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Abstract
Weconsider amodel of a quenched disordered geometry inwhich a randommetric is defined on2,
which isflat on average and presents short-range correlations.We focus on the statistical properties of
balls and geodesics, i.e., circles and straight lines.We shownumerically that the roughness of a ball of
radiusR scales as χR , with a fluctuation exponent χ ≃ 1 3, while the lateral spread of theminimizing

geodesic between two points at a distance L grows as ξL , withwandering exponent valueξ ≃ 2 3.
Results on relatedfirst-passage percolation problems lead us to postulate that the statistics of balls in
these randommetrics belong to theKardar–Parisi–Zhang universality class of surface kinetic rough-
ening, with ξ and χ relating to critical exponents characterizing a corresponding interface growth pro-
cess.Moreover, we check that the one-point and two-point correlators converge to the behavior
expected for theAiry-2 process characterized by the Tracy–Widom (TW) probability distribution
function of the largest eigenvalue of large randommatrices in theGaussian unitary ensemble (GUE).
Nevertheless extreme-value statistics of ball coordinates are given by the TWdistribution associated
with randommatrices in theGaussian orthogonal ensemble. Furthermore, we alsofindTW–GUE
statistics with good accuracy in arrival times.

1. Introduction

Randomgeometry is a branch ofmathematics [1]with deep connections to physics, ranging from statistical
mechanics to quantumgravity [2, 3]. For example, thermal fluctuations of important biophysical objects, like
fluidmembranes, can be naturally accounted for through the framework of randomgeometry [4, 5]. The effect
of thermal or quantum fluctuations of the geometry on systems featuring strong correlations, such as those
underlying a continuous phase transition, is typically relevant, in the sense that theymodify the values of the
critical exponents [6]. For 2D systems, thismodification is governed by the celebratedKnizhnik–Polyakov–
Zamolodchikov equations [7]. If, instead of thermal or quantum fluctuations, we consider quenched disorder in
the geometry, one is naturally led to the study ofmodels like first-passage percolation (FPP) [8, 9]. In this discrete
model, each link of a regular lattice is endowedwith a random passage time. FPP theory studies the probability
distribution of traveling times between pairs of lattice points. Alternatively,minimal traveling times can be
regarded as distances, thereby defining a randommetric. Being a generalization of the Edenmodel [9, 10], FPP
has played an important role in statistical physics, as an important step for the analysis of other interacting
particle systems like the contact process or the votermodel.More recently, additional interest in themodel
derives from its properties when defined on realistic (disordered) graphs [11], such as those occurring in e.g.
communications or economic systems [12].

Inspired by studies in FPP, recent works have dealt with geodesics and balls in a two-dimensional plane
endowedwith suitable randommetrics [13, 14]. By suitable, wemean that themetric is on average flat and
presents only short-range correlations. In other terms, the geometric properties are considered over distances
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much larger than either the curvature radius or the correlation lengths. The geodesics on these randommanifolds
presentmany interesting properties. Let us consider two points which are separated by a Euclidean distance L.
Theminimizing geodesic on the randommetric which joins them can be regarded as a random curve, when

viewed from the Euclidean point of view. Itsmaximal deviation from the Euclidean straight line grows as ξL . It is
also possible to study balls on these randommetrics. The ball of radiusR around any point will be also a random
curve, from the Euclidean point of view. For largeR, the shape of this curve can be shown to approach a
circumference, whose radius is proportional toR. It is conjectured to lie within an annulus whosewidth grows as

χR [13, 14].
The so-calledwandering and fluctuation exponents, ξ and χ, for the geodesic and ballfluctuations,

respectively, denote a certain universal fractal nature of straight lines and circles on a random geometry.
Actually, they also occur for FPP on a lattice, where they are known to correspond, through an appropriate
interpretation [15], to those characterizing the dynamics of a growing interface. Basically, the boundary of a FPP
ball can be thought of as an interface which, in thewider context ofmodels of surface kinetic roughening
[16, 17], is expected to grow irreversibly, in competitionwith time-dependent fluctuations and smoothing
mechanisms. Starting with aflat or a circular form, the interface roughness (rootmean square deviation around
themean interface position) grows in time as ∼ βW t t( ) . Also, the interface fluctuations present a lateral
correlation lengthwhich growswith time asℓ ∼t t( ) z1 . The FPP values for the growth and dynamic exponents,
β = 1 3 and =z1 2 3, respectively [15], correspond to those of the so-calledKardar–Parisi–Zhang (KPZ)
universality class for one-dimensional interfaces [16–18]. Actually, a landmark scaling relation that holds
among exponents for systemswithin this class, namely the so-calledGalilean relation β + = z1 2 , implies
through the interface interpretation ξ → z1 and χ β→ [15] that χ ξ+ =1 2 , which has been proved only very
recently for FPP under strong hypothesis [19, 20]. Rigorously speaking, the individual valuesξ = 2 3 and
χ = 1 3 remain conjectural for FPP.

In recent years, evidence has gathered, showing that systems in theKPZuniversality class do not only share
the values of the scaling exponents β and z1 , but also the full probability distribution of the interface
fluctuations [21], being accurately described by an universal, stationary, stochastic process that goes by the name
of Airy process [22, 23]. This applies to discretemodels [24–26], experimental systems [21, 27–29], and to the
KPZ equation itself [30–32]. For one-dimensional interfaces andwithin the context of simple-exclusion
processes—and as a confirmation of a conjecture formulated in the context of the polynuclear growthmodel
[33, 34]—it has been rigorously proved that, for a band geometry, interface fluctuations follow theTracy–
Widom (TW)probability distribution function associatedwith large randommatrices in theGaussian
orthogonal ensemble (GOE), while for a circular setting they follow the TWdistribution associatedwith the
Gaussian unitary ensemble (GUE) [35–37]. Universalfluctuations of TW type are also known to showup in FPP
systems, but in this case the variable whosefluctuations are typically considered is the time of arrival, rather than
the radius [38]. The values of thefluctuation andwandering exponents in the randommetric problem suggest a
direct relation to non-equilibriumprocesses in theKPZuniversality class [13, 14].

