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In this work, we aim to contribute to the understanding of human prosocial behavior by studying the influence
that a particular form of social pressure, “being watched,” has on the evolution of cooperative behavior. We study
how cooperation emerges in multiplex complex topologies by analyzing a particular bidirectionally coupled
dynamics on top of a two-layer multiplex network (duplex). The coupled dynamics appears between the prisoner’s
dilemma game in a network and a threshold cascade model in the other. The threshold model is intended to
abstract the behavior of a network of vigilant nodes that impose the pressure of being observed altering hence
the temptation to defect of the dilemma. Cooperation or defection in the game also affects the state of a node of
being vigilant. We analyze these processes on different duplex networks structures and assess the influence of
the topology, average degree and correlated multiplexity, on the outcome of cooperation. Interestingly, we find
that the social pressure of vigilance may impact cooperation positively or negatively, depending on the duplex
structure, specifically the degree correlations between layers is determinant. Our results give further quantitative
insights in the promotion of cooperation under social pressure.
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I. INTRODUCTION

Human cooperation is a ubiquitous yet not fully-understood
phenomenon. Explaining how cooperation emerges and with-
stands selfish behaviors is one of the biggest challenges
in natural and social sciences. Multiple mechanisms have
been proposed to explain under which conditions cooperation
emerges and is sustained: direct reciprocity (repetition),
indirect reciprocity (reputation), spatial selection, multilevel
(group) selection, and kin selection [1-3].

Evolutionary game theory [4-6] is the arena to analyze
the evolution of cooperation. In the past several years, many
experimental studies with humans facing game-theoretical
dilemmas have been conducted [7-10]. Interestingly, these
experiments have challenged the way we understand human
cooperation, and more work on the consequences of these
experiments have to follow.

Another way to approach the understanding of the evolution
of cooperation in human societies consists of deciphering
from historical records the cooperative behavior in ancient
communities. In a previous work [11] we studied cooperation
in the Yamana society who inhabited the Beagle Channel
in Argentina, with respect to sharing beached whales (a
scarce, unpredictable, and valuable resource). In that work
we observed that the emergence of an informal network of
vigilance promoted cooperation.

Historically, ancient societies have exploited the power that
images of watchful eyes have on people. We can find examples
in totem monuments decorated with eyes to enhance charitable
behaviors in tribes [12]; different religions use this power to
promote honesty [12], which is coherent with the Supernatural
Monitoring Hypothesis, which states that the perception of
being watched promotes prosocial behavior [13,14], “They
remind us that our actions have consequences” [12].

The essential idea is that being watched can play an
important role in promoting prosocial cooperative behavior.
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Several field studies have found evidence of humans exposing
a prosocial behavior when being observed by others (recently
confirmed in a field experiment with 2000 individuals [15])
and also under the presence of subtle cues of being watched.
Although there are also some studies that could not find such
evidence. A review on the topic can be found in Refs. [16,17].
A possible reason for the failure of previous studies in eye cue
influence is proposed in Ref. [17], where the authors found
that people with weak public self-awareness, i.e., people not
concerned about how they appear in the eyes of others, are not
affected by the watching eyes phenomenon. The observability
effect (the increase of cooperation under vigilance) seems to
be driven by our reputational concerns, bringing the indirect
reciprocity mechanism into play.

This work is aimed to shed light, from a complex networks
perspective, on the phenomenon mentioned above, i.e., the
emergence of cooperation in a networked society interacting
with a network of vigilance. The effect of the structure of
interactions on different social dilemmas has been largely
studied within the scope of network theory over the past few
years, from topology influence [18] to spatial and temporal
effects [19]. Recently, a new perspective for the representation
of multiple types of social interactions has been proposed
under the name of multiplex networks. Different kinds of
interactions are modeled by different interconnected layers
[20,21]. This approach has been successfully applied to the
study of the prisoner’s dilemma (PD) game [22] and also to
the understanding of cooperation in coupled networks [23].

We adopt a similar approach here, modeling our problem in
the scope of a multiplex network. Specifically, we investigate
the interplay between two dynamical processes, an evolu-
tionary game (a prisoner’s dilemma) and dynamical social
pressure (a vigilance network evolving according to a threshold
dynamics), and the duplex structure of these interactions.

