𝜆𝑥𝑃

𝑥+
+ )−1𝐵′

+𝑅̃
−1
+ 𝑦+. (24)

Let us define 𝐶 = (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝜆𝑧𝑃

𝑧
+ + 𝜆𝑥𝑃

𝑥+
+ ) and 𝐶−1 =

[︂
𝐶11 𝐶12

𝐶21 𝐶22

]︂
, with this

notation and since 𝑅̃
−1
+ = 𝑅̃

−1
𝑥+

⊗ 𝑅̃
−1
𝑧 = blockdiag(𝐼,𝑂), with 𝐼 an identity matrix of

dimension 𝑛𝑥𝑛𝑧 × 𝑛𝑥𝑛𝑧 and 𝑂 a null matrix of dimension 𝑛𝑥𝑝𝑛𝑧 × 𝑛𝑥𝑝𝑛𝑧, equation (24)
can be rewritten as

𝜃+ = 𝐶−1𝐵′
+𝑅̃

−1
+ 𝑦+ =

[︂
𝐶11𝐵′𝑦
𝐶21𝐵′𝑦

]︂
. (25)

If 𝐶 =

[︂
𝐶11 𝐶12

𝐶21 𝐶22

]︂
, by Theorem 8.5.11 given in Harville (2000) we have that:

𝐶−1 =

[︂
𝐾−1 −𝐾−1𝐶12𝐶

−1
22

−𝐶−1
22 𝐶21𝐾

−1 𝐶−1
22 + 𝐶−1

22 𝐶21𝐾
−1𝐶12𝐶

−1
22

]︂
,

with 𝐾 = 𝐶11 −𝐶12𝐶
−1
22 𝐶21. Therefore:

𝐶11 = 𝐾−1 =
(︀
𝐵′𝐵 + 𝜆𝑥𝑃

𝑥+
+11

+ 𝜆𝑧𝑃
𝑧
+11

− 𝜆2
𝑥𝑃

𝑥+
+12

(𝜆𝑥𝑃
𝑥+
+22

+ 𝜆𝑧𝑃
𝑧
+22

)−1𝑃
𝑥+
+21

)︀−1

and

𝐶21 = −𝐶−1
22 𝐶21𝐾

−1

= −(𝜆𝑥𝑃
𝑥+
+22

+ 𝜆𝑧𝑃
𝑧
+22

)−1𝜆𝑥𝑃
𝑥+
+21

𝐶11

and by equation (25) the coefficients for the fit and for the prediction are given by equations
(22) and (23), respectively, as we wanted to show.

Hence, by the previous theorem, when we predict in two dimensions extending one
covariate, the predicted values 𝑦𝑝, obtained by using the new coefficients, 𝜃𝑝; depend on

the ratio 𝜆𝑧
𝜆𝑥

, unless 𝜆𝑥 = 𝜆𝑧, obviously. Therefore, while in one dimension we have that,
once the data are fitted, the smoothing parameter does not play any role in the prediction,
we have found that in two dimensions the smoothing parameters in both directions, 𝜆𝑥

and 𝜆𝑧, determine the prediction.

Notice that we have proved that the coefficients that give the fit when the fit and the
prediction are obtained simultaneously (22) are not the same as the solution we obtain
only fitting the data (10), property that is verified when we predict in one dimension
(Carballo et al. (2017)). Although, in the one dimensional case, the extended penalty
is not a direct extension of the penalty used to fit the data, the blocks of the extended
penalty are simplified and the fit is maintained. This does not occur in the case of two
dimensions, unless the block 𝑃 𝑧

+22 in (21) is equal to zero, as we will see in the following
corollary.

Corollary 2 (Theorem 1). If 𝑃 𝑧
+22

= 𝑂 in (21), the solution from the minimizing (14)
verifies:

1. The fit remains invariant when out-of-sample prediction is carried out.
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2. Considering the matrix of coefficients that give the fit, Θ̂, and the matrix of coeffi-
cients that give the prediction, Θ̂𝑝, each row 𝑗 = 1, ..., 𝑐𝑧, of the additional matrix of
coefficients is a linear combination of the last 𝑞𝑧 old coefficients of that row (𝑞𝑧 is
the order of the penalty acting on rows and 𝑐𝑧 the number of rows of 𝐵𝑧).

In particular, 𝑃 𝑧
+22 = 𝑂 if 𝐼𝑐𝑥𝑝

= 𝑂.

For the particular case of penalty orders two and three, i.e. 𝑞𝑥 = 𝑞𝑧 = 2 and
𝑞𝑥 = 𝑞𝑧 = 3, the proof is given in Appendix .1.

As we have proved in the previous corollary, setting 𝐼𝑐𝑥𝑝
equal to zero we preserve the

fit and everything is analogous to the one dimensional case. In the literature, there are
some works in which 𝐼𝑐𝑥𝑝

is considered equal to zero, e.g. Ugarte et al. (2012). However,
in practice, we do not set 𝐼𝑐𝑥𝑝

as a null matrix since we are not imposing the penalty
correctly. Furthermore, we could not extend it to the case in which we want out-of-sample
prediction in both dimensions. We can not set 𝐼𝑐𝑧𝑝 and 𝐼𝑐𝑥𝑝

equal to zero in (16) and

(17), since the matrix 𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+ would be singular.

In the next section, we propose the use of constraints to maintain the fit when the fit
and the prediction are obtained simultaneously, the restrictions can be used when out-of-
sample prediction is carried out only in one dimension or in more dimensions.

2.2 Constrained out-of-sample prediction

As we have shown in the previous section, natural extensions of penalty matrices
provides changes in the fit. To overcome this problem, and as a possible way to incor-
porate known information about the prediction we propose to use constrained P-splines.
In this section we introduce a methodology that allow us to impose constant and fixed
restrictions and to impose restrictions that depend on the observed data.

Our proposal to impose constraints in the prediction is to obtain the solution of the
extended models (18) and (12) subject to a set of 𝑙 linear constraints given by the equation

𝐶𝜃+ = 𝑟,

where 𝐶 is a constraint matrix of dimension 𝑙 × 𝑐+ acting on all coefficients, and 𝑟 is
the restrictions vector of dimension 𝑙 × 1. I.e., we have the following restricted extended
regression model:

𝑦+ = 𝐵+𝜃
*
+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+)

subject to 𝐶𝜃*
+ = 𝑟. Depending on whether we are predicting out-of-sample in one or two

dimensions we extend 𝑦+, 𝐵+ and 𝑅+ defined as in model (18) or as in model (12). As
a clarification on the notation used throughout this document, notice that the superscript
(*) refers to the use of constraints.

Following Greene & Seaks (1991), the Lagrangian formulation of the penalized least
squares minimization problem is:

ℒ(𝜃*
+,𝜔) = (𝑦+ −𝐵+𝜃

*
+)′𝑅̃

−1
+ (𝑦+ −𝐵+𝜃

*
+) + 𝜃*′

+𝑃+𝜃
*
+ + 2𝜔′(𝐶𝜃*

+ − 𝑟), (26)

where 𝑅̃
−1
+ is defined as in model (18) or as in model (12) depending on if we extend one

or two covariates, and 𝑃+ is the extended penalty matrix ((20) or (15)), 𝜃*
+ denotes the
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restricted least squares (RLS) estimator and 𝜔 is a 𝑙 × 1 vector of Lagrange multipliers.
Differentiating (26) we find

𝜕ℒ
𝜕𝜃*

+

= −2𝐵′
+𝑅̃

−1
+ (𝑦+ −𝐵+𝜃

*
+) + 2𝑃+𝜃

*
+ + 2𝐶 ′𝜔, (27)

𝜕ℒ
𝜕𝜔

= 𝐶𝜃*
+ − 𝑟. (28)

Writing the system as a partitioned matrix the equation yields[︃
𝐵′

+𝑅̃
−1
+ 𝐵+ + 𝑃+ 𝐶 ′

𝐶 𝑂

]︃ [︂
𝜃̂
*
+

𝜔̂

]︂
=

[︃
𝐵′

+𝑅̃
−1
+ 𝑦+

𝑟

]︃
.

𝜃̂
*
+ and 𝜔̂ can be obtained by solving the previous system or, alternative, by following

the steps below.

Setting (27) to 0, −𝐵′
+𝑅̃

−1
+ 𝑦+ + 𝐵′

+𝑅̃
−1
+ 𝐵+𝜃

*
+ + 𝑃+𝜃

*
+ + 𝐶 ′𝜔 = 0, therefore:

𝜃̂
*
+ = (𝐵′

+𝑅̃
−1
+ 𝐵+ + 𝑃+)−1(𝐵′

+𝑅̃
−1
+ 𝑦+ −𝐶 ′𝜔)

= 𝜃̂+ − (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+)−1𝐶 ′𝜔̂, (29)

where 𝜃̂+ = (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+)−1𝐵′

+𝑅̃
−1
+ 𝑦+ is the unrestricted penalized least squares

estimator.

Since 𝐶𝜃*
+ = 𝑟, multiplying equation (29) by 𝐶 , we have that 𝐶𝜃+−𝐶(𝐵′

+𝑅̃
−1
+ 𝐵++

𝑃+)−1𝐶 ′𝜔 = 𝑟, i.e.

𝜔̂ = [𝐶(𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+)−1𝐶 ′]−1(𝐶𝜃+ − 𝑟). (30)

Therefore, the coefficients subject to the restriction, 𝜃̂
*
+, are obtained by computing the

vector of Lagrange multipliers (30) and substituting in (29), i.e. 𝜃̂
*
+ is the unconstrained

solution, 𝜃̂+, plus a multiple of the discrepancy vector.

The constrained fitted and predicted values are

𝑦̂*
+ = 𝐵+𝜃̂

*
+,

defining the matrices 𝐴2 = (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+)−1𝐶 ′[𝐶(𝐵′

+𝑅̃
−1
+ 𝐵+ + 𝑃+)−1𝐶 ′]−1 and

𝐴1 = (𝐵′
+𝑅̃

−1
+ 𝐵+ + 𝑃+)−1𝐵′

+, 𝑦̂*
+ can be written as:

𝑦̂*
+ = 𝐵+(𝐴1𝑅̃

−1
+ 𝑦+ −𝐴2𝐶𝐴1𝑅̃

−1
+ 𝑦+ + 𝐴2𝑟).

The variance of 𝑦*
+ depends on the following set of restrictions:

a) If the restrictions are constant and fixed, i.e. 𝑟 is constant and does not depend on
the data, the variance is:

Var[𝑦̂*
+] = 𝜎2

𝜖𝐵+𝐴3𝑅̃
−1
+ 𝐴3

′𝐵′
+,

with 𝐴3 = 𝐴1 −𝐴2𝐶𝐴1.
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b) If the restrictions depend on the data, we have to take into account the variability
of 𝑟. For instance, if the restriction is the fit has to be maintained, 𝑟 = 𝜃̂ =
(𝐵′𝐵 + 𝑃 )−1𝐵′𝑦, therefore the variance is:

Var[𝑦̂*
+] = 𝜎2

𝜖𝐵+𝐴4𝑅̃
−1
+ 𝐴4

′𝐵′
+,

with 𝐴4 = 𝐴1−𝐴2𝐶𝐴1 +𝐴2

[︂
(𝐵′𝐵 + 𝑃 )−1

𝑂

]︂
, with 𝑂 a null matrix of dimen-

sion 𝑐𝑝 × 𝑛𝑝, 𝑐𝑝 = 𝑐𝑧𝑐𝑥𝑝 + 𝑐𝑧𝑝𝑐𝑥 + 𝑐𝑧𝑝𝑐𝑥𝑝 the number of new coefficients, and 𝑛𝑝 the
number of new observations.

Let us explain how the restriction on the fit can be imposed in practice. Suppose
that we just carry out out-of-sample prediction in one of the two covariates, that the
coefficients matrix from the fit has dimension 4× 3, and that the coefficients matrix
that gives the fit and the forecast has dimension 4 × 5 i.e.,

Θ̂ =

⎡⎢⎢⎢⎣
𝜃1 𝜃5 𝜃9
𝜃2 𝜃6 𝜃10
𝜃3 𝜃7 𝜃11
𝜃4 𝜃8 𝜃12

⎤⎥⎥⎥⎦ , Θ*
+ =

⎡⎢⎢⎣
𝜃1 𝜃5 𝜃9 𝜃13 𝜃17
𝜃2 𝜃6 𝜃10 𝜃14 𝜃18
𝜃3 𝜃7 𝜃11 𝜃15 𝜃19
𝜃4 𝜃8 𝜃12 𝜃16 𝜃20

⎤⎥⎥⎦ ,

where in Θ*
+ the coefficients that determine the fit are in red and the coefficients

that determine the forecast in blue. If we impose the restriction the fit has to be
maintained, we define the restriction equation

𝐶𝜃*
+ = 𝑟,

where 𝜃*
+ = Vec(Θ*

+), 𝐶 = [𝐼12×12 | 𝑂12×8] (𝐼12×12 an identity matrix of dimension

12 and 𝑂12×8 a zero matrix of dimension 12 × 8) and 𝑟 = 𝜃̂ = vec(Θ̂).

On the other hand, if we extend the two covariates and the coefficients matrices for
the fit and for the fit and the prediction are, respectively:

Θ̂ =

⎡⎢⎢⎢⎣
𝜃1 𝜃5 𝜃9
𝜃2 𝜃6 𝜃10
𝜃3 𝜃7 𝜃11
𝜃4 𝜃8 𝜃12

⎤⎥⎥⎥⎦ , Θ*
+ =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜃1 𝜃7 𝜃13 𝜃19 𝜃25
𝜃2 𝜃8 𝜃14 𝜃20 𝜃26
𝜃3 𝜃9 𝜃15 𝜃21 𝜃27
𝜃4 𝜃10 𝜃16 𝜃22 𝜃28
𝜃5 𝜃11 𝜃17 𝜃23 𝜃29
𝜃6 𝜃12 𝜃18 𝜃24 𝜃30

⎤⎥⎥⎥⎥⎥⎥⎦ ,

i.e., 𝑐𝑧 = 4, 𝑐𝑧𝑝 = 2, 𝑐𝑥 = 3 and 𝑐𝑥𝑝 = 2. To impose the restriction the fit has to be
maintained, we define the restriction equation

𝐶𝜃*
+ = 𝑟,

where 𝜃*
+ = Vec(Θ*

+), 𝐶 = blockdiag(𝐼4×4, [𝑂2×2 | 𝐼4×4], [𝑂2×2 | 𝐼4×4]) (𝐼4×4 is
an identity matrix of dimension 4 and 𝑂2×2 is a zero matrix of dimension 2) and
𝑟 = 𝜃̂ = vec(Θ̂).

In general, regardless of the number of variables that we extend whenever 𝑐𝑥𝑝 ≥ 𝑐𝑧𝑝 ,
if the restriction is the fit has to be maintained, 𝐶 is a block diagonal matrix with

11



the first block an identity matrix of dimension 𝑐𝑧 × 𝑐𝑧 and 𝑐𝑥𝑝 blocks equal to
[𝑂𝑐𝑧𝑝×𝑐𝑧𝑝 | 𝐼𝑐𝑧×𝑐𝑧 ], i.e.

𝐶 =

⎡⎢⎢⎢⎢⎢⎣
𝐼𝑐𝑧×𝑐𝑧

[𝑂𝑐𝑧𝑝×𝑐𝑧𝑝 | 𝐼𝑐𝑧×𝑐𝑧 ]

[𝑂𝑐𝑧𝑝×𝑐𝑧𝑝 | 𝐼𝑐𝑧×𝑐𝑧 ]

[𝑂𝑐𝑧𝑝×𝑐𝑧𝑝 | 𝐼𝑐𝑧×𝑐𝑧 ]
. . .