In this workwe develop an adaptive numerical algorithm to explore the shapes of balls in arbitrary two-
dimensional Riemannianmanifolds, and specialize it towork on randommetrics of the desired properties. Our
algorithm is based on the one used to solve the covariant KPZ equation [39, 40].We shownumerically that those
balls, as conjectured [13, 14], followKPZ scaling.Minimizing geodesics are studied, and their fluctuations are
shown to scale in the expectedway.Moreover, radialfluctuations are shown to followAiry-2 process statistics
both in the one-point and the two-point functions [22, 23]. The extreme-value statistics of ball coordinates turn
out to be given nevertheless by the TW–GOEdistribution, akin to previous experimental and theoretical results
in circular geometries [41, 42]. Finally, we also study a related variable, the time of arrival, and show that it again
follows TW–GUE statistics.

The paper is structured as follows. Section 2 discusses the basics of geometry in randommetrics. The
numerical algorithm is described in section 3, followed by a detailed study of balls and geodesics in section 4. The
Airy-2 statistics of radial fluctuations is discussed in detail in section 5. Section 6 studies the time of arrival, while
section 7 ends by presenting our conclusions and plans for futurework.

2.Geometry in randommetrics

Let us consider the Euclidean plane 2, endowedwith the usual Euclidean distance, dE. Let us nowdefine a
manifold obtainedwhen a(n almost sure) ∞C metric tensor field g is imposed upon2, inducing a distance
function dg. Let us consider, following [13, 14], an ensemble of such smoothmetric fields which fulfill the
following conditions:
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• Independence at a distance: themetric tensor at any two points whose (Euclidean) distance is larger than a
cutoff r0 are independent (this implies a compactly-supported correlated function).

• Statistical homogeneity and isotropy: the probability distribution function for themetric tensor values is
invariant under arbitrary translations and rotations in the plane.

• Almost sure smoothness: with probability one, themetric tensor is everywhere ∞C -smooth.

Examples of such randommetric tensors can be found in [14].
Themetric tensor field g can be visualized as amapping that attaches to each point two orthogonal

directions, ⃗v1 and ⃗v2, and twometric eigenvalues, λ1 and λ2. Alternatively, we can think that each point in2 gets
an ellipse attached, with principal directions ⃗v1 and ⃗v2, and semi-axes λ1 and λ2. The geometricalmeaning of this
ellipse is the following: a particlemoving away from the point at unit speed in themanifoldwouldmove in2

with a speed given by the intersection of the ellipse with the raywhich the particle follows.
Now let us choose a pointX0 (e.g., the origin) and consider the set of points, = ∣ ⩽B r X d X X r( ) { ( , ) }X g 00 ,

whose g-distance to it is smaller than or equal to a certain r. SinceX0 will remain fixed from the beginning, we
will usually drop the subindex. This ball need not be topologically equivalent to a Euclidean ball, since it need not
be simply connected. Therefore, its boundary∂B r( )X0 will consist of a certain number of components, see
figure 1 for a pictorial image.

The results in [13, 14] guarantee that when this boundary,∂B r( )X0 , is viewed from the Euclidean viewpoint,
it lies within two circles centered atX0, whose radii scale linearly with r. It is not hard to prove that one of the
components of the ball boundary encloses all the others, namely, the onewhose interior containsX0. Thus, the
ball-boundary consists of an outer irregular front plus an internal froth, or set of bubbles. Let∂ B r( )X0 0 denote
this exterior component.

A usefulmental image of the ball is a swarmof particles emanating fromX0, each one escaping from there
with unit speed and following a geodesic line. At time t, the set of visited points will beB t( )X0 . In this way, the
bubbles can be considered as ‘hills’which are hard to climb. This picture can bemademore precise in the
followingway. Let us consider the tangent space atX0,TX0

, and the set of (outward) unit vectors, φ⃗u ,

parameterized by some angleφ. Each φ⃗u determines a unique geodesic curve, γφ. If each geodesic is traversed at

unit speed, then time is a natural (arc-length) parameter for this curve, γφ t( ), with γ =φ X(0) 0.We now state that

∪ γ∂ ⊆ φ φB t t( ) ( ). The equality does not generally hold, sincemany geodesics are non-minimizing [43].

In fact, φ t{ , } constitute a—possibly degenerate—coordinate systemon themanifold that generalizes polar
coordinates. It has a very interesting property: lines of constantφ and lines of constant t are always g-orthogonal.
Building from this assertion, one can state amodifiedHuygens principle for the propagation of the ball front.
Given the front at a certain time∂B t( ), it is possible to obtain the front at δ+t t , δ∂ +B t t( )by allowing each
pointX on it tomove along the local normal direction δ→ + ⃗X X t n· . This is, of course, in analogy to the
originalHuygens principle for the propagation of light, orHamilton–Jacobi equation inmechanics.

Let us start with an infinitesimal circle centered atX0. Then the ball for time t fulfills simply the equation

∂ = ⃗X n X( ), (1)t g

whereX stands for a generic point on∂B t( ) and ⃗n X( )g is the local normal to such an interface, with respect to the
metric g.