The paper is organized as follows. We present the definition
of the model in Sec. II. Results obtained by means of simulation
are analyzed in Sec. III. First, we focus our analysis on the
influence of these coupled dynamics on cooperation under
different monoplex network structures (Sec. III A) and the
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impact that different costs of vigilance have on the outcome of
cooperation (Sec. III B). Second, in Sec. IIIC, the analysis
moves to a duplex structure of networks, where we study
how the topologies and average degrees of the different layers
affect cooperation and also how the layer-degree correlations
can promote or hinder cooperation. Last, a modification is
introduced on the vigilance dynamics, where a vigilance actor
can stop being vigilant. The influence of this dynamics is
studied in Sec. IIID. Finally, we conclude with Sec. IV by
summarizing what insights are offered by our work.

II. MODEL DYNAMICS

A. Description of the model

The abstracted framework for our analysis is a networked
system of agents (nodes) playing a theoretical game under vig-
ilance pressures. In particular, our agents play an evolutionary
PD game. The links define the neighborhood of the players
and with whom they are playing. The same players involved
in the game are also endowed with a state that defines them
as vigilant or not. The whole dynamics is composed by an
interaction between the spreading of the vigilant behavior and
the game. The game is divided into two phases: (1) payoff
recollection and (2) strategy update.

In phase 1, at each round, node i can choose to play one of
the two strategies, cooperation (C) or defection (D). The PD
game can be defined according to its payoff matrix (entries
correspond to the row player’s payoffs):

cC D
C (R S

D (T P ) M
where R represents the reward obtained by a cooperator playing
against another cooperator; S is the sucker payoff obtained by
a cooperator when she plays against a defector; the temptation
payoff, T, is the payoff received by a defector when his
opponent is a cooperator; and, finally, P represents the payoff
obtained by a defector which engages with another defector.
In the PD [24], T > R > P > S. We rescale the game so it
depends on only one parameter, as is done traditionally [25].
We define b as the advantage of defectors over cooperators,
being T = b > 1. The values of R and P are fixed to R = 1
and P =0 in order to provide a fixed scale for the game
payoffs. Applying this constraint, it turns out that the selection
of the remaining parameters b and S enables the definition of
several games according to their evolutionary stability. We will
focus on the PD with § = 0 (weak PD [25]) then being the
only parameter of the game the advantage of defectors over

cooperators b.
For the spreading of the vigilance behavior, we will

assume a cascade-of-imitation effect. Players activate (become
vigilant) (V! = 1) following a Watt’s threshold model [26]:

PN i m ke < 6

where m; is the number of neighbors of the node i that are
already vigilant, k; is the degree of node i, and 6; the personal
threshold of node i above which she becomes vigilant.
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Players are affected by the pressure of being watched by
their neighborhood, which modifies their temptation to defect,
decreasing it as the pressure (percentage of vigilant neighbors)
increases. The individual temptation 7; of node i is

I = R+ (T — R)(1 —m;/ky), 3)

where again m; is the number of neighbors of the node i that
are already vigilant, and k; is the degree of node i. The fitness
of an individual is the accumulated payoff after playing k; PD
games with her neighbors.

The second phase of the game is the update of individual
strategies, which is performed each generation. Darwinian
dynamics are introduced to promote the fittest strategy.
The replicator dynamics [27] is the traditional approach for
well-mixed populations (populations with no structure where
individuals play with each other). For evolutionary models,
finite populations and discrete time, the equivalent classic
approach is the use of the proportional imitation rule [28,29].
The update of strategies is performed as follows. Let N be
the number of individuals in the population, s; the strategy the
individual i is playing, and rr; her payoff. With the proportional
imitation rule, each individual i randomly choose one from
her k; neighbors (individual j) and adopts her strategy with
probability:

(nj’. —nl)/® if 7 !
0 if n; < 7},

t+1} —

i (4)

plfj = P{s; — 5

where ® = max(k; ,k;)[max(1,T) — min(0,5)] so pfj €
[0,1].

The strategies of the individuals are updated synchronously.
Note that we identify vigilance as a prosocial engagement
activity, and then we assume that noncooperative individuals
will not be willing to engage this costly action, i.e., defectors
will loose their be vigilant state when acquiring the defection
strategy, although they could gain again the vigilant state by
social pressure the next step of the vigilance dynamics.

The dynamics are sequenced as follows. First, players
update their temptation to defect [Eq. (3)] and then their
vigilance status [Eq. (2)]. Then the game dynamics takes place
and players play k; PDs with their neighbors (phase 1), and
afterwards strategies are updated (phase 2). The two dynamics
(vigilance and game) are advanced iteratively (one step of
vigilance, one step of game dynamics) until the stop condition
(as shown afterwards at Sec. II B) is reached.

B. Simulations

All simulations presented hereafter have been carried out
for networks of 1000 nodes and results are averaged over at
least 100 different realizations of the initial conditions.