⎤⎥⎥⎥⎥⎥⎦ ,

and 𝑟 = vec(Θ̂).

2.3 Example 1: Prediction of mortality data
Although mortality data are often analyzed through a Poisson distribution, for the

simple purpose of illustrating the proposed methodology we use a data set on the log
mortality rates of US male population considering the log mortality rates as normal data.
We use data from the Human Mortality Database (2018), from ages 0 to 110+ over the
period 1960-2014, forecasting up to 2050, i.e., we carry out out-of-sample prediction in one
of the two covariates, the years.

The Lee Carter method (Lee & Carter (1992)) is one of the most common methods
used for estimating and forecasting mortality data, however it has been observed crossover
(higher mortality rates for younger ages than for older ages), to avoid this problem Del-
warde et al. (2007) made a major improvement. In order to compare our method with the
solution given by Delwarde et al. (2007) we have obtained the fit and the forecast through
four different models:

a) Model 1, unrestricted model:

𝑦+ = 𝑓(𝑎𝑔𝑒,𝑦𝑒𝑎𝑟+) + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+)

where 𝑦+ is the log mortality rate and 𝑅+ is defined as in (18).

b) Model 2: The model defined in a) subject to the restriction the fit is maintained.

c) Model 3: The model defined in a) subject to two restrictions:

– The fit is maintained.

– The structure across ages is preserved. We impose this restriction avoid cros-
sover for ages, i.e. to avoid higher mortality rates for younger ages than for
older ages. To do this, we take the coefficients pattern at the last years and
we project it. In order to do that we impose that the difference between the
coefficients of every two consecutive projections has to be constant and equal
to the difference between the corresponding last coefficients from the fit.

Let us explain with an example how this two restrictions can be imposed at
the same time, suppose that the coefficients matrix from the fit has dimension
4 × 3, and that the coefficients matrix that gives the fit and the forecast has
dimension 4 × 5 i.e.,

Θ̂ =

⎡⎢⎢⎢⎣
𝜃1 𝜃5 𝜃9
𝜃2 𝜃6 𝜃10
𝜃3 𝜃7 𝜃11
𝜃4 𝜃8 𝜃12

⎤⎥⎥⎥⎦ , Θ*
+ =

⎡⎢⎢⎣
𝜃1 𝜃5 𝜃9 𝜃13 𝜃17
𝜃2 𝜃6 𝜃10 𝜃14 𝜃18
𝜃3 𝜃7 𝜃11 𝜃15 𝜃19
𝜃4 𝜃8 𝜃12 𝜃16 𝜃20

⎤⎥⎥⎦ ,
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in Θ*
+ the coefficients that determine the fit are in red and the coefficients that

determine the forecast in blue. The restriction equation is

𝐶𝜃*
+ = 𝑟,

where 𝜃*
+ = Vec(Θ*

+), 𝐶 = blockdiag(𝐼12×12,𝑈 ,𝑈) with 𝑈 =

⎡⎣1 −1 0 0
0 1 −1 0
0 0 1 −1

⎤⎦

and 𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃̂

𝜃9 − 𝜃10
𝜃10 − 𝜃11
𝜃11 − 𝜃12
𝜃9 − 𝜃10
𝜃10 − 𝜃11
𝜃11 − 𝜃12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with 𝜃̂ = Vec(Θ̂),

i.e., we are imposing that the coefficients that determine the fit have to be the
ones we obtain when only fitting the data, and that the difference between the
coefficients that determine the forecast of two consecutive rows has to be equal
to the difference between the last coefficients from the fit of those rows.

d) Model 4, is the one given in Delwarde et al. (2007), where the model proposed in
Lee & Carter (1992) is modified to get regular projected life tables.
The original Lee & Carter (1992) model is:

𝑙𝑜𝑔(𝑚𝑥,𝑦) = 𝛼𝑥 + 𝛽𝑥𝑘𝑦 + 𝜖𝑦

where 𝑚𝑥,𝑦 is the central rate of morality at age 𝑥 in year 𝑦 and 𝛼𝑥, 𝛽𝑥 and 𝑘𝑦 are
parameters to be estimated, and 𝜖𝑦 is the error term with mean zero and variance
𝜎2
𝜖 . This model is fitted to historical data and the resulting estimated 𝑘𝑡’s are

then modeled and projected as a stochastic time series using standard Box-Jenkins
methods. Delwarde et al. (2007) have improved the Lee-Carter model smoothing
through penalized splines the estimated 𝛽𝑥’s.

Figure 1 shows the fit and the forecast obtained with model 1 (left panel above), model
2 (right panel above), model 3 (left panel below) and model 4 (right panel below).
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Figure 1: Fit and forecast of a data set on the log mortality rates of US males aged 0-110+ over the period
1960-2014, through model 1 (red line), model 2 (green line), model 3 (blue line) and model 4 (orange line).
The vertical line indicates the year from which we predict.

In order to illustrate the differences between the fits, we have selected five ages: 20,
40, 60, 80 and 100, in Figure 2 we show the fit and the forecast for those ages obtained
through model 1 (red line), model 2 (green line), model 3 (blue line) and model 4 (orange
line). The fit provided by the first three models (models 1, 2 and 3) is almost the same
and better than the fit provided by model 4. However, the fit given by model 4 is quite
different and worse than the others for ages 40 and 100.
The predictions with model 1 and 2 are almost identical (in Figure 2 we can hardly
appreciate the green line because it is below the green line). Despite giving very similar
results in the fit, model 3 provides quite different results in the forecast, for age 60 model
1 and model 2 provide an increase in the log mortality rate for the period 2020 − 2050
since they are forecasting the incrementing trend in mortality between 2010− 2016, while
the most realistic results are given by models 3 and 4, in which the mortality decreases.
The predictions given by model 4 are coherent and similar to those of model 3 for ages 20,
40 and 80. However, model 4 provides an increase in the log mortality rate for age 100,
what seems to be inconsistent with the observed log mortality ratio.
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Figure 2: Fit and forecast of selected ages: 20, 40, 60, 80 and 100 obtained through model 1 (red line),
model 2 (green line), model 3 (blue line) and model 4 (orange line). The vertical line indicates the year
from which we predict (2014).

As we have seen, the most realistic results are provided when we impose two restric-
tions: the fit is maintained and the structure across ages is preserved, i.e. for model 3. If
we do not maintain the coefficients pattern, crossover for ages can happen. We illustrate
this fact in Figure 3, where we plot the obtained projections with model 2 (green line)
and model 3 (blue line) for ages 46 and 47. We can see that the fit is quite similar for the
three models, the log mortality rates for age 46 are lower than for age 47 in the range of
known data. However, in the forecast, for model 2 crossover for ages 46 and 47 occurs and
in 2050 the log mortality rate is larger for age 46 than for age 47. This does not occur for
model 3, in which case the imposed restriction preserves the structure across ages. The
crossover problem has been also solved in Delwarde et al. (2007) and in Currie (2013),
they do not impose restrictions to prevent the crossover but smoothing the βx’s and the
βx’s and αx’s of the Lee-Carter model, respectively, they avoid the problem.
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Figure 3: Fit and forecast for ages 66 and 67 obtained through model 2 (green line) and model 3 (blue
line). Model 3 prevent crossover for ages. The vertical line indicates the year from which we predict (2014).

3 Out-of-sample prediction in multidimensional smooth mixed models

The connection between penalized smoothing and mixed models was established thirty
years ago inGreen(1987) (see alsoCurrie & Durb́an(2002)andWand (2003)). The key
point of this equivalence is the fact that the smoothing parameter becomes a ratio of vari-
ances and variance components can be estimated through restricted maximum likelihood
procedure (REML) (seePatterson & Thompson(1971)). The interest on this representa-
tion is due to the possibility of including smoothing in a large class of models and the use
of the methodology and software already developed for mixed models for estimation and
inference. We here exploit the link to mixed models to extend the results of the previous
section.

In order to reparameterize a penalized smooth model as a mixed model it is necessary to
find a new basis that allows the representation of model (1) as a mixed model. We replace
the smooth function by a basis representation which is now written asy=Xβ+Zα+
where coefficientsαare penalized to achieve smoothness. This leads to a mixed model of
the form

y=Xβ+Zα+ , with α∼N(0,G) and ∼N(0,σ2R), (31)

whereR=I, i.e. the errors are independent and identically distributed with variance
σ2,andX andZare the model matrices andβandαare the fixed and random effects
coefficients respectively. The random effects have the covariance matrixG, which depends
on the variances of the random effects.

There are different alternatives for the reparameterization of the original smooth model
as a mixed model in (31). The idea is to find a transformationΩsuch that:

BΩ= X |Z andΩθ=
β
α
to haveBθ=Xβ+Zα.

For that, we followLee(2010) and consider the SVD of the marginal difference matrices
DxDxandDzDz:

DiDi=UiΣiUi,
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where Σ𝑖 is a diagonal matrix that contains the eigenvalues of the SVD of D′
𝑖D𝑖 and U𝑖 is

the corresponding matrix of eigenvectors, for 𝑖 = 𝑧,𝑥. The matrix U𝑖 can be split to have
U𝑖 = [U𝑖𝑓 | U𝑖𝑟], where U𝑖𝑓 and U𝑖𝑟 are matrices containing the eigenvectors associated
to the null and non-null parts, respectively, and Σ̃𝑖 has (𝑐𝑖 − 𝑞𝑖) positive eigenvalues, for
𝑖 = 𝑧,𝑥. We consider the transformation matrix Ω as:

Ω = [U𝑥𝑓 ⊗U𝑧𝑓⏟  ⏞  
Ω𝑓

| U𝑥𝑟 ⊗U𝑧𝑟 | U𝑥𝑓 ⊗U𝑧𝑟 | U𝑥𝑟 ⊗U𝑧𝑟⏟  ⏞  
Ω𝑟

], (32)

which is obtained by reordering the block matrices of the matrix [U𝑥𝑓 | U𝑥𝑟]⊗[U𝑧𝑓 | U𝑧𝑟].
Then, given the transformation matrix in (32), the mixed model matrices are:

X = BΩ𝑓 = (B𝑥 ⊗B𝑧)(U𝑥𝑓 ⊗U𝑧𝑓 ) = B𝑥U𝑥𝑓 ⊗B𝑧U𝑧𝑓 ,

and

Z = BΩ𝑟 = [B𝑥U𝑥𝑟 ⊗B𝑧U𝑧𝑓 | B𝑥U𝑥𝑓 ⊗B𝑧U𝑧𝑟 | B𝑥U𝑥𝑟 ⊗B𝑧U𝑧𝑟] .

Denoting the matrices X𝑖 = B𝑖U𝑖𝑓 and Z𝑖 = B𝑖U𝑖𝑟 (𝑖 = 𝑧,𝑥), the previous mixed model
matrices can be expressed as:

X = X𝑥 ⊗X𝑧,

Z = [Z𝑥 ⊗X𝑧 | X𝑥 ⊗ Z𝑧 | Z𝑥 ⊗ Z𝑧].
(33)

Moreover, given the transformation matrix Ω in (32) and the two-dimensional penalty
matrix defined in (8), the mixed model penalty matrix is:

Ω′𝑃Ω =

[︂
𝑂𝑞

𝐹

]︂
, with F =

⎡⎣ 𝜆𝑥Σ̃𝑥 ⊗ I𝑞𝑧
𝜆𝑧I𝑞𝑥 ⊗ Σ̃𝑧

𝜆𝑥Σ̃𝑥 ⊗ I𝑐𝑧−𝑞𝑧 + 𝜆𝑥I𝑐𝑥−𝑞𝑥 ⊗ Σ̃𝑧

⎤⎦ , (34)

where 𝑞 = 𝑞𝑧𝑞𝑥 and the matrices Σ̃𝑖 (𝑖 = 𝑧,𝑥) diagonal matrices containing the positive
eigenvalues of 𝐷′

𝑖𝐷𝑖. Then, the covariance matrix 𝐺 associated to the random effects can
be written as:

𝐺 = 𝜎2
𝜖𝐹

−1. (35)

The estimation of model in (31) is done using the mixed model equations of Henderson
(1975), the solution is:

𝛽̂ = (𝑋 ′𝑉
−1

𝑋)−1𝑋 ′𝑉
−1

𝑦,

𝛼̂ = 𝐺̂𝑍 ′𝑉
−1

(𝑦 −𝑋𝛽̂),

where 𝑉 = 𝑍𝐺̂𝑍 ′ + 𝜎̂2
𝜖𝐼, the estimation of the covariance parameters can be carried

out by the Restricted Maximum Likelihood (REML) approach proposed by Patterson &
Thompson (1971).

Once we have set the general framework, we extend the results presented in Section
2.1 to the multidimensional mixed model framework. To reformulate the extended model
(12) as a mixed model we need to extend the mixed model components to consider the
following extended mixed model:

𝑦+ = 𝑋+𝛽+̃ + 𝑍+𝛼+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+), 𝛼+ ∼ 𝒩 (0,𝐺+), (36)
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The subscript of 𝛽+̃ is (+̃) and is not (+) to indicate that the fixed effects in the extended
model (36) are not the same as the fixed effects in the original model (31), however both
fixed effects have the same dimension. The variance matrix of the error, 𝑅+ is defined as
in (12).

Once we have the extended model matrices, 𝑋+ and 𝑍+ and the extended covari-
ance matrix 𝐺+, the fit and the forecast are obtained solving the extended mixed model
equations of Henderson (1975):[︂

𝛽̂+̃

𝛼̂+

]︂
= 𝐿−1

[︂
𝑋 ′

+𝑅
−1
+

𝑍 ′
+𝑅

−1
+

]︂
𝑦+, (37)

where 𝑦+ = (𝑦′,𝑦′
𝑝)

′ is defined as in (18) and matrix 𝐿 equals

𝐿 =

[︂
𝑋 ′

+𝑅
−1
+ 𝑋+ 𝑋 ′

+𝑅
−1
+ 𝑍+

𝑍 ′
+𝑅

−1
+ 𝑋+ 𝑍 ′

+𝑅
−1
+ 𝑍+ + 𝐺−1

+

]︂
.

Since 𝑦̂+ = [𝑋+ | 𝑍+]

[︂
𝛽̂+̃

𝛼̂+

]︂
, its variance is:

Var[𝑦̂+] = [𝑋+ | 𝑍+]𝐿−1

[︂
𝑋 ′

+

𝑍 ′
+

]︂
. (38)

The variance components can be estimated by maximizing the extended residual max-
imum log-likelihood (REML):

− 1

2
log|𝑉 +| −

1

2
log|𝑋 ′

+𝑉
−1
+ 𝑋+| −

1

2
(𝑦+ −𝑋+𝛽+̃)′𝑉 −1

+ (𝑦+ −𝑋+𝛽+̃), (39)

where 𝑉 + = 𝑅+ + 𝑍+𝐺+𝑍
′
+.