Figure 1.A typical ballB r( )X0 of radius r around a given pointX0. In general,B r( )X0 need not be simply connected. Therefore, its
boundary∂B r( )X0 (solid lines) contains different components. The boundary is enclosed between two circles (dashed lines), whose
radii grow linearly with r [13, 14].
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Wecan gain some intuition about thisHuygens principle from figure 2, which shows a zoomon a region of
the ball front. The dashed ellipse shows the localmetric tensor g. How to obtain the normal vector ⃗ng , given the

tangent ⃗t and themetric? The g-orthogonality relation ⃗⊥ ⃗t ng g can be stated as =μν
μ νg t n 0g , i.e., ⃗⊥ ⃗gt ng , where

⊥ denotes the Euclidean orthogonality relation. Application of g to ⃗t makes it always closer to the principal
directionwithmaximal eigenvalue. Therefore, ⃗ng will always be closer to the principal directionwithminimal

eigenvalue. Of course, ⃗ng must be g-normalized, so that the frontwillmovewith unit speed in.
Therefore, if themetric is given, the propagation algorithm can be summarized as follows:

• For each point of the front, find ⃗t .

• Compute ⃗gt .

• Find a Euclidean normal to that vector, N⃗g . Of course, take good care of the orientation!

• Normalize that vector according to g, namely, find∣ ⃗ ∣ ≡ μν
μ νN g N Ng g g

2 and compute ⃗ = ∣ ∣ ⃗n N N(1 )g g g .

• Move the point by the vector quantityδ ⃗t n· g .

3.Numerical simulation algorithm

Wehave adapted our intrinsic-geometry algorithm for the covariant KPZ equation, employed in [39, 40], to the
simulation of the balls in genericmetrics. In our approach, we simulate the ball propagation of equation (1),
starting outwith an infinitesimal circle, and allowing time to play the role of the ball radius. The ball at any time
will be given by a list of points on the plane. The spatial resolution of the front is held constant: the Euclidean
distance between two neighboring points Δxmust staywithin a certain interval l l[ , ]0 1 . This is done by inserting
or removing points in a dynamical way. Checks of our results for invariance under changes in l0 and l1 are
performed in order to guarantee that the continuum limit has been achieved.Moreover, self-intersections can
appear naturally, as anticipated infigure 1. In such cases, we retain only the componentwhich contains the
origin of the ball, i.e., we track∂ B r( )0 .

For illustration,figure 3 shows the integration procedure as applied to several deterministicmetrics. In each
case, themetric g is obtained from the first fundamental formof a simple surface. Indeed, the formof the
corresponding balls in the Euclidean plane intuitively reflect the ‘speed’withwhich the interface (ball) grows at
each point as a function of the value of themetric there.

Generation of a randommetric tensor field is performed by assuming that the correlation length is shorter
than the cutoff distance assumed for the ball, i.e., <r l0 0. Thus, themetric tensors at sampled points are
statistically independent. The procedure does not require derivatives of themetric tensors, as it would if one
insisted on tracking individual geodesics. Themetric tensor at each point is specified by providing the two
orthogonal unitary eigenvectors, ⃗v1 and ⃗v2, and the two corresponding eigenvalues. Thus, ⃗v1 is generated
randomly, ⃗v2 is just chosen to be orthogonal to it, and the eigenvalues are uniformdeviates in the interval λ λ[ , ]0 1 ,
where λ0 should be strictly larger than zero.

The balls are analyzed from the Euclidean point of view: their roughnessW is found afterfitting to a
Euclidean circle, and by computing the average squared deviation from the ball points to it, ultimately averaging

Figure 2.A small region of the ball front, showing the local tangent ( ⃗t ) and normal ( ⃗ng ) vectors. They are orthogonal onlywith respect
to themetric g, which is represented with the dashed ellipse. Notice that ⃗t and ⃗ng are not orthogonal within the Euclidean framework.
Instead, in the Euclideanmetric ⃗ng is orthogonal to ⃗gt , which is the correct notion of g-orthogonality.
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over disorder realizations.Wewill also consider the standard deviationσr of the radius of thefitting Euclidean
circle over realizations of the disorder [40]. Thus,W can be interpreted to quantify intra-sample radial
fluctuations, whileσr assesses inter-sample radial fluctuations.

4. Balls and geodesics in randommetrics

The algorithmdescribed in the previous section has been applied to integrate equation (1) numerically for
different realizations of the randomgeometry. Our simulations start with a very small ball, with initial radius
0.05, and propagate it through a randommetric with eigenvalues λ ∈ [1 20, 1]. The time-step used is
Δ = × −t 5 10 3 and the ultraviolet cutoff interval for the simulation is chosen to be =l l[ , ] [0.01, 0.05]0 1 . Scaling
results were checked to remain unchanged for smaller values of the discretization parameters.

Figure 4 shows an example of balls with increasing radii for times (i.e., g-radii) in the range t=0.2–3.4.