Players are randomly initialized as cooperators or defectors
with equal probability. The cooperators are also equiprobably
chosen to be either vigilant or nonvigilant, while defectors
are always nonvigilant. So, on average, we start with half of
the population as cooperators, half as defectors, and a quarter
as both cooperators and vigilant. All players have the same
personal threshold 6; in each simulation run, so for the sake of
simplicity, it will appear as 6 thereafter.
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Statistics are measured after a transient of 100 000 genera-
tions and averaged over a time window of 100 generations if
the system has reached a stationary state defined by the slope
of the average fraction of cooperators (p) being inferior to
1072; if not, then we let the system evolve subsequent time
windows of 100 generations.

III. INTERPLAY BETWEEN STRUCTURE
AND DYNAMICS

A. Cooperation dynamics over a monoplex structure

First, we focus on the aforementioned two biderectionally
coupled dynamics over a monoplex network. We show that
cooperation is significantly enhanced when players feel the
pressure of being watched, independently of the topology
and the average degree of the network (Fig. 1). Cooperation
promotion is affected by the personal threshold 6, as Fig. 1(a)
shows.
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FIG. 1. Simulation results for an Erdos-Rényi network (upper
panels of both subfigures) and Barabasi-Albert network (bottom
panels of both subfigures) with average degrees z =4 (left) and
z = 16 (right). Panel (a) shows the average fraction of cooperators (p)
as functions of the advantage of defectors b, and (b) shows the average
fraction of cooperators (o) as functions of the personal threshold 6
of the nodes (horizontal axis) and as functions of the advantage of
defectors b (vertical axis). The maximum standard error (SE) of all
(p) values in the figure is 0.048.
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There is a phase transition in (p) as functions of 6.
The critical point happens around 0.5 < 6 < 0.8. Values of
6 below this point promote cooperation for both network
configurations, as Fig. 1(a) shows, and values of 6 above the
critical point make no difference in the outcome of cooperation
with respect to the case with no vigilance network. It can
be observed that values of 8 < 0.5 are sufficient to promote
cooperation and, more importantly, it can be quantified. The
higher the threshold, the more vigilant neighbors a player need
to become vigilant, too, and the more difficult is to promote
cooperation based on vigilance.

The average fraction of cooperators (p) as functions of
the personal threshold 6 of the nodes and as functions of the
advantage of defectors b is shown in Fig. 1(b), where the
bottom-left (green) areas represent cooperation ({p) greater
than 0.5) and the top-right (red) areas represent defection ({p)
lower than 0.5).

The influence of the vigilance network on cooperation is
far more pronounced for the Barabasi-Albert networks. In the
case of z =4 [Fig. 1(b), bottom-left panel], cooperation is
fully achieved in almost all regions of the parameter space.
For z = 16 cooperation emerges for b < 1.5 independently
of the 6 value, which does not hold for the Erdos-Rényi
network, where cooperation is fully achieved ({(p) = 1) in a
70% of the parameter space (b < 1.5,all 6 values;andb > 1.5,
0 < 0.4).

Until now, we have studied a population with the same
personal threshold 6. A more realistic approach is to have
a heterogeneous population, i.e., to initialize the population
with random 6; values. If we initialize the 6; of the population
with values drawn from a uniform distribution U[0,1], then
the expected (6) = 0.5 and indeed the results for the average
fraction of cooperators () are undistinguishable from the ones
obtained when 6; = 0.5. This also holds for the duplex network
case in Fig. 3.

B. Influence of cost of the vigilance action

So far our analysis of the interplay between vigilance
and cooperation assumed no cost for the vigilance action.
However, a more realistic hypothesis is that vigilance comes
at a certain cost for the action. We have introduced this cost in
the following way: we consider that every agent has to afford a
vigilance cost each generation, which is a fraction (Cv) of her
reward in the game R. Figure 2 shows the influence of Cv in
the outcome of cooperation for the Barabdasi-Albert network.

When the cost of vigilance is high (0.5R and 0.75 R, middle
and left panels of Fig. 2), the vigilance network can promote
cooperation and defection depending on the value of the
temptation parameter b. Note that the percentage of vigilant
nodes in the population (V') corresponds to the critical point
in b (not the same for all #) from which full cooperation is
dismantled. This critical point in b where (V) starts to be
inferior to 1 can be used as a predictor for the critical point
in b above which full cooperation disappears, as the dashed
vertical gray lines in Fig. 2 exemplify for several arbitrary 6
values. As the cost of vigilance Cv increases, the critical point
(above which full cooperation is dismantled) is shifted to lower
values of b.
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FIG. 2. Average fraction of cooperators (p) (top panels) and
average fraction of vigilant players (V) (down panels) for Barabdsi-
Albert networks with z = 16 and cost of vigilance Cv 0.25R (left),
0.5R (middle), and 0.75R (right). The higher the cost of vigilance,
the lower the average fraction of cooperators (p) in the regions of b
where the population is not fully vigilant. The maximum SE of all
(p) values in the figure is 0.023.