To obtain the extended mixed model components we need to define an extended trans-
formation matrix. The natural extension of the transformation matrix (32) is to consider
the SVD decompositions of the extended difference matrices, i.e. of 𝐷′

𝑧+
𝐷𝑧+ and of

𝐷′
𝑥+

𝐷𝑥+ , but we have to take into account that the extended transformation built from
these singular value decompositions does not provide direct extensions of the mixed model
matrices from the fit, 𝑋 and 𝑍. This is not a problem, unless we want to impose the
restriction that the fit has to be maintained. In this case the fixed effects estimated from
the extended model have to be the same as the fixed effects that determine the fit, i.e.
𝛽̂+̃ = 𝛽̂, and the random effects estimated in the extended model have to be a direct
extension of the random effects that determine de fit, i.e. 𝛼̂+ has to contain the values
of 𝛼̂, and besides that 𝛽̂+̃ and 𝛼̂+ have to multiplied by model matrices that are direct
extensions of the model matrices that determine the fit, 𝑋 and 𝑍.

The natural extended transformation matrix, Ω+, will not yield the matrices mentioned
above, it will return the extended fixed and random effects matrices, 𝑋+ and 𝑍+, that
are not a direct extension of the model matrices used to obtain the fit, 𝑋 and 𝑍. There
are two options that allow us to solve this problem:

∙ Define the constraint matrix 𝐶 in the P-spline model framework and reparameterize
it to obtain the restrictions matrix for the extended mixed model, 𝐶MM. I.e., define
𝐶 and compute 𝐶MM = 𝐶Ω+.
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∙ Due to identifiability problems the previous proposal can not be used always, as we
will see in Section 4. Therefore, we define an extended transformation matrix Ω*

+

that allow us to obtain extended fixed and random effects matrices that are a direct
extension of the mixed model matrices used to obtain the fit.

The first option is straightforward and can be carried out by using any extended trans-
formation matrix Ω+. However, to implement the second option we define an extended
transformation matrix Ω*

+ that allow us to preserve the model matrices.

We now give the expressions of the extended mixed model components depending on
the extended transformation matrix that we use:

∙ The natural extended transformation Ω+ based on the SVD of the extended differ-
ence matrices.

∙ An extended transformation matrix Ω*
+ that preserves the model matrices.

3.0.1 Natural reparameterization of P-splines as mixed models for out-of-
sample prediction

The natural extension of the transformation matrix (32) is to consider the SVD de-
compositions of the extended difference matrices, i.e. 𝐷′

𝑥+
𝐷𝑥+ = 𝑈𝑥+Σ𝑥+𝑈

′
𝑥+

and
𝐷′

𝑧+
𝐷𝑧+ = 𝑈𝑧+Σ𝑧+𝑈

′
𝑧+

, where the matrices 𝑈 𝑖, for 𝑖 = 𝑧+,𝑥+, can be splitted in two
parts, 𝑈 𝑖 = [𝑈 𝑖𝑓 | 𝑈 𝑖𝑟], where 𝑈 𝑖𝑓 contains the null part (of dimension 𝑐𝑖 × 𝑞𝑖) and 𝑈 𝑖𝑟

contains the span or the non-null part of the decomposition (of dimension 𝑐𝑖 × (𝑐𝑖 − 𝑞𝑖)),
then the extended transformation matrix is:

Ω+ = [U𝑥+𝑓 ⊗U𝑧𝑓⏟  ⏞  
Ω+𝑓

| U𝑥+𝑟 ⊗U𝑧+𝑟 | U𝑥+𝑓 ⊗U𝑧+𝑟 | U𝑥+𝑟 ⊗U𝑧+𝑟⏟  ⏞  
Ω+𝑟

], (40)

Then, given the extended transformation matrix in (40), the mixed model matrices for the
two-dimensional case are obtained as:

X+ = B+Ω+𝑓 = B𝑥+U𝑥+𝑓 ⊗B𝑧+U𝑧+𝑓 , (41)

and

Z+ = BΩ+𝑟 =
[︀
B𝑥+U𝑥+𝑟 ⊗B𝑧+U𝑧+𝑓 | B𝑥+U𝑥+𝑓 ⊗B𝑧+U𝑧+𝑟 | B𝑥+U𝑥+𝑟 ⊗B𝑧+U𝑧+𝑟

]︀
.

(42)

Moreover, given the transformation matrix Ω+ in (40) and the two-dimensional penalty
matrix defined in (15), the mixed model penalty matrix is obtained as:

Ω′
+𝑃+Ω+ =

[︂
𝑂𝑞

𝐹+

]︂
, with F+ =

⎡⎢⎣ 𝜆𝑥Σ̃𝑥+ ⊗ I𝑞𝑧
𝜆𝑧I𝑞𝑥 ⊗ Σ̃𝑧+

𝜆𝑥Σ̃𝑥+ ⊗ I𝑐𝑧+
−𝑞𝑧 + 𝜆𝑥I𝑐𝑥+

−𝑞𝑥 ⊗ Σ̃𝑧+

⎤⎥⎦ ,

(43)

where 𝑞 = 𝑞𝑧𝑞𝑥 and the matrices Σ̃𝑖 contains the positive eigenvalues of the SVD of
𝐷′

𝑖𝐷𝑖, for 𝑖 = 𝑧+,𝑥+. Then,
𝐺+ = 𝜎2

𝜖𝐹
−1
+ . (44)

As a particular case, suppose that we extend just one independent covariable, in this
case the natural extension of the trasformation matrix (32) is

Ω+ = [U𝑥+𝑓 ⊗U𝑧𝑓⏟  ⏞  
Ω+𝑓

| U𝑥+𝑟 ⊗U𝑧𝑓 | U𝑥+𝑓 ⊗U𝑧𝑟 | U𝑥+𝑟 ⊗U𝑧𝑟⏟  ⏞  
Ω+𝑟

], (45)
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which is based on the SVD decompositions 𝐷′
𝑥+

𝐷𝑥+ = 𝑈𝑥+Σ𝑥+𝑈
′
𝑥+

and 𝐷′
𝑧𝐷𝑧 =

𝑈𝑧Σ𝑧𝑈
′
𝑧. Given the extended transformation matrix in (45), the mixed model matrices

are:
X+ = B+Ω+𝑓 = (B𝑥+ ⊗B𝑧)(U𝑥+𝑓 ⊗U𝑧𝑓 ) = B𝑥+U𝑥+𝑓 ⊗B𝑧U𝑧𝑓 , (46)

and

Z+ = BΩ+𝑟 =
[︀
B𝑥+U𝑥+𝑟 ⊗B𝑧U𝑧𝑓 | B𝑥+U𝑥+𝑓 ⊗B𝑧U𝑧𝑟 | B𝑥+U𝑥+𝑟 ⊗B𝑧U𝑧𝑟

]︀
. (47)

For the transformation matrix Ω+ in (45) and the penalty matrix defined in (20), the
mixed model penalty matrix is:

Ω′
+𝑃+Ω+ =

[︂
𝑂𝑞

𝐹+

]︂
, with F+ =

⎡⎢⎣ 𝜆𝑥Σ̃𝑥+ ⊗ I𝑞𝑧
𝜆𝑧I𝑞𝑥 ⊗ Σ̃𝑧

𝜆𝑥Σ̃𝑥+ ⊗ I𝑐𝑧−𝑞𝑧 + 𝜆𝑥I𝑐𝑥+
−𝑞𝑥 ⊗ Σ̃𝑧

⎤⎥⎦ ,

(48)

where 𝑞 = 𝑞𝑧𝑞𝑥 and the matrices Σ̃𝑖 (𝑖 = 𝑧,𝑥+) were defined above. And,

𝐺+ = 𝜎2
𝜖𝐹

−1
+ . (49)

Ugarte et al. (2012) also carry out multidimensional out-of-sample prediction when
only one covariate is extended, in this work the authors set 𝐼𝑐𝑥𝑝

equal to zero in (20)
and propose to use an extended transformation matrix that preserves the transformation
used to obtain the fit. They consider the extended transformation matrix Ω+ defined

as

[︃
Ω 𝑂

𝑂 𝐷−1
𝑥+(2) ⊗ 𝐼𝑐𝑧

]︃
, the problem is that with the previous extended transformation

matrix we would not differentiate between fixed and random effects, the fixed part would
also be penalized since the first 𝑞 (𝑞 = 𝑞𝑥𝑞𝑧) rows and columns of Ω′

+𝑃+Ω+ are not zero.

3.0.2 Reparameterization of P-splines as mixed models for coherent predic-
tion

To preserve the model matrices used to obtain the fit, our proposal is to define the
following extended transformation matrix:

Ω*
+ = [U*

𝑥+𝑓 ⊗U*
𝑧+𝑓⏟  ⏞  

Ω*
+𝑓

| U*
𝑥+𝑟 ⊗U*

𝑧+𝑓 | U*
𝑥+𝑓 ⊗U*

𝑧+𝑟 | U*
𝑥+𝑟 ⊗U*

𝑧+𝑟⏟  ⏞  
Ω*

+𝑟

], (50)

which is obtained by reordering the block matrices of the matrix [U*
𝑥+𝑓 |U*

𝑥+𝑟]⊗[U*
𝑧+𝑓 |U*

𝑧+𝑟],
where

[U*
𝑧+𝑓 | U*

𝑧+𝑟] =

[︃
𝑈𝑧𝑓 𝑈𝑧𝑟 𝑂

−𝐷−1
𝑧(2)𝐷𝑧(1)𝑈𝑧𝑓 𝑂 𝐷−1

𝑧(2)

]︃
,

[U*
𝑥+𝑓 | U*

𝑥+𝑟] =

[︃
𝑈𝑥𝑓 𝑈𝑥𝑟 𝑂

−𝐷−1
𝑥(2)𝐷𝑥(1)𝑈𝑥𝑓 𝑂 𝐷−1

𝑥(2)

]︃
,

where 𝑈𝑧𝑓 , 𝑈𝑧𝑟, 𝑈𝑥𝑓 and 𝑈𝑥𝑟 are defined as in (32), 𝐷𝑧(2) 𝐷𝑧(1) are blocks of the
extended difference matrix 𝐷𝑧+ (see (21)) and 𝐷𝑥(2) 𝐷𝑥(1) are blocks of the extended
difference matrix 𝐷𝑥+ (see (17)). Notice that this definition of 𝑈*

𝑖𝑓 for 𝑖 = 𝑥+, 𝑧+, verifies
𝐷𝑖𝑈

*
𝑖𝑓 = 𝑂, i.e., the fixed part is not penalized.

Then, given the transformation matrix in (50) and denoting the matrices X*
𝑧+

=
B𝑧+U

*
𝑧+𝑓 , Z*

𝑧+
= B𝑧+U

*
𝑧+𝑟, X

*
𝑥+

= B𝑥+U
*
𝑥+𝑓 and Z*

𝑥+
= B𝑥+U

*
𝑥+𝑟, the mixed model

matrices for the two dimensional case are obtained as:

X*
+ = X*

𝑥+
⊗X*

𝑧+
,

Z*
+ = [Z𝑥+ ⊗X*

𝑧+
| X*

𝑥+
⊗ Z*

𝑧+
| Z*

𝑥+
⊗ Z*

𝑧+
].

(51)
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Notice that 𝑋*
𝑖+ and 𝑍*

𝑖+ , for 𝑖 = 𝑧,𝑥, are direct extensions of 𝑋𝑖 and 𝑍𝑖, i.e., they have
the following form:

𝑋*
𝑖+ =

[︂
𝑋𝑖

𝑋𝑖𝑝

]︂
, 𝑍*

𝑖+ =

[︂
𝑍𝑖 𝑂
𝑍𝑖(1) 𝑍𝑖(2)

]︂
. (52)

Therefore, 𝑋*
+ and 𝑍*

+ are also direct extensions of 𝑋 and 𝑍, respectively, they are:

𝑋*
+ =

[︂
𝑋𝑥

𝑋𝑥𝑝

]︂
⊗
[︂
𝑋𝑧

𝑋𝑧𝑝

]︂
,

𝑍*
𝑥+

=

[︂
𝑍𝑥 𝑂
𝑍𝑥(1) 𝑍𝑥(2)

]︂
⊗

[︂
𝑍𝑧 𝑂
𝑍𝑧(1) 𝑍𝑧(2)

]︂
.

The following theorem gives the covariance matrix of the random effects for the trans-
formation matrix given in (50) and the extended penalty matrix given in (15). aaa

Theorem 3. Given the extended transformation Ω*
+ in two dimensions defined in (50)

and the extended penalty matrix in (15). The mixed model block-diagonal precision matrix
𝐹 *

+ is

𝐹 *
+ =

⎡⎣𝐹 *
+11

𝑂 𝐹 *
+13

𝑂 𝐹 *
+22

𝐹 *
+23

𝐹 *
+31

𝐹 *
+32

𝐹 *
+33

⎤⎦ (53)

with

𝐹 *
+11

= 𝜆𝑥𝑈
*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑓𝑈
*
𝑧+𝑟,

𝐹 *
+13

= 𝜆𝑥𝑈
*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑓𝑈
*
𝑧+𝑟,

𝐹 *
+22

= 𝜆𝑧𝑈
*′
𝑥+𝑓𝑈

*
𝑥+𝑓 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈
*
𝑧+𝑟,

𝐹 *
+23

= 𝜆𝑧𝑈
*′
𝑥+𝑓𝑈

*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈
*
𝑧+𝑟,

𝐹 *
+31

= 𝐹 *
+13

,

𝐹 *
+32

= 𝐹 *
+23

,

𝐹 *
+33

= 𝜆𝑧𝑈
′
𝑥+𝑟𝑈𝑥+𝑟 ⊗𝑈 ′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈𝑧+𝑟 + 𝜆𝑥𝑈
′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈𝑥+𝑟 ⊗𝑈 ′
𝑧+𝑟𝑈𝑧+𝑟,

and the covariance matrix of the random effects is 𝐺*
+ = 𝜎2

𝜖𝐹
*−1.

The proof of the previous Theorem is shown in Appendix .2.

If we extend just one of the two covariates, to preserve the model matrices we define
the following extended transformation matrix Ω*

+:

Ω*
+ = [U*

𝑥+𝑓 ⊗U𝑧𝑓⏟  ⏞  
Ω*

+𝑓

| U*
𝑥+𝑟 ⊗U𝑧𝑟 | U*

𝑥+𝑓 ⊗U𝑧𝑟 | U*
𝑥+𝑟 ⊗U𝑧𝑟⏟  ⏞  

Ω*
+𝑟

], (54)

which is obtained by reordering the block matrices of the matrix [U*
𝑥+𝑓 |U*

𝑥+𝑟]⊗[U𝑧𝑓 |U𝑧𝑟],
where [U𝑧𝑓 | U𝑧𝑟] is defined as in (32) and [U*

𝑥+𝑓 | U*
𝑥+𝑟] defined as in (50).

In this case, the model components are:

∙ Extended mixed model matrices:

X*
+ = B𝑥+U

*
𝑥+𝑓 ⊗B𝑧U𝑧𝑓 ,

and

Z*
+ = BΩ*

+𝑟 =
[︁
B𝑥+U

*
𝑥+𝑟 ⊗B𝑧U𝑧𝑓 | B𝑥+U

*
𝑥+𝑓 ⊗B𝑧U𝑧𝑟 | B𝑥+U

*
𝑥+𝑟 ⊗B𝑧U𝑧𝑟

]︁
.
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∙ Extended random effects covariance matrix 𝐺*
+ = 𝜎2

𝜖𝐹
*−1, with

𝐹
*
+ =

[︃
𝜆𝑥𝑈*′

𝑥+𝑟𝐷
′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝐼𝑞𝑧

𝜆𝑧𝑈*′
𝑥+𝑓𝑈*

𝑥+𝑓 ⊗ ̃︀Σ𝑧 𝜆𝑧𝑈*′
𝑥+𝑓𝑈*

𝑥+𝑟 ⊗ ̃︀Σ𝑧

𝜆𝑧𝑈*′
𝑥+𝑟𝑈

*
𝑥+𝑓 ⊗ ̃︀Σ𝑧 𝜆𝑧𝑈 ′

𝑥+𝑟𝑈𝑥+𝑟 ⊗ ̃︀Σ𝑧 + 𝜆𝑥𝑈 ′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈𝑥+𝑟 ⊗ 𝐼𝑐𝑧−𝑞𝑧

]︃
(55)

where Σ̃𝑧, of dimensions (𝑐𝑧 − 𝑞𝑧) × (𝑐𝑧 − 𝑞𝑧) is the diagonal matrix of positive
eigenvalues of 𝐷′

𝑧𝐷𝑧.