Figure 3.Examples of use of our numerical algorithm to obtain balls with increasing sizes for deterministicmetrics. In all cases, and in
order to enhance visualization, themetrics have been extracted from thefirst fundamental formof a simple surface: (a) paraboloid

= +z x y2 2, a surfacewith positive curvature; (b) saddle = −z x y2 2, a surface with negative curvature; (c) egg-crate surface
= +z x y x y( , ) sin ( ) sin ( ). Left column shows the balls (solid lines) immersed in the corresponding surfaces. The right column does

the same in the Euclidean (x, y) plane.
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4.1. Roughness
Wehave simulated equation (1) for 1280 realizations of the disorder in themetric and analyzed the Euclidean
roughness of the resulting balls as a function of time (i.e., g-radius). The results for the roughnessW(t) are
shown infigure 5. Thefigure also shows the time evolution of the standard deviation of the average fitting
Euclidean radius,σr . Both observables are seen to followpower-law behavior. Thus, ∼ χW t , with χ ≃ 1 3
(0.33 ± 0.001). The correspondence between the χ exponent of random geometry and the β = 1 3 valuewhich
characterizes the KPZuniversality class is evident.

With respect to the sample-to-sample standard deviation of the average Euclidean radii,σr , we also obtain a
clear power-law, as illustrated infigure 5, butwith a different exponent value, namely,σ ∼ χtr

˜, with

χ = ±˜ 0.17 0.01. An heuristic argument shows that this value is actually also compatible withKPZ scaling.
Indeed, let us assume (1) that the radius grows linearly in time and (2) that the correlation length scales as

ℓ ∼ t z1 , with =z 3 2, as expectedwithinKPZuniversality. Then, the number of independent patches on a single

droplet will scale as ℓ∼ ∼ =n r t t tP
z1 1 3. The sample-to-sample standard deviation should then scale as the

localfluctuations divided by the square root of the number of patches, ∼ =W n t t tP
1 3 1 6 1 6. Our value for

χ̃ is compatible with this prediction.

Figure 4.Example of balls of increasing radii of ametric chosen randomlywith eigenvalues λ ∈ [1 20, 1]. The times or g-radii grow
linearly from t=0.2–3.4.

Figure 5. Log–log plot of Euclidean radial roughnessW (+) and standard deviationσr (×) as functions time (i.e., g-radius). Lines
correspond to simple power-law behaviors, with exponent values as given in the corresponding labels.
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4.2. Geodesicfluctuations
Our next numerical experiment addresses the average lateral deviation of theminimizing geodesics.We define
such a geodesic fluctuation in the followingway. Consider two points which are a Euclidean distance L apart.
Find theminimizing geodesic joining them, andmark also itsmiddle pointM, see figure 6.

The coordinates of pointM relative to themiddle point of the straight segment joiningA andB, namely
δ δ∥ ⊥( , ), are, respectively, the longitudinal and lateralfluctuations of the actual geodesic from its Euclidean
counterpart. Notice that the disorder averages of bothδ∥ andδ⊥ should be zero, but their fluctuations are highly

informative. According to previous work [13, 14], they are conjectured to scale asδ ∼ χ
∥ L , with the same

exponent as the roughness, χ = 1 3, and δ ∼ ξ
⊥ L , withξ = 2 3, a second critical exponent.

We have estimated bothδ⊥ andδ∥ ,fixing points A, B at ∓L( 2, 0), for different values of L and 128
realizations of the disorder. Our procedure is as follows: two balls centered at these points are grown
simultaneously. Growth is arrestedwhen both balls intersect for the first time. The coordinates of their first
intersection point are, precisely, δ δ= ∥ ⊥M ( , ); seefigure 7 (left) for an illustration. The rationale is as follows.
Let us call tx the time (g-radius) at which both ballsfirst intersect. PointM can be reached in time tx both fromA
and fromB, hence it should belong to theminimizing geodesic connecting both points.

In order to save simulation time, each simulation is carried out in practice as follows: we start with two very
small balls separated by a small distance L0, and grow themuntil they first intersect. At thismoment, we take note
of the coordinates of the intersection point, increase the separation of the balls by ΔL, rotate each one by a
randomangle, and continue the simulation until they intersect again. This procedure is repeated until the
desired range for L has been covered. The random rotation ensures that the ensuing intersection points are
uncorrelated.

We obtain the rootmean square horizontal and vertical deviations of the intersection point as functions of
the Euclidean distance between the two points. The results appear infigure 7. The lateral fluctuations of the

Figure 6.Minimizing geodesic (solid line) between points A andB,which are a Euclidean distance L apart. LetM be themiddle point
in the geodesic, i.e., the point along it which can be reached in the same time fromA and fromB. Then,δ⊥ and δ∥ are the lateral and
longitudinal deviations betweenM and themiddle point (square) of the straight segment (dashed horizontal line) joining A andB. In
other terms, they constitute the lateral and longitudinal deviations of the actual geodesic from its Euclidean counterpart.

Figure 7. Left: illustration of the procedure tofind the geodesic fluctuations. Balls are grown simultaneously frompoints A andB.
Their first intersection point ismarked (solid bullet). The vector going from themidpoint on the segment that joins the two ball
centers (empty circle) to the intersection point has components δ∥ andδ⊥, see inset for a zoomed image. Right: rootmean square
deviation of the intersection of the balls growing from two points at a distance L, in logarithmic scale, for 128 samples. The lateral
fluctuation (×) scales as δ ∼ ξ

⊥ L , withξ = ±0.68 0.02. The longitudinalfluctuation (+) scales asδ ∼ χ
∥ L , with a smaller exponent

χ = ±0.36 0.02. The lines provide power-law fits using these exponent values.
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geodesics scalewith the separation L between the ball centers asδ ∼ ξ
⊥ L , withξ ≃ 2 3, while the longitudinal

fluctuations scale with the same exponent value as the roughness, namely, δ ∼ χ
∥ L , with χ ≃ 1 3. It is

straightforward to understand the exponent for the longitudinal fluctuations, as δ∥ is quite naturally expected to
growwith the ball roughness. Through the rough interface interpretationmentioned above [15], the lateral
fluctuationsδ⊥, are otherwise related to the increase in the correlation length characteristic of systems in theKPZ

universality class, namely, δ ℓ∼ ∼⊥ t t t( ) ( ) z1 , with =z1 2 3. Indeed, the exponent valueswe obtain for the
randommetrics system are compatible, within statistical uncertainties, with the so-calledGalilean relation,
χ ξ+ =1 2 or, equivalently, β + = z1 2 , which is a hallmark of theKPZuniversality class. The geometrical
interpretation of this exponent identity within the latter context is the expression, under the scaling hypothesis,
of the fact that on average the rough interface growswith uniform speed along the local normal direction [15],
implementing aHuygens principle as discussed above.