C. Cooperation dynamics over a duplex structure

We extend the analysis to a duplex structure of networks: a
network for the game dynamics and a network for the vigilance
dynamics. We study the bidirectional coupling of both layers.
From now on, we will not assume a cost for the vigilance
action.

First, we will consider that both layers have the same
average degree and we will study the influence of network
topology. For a vigilance network with a given average
degree and topology, we study the influence of vigilance layer
for different game networks topologies. For example, for a
vigilance Barabasi-Albert network with z = 16 [Fig. 3(b),
right panels], the average fraction of cooperators (p) is shown
for the case where the game network is a Barabdsi-Albert
network (upper panel) and an Erdos-Rényi network (bottom
panel). For the four vigilance network configurations studied,
the vigilance network has a significant influence on the
dynamics of cooperation so there is no significant difference in
the stationary average fraction of cooperators (p) for different
game network topologies, as can be seen in Fig. 3. The outcome
of cooperation is led by the vigilance network.

Now, let us focus on the case where vigilance and game
layers do not have equal average degree. As Fig. 4 shows, the
average degree of the vigilance layer dominates the dynamics
of cooperation. Indeed, there is no significant difference in the
average fraction of cooperators (p) obtained where the game
layer has the same average degree of the vigilance network
or it does differ and when the topology of the game layer
differs. It can be seen that each panel in Fig. 4 shows the
same average fraction of cooperators (p) as the one in Fig. 3.
For example, the top-left panel in Fig. 4 corresponds to the
Fig. 1(a) left panels, and it also holds for the other panels
in Fig. 4 and its correspondence in Fig. 3. Vigilance networks
with higher average degree hinder cooperation, since it is more
difficult for an agent to fulfill her threshold to become vigilant,
and, therefore, the diffusion of the vigilance dynamics is more
costly.

Now we study the impact of correlated multiplexity, i.e.,
layer-degree correlations, since in real-world complex systems
the degree of nodes in the different layers of the multiplex

PHYSICAL REVIEW E 94, 032314 (2016)

1.04 1.04
0.8 6 0.8 6
0 0
A 0.6 0.2 g 0.6 02
e 04 e 04
v 044 —— 0.6 v 044 —— 0.6
4 === 0.8 4 —=— 0.8
0.2 — 1 0.2 — 1
00 Aﬂ_ﬁﬁﬁ_r 00 1
1.0 12 14 16 18 20 10 12 14 1.6 1.8 2.0
1.04 1.0+ |
0.8 6 o 0.8 6 o
g_ 0.6 0.2 g_ 0.6 02
- 04 - 04
v 044 —+= 0.6 v 044 —+— 0.6
4 - 0.8 4 - 0.8
02 —e ] 02 -1
0.04 0.01

1.0 12 14 16 18 20 10 1.2 l4 1.6 1.8 20

(a)Vigilance networks as Erdos-Rényi. Game networks as Erd6s-Rényi (top)

and Barabasi-Albert (bottom). Both layers with the same degree, z=4 (left) or
z=16 (right).
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(b)Vigilance networks as Barabasi-Albert. Game networks as Erdos-Rényi
(top) and Barabasi-Albert (bottom). Both layers with the same degree, z=4
(left) or z=16 (right).

FIG. 3. Average fraction of cooperators {p) for a duplex structure
of networks. The combination of network topologies (Erdos-Rényi
and Barabdsi-Albert networks) and average degrees (both layers
with the same degree, z = 4 or z = 16) are explored. The vigilance
network drives the cooperative outcome of the game dynamics. The
vigilance network promotes cooperation as in the monoplex scenario
(Fig. 1). The maximum SE of all (p) values in the figure is 0.05.
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FIG. 4. Average fraction of cooperators (p) for a duplex structure
of networks, where layers have different average degrees. Vigilance
and game networks both as Erdos-Rényi (top panels), and vigilance
and game networks both as Barabdsi-Albert (bottom panels). Vig-
ilance networks with z =4 and game networks with z = 16 (left
panels), and vigilance networks with z = 16 and game networks with
z = 4 (right panels). The maximum SE of all (p) values in the figure
is 0.05.
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FIG. 5. Average fraction of cooperators (p) for a duplex structure
of Barabasi-Albert networks. The degree distributions of the layers are
maximally positive correlated (a) and maximally negative correlated
(b). The average degree of both layers of the duplex is the same and
takes the values z = 4 (left) and z = 16 (right). The maximum SE of
all (p) values in the figure is 0.044.

structure are not randomly distributed but correlated. We focus
this study on a duplex structure where both layers are Barabasi-
Albert networks, as the majority of real-world social networks
present scale free degree distributions with exponent between
2 and 3.