3.1 Constrained smooth mixed models for coherent out-of-sample pre-
diction

As in the case of 2D P-spline models, constraints need to be imposed in order to
ensure coherent fit and prediction. In this section we explain how predictions (subject to
the restriction that the fit is kept) are carried out in the context of mixed models. Suppose
that we consider the following restricted extended mixed model:

𝑦+ = 𝑋+𝛽
*
+̃ + 𝑍+𝛼

*
+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+), 𝛼*

+ ∼ 𝒩 (0,𝐺+),

subject to 𝐶MM

[︂
𝛽*
+̃

𝛼*
+

]︂
= 𝑟MM, where 𝐶MM is a constraint matrix of dimension 𝑙×𝑐+ acting

on all coefficients and built analogously to how 𝐶 is built in Section 2.2, and 𝑟MM =

[︂
𝛽̂
𝛼̂

]︂
is the restrictions vector of dimension 𝑙 × 1. Notice that we use the superscript (*) to
indicate that we are imposing restrictions.

To estimate the restricted parameters we minimize the following constrained penalized
likelihood:

ℒ(𝛽*
+̃,𝛼

*
+,𝑤) = (𝑦+ −𝑋+𝛽

*
+̃ −𝑍+𝛼

*
+)

′𝑅−1
+ (𝑦+ −𝑋+𝛽

*
+̃ −𝑍+𝛼

*
+) +𝛼*′

+𝐺−1
+ 𝛼*

+

+2𝑤′
(︂
𝐶𝑀𝑀

[︂
𝛽*

+̃

𝛼*
+

]︂
− 𝑟𝑀𝑀

)︂
(56)

Since we have to take derivatives with respect to 𝛽*
+̃

and with respect to 𝛼*
+, we divide

the matrix of constraints into two parts, one associated with the fixed effects and the
other one associated with the random effects, 𝐶𝑀𝑀 =

[︀
𝐶𝑀𝑀𝑓

| 𝐶𝑀𝑀𝑟

]︀
. Formula (56) is

rewritten as:

ℒ(𝛽*
+̃,𝛼

*
+,𝑤) = (𝑦+ −𝑋+𝛽

*
+̃ −𝑍+𝛼

*
+)′𝑅−1

+ (𝑦+ −𝑋+𝛽
*
+̃ −𝑍+𝛼

*
+) + 𝛼*′

+𝐺
−1
+ 𝛼*

+

+2𝜔′(𝐶𝑀𝑀𝑓
𝛽*
+̃ + 𝐶𝑀𝑀𝑟𝛼

*
+ − 𝑟𝑀𝑀 ).

The first order conditions yield

𝜕ℒ
𝜕𝛽*

+̃

= −2𝑋 ′
+𝑅

−1
+ (𝑦+ −𝑋+𝛽

*
+̃ −𝑍+𝛼

*
+) + 2𝐶 ′

𝑀𝑀𝑓
𝜔 (57)

𝜕ℒ
𝜕𝛼*

+

= −2𝑍 ′
+𝑅

−1
+ (𝑦+ −𝑋+𝛽

*
+̃ −𝑍+𝛼

*
+) + 2𝐺−1

+ 𝛼+ + 2𝐶 ′
𝑀𝑀𝑟

𝜔 (58)

𝜕ℒ
𝜕𝑤

= 𝐶𝑀𝑀𝑓
𝛽*
+̃ + 𝐶𝑀𝑀𝑟𝛼

*
+ − 𝑟𝑀𝑀 (59)

Therefore, we have the system:⎡⎣𝑋 ′
+𝑅

−1
+ 𝑋+ 𝑋 ′

+𝑅
−1
+ 𝑍+ 𝐶 ′

𝑀𝑀𝑓

𝑍 ′
+𝑅

−1
+ 𝑋+ 𝑍 ′

+𝑅
−1
+ 𝑍+ + 𝐺−1

+ 𝐶 ′
𝑀𝑀𝑟

𝐶𝑀𝑀𝑓
𝐶𝑀𝑀𝑟 𝑂

⎤⎦⎡⎣𝛽*
+̃

𝛼*
+

𝜔

⎤⎦ =

⎡⎣𝑋 ′
+𝑅

−1
+ 𝑦+

𝑍 ′
+𝑅

−1
+ 𝑦+

𝑟𝑀𝑀

⎤⎦
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We can also compute the fixed and random effects and the Lagrangean multipliers
following the next steps. By (57) and (58) we know that[︂

𝛽̂
*
+̃

𝛼̂*
+

]︂
=

[︂
𝛽̂+̃

𝛼̂+

]︂
−𝐿−1

+ 𝐶 ′
𝑀𝑀𝑤̂, (60)

where 𝐿+ =

[︂
𝑋 ′

+𝑅
−1
+ 𝑋*

+ 𝑋 ′
+𝑅

−1
+ 𝑍+

𝑍 ′
+𝑅

−1
+ 𝑋+ 𝑍 ′

+𝑅
−1
+ 𝑍+ + 𝐺−1

+

]︂
and

[︂
𝛽̂+̃

𝛼̂+

]︂
are the unrestricted penalized

least squares estimators, and

𝜔̂ =
[︀
𝐶𝑀𝑀𝐿−1

+ 𝐶 ′
𝑀𝑀

]︀−1
[︂
𝐶𝑀𝑀

[︂
𝛽+̃

𝛼+

]︂
− 𝑟𝑀𝑀

]︂
(61)

Therefore, the coefficients subject to the restriction,

[︂
𝛽̂
*
+̃

𝛼̂*
+

]︂
, are obtained by computing the

vector of Lagrange multipliers (61) and substituting in (60), i.e.

[︂
𝛽̂
*
+̃

𝛼̂*
+

]︂
is the unconstrained

solution,

[︂
𝛽̂+̃

𝛼̂+

]︂
, plus a multiple of the discrepancy vector.

The restricted fitted and predicted values are

𝑦̂*
+ = [𝑋+ | 𝑍+]

[︂
𝛽̂
*
*

𝛼̂*
+

]︂
,

defining the matrices 𝐿+ =

[︂
𝑋 ′

+𝑅
−1
+ 𝑋+ 𝑋 ′

+𝑅
−1
+ 𝑍+

𝑍 ′
+𝑅

−1
+ 𝑋+ 𝑍 ′

+𝑅
−1
+ 𝑍+ + 𝐺−1

+

]︂
, 𝐴1𝑀𝑀 = 𝐿−1

+

[︂
𝑋+

𝑍+

]︂
and

𝐴2𝑀𝑀 = 𝐿−1
+ 𝐶 ′

𝑀𝑀 [𝐶𝑀𝑀𝐿−1
+ 𝐶 ′

𝑀𝑀 ]−1, 𝑦̂+ can be written as:

𝑦̂*
+ = [𝑋+ | 𝑍+](𝐴1𝑀𝑀𝑅−1

+ 𝑦+ −𝐴2𝑀𝑀𝐶𝑀𝑀𝐴1𝑀𝑀𝑅−1
+ 𝑦+ + 𝐴2𝑀𝑀𝑟𝑀𝑀 ).

Since 𝑟𝑀𝑀 =

[︂
𝛽̂
𝛼̂

]︂
= 𝐿

[︂
𝑋 ′𝑅−1

𝑍 ′𝑅−1

]︂
𝑦, with 𝐿 =

[︂
𝑋 ′𝑅−1𝑋 𝑋𝑅−1𝑍
𝑍 ′𝑅−1𝑋 𝑍𝑅−1𝑍 + 𝐺−1

]︂
, taking

into account the variability of 𝑟𝑀𝑀 the variance is:

Var[𝑦̂*
+] = [𝑋+ | 𝑍+]𝐴4𝑀𝑀𝑅−1

+ 𝐴′
4𝑀𝑀

[︂
𝑋 ′

+

𝑍 ′
+

]︂
,

with 𝐴4𝑀𝑀 =

⎛⎝𝐴1𝑀𝑀 −𝐴2𝑀𝑀𝐶𝑀𝑀𝐴1𝑀𝑀 + 𝐴2𝑀𝑀

⎡⎣𝐿 [︂
𝑋 ′

𝑍 ′

]︂
𝑂

⎤⎦⎞⎠, with 𝑂 a null

matrix of dimension 𝑐𝑝 × 𝑛𝑝, 𝑐𝑝 the number of new coefficients and 𝑛𝑝 the number of new
values we predict.

4 Component-wise prediction with P-spline Smooth-ANOVA models

Sometimes, model (1) will not be flexible enough and it might force unnecessary com-
plexity (i.e. use too many degrees of freedom to fit the data). In order to add more
flexibility and drop unnecessary terms if they are not relevant, Lee & Durbán (2011) pro-
pose the use of P-spline smooth-ANOVA models. This approach decomposes the sum
of smooth functions similarly as on analysis of variance decomposition. In this section,
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we show how out-of-sample prediction can be carried out in this context. First of all we
briefly review how we can fit a smooth function as a decomposition of smooth functions
and bases which are identifiable. Suppose we have a data vector 𝑦 of length 𝑛× 1, where
𝑛 = 𝑛𝑧𝑛𝑥, and the regressors 𝑧 = (𝑧1, 𝑧2, ...𝑧𝑛𝑧)′ and 𝑥 = (𝑥1, 𝑥2, ...𝑥𝑛𝑥)′. Let us consider
the following Smooth-ANOVA model:

𝑦 = 𝛾 + 𝑓1(𝑧) + 𝑓2(𝑥) + 𝑓1,2(𝑧,𝑥) + 𝜖 = 𝐵𝜃 + 𝜖, 𝜖 ∼ 𝒩 (0,𝑅) (62)

where 𝑅 = 𝜎2
𝜖𝐼, i.e. the errors are independent and identically distributed and the B-spline

basis 𝐵 is defined as:

𝐵 = [1𝑛 | 1𝑛𝑥 ⊗𝐵𝑧 | 𝐵𝑥 ⊗ 1𝑛𝑧 | 𝐵𝑥 ⊗𝐵𝑧], (63)

of dimension 𝑛 × (1 + 𝑐𝑧 + 𝑐𝑥 + 𝑐𝑧𝑐𝑥), and where 1𝑛𝑧 and 1𝑛𝑥 are column vectors of
ones of length 𝑛𝑧 and 𝑛𝑥 respectively, and the vector of regression coefficients is 𝜃 =
(𝛾,𝜃′

𝑧,𝜃
′
𝑥,𝜃

′
𝑠)′, where 𝜃𝑧 and 𝜃𝑥 are the vectors of coefficients for the main effects, of

dimension 𝑐𝑧 × 1 and 𝑐𝑥 × 1, respectively, and 𝜃𝑠 is the vector of coefficients for the
interaction, of dimension 𝑐𝑧𝑐𝑥 × 1. Therefore, model (62) is written as:

𝑦 = 𝛾1𝑛 + (1𝑛𝑥 ⊗𝐵𝑧)𝜃𝑧 + (𝐵𝑥 ⊗ 1𝑛𝑧)𝜃𝑥 + (𝐵𝑥 ⊗𝐵𝑧)𝜃𝑠, (64)

with penalty the following block-diagonal matrix:

𝑃 =

⎡⎢⎢⎣
0

𝜆𝑧𝐷
′
𝑧𝐷𝑧

𝜆𝑥𝐷
′
𝑥𝐷𝑥

𝜏𝑧𝐼𝑐𝑥 ⊗𝐷′
𝑧𝐷𝑧 + 𝜏𝑥𝐷

′
𝑥𝐷𝑥 ⊗ 𝐼𝑐𝑧

⎤⎥⎥⎦ , (65)

of dimension (1 + 𝑐𝑧 + 𝑐𝑥 + 𝑐𝑧𝑐𝑥) × (1 + 𝑐𝑧 + 𝑐𝑥 + 𝑐𝑧𝑐𝑥), where each block corresponds
to the penalty over each of the coefficients of the model. Lee (2010) pointed out that the
model (64) and the penalty (65) should be modified in order to preserve identifiability,
their proposal is to construct identifiability model bases and penalties reparameterizing the
model as a mixed model instead of imposing numerical constraints as other authors have
proposed (Wood (2006)). They define the following transformation matrix Ω = [Ω𝑓 | Ω𝑟]
with dimension (1 + 𝑐𝑧 + 𝑐𝑥 + 𝑐𝑧𝑐𝑥), where:

Ω𝑓 =

⎡⎢⎢⎢⎢⎣
1

1 ⊗ 𝑢
(2)
𝑧𝑓

𝑢
(2)
𝑥𝑓 ⊗ 1

𝑢
(2)
𝑥𝑓 ⊗ 𝑢

(2)
𝑧𝑓

⎤⎥⎥⎥⎥⎦ , (66)

Ω𝑟 =

⎡⎢⎢⎢⎣
1

1 ⊗𝑈𝑧𝑟

𝑈𝑥𝑟 ⊗ 1

𝑢
(2)
𝑥𝑓 ⊗𝑈𝑧𝑟 | 𝑈𝑥𝑟 ⊗ 𝑢

(2)
𝑧𝑓 | 𝑈𝑥𝑟 ⊗𝑈𝑧𝑟

⎤⎥⎥⎥⎦ , (67)

and 𝑢
(2)
𝑧𝑓 and 𝑢

(2)
𝑥𝑓 are the second columns of 𝑈𝑧𝑟 and 𝑈𝑥𝑟, respectively, and 𝑈𝑧𝑓 and

𝑈𝑥𝑓 are the eigenvectors corresponding to the positive values of the SVD of 𝐷′
𝑧𝐷𝑧 and

𝐷′
𝑥𝐷𝑥, respectively.
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Given the previous transformation matrix, Lee (2010) show that the fixed and random
effects matrices 𝑋 and 𝑍 are:

𝑋 = [1𝑛 | 1𝑛𝑥 ⊗ 𝑧̃ | 𝑥̃⊗ 1𝑛𝑧 | 𝑥̃⊗ 𝑧̃] (68)

𝑍 = [1𝑛 | 1𝑛𝑥 ⊗𝑍𝑧 | 𝑍𝑥 ⊗ 1𝑛𝑧 | 𝑥̃⊗𝑍𝑧 | 𝑍𝑥 ⊗ 𝑧̃ | 𝑍𝑥 ⊗𝑍𝑧] (69)

where 𝑧̃ = 𝐵𝑧𝑢
(2)
𝑧𝑓 , 𝑥̃ = 𝐵𝑥𝑢

(2)
𝑥𝑓 , 𝑍𝑧 = 𝐵𝑧𝑈𝑧𝑟 and 𝑍𝑥 = 𝐵𝑥𝑈𝑥𝑟. Moreover, the mixed

model penalty is:
𝐹 = blockdiag(𝐹 (1),𝐹 (2),𝐹 (1,2)), (70)

where for a second order penalty, it has size (𝑐𝑧𝑐𝑥 − 4) × (𝑐𝑧𝑐𝑥 − 4), and with:

𝐹 (1) = 𝜆𝑧Σ̃𝑧,

𝐹 (2) = 𝜆𝑥Σ̃𝑥,

𝐹 (1,2) = blockdiag(𝜏𝑧Σ̃𝑧, 𝜏𝑥Σ̃𝑥, 𝜏𝑧𝐼𝑐𝑥−2 ⊗ Σ̃𝑧 + 𝜏𝑥Σ̃𝑥 ⊗ 𝐼𝑐𝑧−2)

where Σ̃𝑧 and Σ̃𝑥 are the nonzero eigenvalues of the SVD of 𝐷′
𝑧𝐷𝑧 and 𝐷′

𝑥𝐷𝑥, respect-
ively. With the previous representation of model (62), Lee (2010) avoid the identifiability
problem removing the column vector of 1’s in the random effects matrix (69). For more
details, see Lee (2010). Then we will detail our proposal to obtain predictions with S-
ANOVA models.