4.3. Rightmost point statistics
Wehave experimentedwith a different approach tofind the scaling exponents. For each interface, wefind the

rightmost point, ⃗P , to be the point with highest x-coordinate. If the interface was a circumference, wewould have
⃗ =P R( , 0), whereR is the expected value of the radius. Let uswrite the deviations as ρ ρ⃗ = + ∥ ⊥P R( , ), with ρ∥

and ρ⊥ having similar interpretations to those discussed for δ∥ andδ⊥ in the previous section. Of course, there is
nothing special with the x-axis, onemay choose any direction. A useful strategy is to perform several random
rotations of the interface and find the rightmost extreme point for each of them, computing the rootmean
square values for ρ∥ and ρ⊥. Figure 8 shows the results of this procedure as a function of the average radius size

for 1280 realizations, with 50 randomdirections for each profile. The results are extremely clean: ρ ∼ β
∥ R with

Figure 8.Upper left: illustration of the rightmost point procedure to estimate the transverse and longitudinal fluctuations of our
interfaces. For each curve, the open symbol corresponds to its rightmost point. Upper right: scaling of thefluctuations with the
average radius for each time, using 1280 noise realizations and 50 different rotations per sample. Bottom: full probability distribution
for the (rescaled) horizontal position of the rightmost point, δ∥ , to have zeromean and variance one. Comparison is provided to the
TW–GOEdistributionwith the same normalization.
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β = ±0.333 0.001and ρ ∼⊥ R z1 with = ±z1 0.665 0.001, fully compatible withKPZ scaling if we consider
that ∼R t .

Furthermore, we have studied also the full probability distribution for thisδ∥ , as shown in the bottompanel
offigure 8. The distribution follows a TW type form, but not for theGUE as it is the case for circular fluctuations,
but for theGOE. Indeed, the numerical values for skewness and kurtosis are 0.293 and 0.175, fully compatible
with the TW–GOEvalues (0.29346 and 0.16524). This result is analogous to those obtainedwhen considering
the extreme-value statistics of the height of curved interfaces in e.g. experiments on turbulent liquid crystals [41]
or in the polynuclear growthmodel [42], see additional references in [41].

5. Radialfluctuations

As discussed in the introduction, physical systems forwhich fluctuations belong to the 1DKPZuniversality class
are consistenly being found to not only share the values of the critical exponents β and z1 (respectively, χ and ξ
in the randommetrics language), but also to be endowedwith a larger universality trait, alike to a central limit
theorem: radial fluctuations of the interface follow the same probability distribution function as the largest
eigenvalues of large randommatrices extracted from theGUE, i.e., the TW–GUEdistribution.Moreover,
higher-order correlations are also conjectured to be part of the universality class, constituting the so-called Airy-
2 process [22, 23].

Figure 9 characterizes the probability distribution function of the fluctuations in the Euclidean distances to
the origin of points on balls, for different times (or g-radii).We consider 171 different values of time ti, separated
by 0.2 units, up to =t 35max and discarding thefirst few times. For each time, the corresponding ball is
approximated by a circle with radius r(t), which in turn isfit to the deterministic shape = +r t r vt( ) 0 . An
average over 1280 noise realizations ismade.Once such a deterministic contribution to radial growth is
identified, we subtract it from the distance to the origin ri of each point on the corresponding ball, as

ρ
Γ

≡
− −

γ
r r vt

t
, (2)i

i 0

whereΓ is a normalization constant. The Prähofer–Spohn conjecture [33, 34] for the radial fluctuations ρi
within theKPZuniversality class is that γ should be equal to β = 1 3, with a pdfwhich converges for long times
to the TW–GUEdistribution. Figure 9 (left) shows the evolution of the third and fourth cumulants of the
distribution of radial fluctuations. They both can be seen to approach asymptotically their TW–GUEvalues,
which are, respectively, 0.224 and 0.093 [33, 34].Within our statistics, the decay rates for the differences between
our estimates for skewness and kurtosis and their asymptotic values are compatible with power-law rates −t 2 3

and −t 4 3, respectively, see the inset of the left panel infigure 9. For the skewness, this convergence rate seems to
agreewith results in e.g. some discrete growthmodels [44] and in experiments [41], while this is not the case for
the kurtosis. Although further studies are needed, thesefinite time corrections to the distribution seem likely not
to be universal; see additional results e.g.in [45]. Considering the full histogramof the fluctuations, its time

Figure 9. Left: cumulants (skewness (×) and excess kurtosis (◦)) of the distribution of fluctuations in the Euclidean distances to the
origin of points of balls as functions of time (i.e., g-radius). As references, the horizontal lines provide the asymptotic values
corresponding to the TW–GUEdistribution. Convergence is in the formof power-laws (solid curves), approximately −t 2 3 for the
skewness and −t 4 3 for the kurtosis. The inset is a log–log representation of the same data, inwhich the latter rates are shown as the
green dashed and pink dotted lines, respectively. Right: full histogramof the rescaledfluctuations in Euclidean distances to the origin,
ρi , equation (2), for times as in the legend (symbols). Consistent with the evolution of their cumulants, the distributions are seen to
approach the TW–GUEpdf (solid line).
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evolution is shownon the right panel offigure 9, wherein steady convergence to the TW–GUEdistribution can
be readily appreciated.