Maximally positive and negative correlations between the
duplex layers are constructed as explained in Ref. [30].

Results for layers with average degree distribution z = 4
(Fig. 5, left panels) do not show to be influenced significantly
by the correlated multiplexity of their layers. It is not the same
for higher average degrees (Fig. 5, right panels). When the
degree distribution of game and vigilance layers are maximally
positive correlated [Fig. 5(a)], cooperation is fairly promoted
(6 < 0.3 end up with (p) = 1) compared to the uncorrelated
scenario [Fig. 1(a), bottom panels]. In the opposite case,
where layers are maximally negative correlated [Fig. 5(b)],
cooperation is drastically hindered. The critical point where
cooperation is dismantled is shifted to lower b values for all 6
values. In fact, for values of b larger than 1.8 full cooperation
in not achieved for any 6 value.

D. Vigilance dynamics with giving-up option

So far the dynamics for the vigilance layer accounted that
once an agent has become vigilant, she cannot scape this
situation. In real situations, people can stop feeling social
pressure or just decide to change their opinion or action. In
this subsection, we take into account the possibility of giving
up being vigilant. We approach this by two means: (1) using
the threshold of vigilance in a reverse way and (2) with a
probability of giving up vigilant. We analyze this situation for
a duplex of Barabdsi-Albert networks.

First, let us consider the vigilance dynamics as composed by
two processes: becoming vigilant and becoming nonvigilant.
The process of becoming vigilant is the same as in Eq. (2).

PHYSICAL REVIEW E 94, 032314 (2016)
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FIG. 6. Average fraction of cooperators (o) for a duplex structure
of Barabdsi-Albert networks when actors can give up being vigilant:
(a) There is not enough social pressure in the neighborhood or (b)
with a probability p = 0.05. The average degree of both layers of
the duplex is the same and takes the values z = 4 (left) and z = 16
(right). The maximum SE of all (p) values in the figure is 0.03.

The process of giving up vigilance Vl.]_’0 follows an inverse
threshold model, where an agent become nonvigilant because
there are not enough vigilant actors in her neighborhood:

Vl—’(’( k)— 1 1fm,/k, <9,', (5)
i VRN ik > 6

As Fig. 6(a) shows, the average fraction of cooperation (p)
is still influenced by the threshold of vigilance 6. Cooperation
is most costly now and is only promoted when actors do not
need much social pressure to become vigilant [0 < 0.4, which
is inferior to the threshold needed to promote cooperation in
the case in Fig. 3(b) (bottom panels)].

If actors become vigilant again following a threshold model
[Eq. (2)] but can give up vigilance with a probability p =
0.05, then we find comparable results [Fig. 6(b)]. Slightly
higher cooperation levels can be found for the case with z = 4
and 6 = 0.4 [Fig. 6(b), left panel] related to the scenario in
Fig. 6(a). Broadly, we can conclude that giving the option of
stopping the vigilance action does not hinders cooperation, but
there are few 6 values for which cooperation is enhanced.

IV. CONCLUSIONS

Summarizing, we have presented a computational analysis
of the interplay between vigilance network dynamics and game
dynamics, showing that the pressure of being watched plays
a significant role in the outcome of cooperation, having both
the effect of a booster and dismantler. When agents are easily
affected by social pressure (low s in our model), cooperation
can be promoted. But if the vigilance action is costly for the
agents, it can also happen than defection is promoted, so it
might be a double-edged sword. When these dynamics occur
over a duplex structure of networks, the vigilance dynamics
studied in this work became dominant over the game dynamics,
so one could focus on studying the characteristics of the
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vigilance network and pay less attention to the structure of
the game interactions. Moreover, the existence of layer degree
correlations between the duplex layers can affect cooperation,
mainly when these correlations are maximally negative, in
which case it is more difficult to promote cooperation based
on vigilance. Hence, we show that the conditions for the
observability effect to emerge are not trivial, and subsequent
experimentation with real humans would be of much in-
terest to fully understand the impact of being watched on
cooperation.

PHYSICAL REVIEW E 94, 032314 (2016)

These results clear the ground for a framework to quantify
the promotion of cooperation in structured populations that
use vigilance to enhance prosocial behavior.
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