Although the out-of-sample prediction will be carried out in the context of mixed
models, we present the approach in the original P-splines formulation, since the repara-
meterization needed for the out-of-sample prediction will be based on this formulation. In
particular, we need to know what the extended penalty matrix is in order to calculate the
precision matrix of the random effects.

In the framework of model (62), given a vector of 𝑛𝑧𝑛𝑥 observations 𝑦 of the response
variable, suppose that we want to predict 𝑛𝑝 = 𝑛𝑧𝑛𝑥𝑝 + 𝑛𝑧𝑝𝑛𝑥 + 𝑛𝑧𝑝𝑛𝑥𝑝 new values at
(𝑧,𝑥𝑝), (𝑧𝑝,𝑥) and (𝑧𝑝,𝑥𝑝). I.e., the matrix 𝑌 + of observed and predicted values can
be arrenged as in (11). For this case we consider the following extended Smooth-ANOVA
model:

𝑦+ = 𝛾 + 𝑓1(𝑧+) + 𝑓2(𝑥+) + 𝑓1,2(𝑧+,𝑥+) + 𝜖+, 𝜖+ ∼ 𝒩 (0, 𝜎2
𝜖𝑅+) (71)

where 𝑅+ is defined as in (12) and we assume:

𝑦+ = 𝐵+𝜃+, 𝜖+ ∼ 𝒩 (0,𝑅+)

where the extended B-spline basis 𝐵+ is defined as:

𝐵+ = [1𝑛+ | 1𝑛𝑥+
⊗𝐵𝑧+ | 𝐵𝑥+ ⊗ 1𝑛𝑧+

| 𝐵𝑥+ ⊗𝐵𝑧+ ], (72)

of dimension 𝑛× (1 + 𝑐𝑧+ + 𝑐𝑥+ + 𝑐𝑧+𝑐𝑥+), and where 1𝑛𝑧+
and 1𝑛𝑥+

are column vectors
of ones of length 𝑛𝑧+ and 𝑛𝑥+ respectively. Therefore, model (71) is written as:

𝑦+ = 𝛾1𝑛+ + (1𝑛𝑥+
⊗𝐵𝑧+)𝜃𝑧+ + (𝐵𝑥+ ⊗ 1𝑛𝑧+

)𝜃𝑥+ + (𝐵𝑥+ ⊗𝐵𝑧+)𝜃𝑠+ , (73)

with extended penalty the following block-diagonal matrix:

𝑃+ =

⎡⎢⎢⎣
0

𝜆𝑧𝐷
′
𝑧+

𝐷𝑧+

𝜆𝑥𝐷
′
𝑥+

𝐷𝑥+

𝜏𝑧𝐼𝑐𝑥+
⊗𝐷′

𝑧+
𝐷𝑧+ + 𝜏𝑥𝐷

′
𝑥+

𝐷𝑥+ ⊗ 𝐼𝑐𝑧+

⎤⎥⎥⎦ , (74)

25



of dimension (1 + 𝑐𝑧+ + 𝑐𝑥+ + 𝑐𝑧+𝑐𝑥+) × (1 + 𝑐𝑧+ + 𝑐𝑥+ + 𝑐𝑧+𝑐𝑥+), where each block cor-
responds to the penalty over each of the coefficients of the model.

To reformulate the extended P-spline S-ANOVA model (71) as a mixed model we need
to define an extended transformation matrix. As in Section ??, we can use the natural
extended transformation matrix based on the SVD of the extended difference matrices,
Ω+, or an extended transformation matrix, Ω*

+, that allow us to obtain extended mixed
model matrices that are direct extensions of the model matrices that give the fit.

S-ANOVA model given in 62 is not identifiable but its mixed model representation
allow ut to impose easily the necessary constraints. To obtain predictions with S-ANOVA
models subject to the constraint that the fit is maintained we have to use the extended
transformation matrix Ω*

+. In the following two Sections we define the transformation
matrices Ω+ and Ω*

+ and the model components associated to each case.

4.1 Natural reparametization of the S-ANOVA model into a mixed model
for prediction

To reparameterize (71) as a mixed model the natural extended transformation matrix
is Ω+ = [Ω+𝑓 | Ω+𝑟] with dimension (1 + 𝑐𝑧+ + 𝑐𝑥+ + 𝑐𝑧+𝑐𝑥+), where:

Ω+𝑓 =

⎡⎢⎢⎢⎢⎣
1

1 ⊗ 𝑢
(2)
𝑧+𝑓

𝑢
(2)
𝑥+𝑓 ⊗ 1

𝑢
(2)
𝑥+𝑓 ⊗ 𝑢

(2)
𝑧+𝑓

⎤⎥⎥⎥⎥⎦ ,

Ω+𝑟 =

⎡⎢⎢⎢⎣
1

1 ⊗𝑈𝑧+𝑟

𝑈𝑥+𝑟 ⊗ 1

𝑢
(2)
𝑥+𝑓 ⊗𝑈𝑧+𝑟 | 𝑈𝑥+𝑟 ⊗ 𝑢

(2)
𝑧+𝑓 | 𝑈𝑥+𝑟 ⊗𝑈𝑧+𝑟

⎤⎥⎥⎥⎦ , (75)

where 𝑢
(2)
𝑧+𝑓 and 𝑢

(2)
𝑥+𝑓 are the second columns of 𝑈𝑧+𝑓 and 𝑈𝑥+𝑓 , respectively, and 𝑈 𝑖𝑓

and 𝑈 𝑖𝑟 are the eigenvectors corresponding to the zero values and positive values of the
SVD of 𝐷′

𝑖𝐷𝑖, respectively, for 𝑖 = 𝑧+,𝑥+.

We obtain the fixed effects matrix as:

𝑋+ = 𝐵+Ω+𝑓 = [1𝑛+ | 1𝑛𝑥+
⊗ 𝑧̃+ | 𝑥̃+ ⊗ 1𝑛𝑧+

| 𝑥̃+ ⊗ 𝑧̃+], (76)

where 𝑧̃+ and 𝑥̃+ are 𝐵𝑧+𝑢
(2)
𝑧+𝑓 and 𝐵𝑥+𝑢

(2)
𝑥+𝑓 , respectively. The random effects matrix

is obtained is:

𝑍+ = 𝐵+Ω+𝑟 = [1𝑛+ | 1𝑛𝑥+
⊗𝑍𝑧+ | 𝑍𝑥+ ⊗ 1𝑛𝑧+

| 𝑥̃+ ⊗𝑍𝑧+ | 𝑍𝑥+ ⊗ 𝑧̃+ | 𝑍𝑥+ ⊗𝑍𝑧+ ],(77)

where 𝑍𝑧+ and 𝑍𝑥+ are 𝐵𝑧+𝑈𝑧+𝑟 and 𝐵𝑥+𝑈𝑥+𝑟, respectively.

For the extended transformation matrix given in (75) and extended penalty given in
(74) the mixed model precision matrix of the random effects is given by the following
theorem.
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Theorem 4. The extended precision matrix of random effects for S-ANOVA model in
(71) with extended transformation matrix given in (75) and extended penalty given in (74)
is the block-diagonal defined by:

𝐹+ = blockdiag(𝐹
(1)
+ ,𝐹

(2)
+ ,𝐹

(1,2)
+ ), (78)

where for a second order penalty, it has size (𝑐𝑧+𝑐𝑥+ − 4) × (𝑐𝑧+𝑐𝑥+ − 4), and where:

𝐹
(1)
+ = 𝜆𝑧Σ̃𝑧+ ,

𝐹
(2)
+ = 𝜆𝑥Σ̃𝑥+ ,

𝐹
(1,2)
+ = blockdiag(𝜏𝑧Σ̃𝑧+ , 𝜏𝑥Σ̃𝑥+ , 𝜏𝑧𝐼𝑐𝑧+−2 ⊗ Σ̃𝑧+ + 𝜏𝑥Σ̃𝑥+ ⊗ 𝐼𝑐𝑥+−2).

where Σ̃𝑧+ and Σ̃𝑥+ are the nonzero eigenvalues of the SVD of 𝐷′
𝑧+

𝐷𝑧+ and 𝐷′
𝑥+

𝐷𝑥+,

respectively. The random effects covariance matrix is therefore 𝐺+ = 𝜎2
𝜖𝐹

−1
+ .

The proof of the previous Theorem is given in Appendix .3.

Once the model components are defined, the fit and the prediction are obtained sim-
ultaneously, the estimation of the fixed and random effects and the variance components
would also be carried out by solving the extended Henderson system of equations (37) and
maximizing the extended REML (39).

In the case in which just one covariate is extended, the models components are:

∙ Extended mixed model matrices:

𝑋+ = 𝐵+Ω+𝑓 = [1𝑛+ | 1𝑛𝑥+
⊗ 𝑧̃ | 𝑥̃+ ⊗ 1𝑛𝑧 | 𝑥̃+ ⊗ 𝑧̃], (79)

where 𝑧̃ and 𝑥̃+ are 𝐵𝑧𝑢
(2)
𝑧𝑓 and 𝐵𝑥+𝑢

(2)
𝑥+𝑓 , respectively. And

𝑍+ = 𝑍+ = 𝐵+Ω+𝑟 = [1𝑛+ | 1𝑛𝑥+
⊗𝑍𝑧 | 𝑍𝑥+𝑈𝑥+𝑟 | 𝑍𝑥+ ⊗𝑍𝑧], (80)

where 𝑍𝑧 and 𝑍𝑥+ are 𝐵𝑧𝑈𝑧𝑟 and 𝐵𝑥+𝑈𝑥+𝑟, respectively.

∙ Extended random effects covariance matrix 𝐺+ = 𝜎2
𝜖𝐹

−1
+ , with:

𝐹+ = blockdiag(𝐹 (1),𝐹
(2)
+ ,𝐹

(1,2)
+ ), (81)

where for a second order penalty, 𝑞𝑥 = 𝑞𝑧 = 2, it has size (𝑐𝑧𝑐𝑥+ − 4)× (𝑐𝑧𝑐𝑥+ − 4),
and where:

𝐹 (1) = 𝜆𝑧Σ̃𝑧,

𝐹
(2)
+ = 𝜆𝑥Σ̃𝑥+ ,

𝐹
(1,2)
+ = blockdiag(𝜏𝑧Σ̃𝑧, 𝜏𝑥Σ̃𝑥+ , 𝜏𝑧𝐼𝑐𝑧−𝑞𝑧 ⊗ Σ̃𝑧 + 𝜏𝑥Σ̃𝑥+ ⊗ 𝐼𝑐𝑥+−𝑞𝑥),

with Σ̃𝑧 and Σ̃𝑥+ the nonzero eigenvalues of the SVD of 𝐷′
𝑧𝐷𝑧 and 𝐷′

𝑥+
𝐷𝑥+ ,

respectively.

However, the method presented above does not ensure the invariance of the fit, i.e., if
out-of-sample prediction is performed.
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4.2 Coherent prediction with S-ANOVA model

To predict with S-ANOVA models subject to the constraint that the fit has to be
maintained an extended transformation matrix that preserves the model matrices has to
be used. For the case in which the two covariates are extended, we define the following
extended transformation matrix Ω*

+ = [Ω*
+𝑓 |Ω*

+𝑟] with dimension (1+𝑐𝑧++𝑐𝑥++𝑐𝑧+𝑐𝑥+),
and:

Ω*
+𝑓 =

⎡⎢⎢⎢⎢⎣
1

1 ⊗ 𝑢
*(2)
𝑧+𝑓

𝑢
*(2)
𝑥+𝑓 ⊗ 1

𝑢
*(2)
𝑥+𝑓 ⊗ 𝑢

*(2)
𝑧+𝑓

⎤⎥⎥⎥⎥⎦ ,

Ω*
+𝑟 =

⎡⎢⎢⎢⎣
1

1 ⊗𝑈*
𝑧+𝑟

𝑈*
𝑥+𝑟 ⊗ 1

𝑢
*(2)
𝑥+𝑓 ⊗𝑈*

𝑧+𝑟 | 𝑈*
𝑥+𝑟 ⊗ 𝑢

*(2)
𝑧+𝑓 | 𝑈*

𝑥+𝑟 ⊗𝑈*
𝑧+𝑟

⎤⎥⎥⎥⎦ , (82)

where 𝑢
*(2)
𝑧+𝑓 and 𝑢

*(2)
𝑥+𝑓 are the second columns of 𝑈*

𝑧+𝑓 and 𝑈*
𝑥+𝑓 , respectively, 𝑈*

𝑧+𝑓 =[︃
𝑈𝑧𝑓

−𝐷−1
𝑧(2)𝐷𝑧(1)𝑈𝑧𝑓

]︃
, with 𝑈𝑧𝑓 the eigenvectors corresponding to the positive values of the

SVD of 𝐷′
𝑧𝐷𝑧 and 𝐷𝑧(2) and 𝐷𝑧(1) blocks of and (16) 𝑈*

𝑧+𝑓 are the eigenvectors corres-

ponding to the positive values of the SVD of 𝐷′
𝑧+

𝐷𝑧+ and 𝑈*
𝑥+𝑓 =

[︃
𝑈𝑥𝑓

−𝐷−1
𝑥(2)𝐷𝑥(1)𝑈𝑥𝑓

]︃
,

with 𝑈𝑥𝑓 the eigenvectors corresponding to the positive values of the SVD of 𝐷′
𝑥𝐷𝑥 and

𝐷𝑥(2) and 𝐷𝑥(1) blocks of (17).

The fixed effects matrix is:

𝑋*
+ = 𝐵+Ω

*
+𝑓 = [1𝑛+ | 1𝑛𝑥+

⊗ 𝑧̃+ | 𝑥̃+ ⊗ 1𝑛𝑧+
| 𝑥̃+ ⊗ 𝑧̃+], (83)

where 𝑧̃+ and 𝑥̃+ are 𝐵𝑧+𝑢
*(2)
𝑧𝑓 and 𝐵𝑥+𝑢

*(2)
𝑥+𝑓 , respectively, and the random effects matrix

is:

𝑍*
+ = 𝐵+Ω

*
+𝑟 = [1𝑛+ | 1𝑛𝑥+

⊗𝑍*
𝑧+

| 𝑍*
𝑥+

⊗ 1𝑛𝑧+
| 𝑥̃+ ⊗𝑍*

𝑧+
| 𝑍*

𝑥+
⊗ 𝑧̃+ | 𝑍*

𝑥+
⊗𝑍*

𝑧+
],(84)

where 𝑍*
𝑧+

and 𝑍*
𝑥+

are 𝐵𝑧+𝑈
*
𝑧+𝑟 and 𝐵𝑥+𝑈

*
𝑥+𝑟, respectively. The covariance matrix of

random effects is 𝐺*
+ = 𝜎2

𝜖𝐹
*−1
+ , with 𝐹 *

+ given by the following Theorem.