But the Airy-2 process involvesmore than the single-point fluctuations. In particular, the angular two-point
correlation function can also be predicted. For afixed time t, let θr t( , )be themaximal radius at a given polar
angle θ for the ball corresponding to g-radius equal to t. Then, we define the correlator as

θ θ θ θ≡ + −( ) ( )C t r t r t r( , ) , , . (3)0 0
2

In our simulations, see figure 10, we have found that the two-point functions obtained for different times
collapse into an universal curve through

θ θ≈u t C t g v t( ) ( , ) ( ( ) ), (4)2

where the scaling function, g2, is the covariance of theAiry-2 process [29, 46–47]. The u(t) and v(t) factors have
been found numerically through the collapse of the two-point data, and their values are plotted on the right
panel offigure 10, showing that

= =−u t A t v t A t( ) , ( ) , (5)u v
2 3 1 3

where Au v, are constants. The ∼v t t( ) 1 3 dependence of the rescaled angular variable is related to the growth of
the correlation length in a straightforwardway: a length variable would require a scaling factor given by

=− −t tz1 2 3. But since θ is an angle and the radius scales linearly in time, the scaling factor ismodified to
=−t tz1 1 1 3. As seen infigure 10, convergence to the covariance of the Airy-2 process is indeed obtained for

sufficiently long times.

6. Time of arrival

Asmentioned in the introduction, FPP systems bear a strong relation to the randommetric problem studied
here [13]. Indeed, the randompassage times between neighboring sites can be considered to constitute a
discretization of a Riemannianmetric. Themost important observable in FPP studies is typically the time of
arrival to different sites in the lattice, which can be associated to the length of theminimizing geodesic joining the
origin to the given point [10, 19, 38].

Measuring times of arrival within our scheme requires a special simulation device, illustrated infigure 11. A
number of checkpoints Xj have been scattered throughout themanifold. At each time step, awinding-number
algorithm is performed in order to checkwhether each one of them is inside or outside the corresponding ball.
When pointXj changes status fromoutside to inside, we identify that time as its arrival time. The pointsXj are
distributed as a linear golden spiral, i.e., their Euclidean radii increase linearly, but their angles follow the
sequenceα π ϕ= j2j , whereϕ is the golden section,ϕ = −( 5 1) 2. This distribution is chosen so as to ensure
a uniform angular distribution, as uncorrelated as possible.

The numerical simulations give the expected results, namely, the times of arrival grow linearly with distance
to the origin, and their standard deviation also increases with distance, asσ ∼ dt

0.339, see figure 12 (upper left
panel). The higher cumulants are compatible with the TW–GUEdistribution, averaging to−0.218 for the

Figure 10. Left: data collapse of the angular correlation functions θC t( , ) for different times, to theAiry-2 covariance g2, as in
equation (4). Right: time evolution of the u(t) and v(t) factors employed for the collapse in the left panel, showing power-law behavior
as described in equation (5), namely, ∼ −u x t( ) 2 3 and ∼v t t( ) 1 3.
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skewness and 0.078 for the kurtosis, see upper right panel. These values are to be comparedwith those obtained
in [33, 34],−0.224 and 0.093, respectively, as in the case of the radial fluctuations studied earlier infigure 9. The
full histogramof arrival times, and its comparisonwith the TW–GUEdistribution, is shown infigure 12 (lower
panel). Excellent agreement is obtained.

Figure 11. Illustration of the checkpoint distribution employed in our algorithm tomeasure the time of arrival in the randommetric
system.

Figure 12.Numerical results for the distribution of times of arrival in the randommetrics system. Top-left: deviation of the time of
arrival (+) as a function of Euclidean distance to the center of the ball. The slope of the straight line is provided in the legend. Top-
right: cumulants (skewness (×) and kurtosis □( )) of the time distribution of arrival times as a function of the Euclidean radius. Exact
TW–GUE values are given by the horizontal straight lines, for reference. Bottom: histogramof the time of arrival fluctuations (+), and
comparisonwith the TW–GUEdistribution (dashed line).
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7. Conclusions and furtherwork

Wehave shown evidence of KPZ scaling in a purely geometricmodel, inwhich the role of the evolving interface
is played by balls of increasing radii in a randommanifold. Universal behavior occurs at distanceswhich are large
as compared to either the correlation or the curvature lengths.When the balls on the randommanifold are
viewed from aEuclidean point of view, they appear to be rough. If the radius of the balls is thought of as time, we
show that the growth of the Euclidean roughness of the ball is ∼ χW t , with χ = 1 3.Moreover, study of the
minimizing geodesics has shown that the lateral correlations of the fluctuations in the balls scale asℓ ∼ ξt with
ξ = 2 3. These critical exponent values are the hallmark of theKPZuniversality class, although in a different
language, namely, χ β→ andξ → z1 . Our results thus allow to assess numerically the predictions for
Riemannian FPP [13, 14], providing a detailed picture of its stochastic behavior. Given the relation to FPP
proper, this detailed descriptionmay aid in the development of rigorous proofs that fully justify the values of the
wandering andfluctuation exponents in this important discretemodel.

In principle, the results we obtainmay come as a surprise. The randomgeometrymodel we study features
quenched disorder, i.e., the disorder does not changewith time.However, we obtain standardKPZuniversality
(namely, the critical behavior corresponding to time-dependent noise), which differs from the so-called
quenched-KPZuniversality class [16]. The latter describes the scaling behavior of e.g.the quenchedKPZ
equation, inwhich a depinning transition occurs: if the intensity of the external driving F is below a finite
threshold Fc, then the average interface velocity v is zero. On the contrary, the interfacemoves with a non-zero v
for >F Fc. Actually, for sufficiently large F the quenched disorder is somehow seen by the interface as time-
dependent noise, and the scaling behavior becomes standardKPZ [16].Quenched-KPZ scaling applies at the
depinning threshold =F Fc [48]. In themodel we study the average interface velocity is non-zero by
construction, so that one is always in themoving phase, in such away that seemingly only standardKPZ
behavior ensues. Given the relation of the random geometrymodel with FPP, and in turn the connection of the
latter with the Edenmodel, it is natural to ponder whether our resultsmay provide some clue on the relation
between the quenched and the time-dependent KPZuniversality classes. Note that TWfluctuations have been
also found in other paradigmatic systems of quenched disorder, such as spin glasses, structural glasses, or the
Andersonmodel [49, 50]. This point seems towarrant further study.

Actually, TW statistics do appear in ourmodel both in the Euclideanfluctuations of the randomballs and in
the random-metric fluctuations of the Euclidean balls, which can be described as fluctuations in the arrival times
at different distances from the origin. Again the deviation of these values follows the same power-law as the
roughness in standardKPZ growth, namely,σ ∼ χtt , with χ = 1 3, and the fluctuations followTWstatistics.
Due to thewide connections and applications of the FPPmodel to disordered systems, one can speculate
whether this reinterpretationmight allow to unveil TW statistics in stillmany other phenomena inwhich it has
not been identified yet. This would strengthen the role of TWfluctuations as a formof a central limit theorem for
many far-from-equilibriumphenomena.

The code used to carry out the simulations in this work has been uploaded as free software to a public
repository [51].

Acknowledgments

Wewant to acknowledge very useful discussions withKTakeuchi and S Ferreira. This work has been supported
by the Spanish government (MINECO) through grant FIS2012-38866-C05-01. JR-L also acknowledges
MINECOgrants FIS2012-33642, TOQATAand ERC grantQUAGATUA. TLʼs research and travel was
supported in part byNSF PIRE grantOISE-07-30136.

References

[1] Adler R andTaylor J 2007RandomFields andGeometry (Berlin: Springer)
[2] ItzyksonC andDrouffe J-M1991 Statistical Field Theory (Cambridge: CambridgeUniversity Press)
[3] Booß-Bavnbek B, EspositoG and LeschM2009NewPaths TowardsQuantumGravity (Berlin: Springer)
[4] NelsonD, PiranT andWeinberg S 2004 StatisticalMechanics ofMembranes and Surfaces (Singapore:World Scientific)
[5] Boal DH2012Mechanics of the Cell (Cambridge: CambridgeUniversity Press)
[6] Ambjørn J, Durhuus B and Jonsson T 1997QuantumGeometry: A Statistical Field Theory Approach (Cambridge: CambridgeUniversity

Press)
[7] KnizhnikV, PolyakovAMandZamolodchikov AB 1988Mod. Phys. Lett.A 03 819
[8] Hammersley JM andWelshD JA 1965 First-passage percolation, subadditive processes, stochastic networks and generalized renewal

theoryBernoulli, Bayes, Laplace Anniversary Volume ed JNeyman and LMLeCam (Berlin: Springer) p 61
[9] HowardCD2004Models offirst passage percolation Probability onDiscrete Structures edHKeston (Berlin: Springer) p 125
[10] KestenH2003 First-passage percolation FromClassical toModern Probability ed PPicco and J SanMartin (Basel: Birkhäuser) p 93

12

New J. Phys. 17 (2015) 033018 SNSantalla et al

http://dx.doi.org/10.1142/S0217732388000982


[11] EckhoffM,Goodman J, van derHofstad R andNardi F R 2013 J. Stat. Phys. 151 1056
[12] NewmanME J 2010Networks: An Introduction (Oxford:OxfordUniversity Press)
[13] LaGatta T andWehr J 2010 J.Math. Phys. 51 053502
[14] LaGatta T andWehr J 2014Commun.Math. Phys. 327 181
[15] Krug J and SpohnH1992Kinetic roughening of growing surfaces Solids Far fromEquilibrium edCGodrèche (Cambridge: Cambridge

University Press) p 479
[16] Barabási A-L and StanleyHE 1995 Fractal Concepts in Surface Growth (Cambridge: CambridgeUniversity Press)
[17] Krug J 1997Adv. Phys. 46 139
[18] KardarM, Parisi G andZhangY-C 1986Phys. Rev. Lett. 56 889
[19] Chatterjee S 2013Ann.Math. 177 663
[20] Auffinger A andDamronM2014Ann. Probab. 42 1197
[21] Takeuchi KA, SanoM, Sasamoto T and SpohnH2011 Sci. Rep. 1 34
[22] PrähoferM and SpohnH2002 J. Stat. Phys. 108 1071
[23] Corwin I, Quastel J andRamenikD2013Commun.Math. Phys. 317 347
[24] Corwin I 2012RandomMatrices: Theor. Appl. 1 1130001
[25] Alves SD,Oliveira T J and Ferreira SC 2011Europhys. Lett. 96 48003
[26] Oliveira T J, Ferreira SC andAlves SG 2012Phys. Rev.E 85 010601 (R)
[27] Takeuchi KA and SanoM2010Phys. Rev. Lett. 104 230601
[28] Yunker P J, LohrMA, Still T, Borodin A,DurianD J andYodhAG2013Phys. Rev. Lett. 110 035501