Theorem 5. The extended precision matrix of random effects for S-ANOVA model in
(71) with extended transformation matrix given in (82) and extended penalty given in (74)
is the block-diagonal defined by:

𝐹 *
+ = blockdiag(𝐹 (1),𝐹

(2)
+ ,𝐹

(1,2)
+ ), (85)
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where for a second order penalty, it has size (𝑐𝑧𝑐𝑥+ − 4) × (𝑐𝑧𝑐𝑥+ − 4), and where:

𝐹 (1) = 𝜆𝑧𝑈
*′
𝑧+𝑟𝐷

′
𝑧+

𝐷𝑧+𝑈
*
𝑧+𝑟,

𝐹
(2)
+ = 𝜆𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟,

𝐹
(1,2)
+ =

⎡⎢⎣𝐹
(1,2)
+11 𝑂 𝐹

(1,2)
+13

𝑂 𝐹
(1,2)
+22 𝐹

(1,2)
+23

𝐹
(1,2)′
+13 𝐹

(1,2)′
+23 𝐹

(1,2)
+33

⎤⎥⎦ ,

with

𝐹
(1,2)
+11 = 𝜏𝑧𝑢

*(2)′
𝑥+𝑓𝑢

*(2)
𝑥+𝑓 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈
*
𝑧+𝑟

𝐹
(1,2)
+13 = 𝜏𝑧𝑢

*(2)′
𝑥+𝑓𝑈

*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈
*
𝑧+𝑟,

𝐹
(1,2)
+22 = 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗ 𝑢

*(2)′
𝑧+𝑟 𝑢

*(2)
𝑧+𝑟,

𝐹
(1,2)
+23 = 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗ 𝑢

*(2)′
𝑧+𝑓 𝑈

*
𝑧+𝑟.

𝐹
(1,2)
+33 = 𝜏𝑧𝑈

*′
𝑥+𝑟𝑈

*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈
*
𝑧+𝑟 + 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝑈
*
𝑧+𝑟.

The proof is given in Appendix .4.

If just one covariate is extended the extended mixed model components are:

∙ Extended mixed model matrices:

𝑋*
+ = [1𝑛+ | 1𝑛𝑥+

⊗ 𝑧̃ | 𝑥̃+ ⊗ 1𝑛𝑧 | 𝑥̃+ ⊗ 𝑧̃], (86)

where 𝑧̃ and 𝑥̃+ are 𝐵𝑧𝑢
(2)
𝑧𝑓 and 𝐵𝑥+𝑢

*(2)
𝑥+𝑓 , respectively. The random effects matrix

is 𝑍*
+ = 𝐵+Ω

*
+𝑟, i.e.:

𝑍*
+ = [1𝑛+ | 1𝑛𝑥+

⊗𝑍𝑧 | 𝑍*
𝑥+

⊗ 1𝑛𝑧 | 𝑍*
𝑥+

⊗𝑍𝑧], (87)

where 𝑍𝑧 and 𝑍𝑥+ are 𝐵𝑧𝑈𝑧𝑟 and 𝐵𝑥+𝑈
*
𝑥+𝑟, respectively.

∙ Extended random effects covariance matrix 𝐺*
+ = 𝜎2

𝜖𝐹
*−1
+ with

𝐹 *
+ = blockdiag(𝐹 (1),𝐹

(2)
+ ,𝐹

(1,2)
+ ), (88)

where for a second order penalty, 𝑞𝑥 = 𝑞𝑧 = 2, it has size (𝑐𝑧𝑐𝑥+ − 4) × (𝑐𝑧𝑐𝑥+ − 4),
and where:

𝐹 (1) = 𝜆𝑧Σ̃𝑧,

𝐹
(2)
+ = 𝜆𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟,

𝐹
(1,2)
+ =

⎡⎢⎣𝐹
(1,2)
+11 𝑂 𝐹

(1,2)
+13

𝑂 𝐹
(1,2)
+22 𝑂

𝐹
(1,2)′
+13 𝑂 𝐹

(1,2)
+33

⎤⎥⎦ ,

with

𝐹
(1,2)
+11 = 𝜏𝑧𝑢

*(2)′
𝑥+𝑓𝑢

*(2)
𝑥+𝑓 ⊗ Σ̃𝑧

𝐹
(1,2)
+13 = 𝜏𝑧𝑢

*(2)′
𝑥+𝑓𝑈

*
𝑥+𝑟 ⊗ Σ̃𝑧,

𝐹
(1,2)
+22 = 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗ 𝐼𝑞𝑧 ,

𝐹
(1,2)
+33 = 𝜏𝑧𝑈

*′
𝑥+𝑟𝑈

*
𝑥+𝑟 ⊗ Σ̃𝑧 + 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈
*
𝑥+𝑟 ⊗ 𝐼𝑐𝑧−𝑞𝑧 .

where Σ̃𝑧 is the nonzero eigenvalues of the SVD of 𝐷′
𝑧𝐷𝑧.
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4.3 Example 2: Prediction of aboveground biomass

In this section, we apply the proposed 2D interaction P-spline and S-ANOVA models
to a real data set. The data came from three trials carried out in Spain (Rivas-Mart́ınez
et al.(2002)), where nine clones belonging to the European Catalog of Basic Materials for
the Populus genes were included. The data set was also used inŚanchez-Gonźalezet al.
(2016). They point out that aboveground biomass estimation in short-rotation forestry
plantations is essential to determine the economic viability of the crop prior to harvesting.
Hence, it is important to obtain accurate predictions using only a minimum set of easily
obtainable information i.e., height and diameter (denoted byzandx). We propose to
predict out-of-sample aboveground biomass as a smooth function of height and diameter
using the following two models:

•2D interaction P-spline model:

y+=f(z+,x+)++, +∼N(0,R+)

•Smooth-ANOVA model:

y+=f(z+)+f(x+)+f(z+,x+)++, +∼N(0,R+)

From the original data we have selected the cloneverdeand predicted the weight for
diameter and height out-of-sample values. The observed data consists of 315 observations,
for diameter values measured at 1.30 m breast height within the interval [0.2,7.3] and
height values measured within the interval [1.35,9.32].

Figure 4: Plot of weight versus height (left panel) and plot of total weight versus diameter (right panel).

We have predicted weight for 10 new out-of-sample values for diameter and height.
In Figure5we plot the smooth trend for height (left panel) and for diameter (right
panel) obtained after fitting and predicting with the S-ANOVA model imposing that the
fit is maintained. As it shown, the effect of diameter is stronger than height, but both
smooth terms are significantly different from zero. Figure6shows the fitted and predicted
interaction function (f(z+,x+)) for the restricted S-ANOVA model.
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Figure 5: Fitted and predicted smooth curves for height (left panel) and for diameter (right panel) using
the restricted S-ANOVA model. The vertical line indicates the height and diameter values from which we
predict (9.32 and 7.3).

Figure 6: Fitted and predicted interaction function for the the restricted S-ANOVA model. The vertical
line indicates the height value from which we predict (9.32) and the horizontal line indicates the diameter
value from which we predict (7.3).

Figure7illustrates the solution when the fit and the forecast are obtained with the
S-ANOVA model (top left panel), with the S-ANOVA model imposing that the fit is
maintained (top right panel), with the 2D interaction P-spline model (bottom left panel)
and with the 2D interaction P-spline models imposing that the fit is maintained (bottom
right panel). As the figure shows, the results obtained from the S-ANOVA model and from
the restricted S-ANOVA model are almost equal. However, the solutions obtained from
the 2D interaction P-spline models are different depending on if the restriction the fit is
maintained is imposed or not. As we can appreciate, the fit changes significantly if the
restriction is not imposed. In the prediction, the most significant difference is that the 2D
interaction P-spline model gives lower weight values for the largest diameter and height
values than the 2D interaction P-spline model.
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Figure 7: Fit and prediction with the S-ANOVAmodel (top left panel), with the S-ANOVAmodel imposing
that the fit is maintained (top right panel), with the 2D interaction P-spline model (bottom left panel)
and with the 2D interaction P-spline models imposing that the fit is maintained (bottom right panel) at
out-of-sample values of diameter ([7.3, 10]) and height ([9.32, 15]).

Comparing the S-ANOVA models and the 2D interaction P-spline models, we conclude
that the most coherent solution is given by the S-ANOVA models, since it gives the largest
weight values for the highest values of height and diameter.

5 Simulation study

In previous sections, we have shown how to predict with interaction models (from
P-spline and mixed models points of view) and with Smooth-ANOVA models, and how
to impose restrictions. In this Section, we examine the performance of the interaction
and Smooth-ANOVA models in comparison to interaction and Smooth-ANOVA models
in which we impose the constraint that the fit has to be the same as the fit we obtain
when only fitting the data. For this propose we have simulated the data in two different
scenarios:

a) Scenario 1. From an interaction model:

𝑆1 = 𝑓1,2(𝑧,𝑥).

b) Scenario 2. From a two main effects with interaction model:

𝑆2 = 𝑓1(𝑧) + 𝑓2(𝑥) + 𝑓1,2(𝑧,𝑥).

In both cases 𝑓1(𝑧) = sin(2𝜋𝑧), 𝑓2(𝑥) = cos(3𝜋𝑥) and 𝑓1,2(𝑧,𝑥) = 3 sin(2𝜋𝑧)(2𝑧− 1). To
simulate the data we have generated a grid of 4900 values. Both covariates, 𝑧 and 𝑥, take
70 equidistant values in the interval [0, 1], and the errors are independent and identically
distributed, with mean 0 and variance 𝜎2

𝜖 = 0.25. Figure 8 shows 𝑓1(𝑧), 𝑓2(𝑥) and the
surfaces proposed in scenarios 1 and 2.
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(b) 𝑓2(𝑥)
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(c) 𝑓1,2(𝑧,𝑥)
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(d) 𝑓1(𝑧) + 𝑓2(𝑥) + 𝑓1,2(𝑧,𝑥)

Figure 8: Functions (a) and (b) are the nonlinear main effects of 𝑧 and 𝑥, (c) is the interaction surface
and (d) is the sum of the main effects and the interaction surfaces

For each scenario, we fit and predict with four models, the models and their components
are listed below:

∙ 2D interaction P-spline model, i.e.

𝑦+ = 𝑓(𝑧+,𝑥+) + 𝜖+

= 𝑋+𝛽+̃ + 𝑍+𝛼+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+), 𝛼+ ∼ 𝒩 (0,𝐺+),

where the model components depend on how many covariates are extended:

– Extending one covariate, the model components are 𝑋+ and 𝑍+ defined in (46)
and (47), 𝑅+ defined in (18) and 𝐺+ defined in (49).

– Extending two covariates, the model components are 𝑋+ and 𝑍+ defined in
(41) and (42), 𝑅+ defined in (12) and 𝐺+ defined in (44).

In both cases, after defining the model components, to estimate the model we maxim-
ize the extended REML (39) and solve the extended mixed model system of equations
of Henderson (37) to estimate the model parameters.

∙ 2D interaction P-spline model with restriction, i.e.

𝑦+ = 𝑓(𝑧+,𝑥+) + 𝜖+

= 𝑋+𝛽
*
+̃ + 𝑍+𝛼

*
+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+), 𝛼+ ∼ 𝒩 (0,𝐺+),

subject to the fit has to be maintained, restriction imposed through a equation

𝐶𝑀𝑀

[︂
𝛽*
+̃

𝛼*
+

]︂
= 𝑟𝑀𝑀 , where the model components depend on how many covariates

are extended:
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– Extending one covariate, the model components are 𝑋+ and 𝑍+ defined in (46)
and (47), 𝑅+ defined in (18) and 𝐺+ defined in (49).

– Extending two covariates, the model components are 𝑋+ and 𝑍+ defined in
(41) and (42), 𝑅+ defined in (12) and 𝐺+ defined in (44).

In both cases, we define the constraints matrix 𝐶𝑀𝑀 and the constraints vector 𝑟𝑀𝑀

in the P-splines context and use the extended transformations (Ω+ given in (45) if we
extend one covariate and Ω+ given in (40) if we extend the two covariates). To obtain
the constraints matrix in the context of mixed models, 𝐶𝑀𝑀 = 𝐶Ω+. Since we are
imposing the restriction that the fit has to be maintained, the covariance parameters
used to obtain the fit and the forecast simultaneously are the ones estimated to
compute the fit. Once the model components are defined the fixed and random
effects are computed solving the system (60).

∙ Smooth-ANOVA model, i.e.

𝑦+ = 𝑓1(𝑧+) + 𝑓2(𝑥+) + 𝑓1,2(𝑧+,𝑥+) + 𝜖+

= 𝑋+𝛽+̃ + 𝑍+𝛼+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+), 𝛼+ ∼ 𝒩 (0,𝐺+),

where the model components are defined depending on how many covariates we
extend.

– Extending one covariate, the components are 𝑋+ and 𝑍+ defined in (79) and
(80), 𝑅+ defined in (18) and 𝐺+ defined through the equation of 𝐹+ in (81).

– Extending two covariates, the components are 𝑋+ and 𝑍+ defined in (76) and
(77), 𝑅+ defined in (12) and 𝐺+ defined through the equation of 𝐹+ in (78).

In both cases, after defining the model components, to estimate the model we maxim-
ize the extended REML (39) and solve the extended mixed model system of equations
of Henderson (37).

∙ Smooth-ANOVA model with restriction, i.e.

𝑦+ = 𝑓1(𝑧+) + 𝑓2(𝑥+) + 𝑓1,2(𝑧+,𝑥+) + 𝜖+

= 𝑋+𝛽
*
+̃ + 𝑍+𝛼

*
+ + 𝜖+, 𝜖+ ∼ 𝒩 (0,𝑅+), 𝛼*

+ ∼ 𝒩 (0,𝐺+),

subject to the fit has to be maintained, restriction imposed through a equation

𝐶𝑀𝑀

[︂
𝛽*
+̃

𝛼*
+

]︂
= 𝑟𝑀𝑀 , where the model components depend on how many covariates

are extended:

– Extending one covariate, the components are 𝑋+ and 𝑍+ defined in (86) and
(87), 𝑅+ defined in (18) and 𝐺+ defined through 𝐹+ in (88).

– Extending two covariates, the components are 𝑋+ and 𝑍+ defined in (83) and
(84), 𝑅+ defined in (12) and 𝐺+ defined through 𝐹+ in (85).

Again the variance parameters are the ones estimated to compute the fit. Once the
model components are defined the fixed and random effects are computed solving
the system (60).

For each scenario and each model, we have repeated the following 100 times:
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∙ Start with a data set of observations arranged into a matrix 𝑌 + of dimension 𝑛𝑧+ ×
𝑛𝑥+ :

𝑌 + =

[︂
𝑌 𝑌 𝑧𝑥𝑝

𝑌 𝑧𝑝𝑥 𝑌 𝑧𝑝𝑥𝑝

]︂
,

where 𝑌 , 𝑌 𝑧𝑥𝑝 , 𝑌 𝑧𝑝𝑥 and 𝑌 𝑧𝑝𝑥𝑝 have dimension 𝑛𝑧 × 𝑛𝑥, 𝑛𝑧 × 𝑛𝑥𝑝 , 𝑛𝑧𝑝 × 𝑛𝑥 and
𝑛𝑧𝑝 × 𝑛𝑥𝑝 , respectively.

∙ Split our data into two groups: the training data 𝑌 and the test data 𝑌 𝑧𝑥𝑝 , 𝑌 𝑧𝑝𝑥

and 𝑌 𝑧𝑝𝑥𝑝 .

∙ Use the training data to predict 4900 − 𝑛 new observations (𝑛 = 𝑛𝑧 × 𝑛𝑥).

∙ Check the accuracy of each model.

The marginal B-spline bases 𝐵𝑧 and 𝐵𝑥 are constructed with 15 knots and cubic
splines and then extended to cover the whole range of 𝑧+ and 𝑥+, the penalty orders are
two.

As it is known, a model which fits the data well does not necessarily forecast well,
therefore we have compared the fit performance, the forecast performance and the overall
performance of the methods. To check the accuracy of the methods we follow Hyndman
(2006) and take the errors as the difference between the function values from which we
simulate the data and the fit and forecast produced using only the data in the training
set:

𝐸+ = 𝑆𝑘 − 𝑌 +, 𝑘 = 1, 2

i.e, we have the errors matrix 𝐸+ =

[︂
𝐸 𝐸𝑧𝑥𝑝

𝐸𝑧𝑝𝑥 𝐸𝑧𝑝𝑥𝑝

]︂
, and therefore the vectors containing

the errors in the fit, in the forecast and in the overall performance:

∙ Vector with the fit errors: 𝑒(𝑓) = vec(𝐸)

∙ Vector with the prediction errors: 𝑒(𝑝) = (vec(𝐸𝑧𝑥𝑝), vec(𝐸𝑧𝑝𝑥), vec(𝐸𝑧𝑝𝑥𝑝))

∙ Vector with the total errors: 𝑒(𝑡) = vec(𝐸+)

The errors measure that we use is the mean absolute error because as it is said in
Hyndman (2006) it is less sensitive to outliers than the root mean square error:

Mean absolute error: MAE =
∑︀𝑁

𝑖=1 |𝑒
(𝑙)
𝑖 |

𝑁 , 𝑁 = length(𝑒(𝑙))

for 𝑙 = 𝑓, 𝑝, 𝑡, i.e. for the errors in the fit, in the forecast or in total.

We have divided the results of the simulation study in two Sections, one to show the
obtained results in Scenario 1 and other to show the obtained results in Scenario 2.

5.1 Simulations results for Scenario 1

Below we show the obtained results for Scenario 1. We have made boxplots for the
MAE values in the fit, in the forecast and in the overall performance. For different values
of 𝑛𝑧𝑝 and 𝑛𝑥𝑝 , we fit and predict with the four smooth mixed models: interaction, inter-
action with restriction, S-ANOVA and S-ANOVA with restriction.
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The x-axis labels of the boxpots refer to the models: unrestricted(2D interaction
P-spline model),restricted(2D interaction P-spline model with restriction),ANOVA(S-
ANOVA model) andrestricted ANOVA(S-ANOVA model with restriction).

Notice that for the different values ofnzp andnxp we consider as the training data
an observations matrix of dimension (70−nzp)×(70−nxp) and we predict (70−nzp)×
nxp+nzp×(70−nxp)+nzp×nxpnew values. The results are listed inAppendix .5for
the different values ofnzp andnxp, to illustrate them below we show the figure for the
particular case ofnzp= 0 andnxp=5:

Figure 9: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 1 andnzp=0andnxp=5.

The fit remains relatively invariant in the case of the 2D P-spline models, with and
without restriction, and in the restricted S-ANOVA model. While the unrestricted S-
ANOVA model is modified in most scenarios.

Intheprediction,thebestperformanceisalsomadebythe2Dinteractionmodels(re-
stricted and unrestricted) and by the restricted S-ANOVA model, except for the particular
case in which we predict in one of the two covariates. In Figures.12and.13we can see
that for the particular values of (nzp,nxp), (0,15) and (0,20), the most accurate model
(lower MAE values) in the prediction is the unrestricted interaction model followed by the
S-ANOVA model and by the restricted interaction model, respectively.

We conclude that simultaneous fit and prediction with S-ANOVA models produces
significant changes in the fit and that in the overall performance (including fit and predic-
tion), the 2D P-spline models (with and without restriction) and the restricted S-ANOVA
models are the most accurate.

5.2 Simulations results for Scenario 2
InAppendix .5we show the results obtained for Scenario 2, i.e., for the case in which

the true surface is constructed from a model with two main effects and with an interaction.
Below you can see the boxplot for the particular case ofnzp= 0 andnxp=5:
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Figure 10: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=0andnxp=5.

As a summary we can conclude that there is a significant difference between the res-
ults obtained with the interaction models and with the S-ANOVA models: 2D interaction
P-splines models (restricted and unrestricted) are always less accurate than S-ANOVA
models. This fact is due to interaction models are constraint to fit the true model without
taking into account the main effects.

In the fit, the performances of the 2D P-spline interaction models, with and without
restrictions, are quite similar. However in the prediction, the restricted interaction model
is better than the unrestricted interaction model, the major difference between the two
models can be seen for most scenarios.
In the case of the S-ANOVA models, the restricted model is always better than the

unrestricted one, in the fit, in the prediction and therefore in the overall performance.
Although, in the particular case in which we only predict in one dimension, the prediction
errors for both models are almost equal (see Figures.22,.23and.24).

The conclusion for this scenario is that the restricted S-ANOVA model is clearly the
most accurate. Therefore, our suggestion in models with interaction is to use the restricted
S-ANOVA model always.

6 Conclusions

In this paper we have presented a general framework for out-of-sample prediction in
smooth additive models with interaction terms. We build our proposal from the method
proposed inCurrieet al.(2004), we have extended their approach to the case in which
out-of-sample prediction is necessary in both directions of the interaction terms.

The method proposed inCurrieet al.(2004) deal with out-of-sample predictions as
missing values with 0 weights and carry out fit and prediction simultaneously. We have
shown that this approach yields different fitted values depending on whether only fitting
or fitting and prediction is carried out.
To solve this incoherence we propose to maximize the penalized likelihood subject to linear
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constraints which ensure that the coefficients obtained in the fit of the data remain the
same when fit and out-of-sample prediction is carried out simultaneously. To do so we
use Lagrange multipliers. This general approach can be used to impose other relevant
constraints such as the case of mortality forecasting when structure across ages needs to
be preserved.

The methodology proposed is extended to the case of smooth mixed models since it
will allow us to predict out-of-sample in a wide class of models. We have shown that atten-
tion needs to be imposed since the matrices of fixed and random effects for out-of-sample
prediction need to be direct extensions of the matrices used in the fit.

We have developed a method for out-of-sample prediction for the Smooth ANOVA
model proposed in Lee & Durbán (2011). A simulation study has been carried out to
compare constrained and unconstrained out-of-sample prediction when using 2D interac-
tion models and S-ANOVA models. From the results of the simulation study, we have
concluded that in most situations the constrained S-ANOVA model behaves better in the
fit and out-of-sample predictions when the prediction is carried out in both dimensions of
the interaction term, if prediction is needed in only one of the covariates results depend
on the simulated scenario, although in most cases the S-ANOVA model outperformed the
full interaction (restricted or not) model.

The constrained prediction method proposed has also been used in two real data ex-
amples, one in which mortality rates are forecasted over the years and the importance of
imposing constraints on the coefficients to ensure coherent forecast is shown. The other
example predicts tree biomass as a function of the tree height and diameter.

Currently we are working on out-of-sample prediction in the context of generalized
additive and mixed models.
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Appendix

Appendix .1 Proof of Corollary 2

Proof. Notice that if 𝑃 𝑧
+22

= 𝑂, by (22), the coefficients that give the fit are:

𝜃̂+1,...,𝑐 =
(︀
𝐵′𝐵 + 𝜆𝑥(𝐷′

𝑥𝐷𝑥 ⊗ 𝐼𝑐𝑧) + 𝜆𝑧(𝐼𝑐𝑥 ⊗𝐷′
𝑧𝐷𝑧)

)︀−1
𝐵′𝑦,

i.e., the same as the coefficients we obtain only fitting the data without a prediction, (10).
Let us see which are the coefficients that determine the forecast when the penalty orders
are two or three.
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∙ Differences of order 2.

Suppose a difference matrix with second order penalty 𝐷𝑥+ of dimensions (𝑐𝑥+ −
2) × 𝑐𝑥+ :

𝐷𝑥+ =

[︂
𝐷 𝑂

𝐷𝑥(1) 𝐷𝑥(2)

]︂
=

⎡⎢⎢⎢⎢⎢⎣
1 −2 1 0 0 0 0 · · ·
0 1 −2 1 0 0 0 · · ·
0 0 1 −2 1 0 0 · · ·
..
.

...
...

...
...

...
...

...
0 0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎦ ,

where 𝐷𝑥(2):

𝐷𝑥(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 · · · 0
−2 1 0 0 0 · · · 0
1 2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
0 0 1 −2 1 · · · 0
...

...
...

...
...

...
...

0 0 0 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

of dimension 𝑐𝑥𝑝 × 𝑐𝑥𝑝 , where 𝑐𝑥𝑝 is the number of columns of 𝐵𝑥(2). Therefore,

(𝐷𝑥(2) ⊗ 𝐼𝑐𝑧)−1 has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

1
2 1

. . .
. . .

2 1
3 2 1

. . .
. . .

. . .

3 2 1
4 3 2 1

. . .
. . .

. . .
. . .

4 3 2 1
...

...
..
.

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
of dimension (𝑐𝑥𝑝 · 𝑐𝑧) × (𝑐𝑥𝑝 · 𝑐𝑧), each block has dimension 𝑐𝑧 × 𝑐𝑧. Moreover,

𝐷𝑥(1) ⊗ 𝐼𝑐𝑧 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −2

. . .
. . . . . .

. . .
. . .

0 0 1 −2
0 0 0 1

. . .
. . . . . .

. . .
. . .

0 0 0 1
0 0 0 0

. . .
. . . . . .

. . .
. . .

0 0 0 0
...

... . . .
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

i.e., is a matrix of dimension (𝑐𝑥𝑝 · 𝑐𝑧)× (𝑐𝑥 · 𝑐𝑧) with just three blocks of dimension
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𝑐𝑧 × 𝑐𝑧 that are not blocks of zeros. Therefore,

(𝐷𝑥(2) ⊗ 𝐼𝑐𝑧 )
−1(𝐷𝑥(1) ⊗ 𝐼𝑐𝑧 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 −2

. . .
. . . . . .

. . .
. . .

0 0 1 −2
0 0 2 −3

. . .
. . . . . .

. . .
. . .

0 0 2 −3
0 0 3 −4

. . .
. . . . . .

. . .
. . .

0 0 3 −4
0 0 4 −5

. . .
. . . . . .

. . .
. . .

0 0 4 −5
...

... . . .
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

with dimension (𝑐𝑥𝑝 · 𝑐𝑧) × (𝑐𝑥 · 𝑐𝑧). Hence, considering the matrix of coefficients

that give the fit, Θ̂, and the matrix of coefficients that give the forecast, Θ̂𝑝, each
row 𝑗 = 1, ..., 𝑐𝑧, of the additional matrix of coefficients is a linear combination of
two old coefficients of that row:

Θ̂𝑗 · = 𝜃𝑗 𝑐𝑥

⎡⎢⎢⎢⎣
1
1
1
...

⎤⎥⎥⎥⎦ + (𝜃𝑗 𝑐𝑥 − 𝜃𝑗 𝑐𝑥−1)

⎡⎢⎢⎢⎣
1
2
3
...

⎤⎥⎥⎥⎦ .

∙ Differences of order 3.
Suppose a difference matrix with third order penalty, 𝐷𝑥+ of dimensions (𝑐𝑥+ −3)×
𝑐𝑥+ :

𝐷+ =

⎡⎢⎢⎢⎢⎢⎣
−1 3 −3 1 0 0 · · · 0 0 0 0
0 −1 3 −3 1 0 · · · 0 0 0 0
0 0 −1 3 −3 1 · · · 0 0 0 0
...

...
...

...
...

... · · ·
...

...
...

...
0 0 0 0 0 0 · · · −1 3 −3 1

⎤⎥⎥⎥⎥⎥⎦ .

In this case, 𝐷𝑥(2) is:

𝐷𝑥(2) =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 · · · 0 0 0 0
−3 1 0 0 · · · 0 0 0 0
3 −3 1 0 · · · 0 0 0 0
...

...
...

... · · ·
...

...
...

...
0 0 0 0 · · · −1 3 −3 1

⎤⎥⎥⎥⎥⎥⎦ .

(𝐷𝑥(2) ⊗ 𝐼𝑐𝑧)−1 and 𝐷𝑥(1) ⊗ 𝐼𝑐𝑧 are:
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(𝐷𝑥(2) ⊗ 𝐼𝑐𝑧 )
−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

. . .

1
3 1

. . .
. . .

3 1
6 3 1

. . .
. . .

. . .

6 3 1
10 6 3 1

. . .
. . .

. . .
. . .

10 6 3 1
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

𝐷𝑥(1) ⊗ 𝐼𝑐𝑧 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 3 −3

. . . . . .
. . .

. . .
. . .

0 −1 3 −3
0 0 −1 3

. . . . . .
. . .

. . .
. . .

0 0 −1 3
0 0 0 −1

. . . . . .
. . .

. . .
. . .

0 0 0 −1
... . . .

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then,

(𝐷𝑥(2)⊗𝐼𝑐𝑧 )
−1(𝐷𝑥(1)⊗𝐼𝑐𝑧 ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 3 −3

. . . . . .
. . .

. . .
. . .

0 −1 3 −3
0 −3 8 −6

. . . . . .
. . .

. . .
. . .

0 −3 8 −6
0 −6 15 −10

. . . . . .
. . .

. . .
. . .

0 −6 15 −10
0 −10 24 −15

. . . . . .
. . .

. . .
. . .

0 −10 24 −15
... . . .