Yunker P J, LohrMA, Still T, Borodin A,DurianD J andYodhAG2013Phys. Rev. Lett. 111 209602
[29] NicoliM,CuernoR andCastroM2013Phys. Rev. Lett. 111 209601
[30] Sasamoto T and SpohnH2010Phys. Rev. Lett. 104 230602
[31] AmirG, Corwin I andQuastel J 2011Commun. Pure Appl.Math. 64 466
[32] Calabrese P and LeDoussal P 2011Phys. Rev. Lett. 106 250603
[33] PrähoferM and SpohnH2000Phys. Rev. Lett. 84 4882
[34] PrähoferM and SpohnH2000PhysicaA 279 342
[35] JohanssonK 2000Commun.Math. Phys. 209 437
[36] DotsenkoV S 2010 J. Stat.Mech.: Theory Exp. 2010P07010
[37] Takeuchi KA2012 J. Stat.Mech.: Theory Exp. 2012P05007
[38] JohanssonK 2000Commun.Math. Phys. 209 437
[39] Rodriguez-Laguna J, Santalla SN andCuernoR 2011 J. Stat.Mech.: Theory Exp. 2011P05032
[40] Santalla SN, Rodriguez-Laguna J andCuernoR 2014Phys. Rev.E 89 010401 (R)
[41] Takeuchi KA and SanoM2012 J. Stat. Phys. 147 853
[42] JohanssonK 2003Commun.Math. Phys. 242 277
[43] Burns K andGideaM2005Differential Geometry and Topology:With a View toDynamical Systems (Boca Ratón, FL: CRCPress)
[44] Ferrari P L and Frings R 2011 J. Stat. Phys. 144 1123
[45] Alves SG,Oliveira T J and Ferreira S C 2013 J. Stat.Mech.: Theory Exp. 2013P05007
[46] Alves SG,Oliveira T J and Ferreira S C 2011Europhys. Lett. 96 48003
[47] Bornemann F 2010Math. Comput. 79 871
[48] Tang L-H and LeschhornH1991Phys. Rev.A 45R8309

LeschhornH1996Phys. Rev.E 54 1313
[49] CastellanaM,Decelle A andZarinelli E 2011Phys. Rev. Lett. 107 275701

CastellanaM2014Phys. Rev. Lett. 112 215701
[50] Somoza AM,OrtuñoMandPrior J 2007Phys. Rev. Lett. 99 116602
[51] http://github.com/jvrlag/riemann.

13

New J. Phys. 17 (2015) 033018 SNSantalla et al

http://dx.doi.org/10.1007/s10955-013-0743-7
http://dx.doi.org/10.1063/1.3409344
http://dx.doi.org/10.1007/s00220-014-1901-8
http://dx.doi.org/10.1080/00018739700101498
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.4007/annals.2013.177.2.7
http://dx.doi.org/10.1214/13-AOP854
http://dx.doi.org/10.1038/srep00034
http://dx.doi.org/10.1023/A:1019791415147
http://dx.doi.org/10.1007/s00220-012-1582-0
http://dx.doi.org/10.1142/S2010326311300014
http://dx.doi.org/10.1209/0295-5075/96/48003
http://dx.doi.org/10.1103/PhysRevLett.104.230601
http://dx.doi.org/10.1103/PhysRevLett.110.035501
http://dx.doi.org/10.1103/PhysRevLett.111.209602
http://dx.doi.org/10.1103/PhysRevLett.111.209601
http://dx.doi.org/10.1103/PhysRevLett.104.230602
http://dx.doi.org/10.1002/cpa.20347
http://dx.doi.org/10.1103/PhysRevLett.84.4882
http://dx.doi.org/10.1016/S0378-4371(99)00517-8
http://dx.doi.org/10.1007/s002200050027
http://dx.doi.org/10.1088/1742-5468/2012/05/P05007
http://dx.doi.org/10.1007/s002200050027
http://dx.doi.org/10.1088/1742-5468/2011/05/P05032
http://dx.doi.org/10.1007/s10955-012-0503-0
http://dx.doi.org/10.1007/s10955-011-0318-4
http://dx.doi.org/10.1088/1742-5468/2013/05/P05007
http://dx.doi.org/10.1209/0295-5075/96/48003
http://dx.doi.org/10.1090/S0025-5718-09-02280-7
http://dx.doi.org/10.1103/PhysRevA.45.R8309
http://dx.doi.org/10.1103/PhysRevE.54.1313
http://dx.doi.org/10.1103/PhysRevLett.107.275701
http://dx.doi.org/10.1103/PhysRevLett.112.215701
http://dx.doi.org/10.1103/PhysRevLett.99.116602
http://github.com/jvrlag/riemann.

	1. Introduction
	2. Geometry in random metrics
	3. Numerical simulation algorithm
	4. Balls and geodesics in random metrics
	4.1. Roughness
	4.2. Geodesic fluctuations
	4.3. Rightmost point statistics

	5. Radial fluctuations
	6. Time of arrival
	7. Conclusions and further work
	Acknowledgments
	References
	Página en blanco