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, each row, 𝑗 = 1, ..., 𝑐𝑧, of the additional matrix of coefficients is a linear
combination of three old coefficients of that row:

Θ̂𝑝𝑗 · = 𝜃𝑗 𝑐𝑥

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

3𝜃𝑗 𝑐𝑥 − 4𝜃𝑗 𝑐𝑥−1 + 𝜃𝑗 𝑐𝑥−2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+
𝜃𝑗 𝑐𝑥 − 2𝜃𝑗 𝑐𝑥−1 + 𝜃𝑗 𝑐𝑥−2

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3
4
5
6
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

.
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Appendix .2 Proof of Theorem 3

Proof. Given the extended transformation Ω*
+ in two dimensions defined in (50) and the

extended penalty matrix in (15) the extended mixed model penalty is:

Φ
*
+ = Ω

*′
+ 𝑃+Ω

*
+ = Ω

*′
+ (𝜆𝑧𝑃

𝑧+
+ + 𝜆𝑥𝑃

𝑥+
+ )Ω

*
+ = 𝜆𝑧Ω

*′
+ 𝑃

𝑧+
+ Ω

*
+ + 𝜆𝑥Ω

*′
+ 𝑃

𝑥+
+ Ω

*
+

= 𝜆𝑧

⎡⎢⎢⎢⎢⎢⎢⎣
𝑈*′

𝑥+𝑓 ⊗ 𝑈*′
𝑧+𝑓

𝑈*′
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑓

𝑈*′
𝑥+𝑓 ⊗ 𝑈*′

𝑧+𝑟

𝑈*′
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ (𝐼𝑐𝑥+
⊗ 𝐷

′
𝑧+

𝐷𝑧+
)
[︁
𝑈*

𝑥+𝑓 ⊗ 𝑈*
𝑧+𝑓 | 𝑈*

𝑥+𝑟 ⊗ 𝑈*
𝑧+𝑓 | 𝑈*

𝑥+𝑓 ⊗ 𝑈*
𝑧+𝑟 | 𝑈*

𝑥+𝑟 ⊗ 𝑈*
𝑧+𝑟

]︁

+ 𝜆𝑥

⎡⎢⎢⎢⎢⎢⎢⎣
𝑈*′

𝑥+𝑓 ⊗ 𝑈*′
𝑧+𝑓

𝑈*′
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑓

𝑈*′
𝑥+𝑓 ⊗ 𝑈*′

𝑧+𝑟

𝑈*′
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ (𝐷
′
𝑥+

𝐷𝑥+
⊗ 𝐼𝑐𝑧+

)
[︁
𝑈*

𝑥+𝑓 ⊗ 𝑈*
𝑧+𝑓 | 𝑈*

𝑥+𝑟 ⊗ 𝑈*
𝑧+𝑓 | 𝑈*

𝑥+𝑓 ⊗ 𝑈*
𝑧+𝑟 | 𝑈*

𝑥+𝑟 ⊗ 𝑈*
𝑧+𝑟

]︁

= 𝜆𝑧

⎡⎢⎢⎣
𝑈*′

𝑥+𝑓 𝐼𝑐𝑥+
𝑈*

𝑥+𝑓 ⊗ 𝑈*′
𝑧+𝑓𝐷′

𝑧𝐷𝑧+
𝑈*

𝑧+𝑓 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐼𝑐𝑥+

𝑈*
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑓𝐷′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑓

𝑂 𝑂

𝑂 𝑂
𝑂 𝑂

𝑈*′
𝑥+𝑓 𝐼𝑐𝑥+

𝑈*
𝑥+𝑓 ⊗ 𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟 𝑈*′
𝑥+𝑓 𝐼𝑐𝑥+

𝑈*
𝑥+𝑓 ⊗ 𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟

𝑈*′
𝑥+𝑟𝐼𝑐𝑥+

𝑈*
𝑥+𝑓 ⊗ 𝑈*′

𝑧𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈*

𝑧𝑟 𝑈*′
𝑥+𝑟𝐼𝑐𝑥+

𝑈*
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈𝑧+𝑟

⎤⎥⎥⎥⎥⎦

+ 𝜆𝑥

⎡⎢⎢⎢⎢⎢⎣
𝑈*′

𝑥+𝑓𝐷′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑓 ⊗ 𝑈*′
𝑧+𝑓𝑈*

𝑧+𝑓 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑓𝑈*

𝑧+𝑓

𝑂 𝑂

𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑟𝑈

*
𝑧+𝑓 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑓𝑈*

𝑧+𝑟

𝑂 𝑂

𝑈*′
𝑥+𝑓𝐷′

𝑥+
𝐷𝑥+

𝑈*
𝑥+𝑓 ⊗ 𝑈*′

𝑧+𝑟𝑈
*
𝑧+𝑟 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑟𝑈

*
𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎦

= 𝜆𝑧

⎡⎢⎢⎢⎢⎣
𝑈*′

𝑥+𝑓 𝐼𝑐𝑥+
𝑈*

𝑥+𝑓 ⊗ 𝑂𝑞𝑧 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐼𝑐𝑥+

𝑈*
𝑥+𝑟 ⊗ 𝑂𝑞𝑧

𝑂 𝑂
𝑂 𝑂

𝑂 𝑂
𝑂 𝑂

𝑈*′
𝑥+𝑓𝑈*

𝑥+𝑓 ⊗ 𝑈*′
𝑧+𝑟𝐷

′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟 𝑈*′
𝑥+𝑓𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑟𝐷

′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟

𝑈*′
𝑥+𝑟𝑈

*
𝑥+𝑓 ⊗ 𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟 𝑈*′
𝑥+𝑟𝑈

*
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟

⎤⎥⎥⎥⎥⎦

+ 𝜆𝑥

⎡⎢⎢⎢⎢⎢⎣
𝑂𝑞𝑥 ⊗ 𝑈*′

𝑧+𝑓 𝐼𝑐𝑧+
𝑈*′

𝑧+𝑓 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑓𝑈*

𝑧+𝑓

𝑂 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑟𝑈

*
𝑧+𝑓

𝑂 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑓𝑈*

𝑧+𝑟

𝑂𝑞𝑥 ⊗ 𝑈*′
𝑧+𝑟𝑈

*
𝑧+𝑟 𝑂

𝑂 𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟 ⊗ 𝑈*′
𝑧+𝑟𝑈

*
𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎦

Therefore, Φ*
+ = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝑂𝑞𝑧𝑞𝑥 ,𝐹

*
+), with 𝐹 *

+ given in (53). Then, the extended
covariance matrix of the random effects is 𝐺*

+ = 𝜎2
𝜖𝐹

*−1
+ .

Appendix .3 Proof of Theorem 4

Proof. Given the extended transformation matrix for the random part Ω+𝑟 and the ex-
tended penalty matrix 𝑃+ defined in (75) and (74), respectively, 𝐹+ is:
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𝐹+ = Ω
′
𝑟+𝑃+Ω𝑟+

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑈 ′
𝑧𝑟 · · ·

.

.

. 𝑈 ′
𝑥+𝑟

𝑢
(2)′
𝑥+𝑓

⊗ 𝑈 ′
𝑧+𝑟

𝑈 ′
𝑥+𝑟 ⊗ 𝑢

(2)′
𝑧+𝑓

𝑈 ′
𝑥+𝑟 ⊗ 𝑈 ′

𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · ·
.
.
. 𝜆𝑧𝐷′

𝑧+
𝐷𝑧+

𝜆𝑥𝐷′
𝑥+

𝐷𝑥+

𝜏𝑥𝐷′
𝑥+

𝐷𝑥+
⊗ 𝐼𝑐𝑧+

+ 𝜏𝑧𝐼𝑐𝑥+
⊗ 𝐷′

𝑧+
𝐷𝑧+

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0 · · ·
𝑈𝑧𝑟

.

.

. 𝑈𝑥+𝑟

𝑢
(2)
𝑥+𝑓

⊗ 𝑈𝑧+𝑟 | 𝑈𝑥+𝑟 ⊗ 𝑢
(2)
𝑧+𝑓

| 𝑈𝑥+𝑟 ⊗ 𝑈𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣
𝜆𝑧𝑈 ′

𝑧+𝑓𝐷′
𝑧+

𝐷𝑧+
𝑈𝑧+𝑓 𝑂 𝑂

𝑂 𝜆𝑥𝑈 ′
𝑥+𝑓𝐷′

𝑥+
𝐷𝑥+

𝑈𝑥+𝑓 𝑂

𝑂 𝑂 𝜏𝑥𝑢
(2)′
𝑥+𝑓

𝐷′
𝑥+

𝐷𝑥+
𝑢

(2)
𝑥+

⊗ 𝑈
′
𝑧+𝑟𝑈𝑧+𝑟 + 𝜏𝑧𝑢

(2)′
𝑥+𝑓

𝑢
(2)
𝑥+𝑓

⊗ 𝑈 ′
𝑧+𝑟𝐷

′
𝑧+

𝐷𝑧+
𝑈𝑧+𝑟

𝑂 𝑂
𝑂 𝑂
𝑂 𝑂

𝜏𝑥𝑈 ′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈𝑥+𝑟 ⊗ 𝑢

(2)′
𝑧+𝑓

𝑢
(2)
𝑧+𝑓

+ 𝜏𝑧𝑈 ′
𝑥+𝑟𝑈𝑥+𝑟 ⊗ 𝑢

(2)′
𝑧+𝑓

𝐷′
𝑧+

𝐷𝑧+
𝑢

(2)
𝑧+𝑓

𝑂

𝑂 𝜏𝑥𝑈 ′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈𝑥+𝑟 ⊗ 𝑈

′
𝑧+𝑟𝑈𝑧+𝑟 + 𝜏𝑧𝑈

′
𝑥+𝑟𝑈𝑥+𝑟 ⊗ 𝑈 ′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎦ ,

using 𝑈 ′
𝑖𝑟𝐷

′
𝑖𝐷𝑖𝑈 𝑖𝑟 = Σ̃𝑖, 𝑢

(2)′
𝑖𝑓 𝐷′

𝑖 = 𝑂, 𝑢
(2)′
𝑖𝑓 𝑢

(2)
𝑖𝑓 = 1 and 𝑈 ′

𝑖𝑟𝑈 𝑖𝑟 = 𝐼𝑐𝑖−𝑞𝑖 , for 𝑖 =
𝑧+,𝑥+, we obtain the extended mixed model penalty 𝐹+ in (78).

Appendix .4 Proof of Theorem 5

Proof. Given the extended transformation matrix for the random part Ω+𝑟 and the ex-
tended penalty matrix 𝑃+ defined in (82) and (74), respectively, 𝐹 *

+ is:

𝐹
*
+ = Ω

*′
𝑟+𝑃+Ω

*
𝑟+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝑈*′
𝑧+𝑟 · · ·

.

.

. 𝑈*′
𝑥+𝑟

𝑢
*(2)′
𝑥+𝑓

⊗ 𝑈*′
𝑧+𝑟

𝑈*′
𝑥+𝑟 ⊗ 𝑢

*(2)′
𝑧+𝑓

𝑈*′
𝑥+𝑟 ⊗ 𝑈*′

𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · ·
.
.
. 𝜆𝑧𝐷′

𝑧+
𝐷𝑧+

𝜆𝑥𝐷′
𝑥+

𝐷𝑥+

𝜆3𝐷
′
𝑥+

𝐷𝑥+
⊗ 𝐼𝑐𝑧+

+ 𝜆4𝐼𝑐𝑥+
⊗ 𝐷′

𝑧+
𝐷𝑧+

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0 · · ·
𝑈𝑧𝑟

.

.

. 𝑈*
𝑥+𝑟

𝑢
*(2)
𝑥+𝑓

⊗ 𝑈*
𝑧+𝑟 | 𝑈*

𝑥+𝑟 ⊗ 𝑢
*(2)
𝑧+𝑓

| 𝑈*
𝑥+𝑟 ⊗ 𝑈*

𝑧+𝑟

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎣
𝜆𝑧𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+
𝑈*

𝑧+𝑟

𝜆𝑥𝑈*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+
𝑈*

𝑥+𝑟

𝐹
(1,2)
+

⎤⎥⎥⎦ ,

where 𝐹
(1,2)
+ =

⎡⎢⎣𝐹
(1,2)
+11 𝑂 𝐹

(1,2)
+13

𝑂 𝐹
(1,2)
+22 𝑂

𝐹
(1,2)′
+13 𝑂 𝐹

(1,2)
+33

⎤⎥⎦, with

𝐹
(1,2)
+11 = 𝜏𝑥𝑢

*(2)′
𝑥+𝑓 𝐷

′
𝑥+

𝐷𝑥+𝑢
*(2)
𝑥+𝑓 ⊗𝑈*′

𝑧𝑟𝑈
*
𝑧+𝑟 + 𝜏𝑧𝑢

*(2)′
𝑥+𝑓 𝑢

*(2)
𝑥+𝑓 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈*
𝑧+𝑟

𝐹
(1,2)
+13 = 𝜏𝑧𝑢

*(2)′
𝑥+𝑓 𝑈

*
𝑥+𝑟 ⊗𝑈*

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈*
𝑧+𝑟 + 𝜏𝑥𝑢

*(2)′
𝑥+𝑓 𝐷

′
𝑥+

𝐷𝑥+𝑈*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝑈
*
𝑧+𝑟

𝐹
(1,2)
+22 = 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈*
𝑥+𝑟 ⊗ 𝑢

(*2)′
𝑧+𝑓 𝑢

*(2)
𝑧+𝑓 + 𝜏𝑧𝑈

*′
𝑥+𝑟𝑈

*
𝑥+𝑟 ⊗ 𝑢

*(2)′
𝑧+𝑓 𝐷′

𝑧+
𝐷𝑧+𝑢

*(2)
𝑧+𝑓

𝐹
(1,2)
+23 = 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈*
𝑥+𝑟 ⊗ 𝑢

*(2)′
𝑧+𝑓 𝑈*

𝑧+𝑟 + 𝜏𝑧𝑈
*′
𝑥+𝑟𝑈

*
𝑥+𝑟 ⊗ 𝑢

*(2)′
𝑧+𝑓 𝐷′

𝑧+
𝐷𝑧+𝑈*

𝑧+𝑟

𝐹
(1,2)
+33 = 𝜏𝑧𝑈

*′
𝑥+𝑟𝑈

*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝐷
′
𝑧+

𝐷𝑧+𝑈*
𝑧+𝑟 + 𝜏𝑥𝑈

*′
𝑥+𝑟𝐷

′
𝑥+

𝐷𝑥+𝑈*
𝑥+𝑟 ⊗𝑈*′

𝑧+𝑟𝑈
*
𝑧+𝑟

using 𝑢
*(2)′
𝑖𝑓 𝐷′

𝑖 = 𝑂 for 𝑖 = 𝑧+,𝑥+, we obtain the extended mixed model penalty 𝐹 *
+ in

(85).
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Appendix .5 Simulation study results

Simulations results for Scenario 1:

•nzp=0,nxp=10

Figure .11: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 1 andnzp=0andnxp= 10.

•nzp=0,nxp=15

Figure .12: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 1 andnzp=0andnxp= 15.

•nzp=0,nxp=20
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Figure .13: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 1 andnzp=0andnxp= 20.

•nzp= 10,nxp=5

Figure .14: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 10,nxp=5.

•nzp=nxp=10
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Figure .15: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 10,nxp= 10.

•nzp= 10,nxp=15

Figure .16: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 10,nxp= 15.

•nzp= 10,nxp=20
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Figure .17: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 10,nxp= 30.

•nzp= 20,nxp=5

Figure .18: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 20,nxp=5.

•nzp= 20,nxp=10
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Figure .19: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 20,nxp= 10.

•nzp= 20,nxp=15

Figure .20: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 20,nxp= 15.

•nzp= 20,nxp=20
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Figure .21: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp= 20,nxp= 20.

Simulations results for Scenario 2:

•nzp=0,nxp=10

Figure .22: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=0andnxp= 10.

•nzp=0,nxp=15

50



Figure .23: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=0andnxp= 15.

•nzp=0,nxp=20

Figure .24: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=0andnxp= 20.

•nzp= 10,nxp=5
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Figure .25: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=10andnxp=5.

•nzp=nxp=10

Figure .26: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=nxp = 10.

•nzp= 10,nxp=15
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Figure .27: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=10andnxp= 15.

•nzp= 10,nxp=20

Figure .28: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=10andnxp= 20.

•nzp= 20,nxp=5
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Figure .29: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=20andnxp=5.

•nzp= 20,nxp=10

Figure .30: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=20andnxp= 10.

•nzp= 20,nxp=15
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Figure .31: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=20andnxp= 15.

•nzp=nxp=20

Figure .32: MAE in the fit (left panel), in the forecast (middle panel) and in total (right panel) of smooth
models in scenario 2 andnzp=nxp = 20.
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